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Abstract. In this paper we present results of our ongoing research
on non-verbal human-robot interaction that is heavily inspired by
recent experimental findings about the neuro-cognitive mechanisms
supporting joint action in humans. The robot control architecture im-
plements the joint coordination of actions and goals as a dynamic
process that integrates contextual cues, shared task knowledge and
the predicted outcome of the user’s motor behavior. The architecture
is formalized by a coupled system of dynamic neural fields repre-
senting a distributed network of local but connected neural popula-
tions with specific functionalities. We validate the approach in a task
in which a robot and a human user jointly construct a toy ’vehicle’.
We show that the context-dependent mapping from action observa-
tion onto appropriate complementary actions allows the robot to cope
with dynamically changing joint action situations. This includes a ba-
sic form of error monitoring and compensation.

1 INTRODUCTION

As robot systems are moving as assistants into human everyday life,
the question how to design robots capable of acting as sociable part-
ners in collaborative joint activity becomes increasingly important
([4], [12]). Useful and efficient human-robot interaction requires that
both teammates coordinate and synchronize their actions and deci-
sions in a shared task. In order to decrease the workload of the hu-
man and to increase user satisfaction, the robot should equally con-
tribute to this coordination effort. This necessarily means that the
robot should be endowed with cognitive capacities such as action
understanding and goal inference. Humans achieve their remarkable
fluent organization of joint action by anticipating the intentions of
others [21]. In our everyday social interactions we continuously mon-
itor the actions of our partners, interpret them effortlessly in terms of
their outcomes and use these predictions to select adequate comple-
mentary behaviours. Very often this happens without the need for
explicit verbal communication. Imagine for the instance the joint ac-
tion task of preparing a dinner table. The way how a partner grasps a
certain object, e.g., a coffee cup, transmits to the observer important
information about the ultimate goal of the action. Depending on the
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grip type, the partner may want to place the cup on the table or, al-
ternatively, has the intention to hand it over. Being able to predict the
goal of the whole action sequence at the time of the grasping allows
the observer to timely prepare for receiving the cup, or to initiate the
selection of another object for the dinner table.

This paper presents our ongoing research towards creating socially
intelligent robots that are able to flexibly adjust their goal-directed
behaviours in dependence of the predicted outcomes of actions of
their human partners [3]. Our approach is heavily inspire by re-
cent experimental and theoretical findings about the neuro-cognitive
mechanisms underlying joint action in humans and other primates
([18], [25]). We believe that designing cognitive control architectures
on the basis of these mechanisms defines a very promising research
direction to reduce the significant imbalance in social and cognitive
skills between human and robot that still exists today. Ultimately,
implementing a human-like joint action model in the robot will con-
tribute to more natural HRI since the teammates will become more
predictable for each other. This in turn will increase the acceptance
by humans. A recent HRI user study with a simulated robotic team-
mate revealed that anticipatory action selection seems to be a natural
expectation of a robotic assistant in known joint action tasks [17].
The robot is perceived as a full partner that contributes to the team’s
fluency and success only if it acts in anticipation of the needs of the
human user.

Several neuro-cognitive mechanisms that are believed to under-
lie successful human joint action define fundamental components of
the robot control architecture. An impressive body of experimen-
tal evidence from studies investigating action and perception in a
social context suggests that motor simulation routines in the brain
support the understanding of other’s actions and facilitate overt im-
itation [25]. The fundamental idea is that perceived actions are au-
tomatically mapped onto corresponding motor representation of the
observer to predict or replicate the action effect. Over the last cou-
ple of years, the suggested close perception-action link has inspired
robotics work mainly in the domain of learning by imitation and so-
cial development (e.g., [5], [1], [10], [15], [19]). For implementing
a high-level goal inference capacity in the context of HRI, it is im-
portant that the matching takes place on a sufficiently abstract level
related to the goal or desired end state of an action sequence. This
allows the robot to predict actions of the teammate despite the ob-
vious differences in embodiment and motor skills between human
and robot. However, for action selection in cooperative tasks an au-
tomatic and direct resonance of matching motor structures is in gen-
eral not beneficial. Normally, action observation should facilitate the
selection of a non-imitative, complementary behaviour. Moreover,
to cope with dynamically changing joint action conditions, the de-
cision about what defines the most adequate complementary action
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should depend on additional contextual cues. Recent evidence from
neurophysiological and behavioural studies shows that the automatic
mapping from action observation onto action execution is indeed
more complex and flexible as previously thought ([18], [23]). The
robot control architecture reflects these findings by implementing a
context-dependent mapping that is biased by the inferred goal of the
human user.

As a theoretical framework for the high-level control of the robot
we have used the Dynamic Neural Field (DNF) approach to robotics
[8]. Originally introduced as a simplified mathematical model for
pattern formation in neural populations [2], DNFs have been later
generalized and applied to the cognitive domain (for a recent re-
view see [20]). The architecture of DNFs reflects the hypothesis that
strong recurrent interactions in local populations of neurons form a
basic mechanism for cortical information processing. These interac-
tions support the existence of self-stabilized inner states that allow
the cognitive agent for instance to compensate for temporally miss-
ing sensory input, or to anticipate future environmental inputs that
may inform the decision about a specific goal-directed behaviour.
The DNF-based model for joint action consists of a distributed net-
work of reciprocally connected neural populations that represent in
their activation patterns specific task-relevant information. It imple-
ments the idea that the coordination of actions and decisions among
the teammates is a dynamic process that builds on the continuous
integration of input from representations of the inferred goal of ob-
served actions, contextual cues and shared task knowledge. The rep-
resentation of the complementary action that gets the strongest sup-
port from all connected populations will win the dynamic competi-
tion process among all possible actions.

The dynamic field architecture has been validated in a joint con-
struction task in which the human-robot team assembles a toy ’vehi-
cle’ from its components knowing the construction plan. The study
differs from conceptually related HRI work [17] in the sense that the
robot is not only serving the user (e.g., holding out pieces for the
user) but is able to perform itself the assembly task. This symmetric
situation challenges the joint coordination of decisions and actions.
The focus of the results reported here is on successful trials in which
the robot shows anticipatory action selection. Since coordination and
other errors may occur even in tasks that are well known to the team-
mates [22], performance monitoring and error detection is another
topic that we have addressed. In the present implementation, com-
plementary action selection in error trials may range from simple
head nodding to pointing. In addition, we have integrated and tested
a speech production system that allows the robot not only to explain
the error in some more detail but to send in general feedback about
its reasoning to the user.

The paper is organized as follows: Section 2 introduces the
joint construction task and the robotic platform. Section 3 gives an
overview about the cognitive control architecture. Section 4 presents
the basic concepts of the dynamic field framework. The results of the
human-robot interactions are described in section 5. The paper ends
with a discussion of concepts, results and a short outlook.

2 JOINT CONSTRUCTION TASK

To validate the dynamic field architecture for human-robot interac-
tion we have chosen the joint construction of a toy ’vehicle’from
components that are initially distributed on a table. (Figure 1). The
task requires only a limited number of different motor actions to be
performed by the team but is complex enough to show the impact
of action monitoring and evaluation on action selection. The com-

Figure 1. Human-robot team for the joint construction of a toy ’vehicle’.
The vehicle consists of a (red) round platform with an axle where two

(green) wheels have to be mounted and fixed with (magenta) bolts.

ponents that have to be manipulated by the robot were designed to
limit the workload for the vision and the motor system of the robot.
The toy object consists of a round platform with an axle on which
two wheels have to be attached and fixed with a bolt. Subsequently,
4 columns have to be plugged into holes in the platform. The placing
of another round object on top of the columns finishes the task. It is
assumed that each teammate is responsible to assemble one side of
the toy. Since the working areas of the human and the robot do not
overlap, the spatial distribution of components on the table obliges
the team to coordinate in addition handing-over sequences. It is fur-
ther assumed that both partners know the construction plan and keep
track of the subtasks which have been already completed by the team.
Since the desired end state does not uniquely define the logical order
of the construction, at each stage of the construction the execution
of several subtasks may be simultaneously possible. The main chal-
lenge for the team is thus to efficiently coordinate in space and time
the decision about actions to be performed by each of the teammates.

For the HRI experiments we used a robot built in our lab. It con-
sists of a stationary torus on which a 7 DOFs AMTEC arm (Schunk
GmbH) with a 3-fingered BARRET hand (Barrett Technology Inc.)
and a stereo camera head are mounted. A speech synthesizer (Mi-
crosof Speech SDK 5.1) allows the robot to communicate the result
of its reasoning to the human user. For the control of the arm-hand
system we applied a global planning method in posture space that
allows us to integrate optimization principles derived from experi-
ments with humans [10]. The information about object type, position
and pose is provided by the camera system. The object recognition
combines color-based segmentation with template matching derived
from earlier learning examples [24]. The same technique is also used
for the classification of object-directed, static hand postures such as
grasping and communicative gestures such as pointing or demanding
an object.

3 COGNITIVE CONTROL ARCHITECTURE
Figure 2 presents a sketch of the multi-layered robot control ar-
chitecture for dynamic decision making and performance monitor-
ing in joint action that is based on known neuro-cognitive mecha-
nisms. Ultimately, the architecture implements a context-dependent
mapping between observed action and executed action. The fun-
damental idea is that the mapping takes place on the level of ab-
stract motor primitives defined as whole goal-directed motor acts



Figure 2. Cognitive control architecture for joint action. It implements a
mapping from observed actions (layer OL) onto complementary actions

(layer AEL) taking into account the inferred action goal of the partner (layer
IL), detected errors (layer EL), contextual cues (layer OML) and shared task

knowledge (layer CSGL). The goal inference capacity is based on motor
simulation (layer ASL).

like reaching, grasping, placing, attaching or plugging an object [19].
An observed hand movement that is recognized by the vision sys-
tem as a particular primitive is represented in the action observa-
tion layer (OL). The action simulation layer (ASL) encodes entire
chains of action primitives that are in the motor repertoire of the
robot (e.g., reaching-grasping-placing/plugging a particular object).
These chains are linked to representations of specific goals or end
states (e.g., attach right wheel to base) in the intention layer (IL).
The basis of the goal inference capacity is the activation of a par-
ticular chain and its associated goal during action observation. It is
important to stress that due to the self-stabilizing properties of the
chain representations, goal inference is possible even if the action
sequence performed by the human is only partially observable [11].
The object memory layer (OML) encodes the memory about the po-
sition of objects in each of the working areas. The common sub-
goal layer (CSGL) contains the information about currently active
and future subgoals as well as memorized information about sub-
tasks which have been already completed by the team. The construc-
tion plan is encoded in the connections between neural populations
in 3 different layers representing past, current and future subtasks,
respectively. The representations are updated in accordance with the
construction plan and real or anticipated feedback from the vision
system and/or layer IL. The error monitoring layer (EL) represents a
detected discrepancy between the inferred goal of the human partner
and the subgoals that are currently available. This error-related ac-
tivity is functionally relevant since it is linked to representations of
compensatory behaviour in the action execution layer (AEL). This
layer integrates input from IL, OML, CSGL and EL to select among
all possible action sequences the most appropriate complementary
sequence. It is worth noting that this layer contains also the represen-
tation of an ’action’ linked to the speech synthesizer that allows the
robot to verbally inform the user about its reasoning.

4 BASIC CONCEPTS OF THE DYNAMIC
NEURAL FIELD FRAMEWORK

Each layer of the distributed control architecture is formalized by one
or more Dynamic Neural Fields (DNFs). DNFs implement the idea
that task-relevant information about action goals, motor primitives
or context is encoded by means of activation patterns of local pools
of neurons. These patterns are initially triggered by transient input
from connected populations and sources external to the network.
They may become self-sustained in the absence of any external input
due to the recurrent interactions within the population. Functionally,
these patterns may thus serve a working memory function. We em-
ployed a particular form of a DNF first analyzed by Amari (1977)
[2]. In each model layer i, the activity ui(x, t) at time t of a neuron
at field location x is described by the following integro-differential
equation (for an overview about analytical results see [8]):

τi
δui(x, t)

δt
= −ui(x, t) + Si(x, t)

+

∫
wi(x− x′)fi(ui(x

′, t))dx′ + hi (1)

where the constants τi > 0 and hi < 0 define the time scale and the
resting level of the field dynamics, respectively. The integral term
describes the intra-field interactions. It is assumed 1) that the interac-
tion strength, w(x, x′), between any two neurons x and x′ depends
only on the distance between locations, and 2) that nearby cells ex-
cite each other, whereas separated pairs of cells have a mutually in-
hibitory influence. For the present implementation we used the fol-
lowing integral kernel of lateral-inhibition type:

w(x) = A exp(−x2/2σ2)− winhib (2)

where winhib > 0 is a constant and A > 0 and σ > 0 de-
scribe the amplitude and the standard deviation of a Gaussian, re-
spectively. Only sufficiently activated neurons contribute to interac-
tion. The threshold function f(u) is chosen of sigmoidal shape with
slope parameter β and threshold u0:

fi(ui) =
1

1 + exp (−β(ui − u0))
. (3)

The model parameters are adjusted to guarantee that the field dy-
namics is bi-stable, that is, the attractor state of a localized activation
pattern coexists with a stable homogenous activation distribution
that represents the absence of specific information. If the summed
input to a local population is sufficiently strong, the homogeneous
state loses stability and a localized pattern evolves. Weaker external
signals lead to a subthreshold, input-driven activation patten in
which the contribution of the interactions is negligible. Normally,
a constant input from a single population does not drive directly
connected populations. It may play nevertheless an important role
for the processing in the joint action circuit. The preshaping by weak
input brings populations closer to the threshold for triggering the
self-sustaining interactions and thus biases the decision processes
linked to behavior. Much like prior distributions in the Bayesian
sense, multi-modal patterns of subthreshold activation in for instance
the action execution layer (AEL) may represent the probability of
different complementary actions [6].

The summed input from connected fields uj is given as
Si(x, t) = k

∑
j
fj(uj(x, t)). The parameter k scales the total

input relative to the threshold for triggering a self-sustained pattern.



This guarantees that the inter-field coupling is weak and the field
dynamics is dominated by the recurrent interactions. The external
inputs from the vision system to layers OL and MOL that initiate
the dynamic interplay of the different populations in the network are
modeled as Gaussian functions.

The existence of a single self-stabilized pattern of activation in a
dynamic field is closely linked to decision making. In layers ASL, IL
and AEL subpopulations encoding different chains (ASL), goals (IL)
and complementary actions (AEL), respectively, interact through
lateral inhibition. This inhibitory interaction leads to the suppression
of activity below threshold in competing neural pools whenever
a certain subpopulation becomes activated above threshold. To
represent and memorize simultaneously 1) the location of several
objects of a certain type, and 2) multiple common subgoals, the
interaction kernels in layers OML and CSGL were adapted to
allow for the existence of multiple patterns of activation. [8]. OML
contains individual fields for each of the object classes. They are
labeled by the workspace to which the object belongs, that is, each
class is represented by two separate fields.

5 RESULTS
In the following we validate the dynamic field architecture by pre-
senting snapshots of the human-robot interaction in the construction
task. The examples illustrate the impact of action observation on
action selection in varying context from the perspective of the
robot. The videos of the human-robot interaction and the associated
dynamics of the fields can be found at
http://dei-s1.dei.uminho.pt/pessoas/estela/JASTvideos.htm.
In each case, the robot is supposed to know what common subgoals
are currently active and can be selected by the team. In the present
implementation real or anticipated feedback about accomplished
subtasks trigger directly through hand-coded connections the
population representing subsequent assembly steps.

5.1 Anticipatory action selection
The capacity to simulate the consequences of observed actions al-
lows the robot to act in anticipation of the partner’s motor intentions.
Depending on the predicted outcome of the ongoing action, a socia-
ble robot may for instance decide to already prepare for an action
that best serves future needs of the user. Within the dynamic field
architecture this is possible since current subgoals of the team are
updated based on the inferred goal. The anticipatory action selection
is illustrated in Fig. 3. All components are distributed on the table
and the user starts the joint construction by grasping a wheel (green
object) from above (full grip). The robot has sequences in its motor
repertoire that associate the type of grasping with specific goals. A
grasping from above is used to attach a wheel to the platform whereas
using a side grip is the most comfortable and secure way to hand the
wheel over to the teammate. The observation of the full grip (repre-
sented in OML) triggers an activation peak in ASL that represents the
simulation of the respective reaching-grasping-plugging chain. Since
attaching a wheel on the side of the user is a current subgoal for the
team, the inputs from layers ASL and CSGL automatically activate
the representation of that goal in the intention layer (IL). The exis-
tence of this activation pattern initiate a dynamic updating process in
layer CSGL (not shown here). The peak representing the subgoal ”at-
tach wheel” disappears and an activation pattern representing the new

subgoal ”fix wheel with bolt” evolves. Since all bolts (magenta ob-
jects) are in the workspace of the robot, the inputs from layers OML
and CSGL converge on a population in the action execution layer
(AEL) that represents a decision for a ”hand over bolt” sequence as
a complementary behaviour of the robot. As can be seen in the acti-
vation pattern of layer AEL, the possible alternative to select a wheel
in it’s working area with the goal to attach it is also represented by a
weaker, subthreshold peak. The decision to serve the user first is the
result of small biases in the connection strengths to the populations
in CSGL that favor the subtasks and intentions of the user over the
subtasks to be realized by the robot. For HRI this offers interesting
perspectives since a simple adjustment of these weights will affect
how social the robot companion behaves.

Figure 3. Anticipatory action selection. The human reaches and grasps the
wheel from above. The robot infers that the human is going to attach it to the
platform. The robot decides to grasp the wheel for handing it over since the

wheel is the next component the human will need. The green line in the plots
indicates the resting level of the field dynamics.

5.2 Impact of shared task knowledge and context
Very often motor simulation alone is not sufficient to read the motor
intentions of the human user. The integration of shared task knowl-
edge is equally important for the decision process [21]. This is illus-
trated in panel A and B of Fig. 4 In both situations the user reaches
his open hand towards the robot. The robot has this gesture which
is associated with the goal ”request object” in its motor repertoire,
but needs additional information from the common subgoal layer
(CSGL) to disambiguate what object the human user is requesting. In
panel A the self-stabilized bi-modal activation pattern in CSGL indi-
cates that the two wheels have still to be attached. Since both wheels
are located in it’s workspace, the robot is able to infer that the user
is asking for wheel to attach it (compare the peak in IL). The inputs
from layers OML and IL activate a population representation in AEL
representing the handing-over sequence. In panel B, the user shows
again the requesting gesture. However, the state of the construction



and therefor the current subgoals for the team have changed. The
bi-modal activation pattern in CSGL now represents the information
that the two wheels have to be fixed with bolts. The robot is thus able
to infer what object the human wants. A possible complementary ac-
tion is again to serve the user by handing over a bolt. However, the
robot decides instead to attract the attention of the user to the fact that
he has a bolt in his working area. The robot performs a pointing ges-
ture in the direction of the bolt. This action selection, which overrides
the prepotent tendency to satisfy a user request, is possible because
of additional input from the error layer (EL). Population activity in
the object memory layer representing the bolt in the workspace of
the user together with the input from the population encoding the in-
ferred goal in IL automatically activate a self-stabilized peak in EL.
This pattern is associated with the pointing gesture and generates the
strongest input to AEL.

5.3 Error detection
The last example shows that even in well known joint action tasks the
user can easily make errors that should be compensated by the team-
mate if possible. Errors may occur for different reasons. The user
may have overlooked an object or may be confused about the state
of the construction and its temporal order. Different error categories
[22] affect joint action on different levels (e.g., error in intention ver-
sus error in the selection of action means). The following example
illustrates a case in which the robot detect a mismatch between the
inferred intention of the user and the state of the construction, that
is, between the intention and possible subgoals. In panel A of Fig. 5,
the robot observes the human user grasping a wheel from the side
which it interprets via action simulation as belonging to a handing
over sequence. However, on the side of the robot the wheel is already
attached. The information about the already accomplished subtask is
memorized by a self-stabilized activation peak in CSGL (compare
the snapshot of ”past” field). Input from this field together with input
from the intention layer (IL) trigger the emergence of a suprathresh-
old activation pattern in the error layer (EL). In this case, the error re-
lated activity is linked with a population in AEL that initiates speech
to explain the nature of the error to the user. The content of the speech
combines the information represented in the activation patterns that
have initially triggered the error-related activity (”I do not need a
wheel since a wheel is already attached on my side”). The example
in panel B shows that the information represented in the activation
patterns of the various populations of the distributed network can be
used to give an even more detailed explanation of a detected error. In
this case, the user holds out a bolt to hand it over so that the robot
may fix the wheel on its side. Since both wheels have been attached
but not yet fixed, the inferred goal is valid. However, the activation
pattern in the object memory layer indicates that the robot does not
need a bolt since it has one in its working area. Moreover, the user
still has to use the bolt himself to continue the assembly of the toy
on his side. The activation peak that evolves in EL in response to the
converging inputs from layers OML and CSGL controls the speech
output. The robot refuses the offered object and informs the user in
addition about the missing bolt on his side.

6 DISCUSSION
The capacity to anticipate and take into account action goals of a
partner is considered a fundamental cognitive capacity for success-
ful joint action [21, 18]. We have presented a robot control architec-
ture for human-robot interaction that is based on theories about how

Panel A

Panel B

Figure 4. The same observed action may have different meanings. In two
different contexts, the human reaches his empty hand toward the robot. Panel
A: The robot infers that the human is requesting a wheel with the intention to
attach it. The robot decides to grasp it for handing it over. Panel B: The robot

infers that the human is asking for a bolt but interprets this request as an
error since the human has a bolt in his workspace. The robot decides to

communicate this error to the human by pointing to the bolt and speaking to
the user.

humans perceive and act in a social context. The ease with which
humans coordinate in routine joint tasks their actions and decisions
in space and time is impressive. The capacity to quickly register the
intention of the teammate before the action sequence is completed
is essential for a fluent team performance. The dynamic field archi-
tecture implements the idea that in known tasks dynamic decision
making, goal-directed action selection and performance monitoring
occur rather effortlessly and do not require a fully developed human
capacity for conscious control [16]. As the representation of context,
goals and shared task knowledge are interconnected, the observation
of a motor act together with situational cues may directly activate the
self-sustained population representations of the related goal and the



Panel A

Panel B

Figure 5. : Error monitoring. Panel A: The robot infers that the human’s
intention is to hand-over a wheel. The robot interprets this is an error,

because the wheel on its side of the platform has been already attached, and
decides to communicate this to the human by speaking and nodding its head.
Panel B: The robot infers that the human intents to hand over the bolt. The

robot interprets the action as an error because the robot has a bolt in its
workspace and there is still the need to attach the bolt at the side of the

human.

most appropriate complementary action. This automatic process in-
cludes basic forms of error monitoring and error compensation

More traditional probabilistic approaches have been applied in
the past as well to model and implement cognitive skills like goal
inference and decision making for joint action ([7],[17]). Hoffman
and Breazeal for instance modeled anticipatory decision making in
a Baysian framework to study team fluency in a simulated construc-
tion task. In general, Baysian statistics offers a powerful tool for de-
scribing human behaviour under circumstances of uncertainty [14].
In our view, a major advantage of the dynamic field approach is that
it represents explicitly the important temporal dimension of goal co-
ordination in joint action [21]. Importantly, Dynamic Neural Fields
can be used in the Baysian sense by exploiting that multi-modal, sub-
threshold activation patterns may encode the probability of choices
[6]. We are currently testing the joint action model in more complex

construction tasks in which the robot has first to infer from observed
actions and contextual cues which of several possible toy objects the
user is going to built. The accumulated evidence for each of the pos-
sible choices is represented by the level of pre-activation of neural
populations encoding the different objects.

The decision process linked to complementary actions unfolds
over time under multiple influences which are themselves modelled
as dynamic representations with proper time scales. This is the basis
of flexible behaviour in dynamic joint action conditions. The absence
or delay of information about the intention of the user for instance
will automatically lead to a decision about an action that does not
take into account the other [3]. A challenge for the future will be to
endow the robot with the capacity to self-adapt the time window for
the integration of input to the dynamics of the different users.

Learning is in general an important research topic of our group.
For the present experiments, all inter-field connections were hand-
coded. It is certainly not realistic to assume for the next future that
for a complex joint action model these connections will self-organize
with only modest intervention by the human designer. However, us-
ing correlation based learning rules, we have shown in previous work
for instance how the goal-directed mappings of the action under-
standing model may develop during learning and practice [10, 9]. In-
terestingly, the development process includes the emergence of new
task-specific populations which have not been introduced to the ar-
chitecture by the human designer [11].

The focus of the presented work on action understanding does not
mean of course that other information channels of human-human co-
operation are not equally important. Our robot is equipped with a
speech synthesizer to communicate the state of its reasoning to the
user. An obvious extension of this work is to close the loop and ad-
vance toward natural-language dialogue. We are currently starting
to test a hybrid control architecture that allows us to combine non-
verbal and verbal communication skills [13].
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