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Resumo 

Mecanismos de defesa de Hypericum perforatum contra Colletotrichum gloeosporioides: 

Relevância da resposta hipersensível e do metabolismo fenólico. 
 

H. perforatum (HP) é uma planta medicinal encontrada em todo o mundo, sendo nativa da Europa, 

norte de África, Oriente Médio e grande parte da Ásia. Introduzida também noutras regiões do globo devido ao 

seu elevado valor terapêutico, essa planta é descrita desde tempos imemoriais para o tratamento de diversas 

maleitas. Actualmente, sua principal aplicação consiste no tratamento de depressões leves e moderadas sendo 

que, em diversos países, a prescrição de produtos à base de Hipericão é superior a dos medicamentos 

antidepressivos mais comuns. Devido à grande procura daí resultante, a pressão exercida junto aos produtores 

agrícolas tem aumentado consideravelmente. O cultivo em larga escala, como solução para o abastecimento de 

um mercado em crescimento, tem sofrido vários revezes. Dentre os mais relevantes encontra-se a contaminação 

pelo fungo Colletotrichum gloeosporioides, causador de antracnose em inúmeras espécies vegetais de elevado 

interesse económico. A infecção por C. gloeosporioides (CG) tem levado a perdas significativas, tanto na 

quantidade, como na qualidade dos produtos derivados de HP. Embora não existam variedades totalmente 

resistentes ao fungo, algumas apresentam menor susceptibilidade à antracnose in vivo. 

Considerando esses aspectos, nosso objectivo consistiu em estudar alguns dos mecanismos de defesa 

de H. perforatum contra C. gloeosporioides. Foram avaliadas, nomeadamente, a resposta hipersensível (HR) e o 

metabolismo fenólico. Adicionalmente, foi avaliada a influência de duas hormonas associadas a mecanismos de 

defesa sistémica: metil-jasmonato (MeJ) e ácido salicílico (SA). 

Todos os estudos descritos foram realizados com recurso a culturas de células em suspensão 

provenientes de duas variedades de HP, distintas na sua susceptibilidade ao fungo CG in vivo. Culturas de 

células de HPS (variedade susceptível) e Helos (menos susceptível) foram avaliadas quanto ao consumo de 

nutrientes, crescimento e viabilidade, tanto em condições normais de manutenção como após tratamento com 

os eliciadores descritos acima. O tratamento com uma preparação de CG levou a um aumento significativo no 

consumo de açúcar bem como a uma diminuição no crescimento e viabilidade celular. Esses efeitos foram 

corroborados pelos resultados obtidos nos ensaios de TUNEL, durante a avaliação da HR. Foi verificado, em 

ambas suspensões de HP, o desenvolvimento de um burst oxidativo duplo, típico de interacções incompatíveis. 

Verificou-se igualmente a acumulação de espécies reactivas de oxigénio (ROS), tanto internamente como a nível 

extracelular, após eliciação com CG. A eliciação foi também responsável pela redução na actividade de enzimas 

antioxidantes (SOD e CAT), favorecendo a acumulação de ROS. Contraditoriamente, observou-se um aumento do 

potencial antioxidante dos extractos metanólicos de HP, derivado do aumento na acumulação de xantonas. Esse 

aumento não foi, no entanto, capaz de contrariar a alteração na homeostasia das ROS, culminando assim num 

aumento da peroxidação lipídica e degradação do DNA, fenómenos tipicamente associados à HR. O aumento na 

acumulação de xantonas foi a principal alteração verificada no metabolismo fenólico, após eliciação com CG, 
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podendo esta resposta estar associada ao aumento no consumo de açúcar, usado como fonte de carbono para 

a sua síntese. O aumento na produção de xantonas pode ter sido igualmente responsável pelo declínio na 

acumulação de flavonóides e lenhina visto que estas vias biossintéticas recorrem ao mesmo pool de 

precursores, canalizados para a síntese de xantonas. 

Ao contrário do que foi verificado com CG, o tratamento de HP com MeJ ou SA levou a pequenas ou 

nenhumas alterações, na maior parte dos parâmetros avaliados. Não se verificaram alterações significativas no 

crescimento, sobrevivência e consumo de nutrientes, excepto um ligeiro aumento no consumo de açúcar, após 

tratamento com MeJ. Tal como descrito para as xantonas, este aumento poderá estar associado aos acrescidos 

níveis de lenhina, observados no tratamento com MeJ. Ambas as fitohormonas foram responsáveis por um 

ligeiro aumento na produção de xantonas (e consequente redução na síntese de flavonóides). De igual modo, o 

uso destas fitohomonas levou a um ligeiro aumento na acumulação de ROS embora não se tenha verificado HR, 

provavelmente devido ao aumento da capacidade antioxidante de HP, entretanto observada. Nem sempre se 

verificam diferenças notórias entre as respostas associadas ao SA e ao MeJ já que as vias de defesa sistémica a 

que estão associadas apresentam muitos pontos de intercâmbio, com diversas variáveis intervindo nas mesmas. 

Embora não se tenham verificado alterações muito significativas nas respostas de HP, decorrentes da aplicação 

isolada das fitohormonas, o seu uso levou a um aumento nas capacidades de resposta de HP quando estas 

eram aplicadas previamente à exposição ao fungo (CG). Apesar de superior quantitativamente, essa resposta foi, 

regra geral, qualitativamente semelhante à verificada pelo tratamento isolado com CG. Verificaram-se assim uma 

maior redução na viabilidade e um incremento no consumo de açúcar, bem como uma maior acumulação de 

xantonas (notório em HPS). Sendo assim, embora não se tenham verificado efeitos visíveis significativos 

decorrentes do tratamento isolado de HP com as fitohormonas, as mesmas demonstraram ter alterado o 

metabolismo de HP de forma a preparar a planta para uma resposta mais rápida e intensa, numa posterior 

interacção com CG. 

A interacção incompatível verificada entre HP e CG culminou numa HR, bem como na síntese de 

xantonas, possivelmente para actuarem como fitoalexinas contra o patogénio. Ambos os mecanismos de defesa 

são aparentemente ineficazes no combate à infecção por CG, considerando o que se verifica in vivo. Tendo em 

conta que CG pode apresentar tanto um modelo de nutrição biotrófica como necrotrófica, o desenvolvimento de 

HR pode mesmo favorecer a natureza necrotrófica de CG, ao providenciar ao fungo locais ideais para a 

colonização do hospedeiro. Além da ineficácia da HR, os compostos fenólicos produzidos por HP após a 

eliciação não se mostraram capazes de impedir o crescimento de CG in vitro. Embora não tenham sido 

efectuados estudos em plantas, os mecanismos de defesa analisados neste trabalho culminaram em respostas 

mais intensas em culturas da variedade Helos, podendo estas diferenças explicar a sua menor susceptibilidade à 

antracnose in vivo. 
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Summary 

Hypericum perforatum defense mechanisms against Colletotrichum gloeosporioides: 

Studies on the relevance of the hypersensitive response and phenolic metabolism. 
 

H. perforatum is a medicinal plant widely distributed across the world, being native in Europe, Northern 

Africa, Middle East and most of Asia. This plant was also introduced in other regions of the world due to its high 

therapeutic value, described since ancient times for the treatment of several ailments. Nowadays, the medicinal 

impact of H. perforatum is mainly focused in the treatment of mild to moderate depressions and, in some 

countries, Hypericum-based products are prescribed more often than the most common antidepressants. The 

increasing medicinal and economic relevance of this plant is responsible for a mounting pressure over raw-

material producers. While H. perforatum plantations have been established in order to properly supply the 

growing market, some drawbacks in large-scale production started to appear. The most prominent is 

contamination by Colletotrichum gloeosporioides, a fungus responsible for the development of anthracnose 

disease in several economically important crops across the globe. C. gloeosporioides infection is known to reduce 

H. perforatum yields, as well as the quality of its derived products. Although no H. perforatum accessions have so 

far proven to be fully tolerant to anthracnose, some of them are known to be less-susceptible to this disease in 

vivo. 

Considering these aspects, it was our aim to study some of H. perforatum defense mechanisms against 

C. gloeosporioides. Namely, the hypersensitive response (HR) and phenolic metabolism were evaluated. 

Additionally, the influence of methyl-jasmonate and salicylic acid, two phytohormones related to plant defense 

signaling, was also assessed. 

The experiments were carried out in H. perforatum suspension cell cultures obtained from two 

accessions, distinct in their susceptibility to C. gloeosporioides in vivo. Cell cultures from HPS (a susceptible 

accession) and Helos (a less-susceptible accession) were characterized in their major nutrients consumption and 

survival parameters upon normal growth conditions or after treatment with the elicitors described. Treatment with 

a C. gloeosporioides elicitor preparation (CG) was responsible for a significant increase in sugar consumption but 

also a considerable decrease in cell viability and culture growth. This decrease was in accordance with the results 

obtained during HR evaluation by TUNEL labeling. H. perforatum cultures developed a double oxidative burst, 

typical of incompatible interactions. Reactive oxygen species (ROS) accumulated both internally and 

extracellularly after CG treatment. Enzymatic ROS-scavenging (namely, SOD and CAT) activities were suppressed, 

favoring ROS buildup, while a contradictory increase in non-enzymatic scavenging mechanisms was observed, 

due to a boost in xanthone synthesis. Still, this raise was not enough to prevent the change in ROS homeostasis, 

which culminated in increased lipid peroxidation, DNA cleavage and, therefore, HR. The boost in xanthone 

accumulation was the most prominent change in phenylpropanoid metabolism upon CG elicitation and should be 

associated to the enhanced consumption of sugar, a possible source of carbon for the xanthone synthesis. The 
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increase in xanthones produced could be responsible for the decline in flavonoids and lignin accumulation since 

these biosynthetic pathways share a common pool of precursors, diverted to xanthone synthesis. 

Treatment with the phytohormones, on the other hand, led to minor or absent changes in most 

parameters evaluated. No survival or nutrient consumption parameters were significantly influenced by them, 

except for a small increase in sugar consumption, observed upon MeJ treatment. As previously referred for the 

accumulation of xanthones, this increase could be associated to the raise in lignin accumulation observed. Both 

MeJ and SA were also responsible for a minor increase in xanthone production (and concomitant decrease in 

flavonoids synthesis). Furthermore, these phytohormones led to a minor increase in ROS accumulation although 

no HR occurred, perhaps due to the enhancement in scavenging means, also observed. A clear dichotomy 

between the two systemic defense signaling pathways is not always possible and extensive cross-talk is known to 

occur, with many variables influencing it. Despite the absence of noticeable changes, when these phytohormones 

were used prior to CG elicitation, cells displayed a tendency for increased responses, following patterns similar to 

those found in CG-elicited cultures. A sharper decrease in survival parameters and enhanced sugar consumption 

were observed, as well as increased xanthone synthesis, especially in HPS cultures. Therefore, while the 

phytohormones alone didn’t provide marked effects, the cell’s metabolism could have been primed and tuned for 

improved defense responses as displayed later, upon CG elicitation. 

The incompatible interaction observed between H. perforatum and C. gloeosporioides culminated in HR 

as well as the synthesis of xanthones, probably acting as phytoalexins against the pathogen. Considering what is 

usually observed in vivo, both defense mechanisms seem to be ineffective against the fungus. Since C. 

gloeosporioides can display either biotrophic or necrotrophic nutrition models, HR may actually favor its 

necrotrophic nature by providing new entry points for infection. Additionally, the phenolic compounds induced 

upon elicitation were not able to stall C. gloeosporioides growth in vitro. Despite their inefficiency, these defense 

mechanisms were stronger in Helos cultures and could account for the reduced susceptibility of this accession, 

as observed in vivo. Further studies in vivo should be performed before drawing definite conclusions about this 

plant-pathogen interaction. 
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1.1. Hypericum perforatum L. 
 

 

 
1.1.1. Taxonomy and morphological characterization of Hypericum perforatum L. 

 

 The genus Hypericum comprises nearly 400 species and is the most popular from the nearly 

50 genus (and 1200 species) belonging to the Guttiferae (Clusiaceae) family. In fact, the relevance of 

Hypericum is such that, for some taxonomists, species from this genus are classified as a distinct 

family, the Hypericaceae [Erdelmeier et al., 2000]. One of the most important Hypericum species, 

found all around the world, is Hypericum perforatum L. (Fig. 1.1). H. perforatum is an herbaceous, 

perennial shrub that can grow up to 1.5 m of height, reaching maturity within two years. During the first 

year, the growth is directed mainly to establishment of the root system [Tisdale et al., 1959]. Moreover, 

the growth of H. perforatum occurs in two distinct phases: during fall and winter it is predominantly 

basal and, from spring to summer, the growth of one or multiple erect, woody stems can be observed, 

branching out towards the top of the plant [Gordon et al., 1991]. When fully developed, H. perforatum 

has an underground rhizomatous stem and deep taproot that can reach 1.5 m in depth. This plant also 

displays many lateral roots that can reach 1 m in depth [URL 1]. The leaves are opposite, sessile, 

oblong and their sizes may reach up to 3 cm long and 1.6 cm wide. One of the distinctive 
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morphological characteristics from H. perforatum leaves is the presence of translucent and dark 

secretory glands (Fig. 1.2), which nature and functions will be discussed below. The flowers are 

numerous, paniculate cymes with 5 yellow petals, 5 - 8 mm long and also display the secretory glands 

observed in the leaves. Stamens in the flower are also numerous and form clusters divided into three 

groups [URL 2]. The seeds are held in three chambered capsules of 7 - 8 mm long, ovoid and with dark 

brown colour [URL 3]. This structure holds thousands of small, pitted, cylindrical seeds [URL 2]. 

 

 

Figure 1.1: Drawings showing general morphological features of Hypericum perforatum L. plants. (A) URL 4; (B) URL 5. 

 

Some of the most remarkable morphological features from H. perforatum are their secretory 

glands (Fig. 1.2). Two distinct types of secretory glands exist: Translucent glands and dark glands 

[Maggi et al., 2004]. While the translucent glands are present only in leaves, petals and sepals 

[Ciccarelli et al., 2001], the dark glands are more widely distributed in the plant, being found also in 

stems and in relatively greater amounts in the stamen [Zobayed et al., 2006]. 

The translucent glands are responsible for the term “perforatum”. They are recognized as 

transparent dots scattered across the leaves in spaces delimited by the veins, but not associated with 

them. In the sepals and petals, the translucent glands are oblong and predominantly distributed along 

the margins [Ciccarelli et al., 2001]. These glands are schizogenous oil cavities [Onelli et al., 2002], 

extending from abaxial to adaxial epidermis, with no opening for the exterior since the large central 

space is surrounded by a uniseriate epithelium [Curtis et al., 1990]. Histochemical tests of the 

translucent glands, carried out by Ciccarelli (2001), revealed the presence of alkaloids, lipids, resins, 
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essential oils and tannins, in accordance with results from other chemical studies [Bombardelli et al., 

1995, Butterweck et al., 1997]. Moreover, recent studies suggest that these glands are also the main 

site for accumulation of hyperforin, an important phloroglucinol from H. perforatum [Soelberg et al., 

2007]. Some of these secondary metabolites, produced and accumulated in the translucent glands and 

secretory canals [Ciccarelli et al., 2001], play a significant role in plant defense to biotic and/or abiotic 

stresses [Harborne, 1994]. 

Other secondary metabolites, such as the naphtodianthrones hypericin and pseudohypericin, 

are only present in the black nodules [Ciccarelli et al., 2001; Butterweck et al., 1997]. These dark 

glands were probably first described by J.R. Green in 1884 and are also referred as “nodules” [Curtis et 

al., 1990; Fornasiero et al., 1998] or “black nodules” [Maggi et al., 2004]. They differentiate from a 

cluster of cells that progressively enlarge and darken, to form a cellular nodule instead of a cavity [Onelli 

et al., 2002]. The dark-colored glands are the most important secretory structure in H. perforatum, 

being responsible for the final steps in the biosynthesis of hypericin and pseudohypericin, two 

naphtodianthrones of major importance in H. perforatum [Zobayed et al., 2006]. The dark nodules are 

composed by an outer flat cell layer that may have a specific physiological activity, distinct from the 

inner nodule cells. It has been postulated that the outer flat cells operate as light filters, protecting the 

nodule cells from the material accumulated within, such as hypericin [Onelli et al., 2002]. It is known 

that hypericin is photoactivated [Erdelmeier et al., 2000], becoming toxic upon light exposition 

[Vandenbogaerde et al., 1997]. Therefore, it is possible that the flavonoids, anthocyanins and other 

tannin-like substances in the outer flat cells are accumulated for this light-protection mechanism [Onelli 

et al., 2002]. 

 

 

Figure 1.2: Detailed view of the typical (A) dark and (B) translucent glands, present in leaves and flowers from Hypericum 
perforatum L. 
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 Reproduction of H. perforatum is carried out by two ways: vegetatively and through the 

production of seeds in the flowers. The vegetative reproduction usually occurs after mechanical damage 

or disturbance of the plant. Upon damage, suckers arise from underground rhizomes and latter 

separate from the parental plant, concluding this reproduction process [Tisdale et al., 1959]. The flower 

production in the northern hemisphere occurs from June to September and, since H. perforatum is a 

facultative apomict, the production of seeds may occur without pollination [Barcaccia et al., 2006]. 

Typically, one plant can produce 30.000 seeds per year, which remain viable for up to 10 years 

[Tisdale et al., 1959] although in this situation germination and maturity is only reached by a small 

percentage of individuals [Cech, 1998]. 

  
 

1.1.2. Geographic distribution and ethnobotanic aspects of H. perforatum L. 

 
Geographic distribution 

 H. perforatum L. is native and widely distributed in Europe, northern Africa and the Middle East. 

Moreover, this species can be found in most regions of Asia, namely western Asia and Siberia, but also 

in China and some regions of tropical Asia, like India [URL 6]. In other regions, Hypericum species were 

first introduced by European colonists because of their potential uses as medicinal plants [Harris et al., 

1997]. In South America and West Indies H. perforatum became naturalized but is considered as an 

invasive species. Moreover, in some other regions like North America, the south of Africa and Oceania, 

Hypericum species are nowadays considered highly dangerous and prominent invasive weeds due to 

the lack of pathogens and/or successful competing native plants. The importance and economic impact 

of H. perforatum in these regions will be further discussed below. Recently, the presence of H. 

perforatum as an invasive species has also been reported in the coastal regions of Alaska [URL 7]. 

 

  
Figure 1.3: H. perforatum as a native plant found across the Portuguese territory. 
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Considering the Portuguese territory, H. perforatum is the most widely distributed species from 

the genus Hypericum, although many other species (Table 1.1) can also be found, scattered across the 

country [Nogueira et al., 2000 and 2008]. In the Mediterranean basin, namely in Portugal, this species 

displays narrow (var. angustifolium) or small (var. microphyllum) leaves, distinct from those found in 

central and northern Europe, which display large (var. perforatum) leaves [Dias, 2000; Hashida et al., 

2008]. 

 
Table 1.1:  Species from the genus Hypericum found in the Portuguese territory [Nogueira et al., 2000 and 2008]. 

H. perforatum L. H. elodes L. H. pulchrum L. H. linarifolium Vahl. 

H. androsaemum L. H. undulatum Schousb. H. pubescens Boiss. H. montanum L. 

H. foliosum Aiton H. tomentosum L. H. perfoliatum L. H. humifusum L. 

H. grandifolium Choisy H. dentatum Loisel. H. palustre Salisb. H. canariense L. 

H. hircinum Aiton H. calycinum L. H. glandulosum Aiton  

 

Origins of common and scientific names of H. perforatum L. 

 Several theories concerning the origin of both common and scientific names of H. perforatum 

exist. One of the most well-known theories says that the scientific name “Hypericum”, adopted by Linné 

to describe the whole genus of St. John’s wort [Erdelmeier et al., 2000], is based in the ancient Greek 

culture, meaning “above (=hyper) the images (=eikon)”. This theory is supported by the fact that, in the 

past, Hypericum flowers were gathered and placed above religious images or statues, in order to keep 

away the evil spirits, especially during the festivities in honor of the sun (summer solstice), when H. 

perforatum is in full bloom [Cardona et al., 1983]. Variants of this theory point that the term eikon 

means “spirit” or “magic”, since it was thought that H. perforatum had mysterious, exorcist properties 

[Bombardelli et al., 1995; Dias, 2000], protecting those who kept the plant at home against madness, 

nightmares and possessions by devils. Finally, the term “perforatum” refers to the transparent glands, 

mainly visible in the plant leaves, as already explained [Ciccarelli et al., 2001; Erdelmeier et al., 2000]. 

 The common name “St. John’s wort” finds its origins in Middle Ages but the explanation for the 

name is not clear. According to one theory, the plant sprang from the blood of John the Baptist when he 

was beheaded. A more widely spread (and less impressive) theory says that, in the Middle Ages, H. 

perforatum plants seemed to start flowering on June 24, the day when John the Baptist’s birthday was 

celebrated [Erdelmeier et al., 2000]. Apart from “St. John’s wort”, other common names of H. 

perforatum are displayed in Table 1.2. 
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Table 1.2: Common names of H. perforatum used worldwide [URL 3]. 

Region Common names 

USA, UK St. John’s wort, Klamathweed, Goatweed, Goatsbeard, Gammock 

Germany 
Johanniskraut, Tüpfel-Johanniskraut, Gemeines Johanniskraut, Echtes Johanniskraut, Blutkraut, 
Tüpfel-Hartheu 

Italy Iperico 

Portugal, Brazil Hipericão, Milfurada, Erva de S. João 

France Millepertuis, Millepertuis perforé, Casse-diable 

South America, Spain Hipérico, Todabuena, Corazoncillo, Castellas 

 

 

1.1.3. Economic relevance of H. perforatum L: From 

ethnopharmacological uses to modern medicine.  

 

 

 

Traditional uses of H. perforatum L. 

H. perforatum has a long, worldwide tradition as a medicinal plant and is included in the 

traditional pharmacopeia of many countries [Erdelmeier et al., 2000], being the most cited species 

from the genus Hypericum in these publications [Dias, 2000]. In Europe, this species is one of the 

oldest medicinal plants, being first documented by the ancient Greeks. The therapeutic properties of H. 

perforatum were first described by Hippocrates (ca. 460-377 B.C.) but other herbalists continued his 

work. The most prominent were Theophrastus (ca. 372-287 B.C.), Dioscorides (ca. 40-90 A.D.) with his 

work “De Materia Medica”, Galen (ca. 130-200 A.D.) and Pliny (ca. II A.D.), in his work “XXV Book of 

Historiarum Mundi”, also referred the medicinal uses of H. perforatum [Bilia et al., 2002]. Most 

traditional uses were related to mysticism due to the blood-red colour of the extracts obtained from this 

species. In fact, the red oil, obtained from soaking flowers and leaves in vegetable oil, was thought to 

have a regenerating action on the blood. Apart from these uses, H. perforatum was also referred in the 

folk medicine for the treatment of diarrhea, dysentery, jaundice, menorrhagia, hysteria, nervous 

affections, hemoptysis, hemorrhoids and bronchial infections [Erdelmeier et al., 2000]. The Swiss 

physician Paracelsus (1493-1541) considered this species as a good plant against dementia [Dias, 

2000], describing it also as arnica of the nerves [Bilia et al., 2002] while Mattioli, in his work Discorsi 

(1557), referred diuretic and antimalarial properties from H. perforatum. Moreover, the oily 

preparations from St. John’s wort are recommended by folk medicine against dyspeptic conditions and 

for the external treatment of myalgies, wounds, burns, bruises or swellings [Erdelmeier et al., 2000]. 
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Nonetheless, most of these traditional uses don’t have scientific support or still need definite studies for 

the confirmation of the claimed therapeutic bioactivities. Apart from H. perforatum, many other species 

from the genus Hypericum have a long tradition of use in folk medicine for the treatment of several 

diseases. Some of those species and their uses are presented in Table 1.3. Other uses of H. 

perforatum are better documented in scientific literature, as discussed below. 

 
Table 1.3: Some species from the genus Hypericum, used in folk medicine [Dias, 2000]. 

Species Traditional use Country (Region) Reference 

H. brasiliense Antiseptic 

Brazil 

Rocha et al., 1995 

H. laxiusculum Astringent 
Salgues, 1961 

H. connatum Anti-inflammatory, Astringent 

H. ericoides 
Used against Renal Calculi and circulatory 

problems 
Spain Cardona et al., 1983 

H. canariensis Anti-inflammatory, Diuretic, Vermifugal Spain (Canarias) Mederos et al., 1996 

H. nummularium Vulnerary Pyreneans Nétien et al., 1964 

H. erectum Hemostatic, Astringent, Vulnerary China/Japan Yasaki et al., 1990 

H. patulum Hemostatic, Astringent, Anti-tumoral 

China 

Ishiguro et al., 1993 

H. chinense Antiseptic Aramaki et al., 1995 

H. henryi Anti-hepatic Wu et al., 1998 

H. japonicum Antiseptic, Anti-hepatic, Anti-tumoral Ishiguro et al., 1994 

H. sampsonii Anti-tumoral Taiwan Chen et al., 1985 

H. salsugineum 
Antiseptic 

Turkey 
Sakar et al., 1988 H. origanifolium 

H. lanuginosum 
H. triquetrifolium Sedative Apaydin et al., 1998 

H. roeperanum Treatment of female sterility Central Africa Rath et al., 1996 

H. papuanum Antiseptic Papua New Guinea Leach et al., 1988 

H. hookerianum Diuretic, Vulnerary, Antiseptic India Mukherjee et al., 2000 

 

Current pharmacological applications and market relevance of H. perforatum L. 

Nowadays, the main clinical uses of H. perforatum are related to the treatment of mild to 

moderate depressions. The “Monograph of the German Commission E” refers the use of aqueous or 

alcoholic extracts of H. perforatum for the treatment of psychovegetative disorders, moderate 

depression, nervous disturbances and anxiety [Erdelmeier et al., 2000]. Although the mechanism of 

action is still not completely understood [Poutaraud et al., 2007], the efficacy of H. perforatum extracts 

in mild or moderate depressions has been demonstrated in numerous double-blind, placebo-controlled 

randomized trials and confirmed by many meta-analyses [Capasso et al., 2008]. Moreover, several 

trials comparing H. perforatum extracts with commercially available antidepressants showed similar 

therapeutic properties and fewer (apparently) side-effects [Knuppel et al., 2004]. Nonetheless, some 

side effects have been described and interactions (in some cases life-threatening) affecting the 

metabolism of several clinically important drugs have also been found [Capasso et al., 2008]. Other 

properties of H. perforatum are under clinical investigation, such as antibacterial, antiviral, antineoplasic 
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and antipsoriatic activities [Erdelmeier et al., 2000; Miskovsky, 2002; Dell'Aica et al., 2007]. Although 

many therapeutic properties have been found in H. perforatum whole extracts, it has been difficult to 

find the specific compounds, directly responsible for each bioactivity of this plant. It is now thought that 

many of these therapeutic properties are the result of the synergistic action of many groups of 

compounds present in H. perforatum. 

The success and economic relevance of H. perforatum as a medicinal plant in Europe is higher 

than in other regions of the world. Per instance, prescription of Hypericum-based products in Germany 

during the last decade was approximately 20 times higher than fluoxetine hydrochloride (Prozac®), one 

of the most prescribed antidepressants [Greeson et al., 2001] with a therapeutic effect similar to some 

H. perforatum extracts [Behnke et al., 2008]. Despite the predominance of the European market, sales 

in the US reached US$ 10 million in 2005, putting H. perforatum among the top 10 selling herbs 

during that year [Capasso et al., 2008]. This leading position, as a prescribed or over-the-counter 

remedy for the treatment of mild to moderate depression, is responsible for the titles “Prozac of the XXI 

century” [Nogueira et al., 2000] or “vegetable Prozac” [Rutten, 2007], given to H. perforatum. 

 

 

1.1.4. Hypericum: The invasive species’ point of view. 

 

 When plants are introduced in new regions, as H. perforatum L. was in Oceania, North America 

and other areas, they are often liberated from their natural enemies [Mitchell et al., 2003; Maron et al., 

2004]. In the absence of these pathogens, the invasive species suffers less damage, which means that 

less energy has to be spent in recovering the damaged tissues. Active defense upon pathogen attack, 

another energetically costly event, is also minimized. Moreover, after some generations, energy 

expenses in passive defense mechanisms may also be lower since environmental pressure decreases 

by the absence of one natural selection promoter, the pathogen. Therefore, invasive species gain 

competitive advantages over natives, becoming dominant in recipient communities since they can 

allocate the metabolic flux, as well as more energy, towards growth and reproduction [Maron et al., 

2004]. 

 In the case of H. perforatum, it is known that this species is a vigorous competitor, even on its 

native regions, establishing in waste grounds, roadsides, pasture or open woodland [Buckley et al. 

2003]. H. perforatum can also be found on recently disturbed sites, like logging camps, mining and 

construction areas or regions recently consumed by fire [Tisdale et al., 1959], displacing and inhibiting 
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the settlement and establishment of native flora [Briese et al., 1995]. The success of H. perforatum 

establishment is due to the high tolerance to a variety of soils, from dry, rocky, shallow soils, to deep 

fertile ones. Moreover, H. perforatum can tolerate drought and disturbance conditions by storing 

reserves in its root crown [Buckley et al., 2003]. In the particular case of regions where this species 

was naturalized as an invasive weed, and in the absence of pathogens, the plant growth and dispersal 

can build up to infestation densities in a relatively short time span of 10 to 20 years [Buckley et al., 

2003]. 

H. perforatum competition for fertile lands is responsible for great economic losses in 

agriculture. As an example, H. perforatum was introduced in California in the beginning of the XX 

century and, by the middle of the century, the species was already spread over two million acres, 

occupying lands previously used for agriculture. Besides agricultural crops, livestock was also affected 

by H. perforatum since the plant was also competing for the pasture. Moreover, toxicity associated with 

some of H. perforatum major compounds, such as hypericin, were responsible for photosensitivity, 

severe dermatitis, loss of weight and, in rare cases, death of grazing livestock (Fig. 1.4) [Tisdale et al., 

1959; Mitich, 1994]. 

 

 

Figure 1.4: H. perforatum is an invasive species in many countries, displaying a strong impact on (A) grazing lands and in 
(B) animals, due to the toxicity of some constituents [URL 8]. 

 

 Several approaches for the control of H. perforatum populations have been made. Mechanical 

treatments, such as mowing or hand pulling, are not effective since the roots of this species are fragile 

and fragmentation leads to vegetative reproduction, as previously referred (chapter 1.1.1). Another 

drawback of mechanical methods is the increased dispersal of seeds [Tisdale et al., 1959]. Fire is 

equally ineffective since it’s not a specific method for H. perforatum control and most of the native 
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vegetation is lost. Moreover, fire treatment leads to empty lands, ideal for the vegetative growth of new 

individuals, arising from deeper (and therefore protected from fire) roots of H. perforatum. 

 Chemical treatments can cause reduction in the population of H. perforatum. Some of the best 

studied herbicides against H. perforatum are Gliphosate, Fluoroxypyr and a combination of Triclopyr 

and Picloram [Campbell et al., 1984]. Promising killing rates have been achieved using Fluoroxypyr, 

which is partially selective for H. perforatum since it does not affect grasses or clover, making this 

herbicide a good option for the treatment of pasture grounds [Maron et al., 2004]. Although promising, 

the application of chemicals in effective quantities has several environmental drawbacks and is not 

effective in all H. perforatum infested lands. For this reason, other methods for infestation control are 

under study, namely, biological approaches, discussed below. 

 
 

1.1.5. Pathogens affecting Hypericum: Agents in weed control. 

 

Several organisms are known to be pathogens for H. perforatum (Table 1.4). Most (if not all) of 

them have a broad range of plant hosts but their pathogenic action in H. perforatum is under study, 

especially in countries where this species is considered an infesting weed. Therefore, one of the most 

dedicated countries is Australia, which has a long history (starting from the early 1930’s) and 

knowledge in research of Hypericum pathogenic interactions. 

 

Table 1.4: Natural enemies described for Hypericum perforatum L. 

Pathogen 
Taxonomy – Phylum 

(common name) 
References 

Colletotrichum gloeosporioides 

Ascomycota (Fungus) 

Debrunner et al., 2000 

Schwarczinger et al., 1998 

Filoda, 2004 

Diploceras hypericinum  Putnam, 2000 

Sphaeropsis tumefaciens  Kerckhove et al., 2002 

Fusarium solani  Gaetán et al., 2004 

Sclerotium rolfsii  
Basidiomycota (Fungus) 

Keinath et al., 1999 

Melampsora hypericorum Bruzzese et al., 1992 

Aculus hyperici Arthropoda (Mite) Jupp et al., 1997b 

Chrysolina quadrigemina Arthropoda (Beetle) Wilson et al., 1943 

Aphis chloris Arthropoda (Aphid) Briese et al., 1995 

Zeuxidiplosis giardi Arthropoda (Fly) Wilson, 1960 

Chamaesphecia nigrifrons Arthropoda (Moth) Lastuvka et al., 1995 

 

One of these pathogens is the fungus Colletotrichum gloeosporioides. This fungus is 

responsible for anthracnose disease in a broad range of plant species distributed all over the world, as 
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will be discussed in the next chapter. As for many other plant-pathogen interactions, H. perforatum 

susceptibility to C. gloeosporioides disease (Fig. 1.5) varies according to the cultivar of the plant. Other 

fungi are also known to be pathogenic to H. perforatum, such as Melampsora hypericorum or 

Diploceras hypericinum. 

 

 

Figure 1.5: H. perforatum infection by C. gloeosporioides. (A) Control plants; (B) C. gloeosporioides-infected plants 
[McLaren et al., 1997]. 

 

One of the most intensely studied pathogens of H. perforatum is the leaf-feeding beetle 

Chrysolina quadrigemina (Fig. 1.6). This beetle is becoming a relatively successful control agent, able to 

sustain H. perforatum spread in Australia. C. quadrigemina slows down growth rates in open regions by 

developing an intense but periodic damage, characteristic of this pathogen. Although resistant to the 

defense mechanisms of H. perforatum, this species has proven to be ineffective in some locations like 

shaded areas [Buckley et al., 2003], high altitude and cold regions [Campbell et al., 1984]. 

 

 

Figure 1.6: Chrysolina quadrigemina, a natural enemy of H. perforatum. (A) URL 9 and (B) URL 10. 
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Another prominent pathogen being studied in Australia is the mite Aculus hyperici (Fig. 1.7). 

This species is well established in south-eastern Australia and stunts H. perforatum growth, causing a 

significant reduction in plant vigour and seed production [Mahr et al., 1997]. Nonetheless, different 

plant susceptibilities have been found, being responsible for the partial failure of this mite as a control 

agent of H. perforatum alone [Jupp et al., 1997]. Despite this drawback, new studies suggest that this 

mite may be successfully applied together with other pathogens or with competitive native plants, in the 

control of Hypericum populations [Cullen et al., 1997]. 

 

 

Figure 1.7: The mite Aculus hyperici. (A) The mite on the top of an aphid, one of the most common means of dispersal for 
this pathogen. (B) Effect of the mite on H. perforatum plants [Mahr et al., 1997]. 
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1.2. Colletotrichum gloeosporioides 

 

 

 

1.2.1. Diseases associated with Colletotrichum gloesoporioides. 

 

 The genus Colletotrichum represents a vast group of Ascomycetes, an economically important 

group of fungi spread worldwide which can cause anthracnose disease on several significant crops and 

ornamental plants in tropical, subtropical and temperate regions around the world [Bailey et al., 1992]. 

It is estimated that nearly 500 plant species are their hosts, with most plants said to be infected by 

Colletotrichum gloeosporioides [Farr et al., 2006]. Considering the present work, H. perforatum is also 

known to be affected by anthracnose [Debrunner et al., 2000; Schwarczinger et al., 1998]. Although 

fungi from the genus Colletotrichum are considered a plant pathogen, some rare reports of human 

pathogenic interaction can be found, usually associated with corneal ulcers (keratitis) after eye injuries 

[Fernandez et al., 2002] Additionally, a rare case of subcutaneous infection caused by C. 

gloeosporioides has also been described [Guarro et al., 1998].  
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1.2.2. Anthracnose dispersal and disease symptoms. 

 

The dispersal methods of Colletotrichum, like for most fungi species, are mediated by rain 

splash [Ntahimpera et al., 1997], wind [Brennan et al., 1985] or through the seeds and fruits carried by 

animals. Moreover, following dispersal of the spores, viability in the soil is known to stand for at least a 

year [Freeman et al., 2002] until favorable conditions for germination occurs. The symptoms of this 

disease are not always similar. There is enormous variation, depending on the plant species infected 

[Freeman et al., 1998]. Nonetheless the most typical symptoms include early chlorotic spots that may 

latter develop into necrotic lesions (Fig. 1.8). As the pathogen colonization advances, necrotic lesions 

coalesce and the infected plant tissue (or the host) eventually dies [Palmateer et al., 2007; 

Schwarczinger et al., 1998]. Depending on the plant species, anthracnose disease symptoms can be 

found in nearly all parts of the plant. Strawberry (Fragaria × ananassa Duch.) is a good example of the 

broad range of plant structures that can develop anthracnose. The disease is known to be responsible 

for crown rot and root necrosis (usually leading to wilting and death of the host), fruit rot and irregular, 

black leaf spots [Xiao et al., 2004]. Additionally, in some plant species the incidence of infection in the 

same tissue varies according to the age. Young corn leaves, for example, are more commonly affected 

than mature leaves. This may be related to differences in the surface constitution. Young leaves have an 

increased wax cover, necessary for spore adhesion, as will be explained latter in this chapter. 

Symptoms in H. perforatum, like in most plants, include brown, sunken necrotic lesions and reddish 

color of infected plants. At a later stage of the pathogenic interaction, the infected plant tissues dry and 

finally die [Debrunner et al., 2000]. Moreover, if the infection occurs in the basal parts of the plant, the 

whole host dies [Schwarczinger et al., 1998]. Methods for controlling anthracnose disease include 

application of fungicides, proper spacing between plants and periodic pruning to maximize ventilation 

and minimize shading. Removal of dead biomass from the ground is also useful in minimizing high 

levels of Colletotrichum available to trigger the disease. 

 



 
 

 

 

 
 

27 
Study of Hypericum perforatum defense mechanisms against Colletotrichum gloeosporioides: Relevance of 

phenolic metabolism and hypersensitive response. Luis Eduardo F.R. Conceição 

Introduction 

 

Figure 1.8: Most common anthracnose symptoms in (A) stalks and (B) leaves on a broad range of hosts, including (C) H. 
perforatum [URLs 11 and 12]. 

 

 

1.2.3. Economic relevance of anthracnose 

 

 The strong influence of Colletotrichum species on economy is due to its pathogenicity to key 

agricultural plant species all over the world (Fig. 1.9). In the United States, this disease was not 

considered a relevant problem in corn (Zea mays) production, before the 1970s. However, in the early 

1970s, severe epidemics affected production in several regions of the country. Some of those regions, 

like Indiana, were so strongly affected that, 2 years after the beginning of the epidemic, sweet corn 

canning industry from west-central Indiana was essentially eliminated by shortage of raw-material 

[Bergstrom et al., 1999]. Another example comes from the fruit from saw palmetto (Serenoa repens), 

which is an important raw-material in pharmaceutical and dietary supplement industries, with global 

sales over $2 billion per year. In 1997, the fruit harvest in Florida was decimated by premature fruit 

drop due to anthracnose [Carrington et al., 2001]. One of the main characteristics of C. gloeosporioides 

is the ability to cause latent or quiescent infections by synchronizing its own growth and morphogenesis 

with the host’s development. This capacity turns C. gloeosporioides in one of the most important 

postharvest pathogens. Postharvest diseases can decrease not only the crop yield but also organoleptic 

characters, especially in fruits. This situation can lead to the complete loss of harvested fruits, when 

aesthetic features do not correspond with the high-quality market demands [Arauz, 2000]. The impact 

of anthracnose in agriculture is much higher if we consider long-term crop cultures. Some crops, like 

apple, mango or citrus require high, long-term investments in growing and maintenance of trees. 

Depending on the plant tissues affected, the complete tree can be lost before profitable production is 
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achieved. Moreover, a common process used by farmers to accelerate climateric fruit ripening is to 

perform an ethylene wash of the fruits [Timmer et al., 1998]. This process not only artificially triggers 

ethylene-mediated fruit ripening, but also triggers morphogenesis of fungal appressoria [Uhm et al., 

2003], as discussed in chapter 1.2.5.3. The economical impact of C. gloeosporioides as a plant 

pathogen is increasing as new anthracnose disease reports come out, for new plant species (Table 

1.5). Moreover, due to the growing flux of agriculture goods travelling worldwide, the raising menace of 

long range epidemics is supported by the potential of C. gloeosporioides for cross-infection in a broad 

range of host plants. 

 

 

Figure 1.9: Anthracnose affects several economically important crops such as (A) corn and (B) mango [URL 11]. 

 

Table 1.5 – Worldwide reports on the first identification of C. gloeosporioides as a pathogen of several plant species. 

Crop culture Country 
Year of first 

report 
Reference 

Hypericum perforatum (St. John’s wort) 
Switzerland 1995 Debrunner et al., 2000 

Hungary 1997 Schwarczinger et al., 1998 

Poland 1998 Filoda, 2004 

Salsola tragus (Russian-thistle) 
Hungary 1996 Schwarczinger et al., 1998(b) 

Greece 2005 Berner et al., 2006 

Hibiscus rosa-sinensis (Chinese Rose) Argentina 1999 Rivera et al., 2000 

Hylocereus undatus (Pitahaya) USA (Fl) 2004 Palmateer et al., 2007 

Fragaria × ananassa (Strawberry) Argentina 1999 Mónaco et al., 2000 

Gaultheria procumbens (Wintergreen) Canada (BC) 2001 Elmhirst et al., 2003 

Eugenia dysenterica (Cagaita) Brazil (DF) 2000  Anjos et al., 2001 

Syagrus oleracea (Gueroba) Brazil (DF) 1999 Charchar et al.,2002 

Taxus mairei (Chinese yew) Taiwan 2003 Fu et al, 2003 

Lupinus albus (White Lupin) Poland 1995 Frencel, 1998 

Liriodendron tulipifera (tuliptree) Argentina 1986 Lori et al.,2004  

Arceuthobium tsugense (Hemlock dwarf mistletoe) Canada 1996 Kope et al., 1997 

Prunus africana (Red Stinkwood) Kenya 1996 Mwanza et al., 1999 

Trichosanthes kirilowii (Gourd) China 2000 Li et al., 2007 

Manihot esculenta (Cassava) Nigeria 1994 Fokunang et al., 1997 

Persea americana (Avocado) Mexico 2003 Avila-Quezada et al., 2007 

Passiflora edulis (Passion fruit) Argentina 1997 Wolcan et al., 2000 

Psidium guajava (Guava) Argentina 2001 Carranza et al., 2002 
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Potential uses of Colletotrichum species in agriculture 

Curiously, although Colletotrichum species have a great range of hosts, being responsible for 

severe losses in agriculture, some strains are being used as mycoherbicides in biologic control of 

invasive plants around the world (Fig. 1.10). Highly specific strains of C. gloeosporioides are being used 

in the control of invasive plants, like Miconia calvescens in Hawaii [Killgore et al., 1999], Lygodium 

microphyllum and L. japonicum in Florida [Jones et al., 2003] and Pueraria montana in Philadelphia 

[Britton et al., 2002]. Furthermore, several strains of Colletotrichum species have already been included 

in commercial patents. A strain of C. gloeosporioides has been patented for the control of 

Aeschynomene virginica (northern jointvetch), a weed in rice and soybean crops [Freeman et al., 1998]. 

A strain of C. truncatum was included in a U.S. patent for biological control of Sesbania exaltata, 

another weed in soybean crops [Boyette, 1991 and 1991b]. Another strain, from C. capsici, has been 

reported for control of Ipomoea lacunosa [Cartwright et al., 1994]. 

 

 

Figure 1.10: Some strains of C. gloeosporioides are being used as biological control agents (mycoherbicide) in several 
economically important crop cultures [URL 13]. 

 

 

1.2.4. Taxonomy of the genus Colletotrichum 

 

 The genus Colletotrichum belongs to the subphyla Ascomycotina, a group of fungi from the 

phyla Dikaryomycota [Scheffer, 1997]. The taxonomy of the genus Colletotrichum has seen much 

progress in the last decades. Nonetheless, the systematics of this fungal pathogen still has many flaws 

and further studies are necessary. The lack of basic knowledge can be demonstrated by the fact that, 

depending on the taxonomic guidelines used, the number of species in this genus can range from 29 to 
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over 600 [Sutton, 1992]. As an example, in 1957, von Arx reclassified nearly 600 Colletotrichum 

species as synonyms of C. gloeosporioides [Dickman et al., 2003]. His taxonomic guidelines relied 

mainly on morphological features of the conidia, vegetative and sexual structures, host specificity and 

colony growth characteristics [Smith et al., 1990]. Despite von Arx efforts, correct identification and 

classification is difficult since some conidial morphology and colony characteristics vary even within 

isolates [Chakraborty et al., 1997]. This situation leads to several cases of incorrect pathogen 

classification [Agostini et al., 1992; Ureña-Padilha et al., 2002]. The morphological variations observed 

in some structures could be part of the key for the success of this genus as a pathogen for a broad 

range of plants. One of the most confusing species in the genus Colletotrichum has been C. 

gloeosporioides (teleomorph Glomerella cingulata). A good example for the complexity of C. 

gloeosporioides identification, recurring solely to classical morphological criteria, can be seen in table 

1.6 [Freeman et al., 1998]. 

 

Table 1.6: Comparison between isolates of C. gloeosporioides from avocado and almond [Freeman et al., 1998]. 

Character Almond Avocado 

Morphology in culture White to gray White, gray to black 

Sexual stage Absent Present 

Optimal growth temperature 20 to 22ºC 26 to 28ºC 

Average growth rate on PDA at optimal 
temperature (mm/day) 

2.2 6.4 

Infected plant part Immature fruit (dry rot) Leaves, twigs, immature and mature fruits 
(soft rot) 

Latent infection Absent Present 

Benomyl sensitivity Insensitive Sensitive 

 

Due to the difficulty on identification of species from such an economically important group of 

Ascomycetes, biochemical and molecular approaches are being used, since the last decade, as 

complements for the classical identification methods, based on morphological features [Freeman et al., 

1996]. These new molecular approaches have proven useful in several cases, pointing out incorrect 

pathogen identifications [Brown et al., 1996]. The use of polymerase chain reaction (PCR) specific 

primers for polymorphic ribosomal DNA regions, such as the “internal transcribed spacer” (ITS), have 

proven to be an important and efficient identification tool [Freeman et al., 2000]. Nonetheless, some 

species of Colletotrichum still cannot be distinguished by this method [Ureña-Padilha et al., 2002]. 

Other molecular approaches, such as “random amplified polymorphic DNAs” (RAPDs) [Xiao et al., 

2004; Martinez-Culebras et al., 2002], “arbitrarily primed polymerase chain reaction” (ap-PCR) analysis 

[Freeman et al., 1996], or sequencing other polymorphic regions from ribosomal DNA [Johnston et al., 
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1997] are now arising as powerful tools for correct distinction of closely related Colletotrichum species, 

as well as for correct identification of morphologically distinct Colletotrichum species. Biochemical 

approaches, like sensitivity tests for the fungicide Benomyl, are also useful for identification of 

Colletotrichum species. Although screening of fungicide sensitivity is primarily used to estimate the 

killing potential of chemical compounds, this method has proven to be quite useful in specific and 

subspecific grouping in Colletotrichum [Freeman et al., 1998]. An example of the potential of this 

method was carried out in Israel [Bernstein et al., 1995] where isolates of unidentified Colletotrichum 

species from several plants were screened using Benomyl. During the identification, isolates from C. 

gloeosporioides and C. acutatum could be distinguished due to the known higher sensitivity of C. 

gloeosporioides to this fungicide, when compared to C. acutatum [Freeman et al., 1998]. Nowadays, 

the combination of morphological, molecular and biochemical approaches in fungal identification is 

responsible for a list of 40 distinct species comprising the Colletotrichum genus. This list is expected to 

increase since many “Colletotrichum candidate species” have not yet been scrutinized by all available 

approaches [Kirk et al., 2001; Farr et al., 2006]. 

 

 

1.2.5. Colletotrichum as a plant pathogenic fungi: Infection process and mechanisms of 

penetration. 

 
1.2.5.1. Spore germination 

 

Colonization and pathogenesis in most Colletotrichum species require adhesion of spores to the 

aerial parts of the plant, involving hydrophobic interactions. Moreover, the spore adhesion signaling 

process in Colletotrichum species is thought to occur through surface proteins, as already described for 

many other pathogenic fungi [Mercure et al., 1994]. Attachment as a prerequisite for spore germination 

had already been proven for other species of fungi, such as the plant-pathogen Phyllosticta ampelicida 

[Shaw et al., 2000] and the aquatic hyphomicetes Anguillospora longissima and Lunulospora curvula 

[Webster et al., 1984; Chaky et al., 2001]. A good exemplificative experiment of the importance, during 

the attachment, of hydrophobic interactions in successful germination was carried out in Vaillancourt’s 

lab [Chaky et al., 2001]. Germination of C. graminicola spores was assayed in two distinct artificial 

surfaces. A high level of germination (>80%) was observed in hydrophobic polystyrene Petri dishes, 
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while germination rates in hydrophilic glass slides was very small (<20%). Moreover, after studying this 

species in depth, the group observed that the two known spore types, characteristic from C. 

graminicola, displayed distinct patterns of response to surface hydrophobicity. While falcate spores 

could only germinate efficiently in hydrophobic surfaces, oval spores efficiently germinated in artificial 

hydrophilic surfaces. This difference could be connected to distinct roles of these spores in C. 

graminicola pathogenicity. While falcate spores, produced in acervuli in the plant surface, are 

responsible for dispersal of the fungi to other plants, oval spores are produced within the plant xylem 

vessels, being responsible for the systemic spread of the disease in the host [Bergstrom et al., 1999; 

Chaky et al., 2001]. As information about spore germination builds up, the relevance of spore 

attachment as a signaling process in germination is increasing in such way that attachment is, 

nowadays, considered as a pathogenicity factor in plant-microbe interactions [Chaky et al., 2001].  

Although hydrophobicity and rigidity of the contact surface are important factors triggering 

germination of spores, other factors, like the presence of a carbon source, may also promote 

germination, despite the presence or absence of these rigidity/hydrophobicity signals. Therefore, 

multiple response pathways are involved in this early (and complex) step of plant-pathogen interaction 

[Chaky et al., 2001]. The relevance of all those distinct triggering factors may vary for different species 

of Colletotrichum, since some of them require signals that others do not need [Uhm et al., 2003]. For 

example, C. gloeosporioides do not require hydrophobicity signals for appressorium formation in red 

pepper interaction, while this signal is essential for triggering appressoria formation in C. trifolii 

interactions [Uhm et al., 2003; Warwar et al., 1996]. 

 

1.2.5.2. Germ tube formation 

 

Recognition of both physical and chemical signals from the plant surface triggers germination of 

Colletotrichum spores, leading to the formation and elongation of germ tubes. Germ tubes elongate by 

apical deposition of glycoproteins and polysaccharides like chitin and glucans. Those compounds are 

assembled in microfibrils and crosslinked in adjacent polysaccharide chains. The forward growth of the 

germ tube is mainly driven by actin filaments and other cytoskeletal elements. During growth, the germ 

tube is directed by the contact with the rigid surface (thigmotropism) of the host, enabling the pathogen 

to recognize proper infection sites. Some pathogens recognize stomatal openings as infection sites 

while others recognize anticlinal (perpendicular) walls in the host surface [Mendgen et al., 1996]. 
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1.2.5.3. Appressoria 

 

 The physical and chemical signals required for the early steps of fungi development are also 

necessary for the next step, the differentiation of appressoria (from the Latin apprimere, meaning “to 

press against”) [Dean, 1997]. For most pathogenic fungi, the development of appressoria is necessary 

for the overcoming of a strong physical barrier from the plant, composed by the cell wall and the 

cuticle. This structure is primarily made of cutin, a structural polymer that comprises 50 to 90% of the 

cuticle composition [Dickman et al., 2003]. Several studies on how the fungi overcome this structure 

exist and they point for enzymatic digestion and/or physical pressure approaches [Dickman et al., 

2003; Dixon et al., 1999]. Nonetheless, many studies suggest that cell wall degrading enzymes, 

involved in tissue maceration, have no more than a minor role in pathogenicity of plant infecting 

organisms [Scheffer, 1997b]. Therefore, the role of physical pressure, in which the appressoria is 

directly implicated, is now thought to be the most important mechanism in penetration of the host cells. 

 

Physical signaling factors 

As previously observed for spore germination, formation of appressoria also requires physical 

signals, in the form of a hard surface [Hoch et al., 1987]. Spores from C. gloeosporioides differentiate 

appressoria upon contact with a hard surface. Although the spores do germinate in soft agar, they do 

not differentiate appressoria, suggesting that physical contact is required for appropriate morphogenesis 

[Perfect et al., 1999]. However, other factors like the presence of a carbon source (previously described 

as “positively interfering” in the germination of spores), are known to repress appressoria formation, 

regardless of the surface rigidity signs. 

It has been suggested that the surface firmness may “prime” the spores of some fungi, like C. 

gloeosporioides, via Ca2+-calmodulin-mediated signaling pathway [Kim et al., 1998; Chaky et al., 2001]. 

Although the precise mechanisms involved in this pathway are not fully understood, it is known that 

calmodulin, a ubiquitous protein responsible for the activation of some enzymes, is involved in fungal 

cell responses implicated in development. Since calmodulin action is directly connected with availability 

of Ca2+ in the cytosol, all the mechanisms involved in the homeostasis of calcium play a role in 

appressorium formation [Uhm et al., 2003]. 
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Chemical signaling factors 

Plants release a variety of chemical compounds like sugars, phenolics and volatile substances, 

which can be perceived by the pathogen and used for the development of an infection [Dean, 1997]. 

Chemical signals, not directly connected with surface hardness, also play an important role in triggering 

the appressorium formation. Although hydrophobicity and surface hardness could be similar in different 

plants, the recognition of the chemical signals by a specific pathogen may be decisive for the 

development of the appressorium and consequent pathogenic interaction. As an example, the fatty 

alcohol fraction of the surface wax from avocado triggers selective appressorium formation in C. 

gloeosporioides while this triggering cannot be found in other wax-coated plants [Podila et al., 1993]. A 

scenario for the chemical signaling pathway, postulated for C. trifolii is that, after spores recognize the 

chemistry of the host’s surface, endogenous cutinases hydrolyze the cutin polymers, present in the 

cuticle of the host, into monomers. These long-chain fatty acid monomers will then trigger lipid-induced 

protein kinases (LIPK), necessary for the appressoria differentiation [Dickman et al., 2003]. Another 

chemical signal for appressoria formation that is recognized by C. gloeosporioides is ethylene, a 

molecule also known to act as a hormone in climateric fruit ripening [Uhm et al., 2003; Kolattukudy et 

al., 1995] and on defense signaling mechanisms in plants. The transmission of pre-penetration 

chemical signals to the fungus is most likely mediated by second messengers like calcium [Ahn et al., 

2003], in a pathway similar to the one by which physical signals are also transmitted. The functional 

redundancy of some triggering signs may provide pathogens with an evolutionary advantage in ever-

changing plant-pathogen interactions [Dean, 1997]. 

 

1.2.5.4. Differentiation and penetration 

 

After recognition of the triggering signs, appressoria formation and tip swelling occurs, 

becoming delimited by a septum. At this stage, the spore and the germ tube of Colletotrichum species 

are usually devoid of cytoplasm, which migrates to the appressorium [Dean, 1997]. Maturation of 

appressorium involves formation of a penetration hypha in the base of the cell and secretion of 

extracellular matrix materials. These include cell wall degrading enzymes such as pectate lyases, 

cellulases and cutinases, responsible for the maceration of the physical barriers and other tissues 

involved in the penetration of the pathogen [Yakoby et al., 2000]. The majority of the extracellular matrix 

is composed by glycoproteins, responsible for the adhesion of the pathogen to the host [Pain et al., 
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1996]. Moreover, some of these glycoproteins, like laccases, may be actively involved in fungal defense 

mechanisms, as well as in morphogenesis and pathogenicity [Ranocha et al., 2002; Anderson et al., 

1996]. The high level of proline residues that can be found in the composition of laccases exhibit an 

increased affinity for polyphenolic compounds [Bergstrom et al., 1999], like those produced by the 

plant defense mechanisms. 

Even though Colletotrichum species employ the same assortment of cuticle and cell wall lytic 

enzymes as other fungi, it has been postulated that they may be able to penetrate the host cuticle and 

cell wall just by means of turgor pressure [Mendgen et al., 1996]. The turgor pressure exerted by the 

appressoria is supported by the deposition of new wall layers and melanization [Dean, 1997]. At this 

stage, the appressoria becomes darker and is considered fully mature. Melanin is a dark, water-

insoluble polyketide, which is deposited in a layer of the cell wall, close to the plasma membrane. The 

only exception is the small pore through which the penetration hypha will develop. Melanin is apparently 

essential for the generation of turgor pressure, necessary for mechanical penetration, since 

Colletotrichum defective mutants for melanin biosynthesis cannot penetrate plants [Kubo et al., 1985]. 

Moreover, turgor pressure in appressoria of melanin-deficient mutants is only 30–70% of that measured 

in normal, fully melanized appressoria. The accumulation of melanin is responsible for a decrease in 

the porosity of the structure and, therefore, blocks the efflux of cytosolic solutes [Dean et al., 1997]. As 

a consequence, the melanized appressoria increase and/or maintain the turgor pressure. One solute 

that is thought to act as an osmolyte, responsible for appressoria turgor pressure, is glycerol [Money et 

al., 1996]. 

 

1.2.5.5. Colonization of the host: From penetration hyphae to biotrophic/necrotrophic interaction 

 

Species from the genus Colletotrichum can establish a compatible interaction with their host 

either by subcuticular or intracellular growth. In subcuticular growth, the pathogen develops beneath the 

cuticle, forming a network of hyphae. Latter, the pathogen spreads thought the tissue with both inter- 

and intracellular hyphae, killing the host cells upon contact [Perfect et al., 1999]. Although subcuticular 

growth occurs in several cases, intracellular colonization is the most common host infection strategy. 

Typically, the initial stages of Colletotrichum infection are similar in both host-interaction methods and 

include adherence and germination of conidia on the plant surface and production of germ-tubes that 

latter differentiate to form melanized appressoria [Perfect et al., 1999].  



36 

 

 
 

 

Study of Hypericum perforatum defense mechanisms against Colletotrichum gloeosporioides: Relevance of 

phenolic metabolism and hypersensitive response. Luis Eduardo F.R. Conceição 

 

Introduction 

Introduction 

Introduction 

During intracellular growth interaction, and after penetration of the appressoria, a penetration 

hyphae starts to grow from a thin pore surrounded by walls strong enough to support the turgor 

pressure, in the middle of the appressoria base. The penetration hypha has a characteristic cell wall, 

distinct from the one observed in germ tubes. The wall has modified or reduced amounts of chitin. This 

change in the composition is responsible for an increased resistance to endochitinases secreted by the 

plant. Moreover, since less cleavage products are created, plant defense signaling will be less effective 

by the lack of these molecules, known to act as elicitors of plant defense [Mendgen et al., 1996]. While 

the penetration hypha moves through the plant barriers, host cells respond by the production of 

papillae. This preinvasion structure response is characterized by the deposition of new cell wall 

material, in the location of the penetration attempt. At this stage, if the aggressor fails to overcome the 

reinforced host barrier (proving to be a nonadapted pathogen), termination of anthracnose pathogenesis 

occurs [Shimada et al., 2006]. On the other hand, if the pressure exerted by the appressoria and the 

incursion of the penetration hypha to the cell lumen prevails over the strengthened host cell barrier, a 

pathogenic interaction arises and colonization of the host may take place. After penetration hyphae 

development and incursion through cuticle and cell wall, one or more primary hyphae grow within the 

cell lumen, without perturbing the host membrane, developing between the plasma membrane and the 

cell wall from the host plant. This region is likely to be a key area for avoidance of host defense 

response, as well as for establishment of biotrophy [Perfect et al., 1999]. These biotrophic hyphae will 

later spread to the adjacent epidermal cells and inner, hypodermal cells. At a certain stage of host 

development, the pathogen produces secondary hyphae, characteristic of the necrotrophic interaction. 

The development of this interaction leads to the formation of macroscopically visible symptoms of 

anthracnose disease such as dark, necrotic lesions and tissue dead, from where the necrotic hyphae 

acquire nutrients. Moreover, during necrotrophic interaction, the pathogen differentiates the acervuli 

and begins sporulation in the surface of the senescent organ [Latunde-Dada, 2001]. 

The initial feeding on living host cells, prior to subsequent switching to necrotrophy, is the 

reason why Colletotrichum species are considered hemibiotrophic or facultative biotrophs [Perfect et al., 

1999]. All the specialized structures and triggering signals previously described constitute 

Colletotrichum infection mechanisms, essential for an effective biotrophic colonization of the host plant. 

During this stage, the pathogen uses these specialized structures to provide a less confrontational 

interaction with the host [Dean, 1997]. Moreover, lytic enzymes are secreted in lower amounts while 
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other extracellular matrix constituents, secreted by the pathogen, play an important role in suppressing 

defense response mechanisms from the host [Silva et al., 2006]. 

 

 

1.2.6. Colletotrichum species: Tools for the study of pathogen-related defense mechanisms in 

plants. 

 

Species from the genus Colletotrichum, such as C. gloeosporioides, are often used as models 

in several studies, from pathogen development and differentiation to the study of plant-pathogen 

interaction [Farr et al., 1989]. The haploidy of Colletotrichum species makes them a good experimental 

tool for mutational analysis by facilitating the estimation of gene functions, by target disruption 

approaches [O’Connell et al., 2004]. The relevance of Colletotrichum species as model organisms in 

the study of plant defense responses is growing. This importance is supported by the increase in the 

screening for Colletotrichum species pathogenic for Arabidopsis thaliana, one of the most useful and 

resourceful models in plant biology [Liu et al., 2007]. 

Another interesting aspect about Colletotrichum species is that, during the establishment and 

colonization of the host plant, members of this genus acquire their nutrients via biotrophy and/or 

necrotrophy. Therefore, in a single interaction with the host, these pathogens can exhibit two nutrition 

acquisition models. Initially these nutrients are obtained from the living cells of the host, followed by a 

necrotic phase where nutrients are obtained from the dead plant cells, killed by the fungus. These two 

strategies can be used by any species of this genus, at the same time or separately [Farr et al., 1989]. 

Moreover, species from this genus develop a series of specialized infection related structures such as 

germ tubes, appressoria, primary hyphae and secondary, necrotrophic hyphae, as previously described. 

The great variety of structures and nutrient acquisition methods exhibited by species from the genus 

Colletotrichum also make them experimentally attractive organisms for the study of molecular, 

biochemical and cellular basis of fungal pathogenicity, development and signal transduction [Bailey et 

al., 1992]. 
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1.3. Secondary metabolism 

 

 

 

1.3.1. Introduction 

 

When the first pioneering plant species started the occupation of dry land, nearly 450 million 

years ago, a new set of challenges, distinct from those existing in watery environments, soon began to 

appear. This important environmental transformation was accompanied by several physiological 

adaptations, including the evolutionary emergence of entirely new specialized metabolic pathways [Noel 

et al., 2005]. While in the beginning of their adaptation to the new, dry environment their challenges 

were mostly abiotic (temperature, humidity or light intensity), “soon” plants started facing a great, 

evolving diversity of biotic (viruses, fungi or bacteria) environmental stresses. Moreover, their lack of 

mobility renders them unable to escape from these potentially damaging agents. This fact has led them 

to develop many efficient and polyvalent defense mechanisms and, as a consequence, disease is the 

exception rather than the norm [Bellés et al., 2008]. Most of these protection mechanisms are related 

to secondary metabolites, defined as compounds produced by plants or other sessile organisms which 

are not directly essential for basic photosynthetic or respiratory metabolism. The relevance of secondary 

metabolites from plants dates back from the earliest days of human history. As an example, the 
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Sumerian civilization described a long ago, in 4.000 B.C, some “therapeutic” properties of Papaver 

somniferum, known at that time as hul gil (joy plant). These properties were most likely connected to 

the high concentration of two secondary metabolites, the alkaloids morphine and codeine, present in 

this plant species [Theis et al., 2003]. Despite the negative impact of these secondary compounds in 

human health and society, many other biologically active secondary metabolites have been successfully 

exploited during the search for new plant-based pharmaceutical products [Noel et al., 2005], cosmetics, 

fine chemicals or, more recently, nutraceuticals [Bourgaud et al., 2001]. Nowadays, more than 

200.000 secondary compounds from plants have been characterized, with their chemical structure 

resolved [Hartmann, 2007]. The diversity and specificity of secondary compounds is such that many of 

them are nowadays used in taxonomic identification, as “chemical signatures” of particular species. 

This remarkable chemical diversity of biologically active compounds present in plants is the result of 

specialized biosynthetic pathways. These pathways were developed by ongoing evolutionary processes, 

usually as a response to physical and biotic interactions of plants with their challenging ecosystems 

[Noel et al., 2005] and, although distinct from primary metabolism (Table 1.7), secondary metabolism 

is nowadays known to be indispensable for survival. 

 

Table 1.7: Main differences between primary and secondary metabolism [Hartmann, 2007]. 

Primary metabolism Secondary metabolism 

Genes with high stringency controlling essential functions 
Genes with high plasticity that are under selection pressure of the 
evolving environment 

Covers growth and development Covers interactions with the environment 

Indispensable 
Dispensable for growth but indispensable for survival in 
environment 

Universal Unique 

Uniform Diverse 

Conservative Adaptative 

 

 

1.3.2. Overview on secondary metabolism history: From expendable to essential 

 
The research of plant secondary metabolites began nearly 200 years ago, when Friedrich 

Wilhelm Sertürner first isolated from opium poppy (Papaver somniferum), in 1806, the principium 

somniferum, nowadays known as morphine. The work of Friedrich was the first to demonstrate that the 

therapeutic uses could be directly related to one or a few compounds, present in a given plant. As other 

compounds were being isolated and characterized, the research of natural products began to play an 

important role in the development of pharmaceutical research, as well as in other areas of organic 
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chemistry. The increasing knowledge about natural products was afterwards responsible, in the second 

half of the 19th century, for the first generally accepted definition of secondary and primary 

metabolisms. In 1873, Julius Sachs, considered one of the “founding fathers” of plant physiology, 

defined secondary metabolites as “compounds formed during metabolism which are no longer used in 

the formation of new cells”. Apart from being considered “waste or detoxification products”, Sachs did 

not attribute any other functional relevance to these compounds for the survival of plants. Although 

incomplete, that was the first definition towards the “correct”, modern characterization of secondary 

metabolites [Hartmann, 2007]. Moreover, the terms “primary” and “secondary” metabolism were 

introduced by Kossel a few years later, in 1891, when he first differentiated secondary metabolites, as 

opposed from primary ones [Bourgaud et al., 2001]. 

Until the first half of the 20th century the pathways responsible for the production of secondary 

compounds were predicted mainly by analogy with organic chemistry reactions. One of the main tools 

at the time was chemical degradation, in order to produce and compare the chemical structures of the 

resulting fragments [Staunton et al., 2001]. Until that time, secondary metabolites were still regarded 

as waste products from plants. Nonetheless, this view began to change by the introduction, in the early 

1950’s, of radioactivity-labeling techniques for tracing the metabolic flux of compounds (defined as the 

amount of converted metabolite per unit of time [Matsuda et al., 2005]). This technical breakthrough 

significantly supported the characterization of several biosynthetic pathways, by means of accurate 

biochemical evidence and was responsible for the description, during the next two decades, of the basic 

outlines for almost all major secondary metabolite pathways [Hartmann, 2007]. Moreover, tracing by 

radioactivity-labeling was also extremely valuable in unveiling the transportation patterns of several 

compounds throughout the plant tissues, as well as in pointing out the tissues committed to their 

synthesis and/or accumulation. The accumulated knowledge made the scientific community realize, 

nearly one decade later, that secondary metabolites were no inert, end products but a dynamic 

component of plant metabolism. Moreover, at that time the first theories about the importance of 

secondary metabolites in plant defense (Fraenkel, 1959) and coevolution with herbivores and insects 

(Raven, 1964) were also arising. Despite the great advantages of radioactivity-labeling, this technique 

was not enough to provide a deeper understanding and characterization of all the individual steps 

composing a metabolic pathway. Therefore, the plant was still seen as “a black box” to whom labeled 

precursors were fed and, a few days or weeks later, labeled products would arise [Hartmann, 2007]. 

Later in the 1970’s the development and optimization of other techniques, like the application of new 
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sorbents for selective protein separation through column chromatography, added new tools for the 

purification of proteins. Together with the establishment of more easily handable plant systems (in vitro 

cultures), optimized methods for the separation of proteins were responsible for new breakthroughs in 

secondary metabolism study, by improving both quality and variety of enzymology tools available. 

In the mid 1980’s it was generally accepted that secondary products were synthesized de novo 

from simple precursors of primary metabolism through a sequence of reactions catalyzed by specific 

enzymes. There was “no room” in this definition for spontaneous reactions or unspecific side-activities 

of enzymes involved in both primary and secondary metabolic pathways. Nonetheless, during the mid 

1980’s, the first steps in applying molecular tools for the study of secondary metabolism were taken. 

Genes from phenylpropanoid pathway enzymes like 4-coumarate:CoA ligase (4CL), phenylalanine 

ammonia-lyase (PAL) or chalcone synthase (CHS) were successfully isolated and functionally expressed. 

The development of these new molecular tools was the basis for the recent improvements in metabolic 

engineering of plants. In one hand, molecular tools were useful in providing methods for cell-specific 

localization of secondary pathways, by immunolocalization of pathway-specific enzymes. On the other 

hand, these tools allowed gene-transfer (maybe even whole pathways, in the near future) between 

organisms, for both the study of biosynthetic pathways of secondary metabolites, as well as for the 

improvement of crops, for instance, against adverse environmental conditions [Hartmann, 2007]. 

The molecular and enzymology technical achievements developed in the mid 1980’s were 

responsible for many improvements in secondary metabolism research. It is now clear that many 

metabolic pathways, such as phenylpropanoid, alkaloid or terpenoid pathways, are clustered in 

metabolons. These multienzyme complexes, a common feature in secondary metabolism, are 

responsible for the organized metabolic channeling, developed by plants for an optimized biosynthesis 

of several chemical compounds. These technical achievements were also responsible for the knowledge 

that enzymes from the secondary metabolism are often found in low concentrations and usually lack 

feedback regulations, typical from primary metabolism. Despite the low amounts of some enzymes 

present in plants, the increasing availability of genes encoding secondary metabolism enzymes allow 

the expression of recombinant enzymes and the recovery of substantial amounts of protein for detailed 

kinetic and structural studies [Hartmann, 2007]. 

Nowadays it is also accepted that some enzymes, related only to the secondary metabolism, 

have evolved in order to create an increased chemical diversity of compounds. For example, some 

sesquiterpene synthases from conifers are known to generate a few major products, accompanied by 
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up to 50 chemically distinct minor ones. The high plasticity and diversity guarantees flexible adaptation 

of plants to the demands of their continuously-changing environment. Therefore, while primary 

metabolism is known to be responsible for the essential processes of growth and development, 

secondary metabolism is crucial for the survival of the plants in its environment. By being “dispensable” 

for growth, secondary metabolism components can be continuously modified and adapted to also 

dynamic ecological niches [Hartmann, 2007]. 

From the growing knowledge obtained, especially in the last decades, in scientific research 

fields like enzymology, molecular biology or ecology, one major conclusion on how secondary 

metabolism is important for plants can be pointed out: Rather than meaning “less important 

metabolism”, the term “secondary” is now mainly regarded as a “different functional metabolism”, 

much like the “secondary” structure of proteins is different, but equally important as their “primary” or 

“tertiary” structures [Hartmann, 2007]. 

 

 

1.3.3. Localization and functions of secondary metabolites in plants 

 

The ability of secondary metabolism pathways to generate a great diversity of compounds could 

only be achieved by means of optimized metabolic channeling, sometimes occurring in specific sub-

cellular and/or tissue locations [Winkel, 2004]. In one hand, metabolic channeling brings co-operating 

enzyme active sites into close proximity and thereby decreases the transit time for intermediates along 

the biosynthetic pathway [Jørgensen et al., 2005]. On the other hand, it is known that secondary 

metabolites occur in a wide range of plant tissue types and, for many of those compounds, specialized 

localization may be necessary for obtaining high local substrate concentrations, indispensable for 

efficient metabolic rates. Compartmentalization of specific pathways also allows better regulation and 

coordination of competition between branch pathways for shared enzymes or intermediates. Besides 

these advantages, both metabolic channeling and compartmentalization of pathways and/or final 

secondary metabolites are mainly observed in cases where the metabolite, or an intermediate, displays 

toxic or reactive effects [Winkel, 2004]. In fact, many secondary metabolites are produced by the plant 

in order to serve as defensive chemicals against pathogens and, due to the usually high bioactivity and 

autotoxicity risk, they are often secured in specialized secretory structures where concentrations can be 

kept high enough to allow a successful defensive response, without damaging the surrounding plant 
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tissues. These structures are often localized externally in the plant, enhancing the effectiveness of the 

defensive secondary metabolites accumulated within, as they serve as the first line of defense against 

possible pathogens [Theis et al., 2003]. The role of metabolic channeling during the synthesis of toxic 

intermediates is clear: To secure swift conversion of labile and/or toxic intermediates into more stable 

and less toxic constituents by sequestration and by preventing their diffusion into the surrounding cell 

matrix, where chemical decomposition would take place [Jørgensen et al., 2005]. Interestingly, some 

secondary metabolites produced by plants for their defense, like some pyrrolizidine alkaloids, can be 

used by specialized herbivores that, during the evolutionary process, managed to avoid the toxic effects 

of those compounds, modifying their structure and accumulating them in order to attain protection 

against their own enemies [Kutchan, 1995; Theis et al., 2003]. Despite the general recognition of 

secondary metabolites as defense-related compounds, their great variety is translated into a broad 

range of functions (Table 1.8). Some secondary metabolites also display allelopathic effects, inhibiting 

the growth of competing plants, while others are used as surfactants, light absorbing agents [Vining, 

1990], metal transporting agents (by improving metal solubilization and subsequent uptake [Dixon et 

al., 1995]), sexual hormones, differentiation effectors and symbiotic agents between organisms 

[Demain et al., 2000]. In most of these cases, specialized accumulation structures are less common 

since most of these compounds are readily released to other tissues and/or to the environment as soon 

as they are synthesized. One of the most studied uses of secondary metabolites, apart from direct plant 

defense, is related to symbiotic functions. That includes secondary metabolites that are produced by the 

plants in order to attract pollinators and, in addition, other compounds that are released to attract 

insects, not for pollination, but for their predatory/parasitic effects on herbivores feeding on the plant. 

Moreover, another possible (but still controversial) function of some secondary metabolites has been 

postulated. Some volatile compounds that are produced by the plant upon herbivore feeding are 

thought to be responsible for communication between neighboring plants, enabling the surrounding 

plants to “know” about the presence of a nearby pathogen, in a mechanism similar to that of 

predatory/parasitic organisms. Although some models have been demonstrated, plant-to-plant 

communication by volatile signals is considered a rare situation [Theis et al., 2003]. 

 
Table 1.8: Brief list of functions associated to some secondary metabolites. 

Pollination Allelopathy Symbiosis 

Seed dispersal Antibiotic Defense (anti-feeding) 

Plant-plant communication Photoprotection Metal transport 

Oviposition Surfactant Phytohormones 
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Apart from the “typical” secondary pathway metabolites, other compounds, originally 

synthesized for “secondary” functions, were recruited by plants during the course of their evolution, for 

developing several primary functions, like signaling or hormonal activities, as described in table 1.9. 

Moreover, compounds like lignin or canavanine (an arginine antimetabolite that substitutes arginine for 

the production of the structurally aberrant canavanyl proteins [Rosenthal et al., 1989]) are known to act 

in both primary and secondary metabolism of plants [Hartmann, 2007]. 

 
Table 1.9: Compounds of secondary origin that attained primary functions. 

Compounds  Compound class Function 

Gibberellins Diterpenoid 

Phytohormones Abcisic acid Sesquiterpenoid 

Brassinosteroids Triterpenoid 

Carotenoids, xanthophylls Tetraterpenoids Photoprotection 

Some flavonoids Flavonoids Developmental regulators 

Salicylate Benzoate Stress signal 

Lignin Lignins Cell wall strengthening and chemical defense 

Canavanine Amino-acids Seed nitrogen storage and chemical defense 

 

 

1.3.4. Phenylpropanoid pathway and phenolics: A major class of secondary metabolites in 

plants 

 

 Secondary compounds can be classified through their chemical structure, solubility or by their 

metabolic pathways. A broad, simple classification usually differentiates secondary compounds in three 

major groups, according to their biosynthetic pathways: terpenoids (lipid-based compounds), alkaloids 

(nitrogen-based compounds) and phenolics (aromatic ring-based compounds) [Bourgaud et al., 2001]. 

Considering the scope of this work, and the relevance of phenolic compounds in H. perforatum defense 

against C. gloeosporioides, the biosynthetic pathways of two major, ubiquitously distributed phenolics 

(flavonoids and lignin) will be discussed in more detail. A specific class of phenolic compounds found in 

H. perforatum (xanthones) will be presented later in this thesis. 

Most of the thousands of phenolics known are from plant origins. These compounds are 

characterized by their C6 aromatic ring(s) bearing at least one hydroxyl group, as described in table 1.10 

[Strack, 1997]. Some phenolics, like lignins, are present in virtually all plant species, performing roles 

of great importance such as water transport, mechanical support and physical barrier against possible 

pathogens. Other phenolics can be more or less specific to a given plant species. Nonetheless, most of 

these specific phenolic compounds play a myriad of common functions, displaying active roles as 
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pollinator attractants, pathogen deterrents, UV-light protectors, allelopathic compounds, antioxidants or 

signal molecules [Strack, 1997; Mayer et al., 2001]. 

Table 1.10: Major classes of phenolic compounds found in plants [Strack, 1997; URL 14]. 

Carbon skeleton Compound class Sample Structures 

C6 Simple phenols 

 Catechol 

C6-C1 Hydroxibenzoates 

 4-Hydroxybenzoate 

C6-C2 
Acetophenones, 
phenylacetates 

 4-Hydroxyacetophenone 

C6-C3 

Hydroxicinnamates, 
phenylpropenes, 
coumarins, 
chromones  Caffeate  Coumarate  Ferrulate 

C6-C4 Naphthoquinones 

 Juglone 

C6-C1-C6 Xanthones 

 2-Hydroxyxanthone 

C6-C2-C6 
Stilbenes, 
anthraquinones 

 Resveratrol 

C6-C3-C6 Flavonoids 

 Quercetin 

(C6-C3)2 Lignans 

 Pinoresinol 

(C6-C3-C6)2 Biflavonoids 

 Amentoflavone 

(C6)n Catechol melanins 

Polymeric structures 
(C6-C1)n:Glc Hydrolizable tannins 

(C6-C3)n Lignins 

(C6-C3-C6)n Condensed tannins 
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 Plant phenolics are synthesized from three distinct biogenetic routes: The shikimate/arogenate, 

the polyketide and the acetate/mevalonate pathways [Strack, 1997]. The shikimate/arogenate pathway 

(Figure 1.11) links carbohydrate metabolism to the biosynthesis of aromatic compounds [Herrmann et 

al., 1999]. This pathway occurs in plants and bacteria and leads to the majority of plant phenolics (the 

phenylpropane derivatives - phenylpropanoids), by producing the aromatic amino acid L-phenylalanine 

(as well as the amino acids tyrosine and tryptophan). The shikimate/arogenate pathway is thought to 

occur in different locations, since it is involved in phenylpropanoid biosynthesis as well as in protein 

synthesis. Therefore, it has been postulated that one plastidial pathway is mainly responsible for protein 

synthesis while the other, occurring in the cytosol associated with other membrane-bound enzymes 

(multiprotein complex), is responsible for the phenylpropanoid biosynthesis [Strack, 1997; Hartmann, 

2007]. 

 

 

Figure 1.11: Outline of the shikimate/arogenate pathway [Strack, 1997]. 

 

Following phenylalanine production, the first step of the “general phenylpropanoid pathway” 

takes place (Figure 1.12). This first reaction is catalyzed by phenylalanine ammonia-lyase (PAL, EC 

4.3.1.5), which converts phenylalanine to cinnamate via deamination. Moreover it is known that another 

amino acid from the shikimate pathway, tyrosine, can also be converted by PAL, although with lower 

efficiency, directly into p-coumaric acid. Because of its key role in shifting the flux of carbon from the 

primary to the secondary metabolism, PAL has been extensively studied. This tetrameric protein was 

the first enzyme of the phenylpropanoid pathway for which detailed structure–function information was 

made available [Ferrer et al., 2008]. Cinnamate is then converted, by cinnamate 4-hydroxylase (C4H, 

EC 1.14.13.11), into p-coumaric acid, which can be the substrate for a series of enzymes that undergo 

hydroxylation and methylation reactions, leading to sequential formation of the other common 

hydroxycinnamates caffeic acid and ferulic acid (Table 1.10) as well as 5-hydroxyferulic acid and sinapic 

acid [Strack, 1997]. These intermediates are the substrates for 4-coumaroyl:CoA ligases (4CLs, EC 
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6.2.1.12). Isoforms from this enzyme activate hydroxycinnamate intermediates by the formation of a 

thioester bond between a CoA and their carboxyl groups [Ferrer et al., 2008]. 

 

 

Figure 1.12: Outline of the general phenylpropanoid pathway and the hydroxycinnamate intermediates. PAL - 
Phenylalanine ammonia-lyase; C4H - Cinnamate 4-hydroxylase; 4CL - 4-Hydroxycinnamoyl CoA ligase; C3H - p-Coumarate 3-
hydroxylase (EC 1.14.13.-); COMT - Caffeate/5-hydroxyferulate O-methyltransferase (EC 2.1.1.68); F5H - Ferulate 5-
hydroxylase (EC 1.14.13) [Harakava, 2005 (adapted)]. 
 

From this step on, another common pathway for the synthesis of plant phenolics, the polyketide 

pathway, channels the distinct, activated hydroxycinnamic intermediates into specific branch pathways 

for the formation of several classes of phenylpropanoids like lignins, xanthones, stilbenes or flavonoids 

[Dixon et al., 2002; Ferrer et al., 2008]. Although some classes of phenylpropanoids are present in all 

plants, such as the hydroxycinnamic acids from the “general pathway”, flavonoids or lignins, other 

classes, such as the xanthones or stilbenes, may be limited to particular plant families [Dixon et al., 

2002]. 

Flavonoids belong to a large, structurally diverse class, comprising nearly 9000 distinct 

phenolic compounds, found in all higher plants. Flavonoids played a key role in Mendel’s classic 

discovery of the laws of heredity and are known to be of major importance in the biochemical ecology of 

plants [Ferrer et al., 2008]. The biosynthetic pathway of flavonoids starts with the condensation, in a 

polyketide reaction, of the activated hydroxycinnamic acid p-coumaroyl CoA, with three molecules of 

malonyl CoA. This reaction is catalyzed by chalcone synthase (CHS; EC 2.3.1.74), yielding naringenin 

chalcone (2’,4,4’6’-tetrahydroxychalcone) [Strack, 1997]. This chalcone is then isomerized by chalcone 

isomerase (CHI, EC 5.5.1.6), producing a flavanone. Flavanones are intermediates for the biosynthesis 

of all flavonoid subclasses such as flavones, flavonols and isoflavanoids, but also anthocyanidins and 

anthocyanins (Figure 1.13) [Farag et al., 2008]. 
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Figure 1.13: Biosynthetic pathway leading to major classes of flavonoid aglycones, anthocyanidins and anthocyanins. CHS 
- Chalcone synthase; CHI - Chalcone isomerase; FNS I and II – Flavone synthases (EC 1.14.11.22); IFS - Isoflavone 
reductase (EC 1.3.1.45); F3H - Flavanone 3-hydroxylase (EC 1.14.11.9); FLS - Flavonol synthase (EC 1.14.11.23); DFR - 
Dihydroflavonol 4-reductase (EC 1.1.1.219); ANS - Anthocyanidin synthase (EC 1.14.11.19); UFGT - Flavonoid 3-O-
glucosyltransferase (EC 2.4.1.91) [Ferrer et al., 2008 (adapted)]. 

 

Lignins are probably the most ubiquitous class of phenylpropanoids in plants. They represent a 

major carbon sink in vascular plants [Rest et al., 2006], being the second most abundant plant 

polymer, after cellulose [Ferrer et al., 2008]. Like for most phenylpropanoids, the synthesis of their 

monomers starts from activated hydroxycinnamic acids, produced in the general phenylpropanoid 

pathway. From a branch pathway that includes cinnamoyl-CoA reductase (CCR; EC 1.2.1.44) and 

cinnamyl-alcohol dehydrogenase (CAD, EC 1.1.1.195) (Fig. 1.14), each activated hydroxycinnamic 

compound is then converted to lignin monomers, the monolignols coniferyl, 5-hydroxyconiferyl, sinapyl 

and p-coumaryl alcohols, precursors of lignin. Another compound (caffeyl alcohol) is also produced 

although it is not a constituent of lignin in plants [Strack, 1997], being converted into some of the 

previous compounds (coniferyl, 5-hydroxyconiferyl or sinapyl alcohols). Finally, each of the four 

monolignol precursors is converted by lignin peroxidases (LiP, EC 1.11.1.7) into four basic lignin 

subunits (p-hydroxyphenyl, guaiacyl, 5-hydroxyguaiacyl and syringyl lignin) that will later be polymerized 

into the complex lignin structure. The ratio between these lignin subunits dictates the degree and nature 

of polymeric cross-linking, which is responsible for profound consequences in the interaction of plants 

and their environment [Ferrer et al., 2008]. 
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Figure 1.14: Outline of the lignin biosynthetic branch pathway. Dotted gray arrows show possible conversions between 
lignin biosynthesis intermediates [URL 15 (adapted)]. 
 
 
 

1.3.5. Chemical composition of H. perforatum: Characteristic and major secondary metabolites. 

 

It is difficult to define a standard chemical composition for H. perforatum since both quantity 

and quality of the phenolic compounds accumulated varies greatly between breeding lines [Franke et 

al., 1998] or even in the same cultivar [Büter et al., 1998]. Nonetheless, a spectrum of six major 

natural product groups are usually found in H. perforatum dry alcoholic extracts, prepared with ethanol 

and the upper, aerial parts of the plant: naphtodianthrones, phloroglucinols, flavonol glycosides, 

biflavones, proanthocyanidins and phenylpropanes [Erdelmeier et al., 2000]. The most relevant of these 

groups are described below, in detail. 

 

Naphtodianthrones 

 The chemical study of this species had begun in 1830, when Buchner isolated the first 

naphtodianthrone, hypericin, from H. perforatum [Dias, 2000]. When compared to other major phenolic 

compounds, naphtodianthrones are present in relatively smaller amounts in the plant. Nonetheless 

hypericin, as well as the other minor naphtodianthrones (Fig. 1.15), also called hypericins [Dias, 2000], 

are the most noticeable compounds from H. perforatum due to their distinctive blood-red colour. In H. 

perforatum, hypericin is found in the dark glands as well as in some secretory canals [Maggi et al., 

2004]. Nonetheless, the plant cell tissues involved in the synthesis, as well as the biosynthetic pathway 
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of hypericin, is still not fully understood. The initial steps of the pathway may occur in the 

photosynthetic, green leaf tissues were acetate and/or malonate photosynthates (precursors of emodin) 

are produced. These compounds are then transported to the dark glands, were emodin is synthesized. 

The following steps of synthesis occur in these glands and hypericin is finally produced through the 

conversion of protohypericin in a simple biochemical process, in the presence of light [Zobayed et al., 

2006]. 

 

 

Figure 1.15: Some naphtodianthrones from H. perforatum: (A) pseudohypericin, (B) protohypericin, the non-toxic 
precursor of (C) hypericin [URL 14]. 

 

Although hypericin is usually associated with H. perforatum, this phenolic compound is also 

present in other species from the genus Hypericum and, interestingly, has also been found in a 

protozoon, the blue-green ciliate Stentor coerulus, associated in a photoreceptor complex. Moreover, 

hypericin has also been found in insects from the Coccoidea family [Erdelmeier et al., 2000]. 

Hypericin is one of the compounds from H. perforatum most extensively screened for biological 

activities. Some in vitro results suggest a positive antiviral activity against several viruses, including HSV, 

Influenza A or HIV. Despite these promising results obtained in vitro, especially against HIV, clinical 

studies are still inconclusive about the effects of hypericin for the treatment of AIDS. Moreover, many 

studies found that hypericin was responsible for phototoxic side-effects, observed in numerous patients 

[Dias, 2000]. Despite this adverse effect observed in antiviral treatments, photoactivation of hypericin 

has shown to have a promising potential in quimioterapy treatment of several types of carcinoma 

[Miskovsky, 2002]. Clinical studies have found that hypericin was selectively effective against 

melanoma cells, after topical application and light activation [Davids et al., 2008]. Other studies, 

focusing on the antidepressant activity of H. perforatum, have shown that hypericin plays no role in this 

therapeutic propriety [Dias, 2000]. 
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Phloroglucinols 

 Phloroglucinols represent the largest group of compounds found in H. perforatum. The most 

important compound from this group is hyperforin (Fig.1.16), which comprises 2-5% of H. perforatum 

crude extract composition [Erdelmeier et al., 2000; Beerhues, 2006]. Like hypericin, hyperforin 

accumulates only in secretory tissues but, while hypericin can be found only in the dark glands, 

hyperforin occurs only in minute amounts in these structures. Therefore, the preferred accumulation 

sites for hyperforin are known to be the translucent glands. In accordance to this fact, a recent theory 

proposes that the synthesis of this phloroglucinol takes place in the chloroplasts of cells delimiting the 

translucent glands, through the same biosynthetic machinery used for monoterpenes synthesis 

[Soelberg et al., 2007]. 

Several phloroglucinols are known to display antibacterial, antifungal and antimalarial activities 

[Erdelmeier et al., 2000]. The most prominent phloroglucinol in H. perforatum, hyperforin, is nowadays 

known to play a central role in the antidepressive activity of this plant, by interfering with the reuptake of 

many neurotransmitters [Müller, 2003]. Moreover, it has also been suggested that hyperforin displays 

anti-inflammatory [Schempp et al., 2000] and antitumoral [Schempp et al., 2002] properties. 

 

 

Figure 1.16: Two major phloroglucinols from H. perforatum L.: (A) hyperforin and (B) adhyperforin [URL 14]. 

 

Flavonoids 

 Flavonoids constitute one of the most representative classes of phenolic compounds from H. 

perforatum and may account for 1-7% of the dry biomass from this plant [Dias et al., 1998]. The most 

common flavonoids belong to the quercetin-based flavonol glycosides, like hyperoside, rutin, quercitrin 

and isoquercitrin (Fig. 1.17). The most relevant aglycones found in H. perforatum are quercetin, 

kaempferol and luteolin. Moreover, some biflavones are usually referred in the literature as minor 

components [Erdelmeier et al., 2000] present exclusively in the flowers of H. perforatum [Dias et al., 
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2000]. Quercetin is known to display antiviral [Castrillo et al., 1986], anti-inflammatory [Ueda et al., 

2004] and anticancer activities [Lu et al., 2006]. Some other flavonoids, in particular the quercetin-

based ones, are known to display in vitro inhibitory activity of monoamine oxidase A and B (MAO-A and -

B) and catechol-O-methyl transferase (COMT), enzymes responsible for the catalysis of several 

neurotransmitters. Therefore, these flavonoids may be implicated in the antidepressant activity of H. 

perforatum. Although the amounts usually present in the extracts are not enough to display this 

antidepressant activity alone [Dias, 2000], a synergistic combination of flavonoids and other 

compounds, like hyperforin, may be responsible for the antidepressant activity of H. perforatum whole 

extracts [Simmen et al., 2001]. 

 

 

Figure 1.17: Some flavonoids from H. perforatum: The flavonols (A) hyperoside and (B) quercetin and the biflavone (C) 
amentoflavone [URL 14]. 

 

Proanthocyanidins 

Other components usually present in the phenolic composition of H. perforatum include 

proanthocyanidins. These compounds are constituted of catechin and epicatechin (Fig. 1.18) units and 

account for nearly 8% of the crude ethanolic extract of H. perforatum [Erdelmeier et al., 2000]. Some 

catechin derivatives, are known to display antimicrobial [Veluri et al., 2004] and antiviral properties 

[Barnes et al., 2001]. 

 

Xanthones 

 Xanthones (Fig. 1.18) are a very typical class of metabolites, present in plants from the 

Guttiferae family. Xanthones are usually found in the roots but trace amounts of this class of phenolic 

compounds can also be found in the aerial parts of the plants [Erdelmeier et al., 2000]. 

Several pharmacological properties have been attributed to xanthones. Considering 

antidepressive activity, some xanthones have a remarkable and selective inhibitory activity upon MAO-A. 
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Nonetheless, the amounts present in the plant are not enough to develop this inhibition alone [Dias, 

2000], as already observed for other classes of H. perforatum compounds. Other therapeutic properties 

of xanthones from H. perforatum include hepatoprotective, anti-inflammatory, anticancer and 

antimicrobial activities [Franklin et al., 2007]. 

 

 

Figure 1.18: The proanthocyanidin (A) epicatechin and the xanthone (B) 1,3,6,7-tetrahydroxyxanthone from H. 
perforatum [URL 14]. 
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1.4. Plant defense mechanisms against biotic stress 

 

 

1.4.1. Introduction 

 
 Despite the sessile, inert-like nature of plants, these organisms are constantly fighting against 

environmental stresses, both biotic and abiotic. In fact, their lack of mobility has shown not to be a 

lethal situation, as plants thrive on virtually all ecosystems. Their success could only be achieved by a 

long-term co-evolution of defense mechanisms, particularly against their also rapidly evolving 

pathogens. In the short-term, the dynamic and elaborated defense mechanisms of plants can be found 

acting in three distinct ways. First, constitutive defenses are always present, regardless of the presence 

of a pathogen. The other two types of resistance are known to be activated upon pathogen attack, 

inducing several defense responses locally (at the site of infection) and/or systemically (across the 

whole plant). Due to the presence of these constitutive and/or induced defenses, which will be later 

pointed in this chapter, most plants are able to resist to most organisms, regardless their origins (fungi, 

bacteria, viruses, animals) and nutrition models [Dangl et al., 2001]. 
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1.4.2. Plant resistance models 

 

Non-host resistance 

Plants avoid diseases from most attacking organisms through a non-host resistance. The non-

host resistance, common to an entire plant species against a particular organism, is more common and 

durable than host resistance, which can be particular to a cultivar from a given plant species [Cunha, et 

al., 2006]. Despite the importance of this basal response to plant survival, the mechanisms underlying 

non-host resistance are still poorly understood [Mysore et al., 2004]. One of the reasons may be the 

fact that, while host resistance can be determined by a single dominant gene locus [Yang et al. 1997], 

non-host resistance appears to be a multigenic trait [Holub et al., 2004]. 

 Non-host resistance can be classified in two types, according to the symptoms developed (or 

not) by the pathogen (Fig. 1.19). While non-host resistance type I does not produce visible symptoms 

(such as necrosis) in the plant, type II resistance is known to include an hypersensitive response (HR), 

developed by the plant against the pathogen, with rapid localized necrosis at the site of infection. 

Therefore, type II resistance resembles to the typical “gene-for-gene” host resistance, being more 

sophisticated than type I resistance. Although type I non-host resistance is characterized by the absence 

of visible symptoms, several molecular changes occur in the plant. After contact with the plant, the 

pathogen may be deterred by the preformed, constitutive barriers or by newly synthesized induced 

defenses, such as secondary metabolites, cell wall thickening or papilla formation. The type of non-host 

resistance varies according to the plant and the pathogen species. A given plant species can show a 

type I response to one pathogen and a type II response to another. In a similar way, a given pathogen 

can develop both type I or II non-host resistance on distinct plant species [Mysore et al., 2004]. 

 

  

Figure 1.19: Models for non-host resistance types I and II [adapted from Mysore et al., 2004 and Azevedo, 2005]. 
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Host resistance 

Even after breaching through the physical barriers and surviving to the constitutive defensive 

chemical compounds, the candidate pathogen still has to avoid recognition by the plant “surveillance” 

mechanisms, before effectively infect the host [Maor et al., 2005]. Plants recognize several types of 

elicitors from the pathogen, as will be discussed later. According to the widely accepted “gene for gene” 

theory, proposed by H. H. Flor in the 1940’s, a successful disease resistance, known as “incompatible 

interaction”, is triggered because a resistance (R) gene product in the plant recognizes a specific 

“avirulence” (Avr) gene product. Moreover, the plant R proteins are thought to act either by detecting 

the Avr protein from the pathogen directly, in a “receptor-ligand” model, or by sensing changes on 

possible targets of the pathogen Avr proteins, the so-called “guard hypothesis” [Dangl et al., 2006]. 

When either the plant or the pathogen fail to develop an R or Avr gene products, respectively, a virulent, 

compatible interaction occurs, causing the spread of the disease in the host plant. Due to the high 

complexity of both host and non-host resistance mechanisms, it is not clear why a pathogen fully 

virulent on one plant species is nonpathogenic on others [Mysore et al., 2004]. 

Simple boundaries and divisions between host and non-host defense mechanisms may be too 

fragile to explain the complex web of plant-pathogen interactions [Heath, 2001]. Many of the plant 

defense responses are similar in both host and non-host resistance: Hypersensitive response, ROS 

production or lignification may occur in both resistance models, although timing and amounts may be 

slightly different [Mysore et al., 2004]. 

 

1.4.3. Constitutive and induced plant resistance mechanisms 

 

Plants dispense a large amount of their energy in the synthesis of defensive barriers against their 

pathogens. The costs of development and maintenance of toxic compounds in special storage 

structures are also thought to be quite high. Evidence of this energy cost comes from many plants 

overexpressing resistance mechanisms that are less fertile and show “stunted” or “dwarfed” 

phenotypes, when compared to normal plants [Heil et al., 2002]. One way plants have to reduce these 

costs is the production of defensive compounds only after pathogen contact. Although this induced 

defense method seems more efficient at first, this strategy could prove to be risky. If the initial pathogen 

attack is too fast or severe the plant may have no time to deploy such induced defenses effectively 

[Wittstock et al., 2002]. Therefore, plants must optimize and share their energies between three major 



64 

 

 
 

 

Study of Hypericum perforatum defense mechanisms against Colletotrichum gloeosporioides: Relevance of 

phenolic metabolism and hypersensitive response. Luis Eduardo F.R. Conceição 

 

Introduction 

Introduction 

Introduction 

strategies: (i) Basal defense mechanisms, including constitutive physical barriers, accumulation of pre-

formed toxic compounds (phytoanticipins) and antimicrobial proteins (ii) constitutive accumulation of 

inactive toxic compounds intermediates and (iii) induced production de novo of both physical barriers, 

chemical defensive compounds (phytoalexins) and defense-related proteins [Hartmann, 2007]. 

 
Constitutive physical and chemical barriers 

The constitutive defense mechanisms are the first barriers that pathogens have to face before the 

successful establishment of a virulent interaction can occur. Although less understood, these 

constitutive barriers are responsible for the survival of plants against most of the existing pathogenic 

organisms. One of the first constitutive barriers that pathogens may have to face is the cuticle. As 

already explained in chapter 1.2, the cuticle is composed by waxes, polysaccharides and cutin polymers 

that may prevent a nonpathogenic organism from establishing an infection. Their wax composition also 

includes fatty acids combined with terpenoids or simple phenolics, acting also as a chemical defense 

[Chassot et al., 2005]. Apart from the cuticle, other structures may increase the thickness of the plant 

surface. Cell walls (primary and secondary) and, in some cases, bark depositions, also help avoiding a 

possible infection. Moreover, actin microfilaments are also known to play a role in plant defense against 

several non-host fungal pathogens [Mysore et al., 2004]. Physical barriers may also include the 

stomata, which morphology and position may prevent pathogen infection. Additionally, the waxy nature 

of the cuticle, as well as the vertical leaf orientation present in some plant species, may also prevent the 

formation of moisture films, therefore reducing the water available for germination or motility of some 

pathogens. 

Plants constitutively produce a wide array of chemical compounds, to be used in defense against 

pathogens. These pre-formed compounds are known as phytoanticipins and include a long list of plant 

secondary metabolites [Dixon, 2001], as previously described in chapter 1.3. Among these compounds 

we can find terpenoids, such as the saponins that affect membrane integrity of pathogens, but also a 

plethora of phenols and phenolic glucosides, unsaturated lactones, sulphur compounds, alkaloids, 

cyanogenic glycosides or glucosinolates [Osbourn, 1996]. After their synthesis, phytoanticipins may be 

stored in active or inactive forms, according to their specific function and/or toxicity [Wittstock et al., 

2002]. Moreover, these compounds may be readily released to the exterior upon production or may 

accumulate inside dead or living cells or even in specialized external structures, as already described 

for hypericin, accumulated in H. perforatum glands, scattered across the aerial parts of the plant. Upon 

pathogen attack and plant cell collapse, these stored compounds are released to the environment and 
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activated (if necessary), usually killing both the invading pathogen and the surrounding plant cells. 

Some examples of constitutive defensive compounds activated upon plant cell compartmentalization 

collapse include the formation of HCN from cyanogenic glycosides or the formation of mustard oils from 

glucosinolates [Hartmann, 2007]. 

 

Induced physical and chemical barriers 

After facing the first, constitutive barriers, the pathogen may have to face inducible defense 

responses. Upon recognition of specific or general (non specific) elicitors, plants respond with the 

synthesis de novo of defensive compounds and proteins, implicated in both physical and chemical 

resistance. A great variety of elicitors, from biotic or abiotic origin, are recognized by plants [Zhao et al., 

2005]. Some of these elicitors may be the result of host degradation by the pathogen (such as pectin 

fragments or cutin monomers) [Chassot et al., 2005]. Other elicitors are synthesized by the pathogen 

during infection or simply make part of their structural composition, like the bacterial protein flagellin, 

lipopolysaccharides (LPSs), lipooligosaccharides, peptides, as well as other pathogen surface 

molecules, also referred to as pathogen-associated molecular patterns (PAMPs) [Mysore et al., 2004; 

Zhao et al., 2005; Cunha, et al., 2006]. Although generally connected to non-host defense 

mechanisms, PAMPs can also contribute to host resistance. In a similar way, hypersensitive responses 

may be related to both host and non-host resistance. Rather than strictly divided, plant “surveillance 

systems” seem to recognize host and/or non-host elicitors using at least a few similar mechanisms. 

Therefore, the final defense phenotype likely depends on which and how many defense pathways are 

triggered as well as how strongly those pathways are activated [Cunha, et al., 2006]. 

The plant elicitors can be perceived by a variety of receptors and, despite the difficulty in their 

distinction, plant receptors are generally “divided” into R proteins (for host resistance) or PAMP 

receptors (for non-host resistance). The location of these plant receptors is variable as well as their 

structure. Nonetheless a “broad division” into three families is usually accepted. One group includes 

cytoplasmic proteins with a nucleotide binding site (NB) and leucine rich repeats (LRRs). Another group 

of receptors include proteins with extracellular LRRs and an intracellular kinase domain (receptor-like 

kinases, RLK). Finally, a third group includes membrane-spanning proteins with extracellular LRRs 

(RLP). Curiously, some similarity exist between animal and plant immune receptors, leading room for 

speculation that these defense systems diverge from a common, ancient evolutionary surveillance 

system [Cunha, et al., 2006]. 
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The responses induced by elicitor recognition are numerous and include both physical and 

chemical strategies. One of the most common is hypersensitive response, discussed in more detail 

later. Cell wall thickening and lignification can reinforce cell walls in order to stall or prevent pathogen 

penetration. Moreover, papilla formation and callose deposition may occur at the site of infection, 

encapsulating the pathogen haustorial complexes, also preventing their penetration [Maor et al., 2005]. 

Increased production of secondary compounds previously referred as constitutive defenses, such as 

phenolics and saponins, may also occur. Plant response to infection also includes the synthesis of 

several new compounds, known as phytoalexins [Dixon, 2001]. The ability of plants to produce 

diffusible antimicrobial compounds de novo was first discovered in 1911, when the French botanist 

Noel Bernard found that two orchid species became resistant to further fungal attack, after they had 

been infected by the fungus Rhizoctonia repens. Despite this early finding, the term “phytoalexin” was 

only created decades later by Müller (1940), after the identification of some diffusible compounds from 

potato tubers, infected by Phytophthora infestans [Grayer et al., 2001]. Since then, a multitude of plant 

defensive compounds were identified. A short list of phytoalexins, known to have antimicrobial or 

feeding deterrent activities, is shown in table 1.11. As observed for phytoanticipins, the diversity of 

phytoalexins produced is enormous and, although some of them are common to various plants species, 

other phytoalexins are quite specific. Moreover, the distinction between phytoalexin and phytoanticipin 

is not always obvious since some compounds may be phytoalexins in one plant species and 

phytoanticipins in others [Dixon, 2001]. 

 
Table 1.11: Some examples of defensive compounds produced by plants against biotic stress. 

Metabolite Origin Target organism References 

Brussalexin A Brassica oleracea 
Leptosphaeria maculans 
Alternaria brassicicola 
Sclerotinia sclerotiorum 

Pedras et al., 2007 

Luteolinidin 
Apigeninidin 

Sorghum bicolor Colletotrichum graminicola 
Hipskind et al., 1990 

Snyder et al., 1991 

Luteolin Medicago sativa Verticillium albo-atrum Picman et al., 1995 

Cassiaflavan Narcissus pseudonarcissus Botritis cinerea Iwashina, 2003 

Naringenin Prunus cerasus Cystospora persoonii Geibel, 1995 

Desoxyhemigossypol Gossypium hirsutum Fusarium oxysporum (sp. vasinfectum) Zhang et al., 1993 

Daidzein Glycine max Rhizobium spp. Bassam et al., 1998 

Scoparone Citrus spp 
Phytophthora citrophthora 
Penicillium digitatum 

Kuniga et al., 2006 

Licoisoflavone B 
Luteone 
Wighteone 

Lupinus angustifolius 
Colletotrichum gloeosporioides 
Cladosporium cladosporioides 
Heteronychus arator 

Iwashina, 2003 

Isoneorautenol Erythrina mildbraedii Staphylococcus aureus Mitscher et al., 1988 

Vestitol Lotus pedunculatus Costelytra zealandica Lane et al., 1987 

Methylhildgardtol A Tephrosia hildebrandtii Spodoptera exempta Simmonds et al., 1990 
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Apart from the synthesis of secondary compounds implicated in physical and chemical barriers, 

plant responses to pathogen presence also include the production of several antimicrobial proteins 

[Mysore et al., 2004], proteases (such as the pectinase-inhibiting proteins - PGIPs) [Chassot et al., 

2005], as well as syntaxins. These last proteins belong to the SNARE family of receptors, involved in 

membrane fusion events [Collins et al., 2003; Maor et al., 2005]. While some PR proteins are known to 

display antimicrobial activities, such as chitinase or glucanase activities, the functions of many of them 

in plant defense are still unknown [Ferreira et al., 2007]. Moreover, despite their connection to defense 

responses, their presence may actually be unnecessary for successful resistance, as occurs with PR-1 

and ß-glucanase 2 [Greenberg et al., 2000]. Other changes induced by pathogen recognition do not 

include production or activation of compounds with direct effect on pathogen spread and survival. A 

transient increase in cytosolic Ca2+ levels, for example, is known to be responsible for triggering some 

defense signaling pathways, like oxidative burst and hypersensitive response, as discussed below. 

 
 

1.4.4. Oxidative burst and Hypersensitive response (HR) 

 

The oxidative burst is generally defined as a rapid production of high levels of ROS in response to 

external stimuli [Wojtaszek, 1997]. When attacked by incompatible pathogens, plants respond by 

activating a variety of defense responses, including the ROS-generating enzyme complex. The increase 

of cellular concentration of ROS is a key event in plant and animal programmed cell death (PCD) and 

occurs as a result of many biotic and/or abiotic stresses. Independently of the stress source, an 

oxidative burst is known to be an essential prerequisite for induction of plant hypersensitive cell death 

[Yakimova et al., 2005]. 

Under normal conditions, most cells possess the ability to produce and detoxify ROS which 

appear in cells as inevitable by-products formed as a result of successive one-electron reductions of 

molecular oxygen (O2) (Fig. 1.20) [Wojtaszek, 1997], being mitochondria, chloroplasts and peroxisomes 

the main sites of ROS production [Noctor et al., 1998]. Clearing ROS from the cells is carried by both 

enzymatic and non-enzymatic means. While several enzymes, including superoxide dismutase (SOD), 

catalase (CAT), ascorbate peroxidase (APX) or glutathione peroxidase (GPX) are known to metabolize 

ROS [Rouhier et al., 2002], secondary metabolites, like some flavonoids, alkaloids, or carotenoids, also 
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display ROS-scavenging abilities, therefore contributing for the maintenance of ROS homeostasis inside 

the cell [Wojtaszek, 1997; Apel et al., 2004]. 

In some cases, however, especially under stress conditions, these protective mechanisms are 

overridden by the rapid, transient, production of huge amounts of ROS, namely the oxidative burst 

[Wojtaszek, 1997]. Increased ROS accumulation enhances the lipid catabolism, resulting in 

peroxidation of polyunsaturated fatty acids in the cell membranes, leading to structural decomposition 

and change in permeability. Moreover, ROS also induces extensive damage by alterations of essential 

proteins as well as DNA [Yakimova et al., 2005]. 

 

 

Figure 1.20: The modulation of ROS signaling by the ROS gene network of plants. ROS are a natural consequence of 
aerobic metabolism, but can be induced during environmental conditions that disrupt cellular homeostasis, resulting in 
increased ROS levels. During plant-microbe interactions, this increase is promoted by ROS-generating mechanisms following 
pathogen perception (oxidative bursts). ROS sensing is integrated into stress sensing pathways, which dictate the activation 
of ROS scavenging mechanisms or the induction of positive loops of ROS production [Mittler et al., 2004]. 

 

Considering the case of biotic stress, while a virulent race fails to stimulate O2
- production, 

incompatible interactions have shown to be responsible for ROS production, usually observed as a 

biphasic process. Phase I is very similar in its timing to the reaction of plant cells to fungal elicitors, and 

is considered as a non-specific response. In incompatible interactions, however, the weak, transient 

Phase I is accompanied by a second, massive and prolonged oxidative burst (Phase II), occurring 1.5 - 

6 h after elicitation, depending on the plant species as well as the pathogen [Wojtaszek, 1997; Allan et 

al., 2001]. The incompatible Phase II is dependent on avr expression in the race-host cultivar 

interaction or the expression of the hypersensitive response and pathogenicity (Hrp) gene cluster in the 

non-host interaction [Lamb et al., 1997]. 

The ROS-generating systems in plants and animals have a great deal of similarity. However, the 

basic differences involving these two kingdoms (cell mobility and the presence of a structural cell wall in 
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plants) play an important role in the modes of their defense responses. In mammals, the accumulation 

of ROS is observed in a specific compartment, the phagocytotic vacuole where the invading organisms 

are killed, while the phagocyte remains alive. In plants, however, ROS generation often leads to HR and 

plant cell death in the vicinities of the infection, thus trapping the pathogens among dead cells and 

limiting their spread trough non-infected tissues [Wojtaszek, 1997; Heil et al., 2002]. 

The production of ROS is thought to occur mainly by two models. According to one model, the 

elicitor is recognized by appropriate receptors located in the plasma membrane which in turn activates 

several signaling components, involving GTP-binding proteins, protein kinases and protein 

phosphatases, ion channels, phospholipases A and C and possibly cyclic AMP, finally leading to the 

activation of NADPH oxidase. In fact, the plasma-membrane NADPH oxidase is a multi-component 

complex composed of membrane-bound and cytosolic proteins and was further identified as a major 

contributor to the bactericidal capacity of phagocytes. In adition to NADPH oxidase, a second model for 

ROS synthesis considers the possibility that a receptor triggers the activation of ion channels (Ca2+, K+, 

H+, Cl-), upon elicitation. The movement of the ions results in a transient alkalinization of the apoplastic 

space, activating pH-dependent peroxidases, ionically or covalently bound to cell wall polymers 

[Wojtaszek, 1997; Apel et al., 2004]. These peroxidases can act in two different catalytic modes. If H2O2 

is present, the peroxidatic cycle is activated, engaging the cross-linking of the cell wall phenolic 

polymers. However, if the phenolic substrates are replaced by NADPH or related reduced compounds, 

H2O2-producing NADH oxidase activity of peroxidases is activated instead [Apel et al., 2004]. Most 

probably, both NADPH oxidase and cell wall peroxidases are responsible for the synthesis of 

superoxide, which is later dismuted, leading to the formation of other ROS, especially H2O2. Moreover, 

other mechanisms responsible for ROS generation have been proposed including a lipoxygenase acting 

on polyunsaturated fatty acids, copper amine oxidase, flavin polyamine oxidases and oxalate oxidase 

[Gara et al., 2003]. 

Hydrogen peroxide (H2O2) and superoxide anion (O2
-) are thought to be the most important 

species associated with the oxidative burst but singlet oxygen (1O2) and the hydroxyl radical (HO-) may 

also be present [Mittler et al., 2004]. However, the inherent interrelationship between H2O2 and O2
- 

makes it sometimes difficult to identify clearly the ROS behind the oxidative burst. Most important or 

not, H2O2 can easily diffuse in the cell (unlike O2
-) [Cardenas et al., 2001] and has been found to display 

direct antimicrobial activity (due to its toxicity) as well as indirect effects on pathogen resistance. Some 

of these indirect functions include the previously described (i) activation of peroxidases responsible for 
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the oxidative cross-linking of cell wall polymers (therefore reducing their susceptibility to enzymatic 

degradation), (ii) induction of systemic acquired resistance (as described later), (ii) diffusion as a signal 

molecule [Yakimova et al., 2005] and (iv) coordination of the hypersensitive cell-death response 

[Wojtaszek, 1997]. 

The term hypersensitive response (HR) was first used in the 1900’s by Stakman, when 

describing a rapid host cell death in pathogen infected plants. Since then, much effort was put in 

understanding the roles of HR, not only in plants, but also in the animal kingdom. In both cases HR is 

considered an active process of cell suicide (programmed cell death – PCD), leading to controlled 

elimination of cells that are harmful, unwanted or misplaced in specific structures and organs. Despite 

this role in elimination of “unexpected mistakes”, PCD (and therefore HR) plays an essential role during 

“normal” development and morphogenesis. This cellular suicide is implicated, for example, in 

xylogenesis, plant reproduction, aerenchyma formation, senescence or endosperm cell death during 

germination [Yakimova et al., 2005]. Finally, and concerning this work, PCD plays also a role in plant 

resistance to pathogen attack. The HR is activated by ROS, nitric oxide, calcium and proton pumps, 

mitogen-activated protein kinases (MAPKs) or salicylic acid (SA). Upon activation, HR is characterized by 

a rapid, localized death of tissues at the site of infection, limiting further pathogen multiplication and 

spread. During the HR, dying plant cells strengthen their cell walls, synthesize defense related 

compounds, such as phytoalexins and accumulate antimicrobial proteins as well as other pathogenesis 

related proteins. Moreover, during HR, cells also produce phytohormones (SA, JA and ethylene) 

responsible for the signaling of both local and systemic responses against pathogen attack [Yakimova et 

al., 2005]. 

 

1.4.5. Plant systemic defense signaling pathways 

 

Upon contact between elicitors and their corresponding plant receptors, several metabolic 

changes associated with the activation of signaling cascades occur. Ion channels, GTP binding proteins 

and protein kinases are some of the first components from plant cells to activate and amplify the 

signals for pathogen presence. Most of their actions include changes on ion fluxes through the plasma 

membrane, phosphorylation/dephosphorylation of plasma membrane proteins, production of reactive 

oxygen species (ROS) and other signaling molecules such as jasmonates (JA), nitric oxide (NO), 

ethylene or salicylic acid (SA) [Zhao et al., 2005]. The variety of sequential signaling reactions taking 
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place during signal transduction is not only great but also quite intricate. Although SA, JA and ethylene 

are all involved in basal resistance, it has been suggested that SA-dependent responses are closely 

related to biotrophic pathogens while necrotrophs and herbivores are more sensitive to JA or ethylene 

responses [Walters et al., 2007]. Most of these pathways interact with each others at some stage of 

signal transduction, leading to distinct target responses, specifically adapted to the stress situation 

perceived by the plant [Zhao et al., 2005]. 

 

Systemic acquired resistance (SAR) 

As defined by van Loon, induced resistance represents a physiological “state of enhanced 

defensive capacity” where plant basic defenses are potentiated against further biotic challenges, 

sometimes for the lifetime of the plant [van Loon et al., 1998; Vallad et al., 2004]. One of these 

induced resistance mechanisms in known as “Systemic Acquired Resistance” (SAR). Plants can 

develop SAR both locally at the site of infection and systemically, throughout the plant’s tissues, in 

response to a broad spectrum of virulent pathogens, from viruses to herbivores. Some of the biological 

processes related to SAR include the synthesis of SA, changes in redox status, as well as the 

coordinated induction of gene expression, including some related to PR proteins. While the recognition 

of the pathogen is responsible for the local triggering of SAR, SA is known to be the signal required for 

the systemic response [Durrant et al., 2004]. Apart from defense mechanisms, this phytohormone is 

known to be connected with other physiological processes including flowering, thermogenesis, stomatal 

closure and response to abiotic stress. Nonetheless, it is SA role as a signaling molecule in defense 

responses against biotic stress that has been most intensely studied. During the 1990’s, the first 

evidences of SA central role in SAR arose, when increased amounts of this molecule were found in both 

local and systemic tissues of tobacco infected with TMV. Moreover, concentration levels of this molecule 

were also considerably high in the phloem sap, leading researchers to believe that SA might be a 

systemic signal for SAR [Durrant et al., 2004]. Nowadays a few studies suggest that some derivatives of 

SA, such as the volatile methyl salicylate, may be responsible for an “extreme” signaling method, 

inducing resistance not only in the infected plants but also in the neighboring ones [Durrant et al., 

2004]. 

As previously referred, plant response mechanisms are known to interact with each other and 

SAR is no exception. It was recently found that “microbursts” (connected to H2O2 accumulation) occur in 

small groups of cells from uninoculated tissues of Arabidopsis, after pathogen attack. It was further 
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demonstrated that these ROS microbursts, triggered by the oxidative burst at the site of infection, may 

activate defense responses at a low level throughout the plant, contributing to the SAR-induced state. 

Moreover, some studies also pointed that low concentrations of SA may also potentiate the production 

of ROS and HR cell death. In fact, SA may inhibit antioxidant enzymes, causing an increase in ROS 

concentration [Durner et al., 1995]. This has led to the hypothesis that the accumulation of low levels of 

SA, together with the development of microbursts of ROS, could amplify responses to secondary, 

systemic infections, thus contributing to SAR [Durrant et al., 2004]. A point of convergence between 

SAR and ISR, another systemic resistance mechanism, has already been found and well characterized. 

Despite being considered as independent pathways, both SAR and ISR require the function of the 

regulatory protein NPR1. Although the expression of the corresponding gene NPR1 (nonexpressor of PR 

genes1) is known to increase two to threefold after pathogen infection or SA treatment [Walters et al., 

2007], NPR1 is constitutively expressed in an inactive multimeric state. During oxidative burst the 

monomers are released, becoming active due to changes in redox homeostasis. Monomeric NPR1 

accumulates in the nucleus and activates gene expression by association with TGA transcription factors 

(Fig. 1.21) [Mou et al., 2003]. The convergence between these two key signaling pathways and the 

central role of NPR1 can be observed using npr1 mutant plants. When SA and JA are applied together 

to leaves, the presence of SA inhibits JA synthesis and signaling. This inhibition is alleviated in the npr1 

mutant, indicating that NPR1 is part of the crosstalk control between signaling pathways [Dong, 2004]. 

 

 

Figure 1.21: A proposed model for the signal transduction network controlling SAR and ISR [adapted from Walters et al., 
2007]. 

 
 

Induced systemic resistance (ISR) 

Another systemic resistance pathway found in plants is known as “Induced Systemic Resistance” 

(ISR). This pathway plays an important role in plant defense, especially against herbivore pathogen 
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attack and wounding. These challenges are usually responsible for the release of oligosaccharides and 

oligogalacturonides from the damaged cell walls, thus eliciting the plant to develop a wound resistance 

response. Another elicitor of ISR is the 18-amino acid polypeptide systemin, released from a 200-amino 

acid precursor (prosystemin) upon wounding. Systemin is responsible for the release and further 

conversion of linolenic acid into jasmonates by activating the octadecanoid signalling cascade [Heil et 

al., 2002]. The jasmonate-family molecules originate from oxidation of linolenic acid, present in high 

amounts in the chloroplastidial membranes. After a few enzymatic reactions, the resulting 12-

oxophytodienoic acid (OPDA) produced in the chloroplast is transferred to peroxisomes, where jasmonic 

acid (JA) is finally produced. Although JA is usually assumed as “the” signal molecule for ISR, some of 

its precursors (eg. OPDA), as well as some derivatives (eg. methyl-jasmonate), are also known to display 

signaling functions in defense resistance [Staswick, 2008], being collectively called jasmonates. Both 

systemin and JA are known to be transported through the phloem, therefore both have the ability to act 

as systemic signals. This ISR systemic signaling triggers the activation of genes encoding proteinase 

inhibitors (PIs), proteins responsible for the synthesis of phenolic compounds and other secondary 

metabolites, as well as other defense-related proteins [Heil et al., 2002]. 

Like for SAR, the cross-talk between ISR and other signaling pathways depends on the plant 

species and the particular pathogen. As an example, JA biosynthesis in tomato is related to the 

induction of ROS production and Ca2+ influx, as well as the production of PIs. On the other hand, in 

parsley cultures JA synthesis is Ca2+ dependent but ROS-independent. ISR is also known to interact with 

SAR defense mechanisms as well and strong evidence suggests a potent inhibition of JA synthesis by 

SA in some species [Zhao et al., 2005], as previously described. Per instance, acetylsalicylic acid 

strongly reduces PI accumulation in tomato in response to wounding or to the action of systemin. By 

contrast, the synthesis of several SA-induced PR proteins from tobacco are inhibited by JA [Heil et al., 

2002]. Apart from ROS production and SAR, ISR is known to interact also with ethylene signaling 

pathway. Once again, both enhanced and antagonistic effects result from ethylene and JA actions. 

While synergistic stimulation of volatiles can be observed in corn, ethylene suppresses JA induction of 

nicotine gene expression in tobacco [Zhao et al., 2005]. 

Interactions like those observed between SAR, ISR, ethylene and the oxidative burst give 

scientists a glimpse on how complex the cross-talk among signaling pathways may be (Figure 1.22) and 

how a resistance response can be specific, according to the precise challenge facing the plant. 
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Figure 1.22: Overview of signal transduction pathways involved in plant defense responses. The intermediate downstream 
signaling events are not known but involve kinases, phosphatases and ion fluxes. Several distinct and rapidly activated 
outcomes are recognized, including ROS and direct induction of defense gene transcription. Amplification of the initial 
defense response occurs through the generation of additional signal molecules (e.g. other ROS, lipid peroxides, salicylic and 
jasmonic acids). These, in turn, induce other defense–related genes. Concomitant alterations of cellular redox status or 
cellular damage will activate ROS-scavenging mechanisms (e.g., ascorbate-glutathione cycle). Cross-talk between the various 
induced pathways appears to coordinate the responses. ACC, 1-aminocyclopropane-1-carboxylic acid; BAG, benzoic acid 
glucoside; BA-2H, benzoid acid 2-hydroxylase; CA, cinnamic acid; cGMP, cyclic guanosine 5’-monophosphate; CHS, 
chalcone synthase; EFE, ethylene-forming enzyme; GP, glutathione peroxidase; GST, glutathione S-transferase; HMGR, 3’-
hydroxy-3-methyl-glutaryl-CoA reductase; HO2•, hydroperoxyl radical; HPDase, hydroxyperoxide dehydrase; MAP, mitogen-
activating protein; NO; nitric oxide; OH•, hydroxyl radical; OGA and OGA-R, oligogalacturonide fragments and receptor; PAL, 
phenylalanine ammonia-lyase; PGases, polygalacturonases; PM, plasma membrane; SA•, salicylic acid radical; SAG, 
salicylic acid glucoside; SIPK, salicylic acid-induced protein kinase; WIPK, wound induced protein kinase [Kosack et al., 
2000]. 

 



 

 

 

 



 

 

 

 



 

 

 

 

 

 

 

 

 

 

Chapter 1.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aims and Outline 



 

 

  



 
 

 

 

 
 

79 
Study of Hypericum perforatum defense mechanisms against Colletotrichum gloeosporioides: Relevance of 

phenolic metabolism and hypersensitive response. Luis Eduardo F.R. Conceição 

Introduction 

 

 

 

 

 

 

1.5. Aims and outline of the thesis 

 

 

 Hypericum perforatum is a medicinal herb used across the world for centuries. Currently, the 

main application of H. perforatum extracts concerns the treatment of mild to moderately severe 

depressions. The efficacy of this plant has been supported by pharmacological and clinical studies 

[Erdelmeier et al., 2000; Izzo et al., 2003; Butterweck, 2003], attracting the pharmaceutical industry’s 

interest. In fact, H. perforatum is nowadays one of the leading medicinal plants sold in the USA and EU 

[Erdelmeier et al., 2000]. 

The medicinal value and economic relevance of H. perforatum extracts increased the pressure 

on raw-material suppliers. Due to the growing demand, collection of plants from the wild is no longer an 

option, not only for reasons of ecological sustainability but also because higher variability in 

phytochemical composition occurs, leading to products of variable or even unfit commercial quality. At 

present, field cultivation is the main source of H. perforatum biomass, covering several hundred 

hectares in Europe [Gaudin et al., 2003]. Cultivation was responsible for an enhancement on both 

quantity and phytochemical consistency of biomass produced, leading to H. perforatum extracts of 

increased quality. Nowadays, most H. perforatum cultures are grown organically, following a worldwide 
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agricultural tendency. Without the support of pest-control chemicals, such as fungicides or herbicides, 

cultures are increasingly exposed to biotic attack. As for H. perforatum, one of the main problems 

concerning long-term cultivation is the fungal contamination by Colletotrichum gloeosporioides [Pank, 

1998; Gaudin et al., 2003]. This fungus is responsible for the development of anthracnose disease in 

several plant species, many of them being of major economic relevance. These include plants as 

diverse as corn, strawberry or mango, as well as other fundamental crops distributed worldwide. 

Regarding H. perforatum plantations, C. gloeosporioides is responsible for great losses by lowering 

yields and eventually modifying the chemical composition of the extracts obtained. 

A considerable effort has been done in order to find or develop H. perforatum plants resistant to 

anthracnose disease. Nonetheless, little is known about the defense responses of H. perforatum against 

pathogen attack. One H. perforatum accession, Helos, has shown to display some resistance to C. 

gloeosporioides infection. Despite this promising result, the chemical composition of Helos plants is not 

as valuable as that found in other H. perforatum accessions [Pank, 2000]. 

The main aim of this work was to study some of the defense mechanisms developed by H. 

perforatum upon C. gloeosporioides elicitation. Namely, both phenylpropanoid metabolism and 

hypersensitive response were evaluated, in cell suspension cultures obtained from two H. perforatum 

accessions, distinct in their susceptibility to C. gloeosporioides infection in vivo. Furthermore, we also 

studied the possible influence of the phytohormones methyl-jasmonate (MeJ) and salicylic acid (SA), 

related to two distinct plant systemic defense signaling pathways (SAR and ISR), in H. perforatum - C. 

gloeosporioides interaction. 

 

The outline of this thesis is composed of 8 main chapters and, besides the general introduction 

(Chapter 1), the following chapters are described below. 

Chapter 2 lists the materials and methodologies applied in the work described in this thesis. 

Chapter 3 describes the establishment and characterization of H. perforatum cell suspension 

cultures, the plant model used along the work. Growth and survival parameters, as well as major 

nutrients consumption, were studied in cell cultures from both H. perforatum accessions available. 

Chapter 4 describes the effects of pathogen elicitation, with or without prior treatment with the 

phytohormones SA or MeJ, on the parameters previously described in chapter 3. The effects of MeJ or 

SA alone were also monitored, on both H. perforatum suspension cell cultures. 
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Chapter 5 presents the results associated to reactive oxygen species accumulation, oxidative 

burst development and hypersensitive response, observed under the treatments previously described in 

chapter 4. Furthermore, the antioxidant potential of H. perforatum extracts, as well as the enzymatic 

ROS-scavenging capacity of H. perforatum cells were also monitored. 

Chapter 6 presents the differential accumulation and identification of major soluble phenolic 

compounds, found on H. perforatum cultures from the more anthracnose-susceptible accession (HPS), 

when faced with each of the treatments described in chapter 4. 

Chapter 7 compares the accumulation of lignin and soluble phenolic compounds on both H. 

perforatum accessions available, upon the several treatments previously described. Furthermore, PAL 

enzymatic activity and expression of some key phenylpropanoid pathway genes, related to H. 

perforatum defense mechanisms against C. gloeosporioides, are also described in this chapter. 

Chapter 8 comprises the main, general conclusions that can be drawn from the work presented 

in this thesis. 
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2.1.1. Plant material 

 

Hypericum perforatum L. (var. HPS) plants were collected from the National Park of Peneda-

Gerês (Portugal) and used for the development of suspension cell cultures, established by Dias (2001). 

H. perforatum suspension cell cultures from Helos accession were obtained from commercially 

available seeds (Richters® seeds, ON, Canada) and sterilized as described below. 

Helos seeds were water embedded overnight, at 4ºC. Seed surface was disinfected by immersion 

in ethanol 70% (v/v) for 2 min, followed by bleach treatment, for 8 min. Seeds were then thoroughly 

rinsed using sterile H2O. Germination was carried out in culture flasks containing 20 mL of MS medium 

[Murashige et al., 1962] without any hormonal supplementation, as described below in table 2.2. 

Seedlings were grown in a culture chamber at 26ºC with a 16h/8h photoperiod (cool white fluorescent 

light of 450-500 µW/cm2) for approximately one month. Seedlings obtained in vitro were used for 

establishing Helos calli and suspension cell cultures, as described in chapter 2.1.6. 

 

2.1.2. Fungal strain 

 

A Colletotrichum gloeosporioides strain (CG1159), isolated from H. perforatum plants in vivo, 

was already available in the lab and maintained as described in chapter 2.1.7. 

 

2.1.3. Bacterial strains 

 

Table 2.1 presents the Escherichia coli strains that were used in several molecular biology 

procedures, including cDNA library screening and bacterial transformation, described in this thesis. 

 
Table 2.1. Escherichia coli strains used in this work. 

Organism Strain Genotipe Reference 

E. coli 

XL1 Blue MRF’ 
Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 

gyrA96 relA1 lac [F’proAB lacIqZΔM15 Tn10 (tetr)] 
Jerpseth et al., 1992 

XLOLR 

Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 thi-1 recA1 gyrA96 

relA1 lac [F’ proAB lacIqZΔM15 Tn10 (Tetr)] Su- (nonsuppressing) λr 

(lambda resistant) 

Short et al., 1992 

DH5α 
F– Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17 (rK–, 

mK+) phoA supE44 λ– thi-1 gyrA96 relA1 
Hanahan, 1983 

DH5α (DB3.1) 
F– gyrA462 endA1 Δ(sr1-recA) mcrB mrr hsdS20(rB–, mB–) supE44 

ara-14 galK2 lacY1 proA2 rpsL20(SmR) xyl-5 λ– leu mtl1 
Hanahan, 1983 
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2.1.4. Vectors and bacteriophages 

 

H. perforatum L. cDNA library was previously prepared using the ZAP Express vector, provided 

with the ZAP Express cDNA Synthesis Kit (Stratagene). This vector possesses increased cloning capacity 

and the ability of both eukaryotic and prokaryotic expression. The main characteristic of lambda ZAP 

vectors is the ability to excise the cDNA insert in a phagemid (pBK-CMV), without the requirement for 

subcloning [Short et al., 1992]. 

The ZAP Express vector was packaged into the Gigapack III Gold packaging extract (Stratagene) 

in order to create bacteriophage particles. 

The ExAssist helper bacteriophage (Stratagene) was used to auxiliate the in vivo excision of the 

phagemid pBK-CMV from the Zap Express vector (Stratagene). This bacteriophage was provided with 

the ZAP Express cDNA Synthesis Kit (Stratagene). 

DNA fragments obtained from PCR amplifications were cloned onto pGEM-T Easy vector 

(Promega), pJET1.2/blunt vector (Fermentas) or pCR2.1 TOPO® cloning vector (Invitrogen), which are 

designed to conveniently clone PCR products. Another vector used was the pDONR®207 (Invitrogen), 

required in middle steps of Gateway® (Invitrogen) cloning techniques, as described in the manufacturer 

instructions manual [URL 16]. 

 

2.1.5. Culture media 
 
2.1.5.1. H. perforatum L. culture media 

 

A cell culture medium was developed in order to induce H. perforatum calli from Helos accession 

and subsequently produce and maintain a suspension cell culture. The definite culture medium chosen 

for the maintenance of both HPS and Helos cell suspension cultures (“MS-NAA”) was based on the 

Murashige and Skoog (MS) medium [Murashige et al., 1962]. Table 2.2 shows the detailed composition 

of MS-based medium, together with the hormonal supplementations tested for the development of calli 

and suspension cell cultures. Moreover, all culture media were sterilized by autoclaving recipients for 

15 min at 121ºC and 1 atm. 
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Table 2.2. Composition of MS-based media used in the maintenance of H. perforatum seeds, calli and suspension cell 
cultures.  

 Composition Murashige and Skoog, 1962 (MS) 

Macronutrients 
(mg.L-1) 

MgSO4.7H2O 370.00 

CaCl2.2H2O 440.00 

KNO3 1900.00 

NH4NO3 1650.00 

KH2PO4 170.00 

Micronutrients 
(mg.L-1) 

Na2EDTA 37.300 

FeSO4.7H2O 27.800 

MnSO4.4H2O 22.300 

KI 0.800 

CoCl2.6H2O 0.025 

ZnSO4.7H2O 8.600 

CuSO4.5H2O 0.025 

H3BO3 6.200 

Na2MoO4.2 H2O 0.250 

Carbon source 
(g.L-1) 

Sucrose  30.0 

Vitamins 
(mg.L-1) 

Nicotinic acid 0.50 

Tiamine-HCl 0.10 

Piridoxine-HCl 0.50 

Glicine 2.00 

Myo-inositol 100.00 

Other components 
(g.L-1) 

Agar 8.00 

pH 5.8  

 Hormonal supplementation 
Hormones (mg.L-1) “NK” “NK2” “2,4-D” “NAA” “IBA” “IK” 
Kinetin 0.5 0.1 0.02 - - 0.5 
NAA 1.0 0.1 - 0.5 - - 
2,4-D -  0.2 - - - 
IAA -  - - 0.5 0.8 
BA -  - - 0.5 - 

 
 
2.1.5.2. Microbiology culture media 

 
Composition of the culture media used in growing, maintaining or operating fungal mycelium and 

bacterial cultures is depicted in table 2.3. All agarized media were obtained by adding 1.5% (w/v) agar 

to the medium’s broth composition. Recombinant selection using the lacZ gene was performed by 

supplementing the appropriate agar plaques with 40 µg.mL-1 of IPTG (0.5 M in water) and 40 µg.mL-1 of 

X-gal (50 mg.mL-1 in DMF). The culture media were sterilized by autoclaving for 20 min at 121ºC and 1 

atm. 

 

Table 2.3. Composition of culture media used for growing fungi and bacteria strains. 

Culture medium Composition Aim Strain 

LB 

1% (w/v) NaCl 
1% (w/v) bacto-tryptone 
0.5% (w/v) yeast extract 
pH 7.0 

Growth and maintenance E. coli 
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LB++ 
LB 
10 mM MgSO4.7H2O 
0.2% (w/v) maltose 

Phage infection E. coli XL1 Blue MRF’ 

LB-Tet 
LB 
12.5 µg.ml-1 Tetracyclin 

Growth and maintenance of transformants carrying 
Tet resistance mark 

E. coli XL1 Blue MRF’ 
E. coli XLOLR 

LB-Kan 
LB 
50 µg.ml-1 Kanamycin 

Growth and maintenance of transformants carrying 
Kan resistance mark 

E. coli XLOLR 
E. coli DH5α 

LB-Amp 
LB 
100 µg.ml-1 Ampicillin 

Growth and maintenance of transformants carrying 
Amp resistance mark 

E. coli DH5α 

LB-Gen 
LB 
25 µg.ml-1 Gentamicin 

Growth and maintenance of transformants carrying 
Gen resistance mark 

E. coli DH5α 

NZY 

0.5% (w/v) NaCl 
0.2% (w/v) MgSO4.7H2O 
0.5% (w/v) yeast extract 
1% (w/v) NZ amine (casein 
hydrolysate), pH 7.5 

Phage infection 
E. coli XL1 Blue MRF’ 
E. coli XLOLR 

NZY Top agarose 
NZY 
0.7% (w/v) agarose 

Phage infection E. coli XL1 Blue MRF’ 

PDA 
0.4% (w/v) potato infusion 
2% (w/v) dextrose 
1.5% (w/v) agar 

Growth and maintenance C. gloeosporioides 

Modified Liquid 
Mathur 

0.2% (w/v) yeast extract 
0.2% (w/v) bacto-peptone 

Growth for elicitor preparation C. gloeosporioides 0.5% (w/v) MgSO4.7H2O 
0.54% (w/v) KH2PO4 

2% (w/v) Sucrose 

 

 

2.1.6. Establishment and maintenance of H. perforatum L. (Helos) suspension cell cultures 

  

H. perforatum (Helos) suspension cell cultures were established after induction of calli tissues in 

agarized MS medium. For this, 10 mm length sections of roots, stems and leaves were obtained under 

aseptic conditions. Three to five explants were transferred to a culture flask containing 20 mL of 

agarized MS medium with the hormonal supplementations described in table 2.2. Calli were allowed to 

develop in a culture chamber at 26ºC with a 16h/8h photoperiod (cool white fluorescent light of 450-

500 µW/cm2) and were subcultured to fresh medium monthly. 

Suspension cultures were initiated from 3-week old calli by transferring 2-5 g of biomass to 250 

mL Erlenmeyer flasks containing 25 mL of MS liquid medium, with the corresponding hormonal 

supplementation. Calli fragments were incubated at 26ºC with a 16/8h photoperiod (cool white 

fluorescent light of 450-500 µW/cm2) on an orbital shaker, at 110 rpm. Additional 25 mL were added 

when biomass started to increase. Initial subcultures were performed according to the morphological 

characteristics (browning and biomass accumulation) observed. After stabilization, the subsequent 

subculture cycles were performed at late exponential phase (approximately 12 days), by transferring 10 
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mL of the culture into 70 mL of fresh MS medium. Moreover, both Helos and HPS suspension cell 

cultures were maintained in the same medium supplementation (NAA) and subcultured every 14 days. 

 
 

2.1.7. C. gloeosporioides growth, maintenance and elicitor preparation 

 

C. gloeosporioides cultures were maintained in potato dextrose agar (PDA) plates at room 

temperature, and subcultured by mycelium transfer to fresh medium every month. For long term 

storage, glycerol stocks were created (chapter 2.1.11.). 

The elicitor suspension was prepared by transferring 4-5 PDA agar plugs containing C. 

gloeosporioides mycelium to a modified liquid Mathur’s medium [Freeman et al., 2000b], as described 

in chapter 2.1.5.2. The fungus was allowed to grow for 14 days at 25ºC on an orbital shaker at 250 

rpm. The biomass from cultures at late exponential growth phase was recovered by vacuum-filtration 

and lyophilized for 48 h in a Christ Alpha RVC Lyophilizer (B-Braun). Dried C. gloeosporioides biomass 

was crushed with a mortar and pestle and the powder stored, at room temperature, in falcon tubes. 

Elicitor suspension was prepared fresh, before every experiment, by autoclaving the powder in distilled 

water to a final concentration of 20 mg.mL-1. Autoclaving conditions were the same as described for 

microbiology culture media, in chapter 2.1.5.2. To confirm its sterility, 200 µL of elicitor preparation 

were inoculated in PDA plates and kept at the same conditions as described above for the maintenance 

of C. gloeosporioides cultures. 

 

2.1.8 Methyl-Jasmonate and Salicylic Acid priming solutions 

 

 Commercially available phytohormones methyl-jasmonate (MeJ) and salicylic acid (SA) (Sigma-

Aldrich) were dissolved in ethanol 100% (v/v) to final concentrations of 35 mg.mL -1 and 20 mg.mL-1, 

respectively, and stored in screw-cap glass vials, for up to two months, at 4ºC. 

 

2.1.9. Treatment of H. perforatum suspended cells with C. gloeosporioides elicitor and/or 

phytohormones (MeJ or SA) priming solutions 

 

H. perforatum suspension cultures from both HPS and Helos accessions were grown until early 

exponential phase and divided into 6 groups, as described below (Table 2.4). One group of flasks was 
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kept as control. Two sets were treated, on the 5th day of growth, with MeJ or SA priming solutions, to a 

final concentration of 100 µM and 25 µM, respectively. The remaining three groups were elicited on the 

6th day with the fungal suspension. Two of those sets were primed with MeJ (100 µM) or SA (25 µM), 

24 h before fungal elicitor treatment. The final concentration of the fungal biomass in the suspension 

cultures was 0.25 g.L-1. The priming and elicitation procedures were done in cells during their 

exponential phase, the growth period at which they were most responsive to treatments. Cell 

suspension culture samples were collected at desired times, according to the subjacent methods used. 

 

Table 2.4: Main elicitation assay scheme, used in most of the work reported in this thesis. 

Experimental Days of growth (HPS and Helos) 
Notes 

Set 5 6 

“Ct” - - Control cultures 
“MeJ” + MeJ 100 µM - Cultures treated with Methyl-jasmonate only 
“SA” 

+ SA 25 µM 
- Cultures treated with Salicylic acid only 

“SA+Cg” 

+ Cg 

Cultures treated with SA, prior to Cg elicitation 

“MeJ+Cg” + MeJ 100 µM Cultures treated with MeJ, prior to Cg elicitation 

“Cg” - Cultures treated with C. gloeosporioides  biomass only 

 

2.1.10. Growing of bacterial strains 

 

E. coli strains were grown in the appropriate medium as indicated in table 2.3. For isolating 

single colonies, the strains were stroke onto an appropriate agarized medium and incubated overnight 

at 37ºC. Liquid cultures were obtained by inoculating a single colony into the medium and incubating at 

37°C with agitation (150 - 250 rpm). 

 

2.1.11. Glycerol stock preparation 
 

Long term viable stocks of E. coli strains were prepared by inoculating single colonies in the 

appropriate liquid medium (Table 2.3.), followed by growth in the appropriate conditions (chapter 

2.1.10.) until reaching late exponential growth phase. Culture aliquots were then added to sterile 

glycerol-containing criotubes to a final 20% (v/v) glycerol concentration. 

C. gloeosporioides glycerol stocks were prepared by growing mycelium cultures in PDA medium 

or modified Mathur’s medium for 30 or 15 days, respectively, when a reasonable amount of biomass 
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had accumulated. Mycelium aliquots were then transferred to sterile glycerol-containing criotubes at a 

final 30% (v/v) glycerol concentration. 

All vials were immediately stored at -80°C. To maintain cell viability, stocks were recovered by 

scraping off splinters of solid ice with a sterile wire loop. 

 

2.1.12. Reagents 
 

All chemicals used for molecular biology methods and nucleic acid extractions were Molecular 

Biology grade. Solvents and chemical compounds used in HPLC studies were all HPLC grade. The 

remaining chemicals were p.a. grade. 

 

2.1.13. Material treatment 
 

RNA manipulation was carried out under special conditions to prevent RNase contamination. The 

specifications are described in table 2.5. DEPC was destroyed by autoclaving, for 20 min, at 121ºC and 

1 atm. 

 

Table 2.5. List of basic laboratory practices used in order to promote an RNase free environment. 

Reagents and Material Treatment 

Water  u.p. treated overnight with 0.1% (v/v) DEPC and autoclaved 
Solutions Prepared using u.p. water. Treated overnight with 0.1% (v/v) DEPC and autoclaved 
Glass and ceramics Treated at 180ºC for 6h 
Disposable materials Autoclaved at 1 atm for 1h 
Electrophoresis material Treated overnight with 0.1% (v/v) DEPC or for 2h with 0.1 M NaOH 
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2.2.1. Characterization of H. perforatum suspension cell cultures 
 
2.2.1.1. Determination of dry weight 

 

Three independent H. perforatum suspension cell cultures, in MS-NAA medium, were started 

using the same inoculum, grown under the conditions described in chapter 2.1.6. Aliquots of 5 mL of 

suspended cells were harvested under sterile conditions, over a total period of 20 days (for experiments 

shown in chapter 3), or over 12 and 14 days for Helos and HPS, respectively (for the experiments 

shown in the following chapters, unless stated otherwise). Samples were centrifuged at 4000 g for 4 

min using half strength deceleration to avoid cell resuspension. The supernatant was separated and 

cells were filtered using pre-weighted GF/C glass microfiber filter (Whatman). Dry weight was 

determined after lyophilization of the cells for 48 h in a Christ Alpha RVC Lyophilizer (B-Braun). The pH 

value of each supernatant was immediately measured and stored at -20ºC for further studies. 

 

2.2.1.2. Determination of cell viability 

 

Viability of H. perforatum suspended cells was determined using two distinct methods. In the 

trypan blue exclusion method, aliquots of the cell culture were mixed with an identical volume of 0.4% 

(w/v) trypan blue, and incubated in the dark, for 10 min. Cells were observed under a light microscope. 

Non-viable cells were stained in blue. 

H. perforatum cell viability was also checked by fluorescein diacetate (FDA) and propidium iodide 

(PI) double staining. Briefly, after thorough mixing using cut pipette tips, 1 mL of cell suspension was 

transferred to an Eppendorf tube. To each sample, 10 µL of FDA (500 µg.µL-1, Sigma) and 1 µL of PI, 

(500 µg.µL-1, Sigma) were added, thoroughly mixed and incubated in dark, at room temperature 

(25°C). After 10 min of incubation, 100 µL of cell suspension were spread on a glass slide and 

observed under a Leica DM 5000B Microscope (Leica Microsystems, Wetzlar, Germany) equipped with 

an AF6000 fluorescent lamp (Leica Microsystems). Microscope was programmed for excitation at 490 

nm and emission at 510 nm (for FDA) and excitation at 543 nm and emission at 570 nm (for PI). Light 

microscopic and fluorescent images were acquired using a DFC350 Camera (Leica Microsystems) 

attached to the microscope. Viable cells were stained in green while non-viable ones stained red. 
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2.2.1.3. HPLC quantification of sugar content 

 

Sucrose, fructose and glucose levels were determined by HPLC in a Gilson system composed of 

a piston pump model 307 and a refractive index detector model 132, coupled with a block heater 

model 7970 (Jones Chromatography). The HPLC system was connected through the Gilson 506C 

System Interface Module to a CPU containing the System Controller Gilson 712 software. The mobile 

phase consisted in a solution of 0.125 g.L-1 calcium nitrate in u.p. water, filtrated through a 0.2 µm 

nylon membrane and vacuum degasified. Supernatant samples obtained (chapter 2.2.1.1) were 

filtrated for cell debris removal, and an equal volume of 10 g.L-1 arabinose was added, serving as the 

internal standard. For sample running, 20 µL were injected, through a 0.5 mL.min-1 flow, into a 

HyperRez H+ Carbohydrate LG column (Hypersyl) at 37ºC. 

 

2.2.1.4. Phosphate quantification 

 

The orto-phosphate ion was quantified spectrophotometrically using the ascorbic acid method, as 

described by Adams (1991). The working solution was composed of 50 mL of Armstrong reagent, 

added to 10 mL of freshly made 3% (w/v) ascorbic acid solution. Supernatant samples obtained in 

chapter 2.2.1.1 were unfrozen and diluted 2 - 20 fold. A one-mL aliquot was added to 120 µL of 

working reagent, vortexed and allowed to react for 20 min. The presence of phosphate in the sample 

was detected by the appearance of blue coloration and absorbance was determined at 880 nm, in a 

UV-VIS double beam spectrophotometer Cary 1E UV-Vis Spectrophotometer (Varian). A calibration curve 

was produced using KH2PO4 solutions with linearity being observed between 30 - 4.500 µg.L-1. 

 

Armstrong reagent 
11.8% (v/v) H2SO4; 
0.03% (w/v) K(SbO)C4H4O6.1/2H2O; 
1.05% (w/v) ammonium molibdate 

 

2.2.1.5. Ammonium and nitrate quantification 

 

Ammonium was quantified using a Spectroquant Ammonium Test kit (Merck). For this purpose, 

5mL of H. perforatum suspension cell cultures were harvested and weighted, as described in chapter 

2.2.1.1. According to the manufacturer instructions, 200 µL of the supernatant obtained were added to 
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a falcon tube containing 5 mL of NH-1 reagent and mixed at room temperature. Reagent NH-2 was then 

added (30 mg or 1 level blue microspoon, as described in the product’s manual) and the mixture was 

shaken vigorously, until the reagent was completely dissolved. After 15 min incubation at room 

temperature, ammonium was quantified spectrophotometrically (A690). A calibration curve was made 

using NH4Cl, showing linearity between 10 and 300 mg.L-1. 

As for nitrate quantification, an adaptation of the sulphamic/perchloric acid method [Carvalho et 

al., 1998] was performed. Briefly, 400 µL of the supernatant were added to 100 µL of sulphamic acid 

(20% v/v, Merck) at room temperature, vigorously shaken and allowed to rest for 2 min. Samples were 

vortexed once more and 500 µL of perchloric acid (10% w/v, Pronalab) were added. After vigorous 

vortex shaking, absorbance was measured spectrophotometrically (A210). A calibration curve was made 

using KNO3, showing linearity between 0.1 and 1.0 mg.L-1. 

 
 

2.2.2. Determination of lignin content 

 

The lignin content in cell walls of H. perforatum suspension cultures was determined through the 

acetyl bromide method, adapted from Fukushima (2001). H. perforatum suspension cells were 

harvested, washed twice in d.d. water by centrifugation at 5000 g for 5 min, lyophilized for 48 h in a 

Christ Alpha RVC Lyophilizer (B-Braun) and grinded to a fine powder. Between 0.1 - 0.2 g of cell 

material were transferred onto a 15 mL Falcon tube and precision weighted. Cells were added 5 mL of 

90% (v/v) methanol, vortexed thoroughly and allowed to extract for 24 h in the dark, at room 

temperature. The methanol extract was removed by centrifugation (5000 g for 5 min). Cell material was 

consecutively extracted with water, acetone and hexane as previously described, after which it was dried 

overnight at 60ºC. Ten mg of cell wall were added to 500 µL of acetic acid and 500 µL of 25% (v/v) 

acetyl bromide in acetic acid and incubated at 50ºC, for 2 hours with agitation (150 rpm). Samples 

were centrifuged and 100 µL of the supernatant were mixed with 200 µL of acetic acid, 150 µL of 3 M 

NaOH and 50 µL of 0.5 M hydroxylamine hydrochloride. Finally, 500 µL of acetic acid were added, and 

the absorbance was determined at 280 nm in a spectrophotometer. A standard calibration curve was 

generated with lignin (Aldrich), showing linearity within the range of 0.005 - 1.0 mg.mL-1. 
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2.2.3. Determination and identification of the soluble phenolics content by HPLC-DAD and 

HPLC-MS-MS 

 

Dried H. perforatum biomass from both cell suspension cultures was lyophilized for 48 h in a 

Christ Alpha RVC Lyophilizer (B-Braun) and extracted with an aqueous methanolic solution (90%) (at 

approximately 50 mg dw.mL-1), with sonication for 20 min, in the dark, at room temperature. The liquid 

phase was filtered and submitted to HPLC–DAD analysis, as described elsewhere [Dias et al., 1999].  

Quantification of phenolic compounds was performed by the external standard method. 

Xanthones were quantified as mangiferin equivalents at 260 nm. Flavonols and flavones were quantified 

at 350 nm as quercetin and luteolin-7-glucoside equivalents, respectively. 

Phenolic identification was performed by HPLC–MS–MS. Chromatographic separation was 

carried out on an RP C18 column (25×0.4 cm, particle size 5 µm, Merck, Germany), using 

water/formic acid (99:1) and methanol as the mobile phases. Elution was performed as described 

elsewhere [Dias et al., 1999]. The HPLC system was an Agilent HPLC 1100 instrument series equipped 

with an Agilent DAD detector G1315B (Agilent Technologies, Germany), and mass detector in series, 

controlled by software from Agilent Technologies (Germany). The mass detector used was an ion-trap 

mass spectrometer G2445A (Agilent Technologies, Germany), equipped with an electrospray ionization 

(ESI) system. The heated capillary and voltage were maintained at 350°C and 4 kV, respectively. The 

nebulizer pressure and flow rate of nitrogen were 65.0 psi and 11 L/min, respectively. Mass scan (MS) 

and daughter (MS–MS) spectra were measured from 100au to m/z 1.500. Collision-induced 

fragmentation experiments were performed in the ion trap using helium as the collision gas, with 

voltage ramping cycles from 0.3 up to 2 V. Mass spectrometry data were acquired, both in the negative 

and positive modes. 

 

2.2.4. Quantification of reactive oxygen species 

 

2.2.4.1. Detection of O2
- 

 

The intracellular production of the superoxide radical (O2
-) was quantified by the reduction of the 

tetrazolium dye sodium,3'-(1-[phenylamino-carbonyl]-3,4-tetrazolium)-bis(4-methoxy-6-nitro)benzene-

sulfonic acid hydrate (XTT; Molecular Probes) to a soluble formazan [Able et al., 1998]. 
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Immediately before suspended cell elicitation with C. gloeosporioides, H. perforatum cells were 

added 0.5 mM XTT and incubated in the dark, at room temperature with agitation. Aliquots were 

removed periodically, and the reduced XTT form was readily quantified by reading the absorbance of 

the supernatant at A470. Similar assays were performed using MeJ, SA or a combination of one of these 

phytohormones with C. gloeosporioides, as previously described in section 2.1.9. 

 

2.2.4.2. Detection of total ROS 

 

The overall oxidative stress of the cell was quantified using the cell-permeant 2',7'-

dichlorodihydrofluorescein diacetate (H2DCFDA; Molecular Probes) as previously described [Parsons et 

al., 1999; Allan et al., 2001]. H2DCFDA is converted by nonspecific cellular esterases to H2DCF, which 

oxidizes in the presence of H2O2 or reactive oxygen intermediates. The end product 2',7'-

dichlorofluorescein is highly fluorescent [Cathcart et al., 1983] and able to diffuse out of the cell. This 

property was used to quantify the intracellular production of 2',7'-dichlorofluorescein, by performing a 

spectrofluorimetric analysis of the supernatant. 

During the time course of H. perforatum suspended cells elicitation with C. gloeosporioides 

biomass, 1 mL aliquots were removed and mixed with 10 µL of 20 µM H2DCFDA. Cells were incubated 

in the dark, at room temperature, for 30 min with agitation. Samples were centrifuged at 8000 g for 5 

min and the supernatant recovered. Relative fluorescence was quantified using a LS 50 Luminescence 

Spectrometer (Perkin Elmer) at an excitation wavelength of A488 and an emission wavelength of A525. 

Similar assays were performed using MeJ, SA or a combination of one of these phytohormones 

with C. gloeosporioides, as described in section 2.1.9. 

 

2.2.4.3. Detection of H2O2 

 

The quantification of H2O2 concentration in cell suspension medium was performed 

spectrophotometrically by the xylenol orange method [Bellincampi et al., 2000]. The reaction is based 

on the peroxide-mediated oxidation of Fe2+, followed by the formation of a complex between Fe3+ and 

xylenol orange (o-cresosulfonephthalein 3’,3’’-bis[methyl-imino] diacetic acid, sodium salt). 

Aliquots of H. perforatum suspended cells were harvested during the time course of the 

elicitation with C. gloeosporioides biomass and/or the phytohormones MeJ or SA. The supernatant was 
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recovered after centrifugation at 8000 g for 5 min. A 500 µL aliquot of cell medium was added to 500 

µL of assay solution. The reaction mixture was incubated for 45 min at room temperature and analyzed 

in a spectrophotometer (A560). A calibration curve was constructed using H2O2 dilutions in MS-NAA 

medium. 

 

Assay solution 

500 µM ammonium ferrous sulfate; 
50 mM H2SO4; 
200 µM xylenol orange; 
200 mM sorbitol 

 
 

2.2.5. Detection of lipid peroxidation 

 

H. perforatum suspension cells were grinded to a fine powder in liquid nitrogen with a mortar and 

stored at -80ºC. Samples (approximately 250 mg of fresh weight) were thawed in 2 mL of protein 

extraction buffer, vortexed and incubated on ice, for 5 min. After centrifugation for at 13.000 g for 15 

min at 4ºC, the supernatant was recovered and immediately used for enzyme assays or stored at -

80ºC. Protein was quantified using the Coomassie Blue method [Sedmak et al., 1977]. The reaction 

mixture consisted of 1 mL of Coomassie Blue reagent and 100 µL of a suitable dilution of protein 

extract. Samples were incubated for 10 min at room temperature in the dark, after which absorbance 

was read at 595 nm. Bovine serum albumine (0.5 - 10 µg) was used as standard. 

Lipid peroxidation was quantified spectrophotometrically by the MDA-TBA method [Loreto et al., 

2001], which quantifies the end product of lipid peroxidation malondialdehyde (MDA) by a reaction at 

low pH and high temperature with 2-thiobarbituric acid (TBA). The reaction was initiated by adding 250 

µL of protein extract from H. perforatum suspension cells, to 750 µL of chilled reaction solution. The 

mixture was incubated at 95ºC for 30 min and placed immediately on ice. Samples were centrifuged at 

10.000 g for 5 min at 4ºC, and the supernatant was recovered. Quantification of the MDA-TBA complex 

was performed by determining the absorbance of the supernatant at 532 nm and deducting non-

specific absorbance at 600 nm. The molar extinction coefficient of MDA-TBA complex, at 532 nm, is 

155 mM-1.cm-1. 

 

Extraction buffer 
50 mM Tris-HCl, pH 8.5; 
1 mM EDTA 

Reaction solution 
0.5% (w/v) TBA 
20% (w/v) TCA 
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2.2.6. Enzymatic activity measurements 
 
 
2.2.6.1.  Phenylalanine ammonia-lyase (PAL) enzymatic activity assay 

 
Alternatively to the method described in chapter 2.2.5, PAL activity assays were performed using 

a distinct protein extraction method, adapted from Mizukami et al. (1991). Briefly, cells were collected 

by centrifugation and immediately frozen in liquid nitrogen. Biomass was then ground to a fine powder 

in a cold mortar and stored at -80ºC until preparation of the enzyme extract. All the following operations 

were carried out at 4ºC. The frozen cells were mixed with Polyclar AT and 5 mL of the extraction buffer 

and thawed with stirring for 15 min. The mixture was centrifuged at 10.000 g for 15 min, at 4ºC, and 

the resulting supernatant was used as crude enzyme extract. Protein concentration of the crude enzyme 

was determined by the Bradford method (1976), using bovine serum albumin as a standard protein. 

PAL activity measurements were done according to Saunders et al. (1974). Briefly, a 400 µL 

aliquot of the protein extract was added to 600 µL of reaction mixture and incubated at 40ºC. Samples 

were collected and absorbance was measured at 290 nm to determine cinnamic acid formation. Blank 

assay was performed by using 400 µL of d.d. water instead of protein extract. A control was prepared 

by boiling the protein extract for 10 min, prior to reaction mixture addition. 

 

Extraction buffer 
50 mM Tris-HCl, pH 8.5; 
1 mM EDTA 

Reaction mixture 
100 mmol.L−1 Tris-HCl, pH 8.5; 
50 mmol.L−1 L-phenylalanine 

 
 
2.2.6.2. Superoxide dismutase (SOD) and catalase (CAT) enzymatic activity assays 

 
Total protein crude extract was prepared and quantified as described by Jebara (2005), with 

modifications. The biomass was grinded with liquid nitrogen in a mortar. The fine powder (5 g) was then 

mixed with 5 mL of the extraction buffer. 

Catalase activity was measured by following the decline in A240 as H2O2 (E = 36 M-1 cm-1) was 

catabolised, according to the method of Aebi (1984) in a reaction mixture containing 200 µL of enzyme 

extract in 50 mM potassium phosphate buffer, at with pH 7.5. The reaction was started by addition of 

H2O2 at the final concentration of 15 mM, and its consumption was measured for 10 min, at 240 nm. 
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SOD activity was assayed by monitoring the inhibition of photochemical reduction of nitro blue 

tetrazolium (NBT) as described by Giannopolitis (1977). A 2 mL reaction mixture containing 50 mM 

potassium phosphate buffer (pH 7.5), 75 mM NBT, 2 mM riboflavin, 10 mM methionine, 0.1 mM EDTA 

was added to 0.1 mL of enzyme extract. The reaction mixture was illuminated for 15 min at light 

intensity of 75 µmol m-2 S-1 and NBT reduction was monitored at A560. 

 

Extraction buffer 

10 mM DTT 
50 mg PVP 
0.1 mM EDTA 
50 mM KH2PO4 buffer, ph 7.5 

 
 
 

2.2.7. Antioxidant potential of H. perforatum extracts 

 
 The antioxidant potential of methanolic extracts from H. perforatum suspension cells was 

determined by the 1,1–diphenyl–2–picrylhydrazyl (DPPH) assay, as described previously [Silva et al., 

2005]. The methanolic extract was obtained as described in section 2.2.3. The antiradical activity of 

each sample was evaluated using a series of dilutions, in order to obtain a large spectrum of sample 

concentrations. The reaction mixture consisted of 100 µL of diluted sample and 1.4 mL of 80 µM 

DPPH (dissolved in 100% ethanol). The absorbance was monitored continuously at 515 nm with a UV/ 

VIS Spectrometer Lambda2 (Perkin–Elmer), assuring that the reaction was complete (plateau state). 

The percentage of reduced DPPH at steady state (DPPH–R) was calculated and these values were 

plotted against the concentrations methanolic extracts. A decrease by 50% of the initial DPPH 

concentration was defined as the half maximal effective concentration (EC50). 

 
 
2.2.8. TUNEL assay 
 

TUNEL assay was performed according to the procedure described by Gavrieli et al. (1992). 

The reaction is based on the presence of single and double-stranded breaks in genomic DNA during 

apoptosis. Terminal deoxynucleotidyl transferase (TdT) polymerizes fluorescein labelled nucleotides to 

free 3’-OH termini, in a template independent manner. The TUNEL reaction was performed using the In 

Situ Cell Death Detection Kit - Fluorescein (Roche Applied Science), according to the manufacturer’s 

instructions, and as described by Sgonc et al. (1994). H. perforatum suspended cells were washed 
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once with PBS and subsequently fixated for 1 h at 20ºC in newly prepared fixation solution. Cells were 

washed in PBS and incubated for 10 min at 20ºC in blocking solution. After washing in PBS, 

permeabilisation solution was added, followed by 2 min of incubation on ice. The TUNEL reaction 

solution was prepared by mixing Label and Enzyme solution (Roche Applied Science). Suspended cells 

were washed twice in PBS and carefully dried, after which 50 µL of TUNEL solution were added to 

approximately 50 µL of cells. The mixture was incubated for 60 min at 37ºC in the dark. Finally, cells 

were washed three times with PBS and transferred to a glass slide. Fluorescein has a detection range of 

515-565 nm (green). Cells were analysed for TUNEL reaction under a UV light with an excitation 

wavelength of 450-490 nm and an emission filter of 510 nm in a fluorescence microscope. 

 

PBS solution 

0.2 g.L-1 KCl 
8 g.L-1 NaCl 
1.44 g.L-1 Na2HPO4 
0.24 g.L-1 KH2PO4 

Fixation solution 4% Paraformaldehyde in PBS, pH 7.4 

Blocking solution 3% H2O2 in methanol 

Permeabilization solution 
0.1% (v/v) Triton X-100 
0.1% (w/v) sodium citrate 
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2.3.1. RNA purification 
 
2.3.1.1. Total RNA purification (High quantity) 

 

This protocol was developed for the purification of high amounts of RNA from H. perforatum 

suspension cells, suitable for northern blotting experiments. Cells were ground to a fine powder in liquid 

nitrogen with a mortar and pestle. In a 15-mL Falcon tube, 1 g of frozen powder was mixed with 3 mL 

of cold extraction buffer and vortexed vigorously. 1 vol of phenol-chloroform-isoamyl alcohol (25:24:1 

[v/v/v]) was added and the mixture was vortexed, prior to centrifugation at 12.000 rpm for 5 min, at 

4ºC to separate phases. The top aqueous phase was transferred to another tube and the phenol 

extraction procedure was repeated once more. The supernatant was collected in a new falcon tube and 

extracted by adding 1 vol of chloroform-isoamyl alcohol (24:1[v/v]), followed by thorough vortexing and 

centrifugation at 12.000 rpm for 15 min at 4°C to separate phases. The top phase was recovered and 

0.5 vol of cold ethanol 96% (v/v) was added. Samples were incubated on ice for 30 min to precipitate 

polysaccharides and then centrifuged at 10.000 rpm, for 10 min at 4ºC. The supernatant was collected 

to a new tube and 1 vol of 4 M LiCl was added. Samples were incubated on ice overnight, for RNA 

precipitation, and then centrifuged at 12.000 rpm, for 30 min at 4°C. The supernatant was discarded 

and the RNA pellet was washed with 2 vol of cold ethanol 96% (v/v). After 20 min precipitation at -20ºC, 

the samples were centrifuged at 12.000 rpm, for 30 min, at 4°C. The pellet was dissolved in 50 - 200 

µL of DEPC-treated water and the RNA’s concentration and purity were determined 

spectrophotometrically. RNA samples were immediately frozen in liquid nitrogen and stored at -80°C. 

 

RNA extraction buffer 

25 mM Tris-HCl, pH 8.0 
25 mM EDTANa2, pH 8.0 
75 mM NaCl 
1% (w/v) SDS 
2% (v/v)  ß-mercaptoethanol 
4% (w/v) Polyvinylpolypyrrolidinone (PVPP, Sigma P-6755) 

 
 
2.3.1.2. Total RNA purification (High quality) 
 

This protocol was used for the purification of high-quality RNA in lower amounts, suitable for 

cDNA synthesis. H. perforatum suspension cells were filtered using pre-weighted GF/C glass microfiber 

filter (Whatman) and immediately ground to a fine powder in liquid nitrogen with a mortar and pestle. In 

an Eppendorf tube, 100 mg of frozen biomass and 450 µL of buffer RLT (including 4.5 µL of ß-



110 

 

 
 

 

Study of Hypericum perforatum defense mechanisms against Colletotrichum gloeosporioides: Relevance of 

phenolic metabolism and hypersensitive response. Luis Eduardo F.R. Conceição 

 

Introduction 

Introduction 

Materials 

and Methods 

Materials and Methods 

mercaptoethanol) were added and thoroughly vortexed. The lysate was transferred to a QIAshredder 

spin column (Qiagen) and centrifuged at 8000 g, for 2 min, at 4ºC. The supernatant was transferred to 

a new microtube and 0.5 vol of absolute ethanol were added, before mixing. The sample was then 

transferred to an RNeasy spin column (Qiagen) and centrifuged for 15 s at 8000 g and 4ºC. The 

column containing the sample was washed once with 700 µL Buffer RW1 and twice with 500 µL buffer 

RPE. Centrifugations between washes were done for 30 s, at 8000 g and 4ºC. The column was then 

transferred to a new microtube and centrifuged as before, but for 2 min, in order to remove any traces 

of the washing buffers used. The dry column was finally transferred to a new microtube and 50 µL of 

pre-warmed DEPC-treated water were added. After 1 min incubation, the column was centrifuged for 1 

min at 8000 g, at room temperature. The total RNA’s concentration and purity were determined 

spectrophotometrically. The RNA was immediately used or frozen in liquid nitrogen and stored at -80ºC. 

 

2.3.2. DNA purification 
 
2.3.2.1. Plasmid isolation - quick boiling miniprep 

 

For purifying small amounts of DNA, the boiling method [Holmes et al., 1981] was used. Bacteria 

were grown in appropriate culture medium, until end exponential phase was reached. An aliquot of 1.5 

mL of the culture was removed and centrifuged at 8000 g for 5 min to collect the cells. The pellet was 

resuspended in 400 µL of STET supplemented with 25 µL of freshly prepared lysozyme solution. Lysis 

was promoted by incubation at room temperature for 10 min, followed by incubation at 95ºC for 1 min. 

Denaturated proteins and chromosomal DNA was removed by centrifugation at 14.000 g for 15 min. 

The supernatant was recovered and mixed with 300 µL of isopropanol to precipitate plasmid DNA. After 

centrifugation under the same conditions, the supernatant was discarded. The plasmids were then 

resuspended in 20 - 100 µL of TE and stored at – 20ºC. 

 

STET 

10 mM Tris-HCl (pH 8.0); 
100 mM NaCl; 
1 mM EDTA; 
5% (v/v) Triton X-100 

Lysozyme solution 
10 mM Tris-HCl (pH 8.0); 
10 mg.mL-1 lysozime 

TE 
10 mM Tris-HCl (pH 8.0); 
1 mM EDTA 
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2.3.2.2. Plasmid purification - miniprep kit 

 

Small scale isolation of high purity plasmid DNA was performed using the QIAGEN Plasmid Mini 

Kit (Qiagen), according to the supplier’s instructions. Bacteria were grown in appropriate culture 

medium, until end exponential phase was reached. 

A 3 mL sample was centrifuged at 8000 g for 5 min to collect the cells. The bacterial pellet was 

resuspended in 300 µL of resuspension buffer and an equal volume of lysis buffer was added, followed 

by gentle mixing and incubation at room temperature for 5 min. The lysate was neutralized by the 

addition of 300 µL of neutralization buffer, followed by gentle mixing and incubation on ice for 5 min. 

Cell debris, denatured proteins and chromosomal DNA were removed by centrifugation at 14.000 g for 

10 min. 

The supernatant was loaded onto a Qiagen-tip 20 column (Qiagen), previously equilibrated with 1 

mL of equilibration buffer. The column was washed with 4 x 1 mL of wash buffer and plasmid DNA was 

eluted by loading 800 µL of elution buffer. To precipitate plasmid DNA, 0.7 vol. of isopropanol were 

added. After centrifugation at 8000 g for 15 min, the supernatant was discarded and the plasmid pellet 

briefly washed in 70% (v/v) ethanol. Plasmid DNA was resuspended in 20 - 50 µL of u.p. sterile water 

and stored at -20ºC. 

 

Resuspension buffer 
50 mM Tris-HCl (pH 8.0); 
10 mM EDTA; 
100 µg.mL-1 of RNase A 

Lysis buffer 
200 mM NaOH, 
1% (w/v) SDS 

Neutralization buffer 3.0 M KOAc (pH 5.5) 

Equilibration buffer 

50 mM MOPS (pH 7.0); 
750 mM NaCl; 
15% (v/v) isopropanol; 
0.15% (v/v) Triton X-100 

Wash buffer 
50 mM MOPS (pH 7.0); 
1 M NaCl; 
15% (v/v) isopropanol 

Elution buffer 
50 mM Tris-HCl (pH 8.5); 
1.25 M NaCl; 
15% (v/v) isopropanol 
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2.3.2.3. Plasmid purification – midiprep kit 

 
Medium scale isolation of high purity plasmid DNA was performed using the Wizard™ Plus 

Midipreps DNA Purification System (Promega), according to the supplier’s instructions. Bacteria were 

grown in appropriate culture media until end exponential phase was reached. 

The bacterial culture (100 mL) was centrifuged at 8000 g for 5 min. The cells were resuspended 

in 3 mL of resuspension buffer and an equal volume of lysis buffer was added, followed by gentle 

mixing and incubation until the cell suspension cleared. The lysate was neutralized by the addition of 3 

mL of neutralization buffer, followed by gentle mixing. Cell debris were removed by centrifugation at 

14.000 g for 15 min at 4ºC. 

The supernatant was combined with 10 mL of the Wizard® Midiprep DNA Purification Resin 

(Promega) and loaded onto the midicolumn. Vacuum was applied to the column to promote packaging 

of the resin and 2x15 mL of washing buffer were subsequently added. The midicolumn was placed 

inside a 1.5 mL microtube and centrifuged at 8000 g for 2 min to remove any residual wash buffer. 

The midicolumn was transferred to a new microtube and plasmid DNA was eluted by loading 300 µL of 

u.p. sterile water at 70ºC. After a 1 min incubation, the column was centrifuged at 8000 g for 20 sec to 

collect the eluted plasmid. The column was discarded and the plasmid DNA solution was centrifuged at 

8000 g for 5 min to precipitate column debris. The supernatant was stored at -20ºC. 

 

Resuspension buffer 
50 mM Tris-HCl (pH 7.5); 
10 mM EDTA; 
100 µg.mL-1 of RNase A 

Lysis buffer 
200 mM NaOH, 
1% (w/v) SDS 

Neutralization buffer 1.32 M KOAc (pH 4.8) 

Wash buffer 

8.3 mM Tris-HCl (pH 7.5); 
80 mM KOAc; 
40 µM EDTA; 
55% (v/v) ethanol 

 
 
2.3.2.4. cDNA purification from phage library 

 

The DNA from H. perforatum cDNA library was isolated by adding 1 vol of phenol-chloroform-

isoamyl alcohol (25:24:1 [v/v/v]) to 1 mL phage suspension. The mixture was vortexed, centrifuged at 

7500 g, for 5 min and the aqueous phase recovered. The DNA was precipitated by adding 2 vol. of 
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ethanol, 1/10 vol of 3 M NaAc (pH 5.2) and incubating the mixture at -20ºC for 4h. The sample was 

centrifuged at 7500 g, for 10 min at 4ºC and the pellet was resuspended in u.p. water and stored at -

20ºC. 

 

2.3.3. cDNA library screening 
 
2.3.3.1. Plating and titering the cDNA library 

 

Most E. coli strains contain the McrA and McrB (modified cytosine restriction systems), which are 

responsible for digesting hemimethylated DNA [Raleigh et al., 1998]. Therefore, an E. coli strain (XL1-

Blue MRF’) lacking this system was necessary to plate the ZAP Express cDNA library. Once the library is 

amplified using XL1-Blue MRF’ cells, the DNA is no longer hemimethylated and can be grown on strains 

like XLOLR, that contain the McrA and McrB restriction systems. 

XL1-Blue MRF’ cells were grown in LB++ (Table 2.3) and harvested when A600 had reached 0.5 - 

1.0. The cells were centrifuged at 5.000 g for 10 min, and resuspended in 10 mM MgSO4 to a final A600 

of 0.5. 

For platting the cDNA library, serial dilutions (10-2-10-5) of the packaged reaction mixture were 

performed. Aliquots of 100 µL of each dilution were added to 200 µL of XL1-Blue MRF’ cells. After 

phage infection, the tubes were incubated at 37°C for 15 min, to allow the adsorption of the phage 

particles to bacterial cell wall. Then, 3 mL of melted Top Agarose NZY medium supplemented with 15 

µL of 0.5 M IPTG and 50 µL of X-gal (250 mg.mL-1 in dimethylformamide) were added to each sample, 

and immediately poured onto NZY agar plates. After incubation at 37°C for 12 h, phage plates were 

counted to determine the library’s titer. Phagic plates containing non-recombinant clones were stained 

in blue. 

To titer the amplified secondary library, 25 µL aliquots of dilutions 10-6-10-11 were incubated with 

XL1-Blue MRF’ cells under the conditions described for primary library, with the exception that Top 

Agarose NZY was not supplemented with IPTG and X-gal. 

 

2.3.3.2. cDNA library screening 

 

Amplified H. perforatum cDNA library was plated at a density of approximately 5x104 plaques in 

150 mm NZY agar plates. The phage suspension was combined with 600 µL of XL1-Blue MRF’ cells. 
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For this purpose, XL1-Blue MRF’ cells were prepared as previously described (chapter 2.3.3.1.). The 

tubes were incubated at 37°C for 15 min, and 6.5 mL of melted Top Agarose NZY medium were 

added. The mixture was quickly distributed onto the NZY agar plates, incubated at 37°C for 12 h and 

then transferred to 4ºC for 2 h. 

Phage particles were transferred from plaques to duplicate nylon filter discs (Hybond-N+; 

Amersham). The first disc was placed onto the agarized plaque for 2 minutes to allow the transfer of 

phage particles to the membrane. The replica disc was placed for 4 min to compensate for the smaller 

number of phage particles. Release of the phage DNA from the phage particle was promoted by 

incubating the membrane in denaturation solution for 2 min. Plaque lifts were then transferred to the 

neutralization solution for 5 min, rinsed in washing solution for 30 seconds and air dried on Whatman® 

3MM paper. DNA was crosslinked to the membranes by UV light in a Stratalinker® UV crosslinker 

(Model 1800, Stratagene) using the autocrosslink setting (1200 mJ). Hybrization with a radiolabeled 

probe was identical to what is described further, in section 2.3.8. Positive signals matching in both 

replicas were removed from the NZY agar plaque and resuspended in 500 µL of SM buffer containing 

20 µL of chloroform in order to kill E. coli, precipitate cell debris and prevent further library 

contamination. Tubes were vortexed and Lambda phages were re-plated at low density in 100 mm agar 

plaques, using for the purpose 200 µL of XL1-Blue MRF’ cells and 3 mL of melted Top Agarose NZY in 

the conditions previously described. For second screening, Hybond-N (Amersham) nylon filter discs 

were used, but no duplicates were performed. Positive individualized clones were cored from the agar 

plates and resuspended in 500 µL of SM buffer containing 20 µL of chloroform, vortexed and stored at 

4ºC until further use. 

 

Denaturation solution 
1.5 M NaCl; 
0.5 M NaOH. 

Neutralization solution 
0.5 M Tris-HCl (pH 8.0); 
1.5 M NaCl 

Washing solution 
0.2 M Tris-HCl (7.5); 
2x SSC 

SM buffer 

50 mM Tris-HCl (pH 7.5); 
100 mM NaCl; 
10 mM MgSO4.7H2O; 
0.01% gelatine 
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2.3.3.3. In vivo excision of recombinant pBK-CMV phagemids 

 
The excision in vivo of the pBK-CMV phagemid from the ZAP Express vector was initiated by 

combining 250 µL of the previously isolated single-clone lambda phage solution, with 1 µL of ExAssist 

helper phage (1x106 pfu/µL) and 200 µL of XL1-Blue MRF’ cells. These cells were prepared as 

previously described (chapter 2.3.3.1.) but were resuspended to a final A600 of 1.0. The mixture was 

incubated at 37°C for 15 min to permit phage attachment to the bacterial cell wall, and 3 mL of NZY 

medium were added. After growing overnight at 37ºC with agitation, the cultures were heated at 70°C 

for 20 min to inactivate the parent lambda phage and kill XL1-Blue MRF’ cells. The samples were 

centrifuged at 1000 g for 15 min. The supernatant contained the recombinant pBK-CMV phagemid 

packaged in f1 phage particles, as well as the f1 helper phage. 

To eliminate the helper phage, 25 µL of the supernatant were combined with 200 µL of XLOLR 

cells. These had been grown in NZY and resuspended in MgSO4, as previously described for XL1-Blue 

MRF’ cells. The mixture was incubated at 37°C for 15 min. After adding 300 µL of NZY broth, the 

samples were incubated at 37ºC for 45 min with agitation. LB-kan plates were used to plate 25 µL of 

the cell suspension. Colonies containing the pBK-CMV phagemid were obtained after incubation of the 

cultures at 37ºC for 12 h. 

 

2.3.3.4. Selection of cDNA clones of interest 

 
To discard the false-positive clones among the putative positive cDNA clones obtained by cDNA 

library screening, the corresponding phagemids were isolated by the quick boiling miniprep method and 

digested with EcoR I and Xho I restriction endonucleases. Digestion products were separated through a 

1.2% (w/v) agarose gel electrophoresis and transferred to nylon membranes (Hybond-N+, Amersham) 

and hybridized with the same labeled probe used for library screening. The cDNA inserts of positive 

clones of interest were then sequenced. 

 

2.3.4. Spectrophotometric quantification of nucleic acids 

 

Quantification of nucleic acids was performed spectrophotometrically by measuring the A260 of 

sample solution on a Cary 1E UV-Vis Spectrophotometer (Varian) using quartz cuvettes. For estimation 

of the nucleic concentration, it was considered that 1 A260= 50 ng/µL DNA; 1 A260= 40 ng/µL RNA. To 



116 

 

 
 

 

Study of Hypericum perforatum defense mechanisms against Colletotrichum gloeosporioides: Relevance of 

phenolic metabolism and hypersensitive response. Luis Eduardo F.R. Conceição 

 

Introduction 

Introduction 

Materials 

and Methods 

Materials and Methods 

determine the purity of the samples the values of A230 and A280 were also determined [Sambrook et al., 

1989; Krieg, 1996]. 

 

2.3.5. Digestion with endonucleases 

 

The digestion of DNA with restriction endonucleases was performed according to standard 

procedures [Sambrook et al., 1989; Ausubel et al., 1996] and to the supplier’s instructions. Acetylated 

BSA (Stratagene) was used to stabilize endonuclease activity. Enzyme buffers were chosen according to 

standard buffer efficiency tables supplied by the manufacturers. Reactions were performed at 37°C for 

1.5h to overnight, depending on experimental needs. 

 

20 µL reaction 

2 µL enzyme buffer (10x); 
2 µL BSA (5 mg.mL-1); 
x µL DNA; 
0.5 µL restriction enzyme; complete with H2O 

 

2.3.6. Nucleic acid electrophoretic separation 
 
2.3.6.1. Agarose gel electrophoresis 

 

DNA fragments were resolved by electrophoretic separation using horizontal slab gel apparatus. 

Agarose concentration (0.5% - 1.2%) was chosen depending of the fragment length range. Gels were 

made by melting agarose in 0.5x TBE, also used as running buffer. DNA samples, including molecular 

weight markers (1 kb DNA Ladder, Invitrogen) were mixed with 0.25 vol. of loading buffer and 1 µL of 

EtBr (1 mg.mL-1). Electrophoresis was carried out at 50 - 100 V, until the bromophenol blue dye had 

migrated two thirds the length of the gel. 

 

10x TBE buffer 
0.89 M Tris; 
0.89 M boric acid; 
20 mM EDTA 

Loading buffer 
30% (w/v) Glycerol; 
0.1 M EDTA; 
0.25% (w/v) bromophenol blue 
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2.3.6.2. Denaturing formaldehyde agarose gel electrophoresis 

 

The electrophoretic separation of RNA was performed on a denaturing formaldehyde agarose gel 

to prevent the formation of secondary structures [Krieg, 1996]. Samples were added an equal volume 

of loading buffer and, when required for visualization, 1 µL of 1 mg.mL -1 of EtBr was also added. 

Denaturation was promoted by incubating samples at 65°C for 10 min, followed by cooling on ice. After 

loading samples into the gel, electrophoresis was carried out at 60 V until the dye front had migrated 

two-thirds the length of the gel. EtBr-stained DNA agarose gels were rinsed several times in DEPC-

treated water to remove formaldehyde, visualized under long wave UV light (Transilluminator 2020E, 

Stratagene) and analyzed using the Eagle Eye® II Still Video System (Stratagene) through 

corresponding software (EagleSight™ 3.2, Stratagene). 

 

Agarose gel 
0.8% or 1.2% (w/v) agarose; 
1× MOPS (pH 8.0); 
6.7% (v/v) formaldehyde 

Loading buffer 

66% (v/v) formamide; 
3% (v/v) formaldehyde; 
0.1% (p/v) bromofenol blue; 
1× MOPS (pH 7.0) 

Running buffer 1× MOPS (pH 7.0) 

10x MOPS 
2 M MOPS; 
0.5 M Sodium acetate; 
100 mM EDTA 

 

 
2.3.7. Northern blotting 

 

For Northern blot analysis, 20 µg of RNA were separated by denaturing formaldehyde agarose gel 

electrophoresis. The agarose gel was rinsed in DEPC-treated water (2x20 min) to remove formaldehyde, 

and equilibrated in 20x SSC for 30 min. RNA was transferred to Hybond-N+ nylon membranes 

(Amersham) by capillary transfer using a 20x SSC solution. RNA was crosslinked to the filters by UV 

light, according to what was described in chapter 2.3.3.2. 

 

20x SSC 
0.3 M Na citrate (pH 7.0); 
3 M NaCl 
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2.3.8. Hybridization with 32P-labelled DNA probes 
 
2.3.8.1. Labeling of DNA probes 

 

In the present work, heterologous and homologous DNA probes were used for cDNA library 

screening and for hybridization after Northern blotting. Plasmids containing DNA inserts to be used as 

probes were digested using restriction enzymes belonging to the corresponding polylinker sites or used 

as templates for PCR amplification of the desired insert. 

Digestion or PCR products were separated through gel electrophoresis and the fragments of 

interest were recovered from the agarose gel using DEAE membranes or appropriate gel extraction kits 

(Section 2.3.9), quantified spectrophotometrically and stored at -20ºC. 

DNA fragments were 32P-labeled by random oligonucleotide priming, using the Rediprime II DNA 

labeling system (Amersham) and [α-32P] dCTP (Redivue, Amersham). Each DNA probe (100 - 200 ng) 

was diluted to a final volume of 45 µL in TE buffer, denaturated at 95°C for 5 min and cooled on ice for 

5 min. The solution was then used to reconstitute the Rediprime II labeling mix, after which 5 µL of [α- 

32P] dCTP (50 µCi) were added. Radioactive nucleotide incorporation was promoted by incubating the 

reaction mixture at 37°C for 1h. 

 

TE buffer 
10 mM Tris-HCl (pH 7.6); 
1 mM EDTA 

 

2.3.8.2. Purification of 32P-labeled DNA probes 

 
Radiolabeled probes were purified from unincorporated nucleotides, by gel filtration through a 

Sephadex G-50 (Pharmacia) mini column [Sambrook et al., 1989]. A sterile Pasteur pipette was 

partially blocked with a glass bead and filled with the resin equilibrated in TE buffer. The column was 

washed with 3 mL of TE and the radiolabeled probe loaded. Size separation by gravity flow was 

promoted by loading into the column one 450 µL TEN fraction followed by twelve 150 µL TEN fractions. 

All fractions were successively collected in microcentrifuge tubes and evaluated for radioactivity with a 

mini-monitor (Series 900, Morgan). The first 4-5 fractions to present radioactivity were pooled for further 

use. 
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TE buffer 
10 mM Tris-HCl (pH 7.6); 
1 mM EDTA 

TEN buffer 
10 mM Tris-HCl (pH 7.6); 
1 mM EDTA; 
100 mM NaCl 

 
 
2.3.8.3. Hybridization and washings 

 

Membrane filters were pre-hybridized in hybridization buffer at 42°C, for 3h, in a hybridization 

oven (Amersham). The probe was heat denatured for 5 min, cooled on ice and added to the 

hybridization buffer. Hybridization was allowed to proceed overnight at 42ºC, with shaking. 

After hybridization, filters were successively washed for 20 min in the following solutions: 2x 

SSC, 0.1% SDS, at 45°C; 2x SSC, 0.1% SDS, at 50°C; 1x SSC, 0.1% SDS, at 50°C. For heterologous 

probes, the final washing step was 1x SSC, 0.1% SDS, at 55°C. For homologous probes, the final 

washing step was 0.5x SSC, 0.1% SDS, at 65°C. 

 

Hybridization buffer 

50 mM sodium phosphate (pH 7.0); 
0.9 M NaCl; 
5 mM EDTA; 
10x Denhardt reagent; 
0.1% SDS; 
250 µg.mL-1 denatured salmon sperm DNA; 
30% (v/v) formamide.(heterologous probe) or 
50% (v/v) formamide (homologous probe) 

50x Denhardt’s Reagent 
5% (w/v) Ficoll 400; 
5% (w/v) polyvinylpyrrolydone 360; 
5% (w/v) BSA (fraction V) 

20x SSC 
0.3 M Na citrate (pH 7.0); 
3 M NaCl 

 
 
2.3.8.4. Autoradiography 

 

Radioactive membrane filters were enveloped in plastic film and placed in cassetes 

(Hypercassete, Amersham) in direct contact with an autoradiographic film (BioMax MS, Kodak; BioMax 

MR, Kodak; Cronex ortho-S, Sterling), within two intensifying screens (Hyperscreen, Amersham). 

Exposure was performed at -80°C for a suitable time (overnight to one week). The autoradiographic film 

was developed in a dark room by submerging in X-ray Developer D-19 (Kodak) for up to 5 min. 

Development was stopped by rinsing in 3% (v/v) acetic acid stop solution and fixation was performed by 
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submerging the film in Rapid Fixer (Ilford) for 5 min. After rinsing with running water for 5 min, the film 

was dried at room temperature. 

Alternatively, the autoradiographic film was substituted by an ImageScreen – K (BioRad) and 

placed in an Exposure Cassette – K (BioRad). Exposure was performed at -80°C (1h to 5h). Scanning 

was done in a Personal Molecular Imager FX (BioRad), using the Quantity One software package (v. 

4.5.2; BioRad). 

 

2.3.9. DNA fragment recovery from agarose gels 
 
2.3.9.1. DEAE membrane-based method 

 

Recovery and purification of DNA fragments was performed using DEAE membranes [Dretzen et 

al., 1981]. After electrophoresis, incisions were made on the agarose gel, above and below the DNA 

fragment band of interest. Strips of DEAE membrane (NA-45, Schleicher & Schuell) were placed in the 

incisions. Membranes had been previously activated by soaking in 10 mM EDTA (pH 7.6) for 10 min, 

followed by soaking in 0.5 M NaOH for 5 min and extensive washing in sterile u.p. water. The 

electrophoresis was then resumed until the DNA fragment reached the lower DEAE membrane. This 

membrane strip was removed from the gel and briefly washed in LSB to remove any agarose debris. 

The DNA fragment was recovered by incubating the membrane strip in 400 µL of HSB at 60°C for 1h. 

The isolated fragment was further purified by performing a phenol/chloroform/IAA [25:24:1 (v/v/v)] 

extraction followed by an ethanol precipitation (2 vol. ethanol, 1/10 vol. 3M NaAc pH 5.2). 

 

LSB 
20 mM Tris-HCl (pH 8.0); 
0.15 M NaCl; 
0.1 mM EDTA 

HSB 
20 mM Tris-HCl (pH 8.0); 
1.0 M NaCl; 
0.1 mM EDTA 

 
 
2.3.9.2. DNA purification from agarose gel 
 

Recovery of DNA from agarose gels was also performed using the GFX PCR DNA or the QIAquick 

Gel Extraction Kit (Qiagen). Both kits follow a similar protocol; therefore only GFX methods will be 

outlined. Briefly, a maximum of 300 mg of agarose gel, containing the DNA band of interest, were 

sliced in small pieces and placed in a microcentrifuge tube. An equal volume (1 mg = 1 µL) of capture 
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buffer was added. After vortexing vigorously, the mixture was incubated at 60ºC until the agarose gel 

was completely dissolved (aprox. 10 min). During the incubation, a GFX column was placed in a 

collection tube. 

The sample was loaded onto the GFX column and incubated at room temperature for 1 min, 

followed by centrifugation at 8000 g for 30 sec. The flow-through was discarded by emptying the 

collection tube. The GFX column was placed back into the collection tube and 500 µL of washing buffer 

were loaded. After centrifugation at 8000 g for 30 sec the collection tube containing the washing buffer 

was discarded and the GFX column placed in a new microcentrifuge tube. DNA recovery was promoted 

by applying 50 µL of autoclaved u.p. water directly to the top of the glass fiber matrix in the GFX 

column. The sample was incubated at room temperature for 1 min and eluted by centrifugation at 8000 

g for 1 min. 

 

2.3.10. Reverse transcription and cDNA synthesis 

  

 Synthesis of cDNA from H. perforatum mRNA was performed using the SuperScript® II First-

Strand Synthesis System (Invitrogen). According to the manufacturer instructions, 5 µg of total RNA 

(chapter 2.3.1.2), 100 µM dNTP mix, 2.5 µM oligo(dT)20 and DEPC-treated water (up to 10 µL) were 

incubated at 65ºC for 5 min and transferred to 4ºC for 1 min. 10 µL of cDNA Synthesis Mix was added 

to each sample and incubated at 50ºC for 1 h. cDNA synthesis reactions were terminated after 

incubation, for 5 min, at 85ºC. Total RNA was degraded after addition of 2 units of RNase H to each 

sample, followed by incubation at 37ºC, for 20 min. Synthesized cDNA was stored at -20ºC. 

 

cDNA Synthesis Mix 

2x RT buffer; 
100 mM MgCl2; 
0.2 M DTT; 
40 U RNaseOUTTM; 
200 U SuperScriptTM II RT 

 

2.3.11. Amplification of cDNA fragments by PCR 

 

H. perforatum L. cDNA was obtained from the phage library (chapter 2.3.2.4) or from mRNA 

reverse transcription (chapter 2.3.10) and used as template in a polymerase chain reaction (PCR) using 

degenerate primers. Degenerate primers were designed based on conserved gene regions, as 



122 

 

 
 

 

Study of Hypericum perforatum defense mechanisms against Colletotrichum gloeosporioides: Relevance of 

phenolic metabolism and hypersensitive response. Luis Eduardo F.R. Conceição 

 

Introduction 

Introduction 

Materials 

and Methods 

Materials and Methods 

determined by the multiple sequence alignment of homologous genes. Primer design obeyed several 

parameters as suggested by Griffin et al. (1994) and was performed with the assistance of specific 

software (PrimerSelect, Lasergene, DNASTAR). Primers were 18-25 bases long and 3’ ends contained 

G/C nucleotides to ensure correct annealing (G.C clamp). The G/C content was maintained between 

45-55%, and melting temperatures (Tm) between primer pairs were as similar as possible. Annealing 

sites between primer pairs were distanced between 300-2.200 bp. The extent of primer self-homology 

was minimized with the aid of software analysis. Redundancy in degenerate primers (combination of 

nucleotide sequences synthesized) was kept as low as possible. In order to minimize sequencing errors, 

primers were designed approximately 100 bp prior to the end of the template sequence. Primers were 

synthesized by Invitrogen or StabVida. Primers used for Gateway cloning included attB1 and attB2 

flanking sequences, as described in chapter 2.3.13.2. 

Each 20 µL PCR reaction mixture contained 40 ng of cDNA, 1 µM of each primer, 200 µM of 

dNTP mix (Boehringer Mannheim), 2 mM MgSO4 (Invitrogen) and 1x PCR buffer (Invitrogen). The 

enzymatic reaction was started by adding 2 units of Taq polymerase or Pfu polymerase (Invitrogen). 

PCR amplification was carried out on a Mastercycler Gradient (Eppendorf) with a gradient of 5 

annealing temperatures. PCR steps were as follows (unless stated otherwise): (1) denaturation for 5 

min at 94°C; (2) 35 cycles of denaturation for 1 min, at 94°C, annealing for 1 min at 42.2ºC, 46.3ºC, 

49.6ºC, 53.8ºC or 59.8ºC, polymerization for 1 min of at 72°C; (3) extension for 10 min at 72°C. 

 

2.3.12 DNA sequencing 

 

Plasmid inserts were sequenced by BigDye terminator chemistry (ABI Prism), using universal 

primers that flank the plasmid’s polylinker. cDNA inserts in the pBK-CMV plasmid were sequenced in 

both directions using T3 and T7 primers. When required for obtaining full sequence, new specific 

primers were designed. 

 

2.3.13 Cloning of PCR fragments 
 
2.3.13.1 PCR cloning kits 

 

PCR fragments were separated by agarose gel electrophoresis and the fragments of interest 

recovered using the GFX PCR DNA purification kit or the equivalent QIAquick Gel Extraction Kit (Qiagen), 
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as previously described. DNA fragments were cloned onto the pGEM-T Easy vector (Promega), TOPO 

pCR2.1 cloning vector (Invitrogen) or pJET1.2/blunt cloning vector (Fermentas). All these vectors are 

suited to efficiently clone PCR products. pGEM-T and TOPO vectors contain 3’-dT overhangs at the 

insertion site that prevent recircularization of the vector and provide a compatible ligation site to PCR 

products obtained from A-tailing thermostable DNA polymerases such as Taq polymerase. On the other 

hand, pJET1.2/blunt was used for cloning blunt-end PCR products generated by proofreading DNA 

polymerases, such as Pfu polymerase. Due to the similarity between the methods associated to these 

cloning vectors, only pGEM-T Easy vector protocol (Promega) will be outlined here. 

In 0.5 mL tubes, a 10 µL ligation reaction was set up using 5 µL of 2x Rapid Ligation Buffer 

(Promega), 1 µL of pGEM-T Easy vector (50 ng), 1-3 µL of purified PCR product and 1 µL of T4 DNA 

Ligase. The reaction was incubated overnight at 4ºC to maximize the number of transformants. 

An aliquot of the ligation reaction (5 µL) was used to transform E. coli DH5α cells. Cells were 

transformed using the method described below (section 2.3.14) and plated onto selective LB plates, 

containing X-gal and IPTG (when necessary) for recombinant selection. 

 

2.3.13.2 PCR Cloning using GATEWAY® Technology 

 

 The Gateway® Technology is a universal cloning method based on the site-specific 

recombination properties of bacteriophage lambda, providing a rapid and highly efficient way to move 

DNA sequences into multiple vector systems for functional analysis and protein expression [Hartley et 

al., 2000; URL 16]. In order to use this technology, the PCR primers were designed as described before 

(chapter 2.3.11) but included specific extra flanking sequences (attB1 and attB2), as described in the 

product’s manual. 

The attB-PCR product was then used in a BP reaction for cloning into a pDONR®207 vector. 

Briefly, the BP reaction was assembled, vortexed and incubated, at room temperature, for 1 h. 

Proteinase K (4 µg) was added and the mixture was incubated, at 37ºC, for 10 min. 5 µL of the mixture 

was then used in E. coli DH5α transformation, as described in chapter 2.3.14. Liquid cultures were 

made for vector propagation as described in chapter 2.1.10. Glycerol stocks were made as previously 

described (chapter 2.1.11). 

For cloning in expression vectors, the propagated pDONR®207 vector was used in a LR 

reaction, according to the manufacturer instructions. Briefly, the LR reaction was assembled, vortexed 
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and incubated, at room temperature, for 1 h. Proteinase K (4 µg) was added and the mixture was 

incubated, at 37ºC, for 10 min. 5 µL of the mixture was then used in E. coli DH5α transformation, as 

described in chapter 2.3.14.1. Liquid cultures were made for vector propagation as described in 

chapter 2.1.10. Glycerol stocks were made as previously described (chapter 2.1.11). 

 

 
 

2.3.14 Transformation of E. coli 
 

Chemically competent E. coli DH5α cells were obtained by inoculating 250 mL of SOC medium 

with a single colony of E. coli DH5α. Cells were grown at 18°C with vigorous shaking (200-250 rpm) 

until A600 = 0.6 was observed. The culture was placed on ice for 10 min and cells were collected by 

centrifugation at 2500 g for 10 min at 4ºC. The pellet was resuspended in 80 mL of ice-cold TB 

medium, and left on ice for 10 min. Cells were centrifuged for at 2500 g for 10 min at 4ºC, and gently 

resuspended in 20 mL of ice-cold TB medium. DMSO to a final concentration of 7% (v/v) was carefully 

added. The preparation was left on ice for 10 minutes and distributed in 200 µL aliquots. Competent 

cells were immediately place in liquid nitrogen and stored at -80°C. Another strain of chemically 

competent E. coli DH5α (DB3.1) was purchased from Invitrogen. 

Transformation of both E. coli strains followed the same protocol. The DB3.1 strain was used 

for propagation of vectors containing the lethal ccdB gene (such as pDONR). This E. coli strain contains 

a gyrase mutation (gyrA462) that renders it resistant to the CcdB effects [URL 16]. 

Transformation was initiated by thawing competent cells on ice. The DNA sample (up to 1 µg) 

was added to 200 µL of chemically competent cells by gentle mixing, and the mixture was incubated at 

4°C for 30 minutes. Cells were heat-shocked by incubation at 42°C for 30 s with minor agitation, 

followed by 10 min on ice. After addition of 0.8 mL of SOC medium and incubation for 1 hour at 37°C 

with vigorous shaking (200-250 rpm), cells were spinned down for a few seconds at 10.000 g and the 

BP reaction 

5 µL attB-PCR product 
300 ng pDONR™ vector 
1X BP Clonase™ reaction buffer 
TE Buffer, pH 8.0 (up to 16 µL) 
4 µL BP Clonase™ enzyme mix 

LR reaction 

100-300ng Entry clone 
300 ng Destination vector 
1X LR Clonase™ reaction buffer 
TE Buffer, pH 8.0 (up to 16 µL) 
4 µL LR Clonase™ enzyme mix 
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pellet resuspended in 50 µL of the supernatant. Finally, cells were transferred to appropriate selective 

plates and grown overnight, at 37°C. 

In order to confirm the transformation, colony PCR screening was done, using primers specific 

for the cloning vectors included in each cloning kit used (chapter 2.3.13.1). PCR conditions vary 

according to the vector used and the DNA insert size. 

 

TB 
10 mM PIPES; 15 mM CaCl2; 250 mM KCl; 55 mM MnCl2. Mix all components except MnCl2 and adjust pH 
to 6.7 with KOH. Dissolve MnCl2 and sterilize solution through a 0.45 µm filter 

SOC 
2% (w/v) Tryptone; 0.5% Yeast extract; 2.5 mM KCl; 10 mM NaCl; 10 mM MgSO4; 10 mM MgCl2; 20 mM 
glucose 

 
 

2.3.15 Bioinformatics 
 
2.3.15.1. Sequence analysis 

 

Nucleotide and amino acid sequence editing and analysis were performed using the Lasergene 

suit of sequence analysis software from DNASTAR. Within the software package, EditSeq was used to 

edit, translate and back-translate sequences, locate ORFs, as well as create base-files for the remaining 

softwares. MegAlign produced multiple sequence alignments and phylogenetic trees. 

 

2.3.15.2. NCBI Tools and GenBank Database 

 

Nucleotide sequences isolated from H. perforatum cDNA library, as well as the corresponding 

amino acid sequences, were submitted to the GenBank Database at NCBI [URL 17]. Database search 

for specific nucleotide and protean sequences was performed using Entrez search engine [URL 18]. 

The database search for highly similar sequences was carried out using the BLAST algorithm [URL 19; 

Altschul et al., 1997]. 
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3. Establishment and characterization of Hypericum 

perforatum L. suspension cell cultures. 

 

 

3.1. Introduction 

 
Cell cultures have been used for a long time in the study of several biochemical and molecular 

aspects associated with plant metabolism, including in Hypericum species (Table 3.1). The advantages 

of these in vitro cultures are many, including the possibility of maintaining a controlled environment, 

independent from climatic and soil variable conditions, as well as controlling possible biological 

influences, such as pathogen attack [Mulabagal et al., 2004]. Climate, nutrient availability, biotic 

interactions or abiotic stresses can therefore be minimized and/or manipulated, in order to reduce 

variables affecting the proposed study. As for cell suspension cultures, other advantages, such as a fast 

growth, reduce the time of an experiment that, in plant biology, could take several months or years 

before useful biological material could be obtained. Moreover, due to their unicellular/undifferentiated 

nature, cell suspension cultures can provide a simpler tool for the study of basic plant metabolism, from 

which biosynthetic pathway intervenients can be more easily regulated/accessed [Bourgaud et al., 

2001]. Due to the large surface area in contact with the external medium, responses are usually 
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concerted, with minor variability observed [Stafford, 1991; Eshita et al., 2000]. Nonetheless, their 

simplicity should be regarded with caution before extrapolating results to a multicellular level. 

Depending on the aim of the study, the information obtained from these undifferentiated cell cultures 

should be seen as “clues” rather than definite knowledge. 

 

Table 3.1 – Some studies using in vitro plant cell cultures of Hypericum species. 

Hypericum species Tissue culture type Study Reference 

H. patulum Suspended cells Xanthone identification Ishiguro et al., 1993, 1995 

H. erectum Calli and shoot cultures Procyanidin production Yasaki et al., 1990 

H. canariensis Shoot cultures Hypericin accumulation Mederos et al., 1996 

H. brasiliense Calli and shoot cultures Micropropagation Cardoso et al., 1996 

H. androsaemum Suspended cells Xanthone biosynthesis Schmidt et al., 1997 

H. perforatum 

Suspended cells 

Phenylpropanoid metabolism Gadzovska et al., 2007 

Elicitation – Phenolic metabolism Conceição et al., 2006 

Elicitation/Hypericin accumulation 

Walker et al., 2002 

Xu et al., 2005 

Shoot cultures 
Kirakosyan et al., 2000; 2001 

Hyperforin and secohyperforin 
accumulation 

Charchoglyan et al., 2007 

 

3.2. Establishment of suspension cell cultures of H. perforatum L. (var. Helos) 

 

To study the relevance of H. perforatum defense responses upon pathogen attack, cell 

suspension cultures from two H. perforatum accessions were used. One accession (HPS) was already 

available in the lab, obtained from H. perforatum plants known to be sensitive to C. gloeosporioides 

infection in vivo. A second cell suspension culture was later established, from commercial seeds 

(Richters®, Canada) of H. perforatum (var. Helos), which is considered to be the less susceptible 

accession to C. gloeosporioides infection in vivo. The seeds from Helos were sterilized (as described in 

chapter 2.1.1) and grown in “MS” medium [Murashige et al., 1962] without hormonal 

supplementation. The roots, leaves and stems from the seedlings obtained were segmented and 

transferred to MS media, supplemented with diverse hormonal combinations (Chapter 2.1.5.1), in order 

to develop calli cultures. Results for the most relevant hormonal combinations are described below 

(Table 3.2 and figure 3.1). 
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Table 3.2: Differences in morphology of calli obtained from the combination of three distinct hormonal supplementations 
and three types of explants from H. perforatum (var. Helos). Other supplementations led to organogenesis or shoot 
development. 
 

Hormonal supplementation 
(mg/L) 

           Explants 

Roots Leaves Stems 

“2,4-D” 
0.2 

(2.4D) 
0.02 
(Kin) 

C
al

li 

Non-friable Browning Non-friable Browning Non-friable Browning 

“NK” 
1.0 

(NAA) 
0.5 
(Kin) 

Friable Low Browning Non-friable Browning Non-friable Browning 

“NAA” 
0.5 

(NAA) 
- Friable Low Browning Friable Low Browning Non-friable Browning 

“IK” 
0.8 
(IAA) 

0.5 
(Kin) 

Sh
oo

ts
 /

 
or

ga
no

ge
ne

si
s       

“IBA” 
0.5 
(IAA) 

0.5 
(BA) 

      

“NK2” 
0.1 

(NAA) 
0.1 
(Kin) 

      

 
 
 As described in table 3.2, the “2,4-D” hormonal supplementation failed to develop friable calli 

cultures for all explants used and was also responsible for their browning. Although small adjustments 

on the auxin/cytokinin ratio were performed (data not shown), no significant improvements were 

observed. The browning observed during H. perforatum calli development is a common feature, found 

in many other plant tissue cultures. According to some authors, the browning is usually associated to 

increased accumulation of phenolic compounds, but also to an increased cell death [Heath, 2000; 

Kobayashi et al., 1990]. Similar results were observed when leaves and stems were grown on “NK” 

hormonal supplementation. Despite the results observed for these explants, roots under “NK” 

supplementation have shown to develop calli with moderate friability, as well as lower browning. Finally, 

hormonal supplementation “NAA” was found to be responsible for both the lowest accumulation of 

phenolics (in roots and leaves) and the induction of the most friable calli cultures. The calli cultures 

obtained with these two hormonal supplementations (NAA and NK) were subcultured to fresh MS 

medium monthly. During the following four months, no significant change on these parameters was 

observed, although a general, slight decrease in browning occurred, in all experimental conditions 

studied. The most representative results found for calli cultures (obtained from Helos roots), under the 

hormonal supplementations tested, are shown below (Fig. 3.1 – B). Other hormonal supplementations 

were tested (Table 3.2), being responsible for organogenesis and shoot development in H. perforatum 

Helos cultures. These results are out of the scope of this chapter and won’t be discussed further. 

 Considering the results achieved, friable calli obtained from leaves and roots of Helos were 

transferred to liquid MS media, with “NK” or “NAA” hormonal supplementations. Suspension cell 
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cultures were initiated in a stepwise process, keeping a minimal cell concentration to allow the cultures 

to surpass the lag phase. According to the explants and medium composition, the first 5 - 10 

subculturings of the initiated cell cultures showed unstable growth as well as increased browning. 

Nonetheless, six months after the first transfer to liquid MS medium, suspension cell cultures obtained 

from root explants, grown with “NAA” hormonal supplementation, achieved a stable and constant 

growth. Additionally, browning was observed only after exponential growth phase, as referred later. On 

the other hand, cell suspension cultures obtained from leaves grown in “NAA” medium, as well as 

those grown on “NK” supplementation (root and leaf explants), failed to achieve stable growth and 

decrease browning, during those six months, and were no longer subcultured. 

Helos suspended cells obtained from roots under “NAA” supplementation were therefore 

selected for all the following work, together with the already available HPS cell cultures. While HPS 

suspension cultures showed formation of cell clumps, Helos cultures showed a low tendency for 

aggregation, as observed in figure 3.1 (D and F). Cell clump formation is a common (and usually 

“unwanted”) feature, observed in many plant cell suspension cultures [Kato et al., 1994; Edahiro et al., 

2006]. Due to this result, a change on HPS media composition was tried, in order to achieve lower 

aggregation levels. HPS suspended cells were transferred from their original “NK” supplementation to 

“NAA” medium but no decrease on clump formation was observed. Moreover, no changes on other 

parameters, such as growth, viability or phenolic compounds accumulation in HPS cells were found, 

after moving cells to “NAA” hormonal supplementation. 

In order to minimize the variables to be considered in further experiments, both HPS and Helos 

were maintained in “NAA” medium. New modifications in the media composition could have been 

made to diminish cell aggregation, such as inclusion of colchicine [Umetsu et al., 1975] or AOPP 

[Edahiro et al., 2006]. Nonetheless, since aggregation is known to be associated to several phenolic 

compounds, such as feruloyl polysaccharides [Kato et al., 1994], most treatments against clump 

formation include the inhibition of plant secondary metabolism. Therefore, and considering the scope of 

this work, no further modifications were made in order to control cell aggregation. Moreover, when we 

consider that HPS cell cultures were also obtained from root explants, we can expect that any 

differences in response to treatments should be mainly related to the inherent differences existing 

between those two H. perforatum accessions. 
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Figure 3.1: Establishment of (A) Shoots, (B) calli and (C, D) suspended cells from H. perforatum (var. Helos). (E, F) 
Suspension cultures from H. perforatum (var. HPS). Calli obtained from roots of Helos shown in (B) are representative of 
“NAA”, “2,4-D” and “NK” hormonal supplementations (left to right, respectively). 

 
 

3.3. Characterization of H. perforatum L. suspension cell cultures. 

 

In order to characterize growth and survival in both H. perforatum cell suspension cultures 

some standard parameters were evaluated, namely, biomass accumulation, cell viability and medium 

pH. Moreover, cell suspension nutrition requirements were also analyzed, including the changes in the 

consumption of three major groups of nutrients: carbon, nitrogen and phosphate sources. 

 

3.3.1. Characterization of growth and survival parameters 
 

When we analyzed biomass accumulation, a similar pattern was observed in both HPS and 

Helos suspension cell cultures (Fig. 3.2 - A and B). As in most batch cultures, biomass accumulation 
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showed a typical sigmoid curve [King et al., 1973; Botha et al., 1998; Su-Hwan et al., 2002], 

composed by a lag phase during the first days after subculturing, followed by a period of exponential 

(and then linear) growth and, finally, a stationary phase at the end of cell culture time. While the lag 

phase is usually considered as an adaptation period of the inoculum to fresh medium [Silveira et al., 

2002], the final steady-state is known to occur due to limitations in one or more nutrients in the liquid 

medium or an increased accumulation of toxic compounds. The absence of biomass accumulation, 

observed during the lag phase, does not mean a standstill in suspended cells’ biochemical processes, 

but quite the opposite, with strong activity being associated with the initial acclimatization [Wilson, 

1971]. Between the two lag phases, common to most plant cell suspensions, optimal growth condition 

occurs and is responsible for the exponential growth phase, where the highest growth rate (µ) is found. 

In the case of HPS, exponential growth was observed approximately between days 4 and 10, with a 

maximum growth rate of 0.13 d-1 achieved at the seventh day after subculturing (Fig. 3.2 – A and C; 

table 3.3). In Helos suspension cultures, exponential growth occurred between days 2 and 10 and the 

maximum growth rate was estimated to occur approximately at the fourth day after subculturing, with 

values close to 0.16 d-1 (Fig. 3.2 – B and C; table 3.3). Moreover, and considering these growth rate 

values, the shortest doubling time (Td) can be estimated to occur in 56 h (2.3 days) for HPS while Helos 

cell division occurred in 45 h (approximately 1.9 days) (Table 3.3). These doubling times are within the 

normal range of values, between 20 to 100 h, observed for most plant cell suspension cultures 

[Facchini et al., 1990]. More extreme values have already been described, for example, in some fast-

growing cultures of Nicotiana tabacum (0.45 days) [Su, 2007], while the slow-growing suspension cells 

of Cenchrus ciliaris L. displayed doubling times as high as 30 days [Rogers et al., 1993]. 

As observed in figure 3.2 (A and B), both HPS and Helos suspension cultures accumulated 

similar amounts of biomass, reaching maximum growth yield values (Ymax) of approximately 13 

mg/mL and 11 mg/mL, at days 17 and 14 for HPS and Helos, respectively. 
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Figure 3.2: Growth parameters of both H. perforatum suspension cell cultures. Dry weight () and medium pH () 
observed for (A) HPS and (B) Helos cultures. (C) Estimated growth rates and (D) cell viability for HPS () and Helos () 
suspension cells. 

 
 
Table 3.3: Growth parameters evaluated for both H. perforatum suspension cell cultures studied. 

H. perforatum variety Maximum growth rate Shortest doubling time Maximum yield 

HPS 0.13 d-1  (day 7) 2.3 days 13 mg/mL 

Helos 0.16 d-1  (day 4) 1.9 days 11 mg/mL 

 

After reaching their maximum yield values, none of the H. perforatum cultures displayed a clear 

stationary stage. Nonetheless, in the case of Helos, we can predict that to occur roughly between days 

11 and 15, while for HPS a later stationary stage should occur, between days 14 and 18 (Fig. 3.2 – A 

and B). Until the beginning of this predicted stationary stage no significant changes on cell viability were 

observed, although a small transient decrease was detected between days 2 and 4 (Fig. 3.2 – D). The 

stationary stage was followed by a small decrease in biomass accumulation, tissue browning and a 

significant, sharp decrease in cell viability (Fig. 3.2 – D), for both suspension cell cultures, observed 

from days 14 and 17 (for Helos and HPS, respectively) until the end of the experiment, at day 20. As 

previously referred, these results are probably due to a decrease in availability of one or more nutrients 

in the medium. This possibility will be discussed in detail in chapter 3.3.2. 

Another parameter analyzed during H. perforatum suspension cell culture growth was the 

medium pH. Both HPS and Helos cultures showed similar medium pH variations, as described in figure 

3.2 (A and B). As observed for suspension cultures of many other plants [MacDonald et al., 1989; 

Srinivasan et al., 1995; Fleisher et al., 1998], a fast decrease in the pH values was observed, just a few 

days after subculturing. In both HPS and Helos cultures, pH dropped from initial values of nearly 4.0 to 

values close to 3.0, during the 2 - 4 days after inoculation. Although plant cells are known to grow 

efficiently within a wide range of medium pH values, the absence of growth, observed in the first days 
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after subculturing, is sometimes associated with an increased influx of H+ to the cytoplasm of cells, 

which may affect optimal growth conditions. Even though this could be a valid explanation for cell 

suspension cultures of many other plant species, the narrow range of pH values observed for our H. 

perforatum suspension cell cultures, during those initial days, does not seem to be enough to explain 

the initial lag phase. Moreover, some authors suggest that, during the initial adaptation of cells to the 

fresh medium, the drop in pH values could be a direct consequence of cell death and subsequent 

release of cell content into the medium [Srinivasan et al., 1995; Mühlbach, 1998; Dias, 2000]. This 

can be a reasonable explanation for the decrease in pH and the stall in biomass accumulation. 

Nonetheless, since we observed only a minute decrease in cell viability during the initial days after 

subculturing, other mechanisms associated with acclimatization, such as nutrient uptake, may also 

contribute for these results, as discussed later. The sharp decrease in medium pH was followed, during 

exponential growth phase, by a gradual recovery to the original values and, approximately 12 days after 

inoculation, medium pH values were nearly restored (Fig. 3.2 – A and B). The medium pH observed at 

the stationary stage is usually considered as the “optimal pH” for cell growth [Hahlbrock et al., 1972] 

which, for HPS cultures, is nearly 3.8 while for Helos is 4.2, approximately. After passing the stationary 

stage, another decrease on medium pH values was observed, until the end of the study, at day 20. 

Unlike the sharp pH drop observed in the initial lag phase, this new decrease may be a direct 

consequence of cell death alone, since a decrease in both biomass accumulation (Fig. 3.2 – A and B) 

and cell viability (Fig. 3.2 – D) was also observed during that time. 

 

3.3.2 Time course changes on major nutrients uptake 
 

Along with biomass accumulation, medium pH and cell viability, we also studied, for both H. 

perforatum suspension cells, the possible variations in the uptake of major nutrients present in the MS 

culture medium, namely, nitrate (NO3
-), ammonium (NH4

+), phosphate (PO4
2-) and sugars (sucrose, 

glucose and fructose) and how these can influence the growth of HPS and Helos cell suspension 

cultures. 

 

3.3.2.1. Sugar 

 
Although photoautotrophic cultures can be established [Barz et al., 1982; Yamada et al., 1982] 

the most commonly used cell suspension cultures are heterotrophic. Therefore, these cultured plant 
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cells require carbohydrates to provide both a carbon skeleton and an energy source, able to sustain 

growth. Beside their metabolic roles, it is also attributed to carbohydrates an osmoregulatory function, 

as essential as the carbon-energy roles, since these compounds are normally the major constituents of 

any tissue culture medium, in terms of mass and molarity [Thompson et al., 1987]. 

In H. perforatum cell cultures, as for suspension cells of many other plant species, sucrose was 

added to the medium (3%), to be used by the cells as their main source of carbon and energy. Sucrose 

is the most common and preferred carbohydrate since higher biomass accumulation is usually 

achieved with it, when compared to other energy sources like the disaccharide maltose or the 

monosaccharides mannose or galactose [Thompson et al., 1987]. Moreover, while reducing the 

amount of sucrose added to the medium usually leads to lower biomass production, increasing to 

values higher than 4-5% would probably have no positive impact on H. perforatum biomass 

accumulation, as previously described for many other plant suspension cell cultures [Grey et al., 1987]. 

 

 

Figure 3.3: Sugar available in the medium of H. perforatum (A) HPS and (B) Helos suspension cell cultures. Total sugar 
(), sucrose (), glucose (▲) and fructose () content in the medium. 

 

 As figure 3.3 shows, residual amounts of fructose and glucose were detected in the fresh 

medium, prior to subculturing. These are likely the result of hydrolysis of sucrose, during autoclaving 

process. After inoculation of the medium, sucrose concentration in both H. perforatum suspension cell 

cultures decreased sharply and in a similar pattern. While small amounts (4 g/L, approximately) could 

still be found at day 2, sucrose was no longer detected at day 5. This rapid conversion of sucrose into 

glucose and fructose, also described for other species [Zhang et al., 1998; Srinivasan et al., 1995], is 

known to be the action of extracellular or cell wall-bound invertases [Kanabus et al., 1986]. The fast 

response to sucrose in the medium is not surprising if we consider that sucrose is the most common 
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transport and storage (and therefore metabolizable) saccharide in plants [Thompson et al., 1987]. From 

figure 3.3 we can estimate that the highest glucose and fructose concentrations occurred between days 

2 and 5, after the complete hydrolysis of sucrose. Moreover, although both fructose and glucose 

concentrations in the medium were progressively decreasing during cell suspension growth, glucose 

was found to be preferably consumed by both H. perforatum suspension cells. Similar results were 

found in plant suspension cultures from other species such as Lavandula vera [Ilieva et al., 1997], Olea 

europaea [Oliveira et al., 2002] or Pinus pinaster [Azevedo et al., 2008]. As described by some authors, 

different affinities of hexose phosphorylating enzymes for fructose and glucose are known to be involved 

in the preferable consumption of glucose [Azevedo et al., 2008; Krook et al., 2000]. Interestingly, 

suspension cultures from a closely related species, H. androsaemum, are known to consume fructose 

preferably [Dias, 2000] while Cupressus lusitanica showed no preference for any of these 

monosaccharides [Yamada et al., 2003]. In H. perforatum, glucose uptake was found to occur during 

the exponential growth phase, which ended when glucose was depleted from the medium, at days 12 

and 14 for Helos and HPS, respectively. During the following stationary stage, only fructose was 

available and was rapidly consumed, within a few days. The depletion of all sugar sources from the 

medium also coincides with the decrease in cell viability and biomass accumulation, starting at days 14 

and 17, for Helos and HPS cultures (respectively), as previously described. Therefore, the sugar content 

in “NAA” medium seems to play a decisive role as a growth limiting nutrient in both H. perforatum 

suspension cells studied. Increased relevance may be pointed to glucose, which seems to be directly 

responsible for the growth arrest. The decisive role of sugars on growth was already described for other 

plant suspension cell cultures, such as Catharanthus roseus [Rho et al., 1991; Gulik et al., 1993] or H. 

androsaemum [Dias, 2000]. On the other hand, growth of Pinus pinaster suspension cultures in MS 

medium was found to be arrested by phosphate medium depletion instead of carbohydrate exhaustion 

[Azevedo et al., 2008]. 

 

3.3.2.2. Phosphate 

 
 Another major nutrient analyzed was the phosphate ion (PO4

2-), which presence in the medium 

is critical for suspension cell growth. Phosphate consumption in both cell suspension cultures of H. 

perforatum show a similar pattern. In both cases, a descending sigmoidal curve was observed (Fig. 

3.4), accompanying the upward growth curve previously referred (Fig. 3.2 – A and B). The straight 

connection between these two parameters occurs because phosphate is known to be a critical nutrient, 
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necessary for cell division [Sano et al., 1999]. The lowest phosphate concentration in the medium was 

achieved at day 14, for both HPS (18 mg/L) and Helos (15 mg/L) suspension cultures. These values 

were achieved just after the exponential phase, when growth arrest was observed. Since phosphate was 

still available in the MS medium during the stationary stage it seems that, although relevant, phosphate 

is not a limiting nutrient, as previously referred for sugar, in both H. perforatum suspension cultures 

studied. After passing the stationary stage, when sugar depletion was observed, phosphate 

concentration in the medium increased sharply for both H. perforatum cultures, from day 14 until the 

end of the study, at day 20. The increase in phosphate concentration is most likely due to the release of 

cellular contents from the increasing number of dead cells [Archambault et al., 1996], as predicted 

from the previously referred sharp decrease in cell viability (Fig. 3.2 – D). In fact, sugar starvation is 

known to be a trigger for programmed cell death and consecutive mobilization of at least part of the 

available nutrients, such as phosphate [Lino-Neto, 2001]. 

 

 

Figure 3.4: Phosphate ion (PO4
2-) available in the medium of H. perforatum (A) HPS and (B) Helos suspension cell 

cultures. 

 

3.3.2.3. Nitrate and Ammonium 

 
Nitrogen is found in a myriad of plant components such as proteins, nucleic acids or 

phytohormones. Therefore, nitrogen sources, as well as carbohydrates and phosphate, are of singular 

importance for growth. Both the amount and the form of the nitrogen source in the medium are known 

to have significant effects on the growth rate, cell morphology and totipotency [Kirby et al., 1987]. 

Usually, plant culture media includes both nitrate and ammonium salts as inorganic nitrogen sources 

[Gamborg et al., 1981; Kirby et al., 1987]. Due to the relevance of these two nitrogen sources in the 
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growth of tissue cultures, their uptake was also analyzed, for both H. perforatum suspension cells 

available. 

 

 

Figure 3.5: Consumption of nitrogen sources available in MS medium, namely, (▲) ammonium and () nitrate, observed 
in H. perforatum (A) HPS and (B) Helos suspension cell cultures. 

 
As previously described for sugar and phosphate, consumption of nitrogen sources was similar 

for both H. perforatum suspension cultures (Fig. 3.5). Both HPS and Helos showed an increased 

consumption of ammonium during the exponential growth period. This response was followed by a stall 

in consumption, starting at day 10 and observed until the end of the study, at day 20. Nitrate 

consumption, on the other hand, occurred during most of the period studied, although a tendency for 

increased consumption during the exponential growth period was also observed (Fig. 3.5). These results 

come in accordance to what was previously observed for H. androsaemum cell suspension cultures 

[Dias, 2000] and other plant models [Srinivasan et al., 1995]. Although present in much lower amounts 

in the medium, ammonium was readily uptaken by H. perforatum suspension cells and only 20% 

(approximately) of the initial amounts were available at day 12. As for nitrate, 50% of this nitrogen 

source was still present at the end of the study, at day 20. The increased preference for ammonium 

could be explained by the fact that this nitrogen source is generally considered toxic to plant cells, being 

readily metabolized [Kirby et al., 1987]. In fact, some plant models, such as Vitis vinifera, utilize nitrate 

only when ammonium is fully depleted from the medium [Pépin et al., 1995]. While ammonium cannot 

be efficiently used in high amounts as a sole source of nitrogen, the utilization of nitrate alone presents 

other difficulties since nitrate reduction is an energetically expensive process. Although possible, growth 

rates in nitrate-only cell culture medium are usually lower than on medium containing both nitrate and 

ammonium [Kirby et al., 1987]. Taken together, the results obtained suggest that neither one of the 

nitrogen sources studied are growth limiting nutrients, as previously observed for phosphate 



 
 

 

 

 
 

143 
Study of Hypericum perforatum defense mechanisms against Colletotrichum gloeosporioides: Relevance of 

phenolic metabolism and hypersensitive response. Luis Eduardo F.R. Conceição 

Results and Discussion 

consumption (Chapter 3.3.2.2), although culture growth can be directly associated to their 

consumption. 

 

3.4. Discussion 

 

The development of calli and cell suspension cultures from H. perforatum Helos accession was 

associated with an initial tissue browning, decreasing gradually upon subsequent subculturings. As 

previously referred, increased cell death and accumulation of phenolic compounds are known to be 

responsible for this feature in other plant tissue cultures. Both these responses are associated to plant 

stress, most likely due to the intense tissue manipulation and wounding, inevitable during 

micropropagation [Campos-Vargas et al., 2005; Arencibia et al., 2008]. Furthermore, adaptation to new 

growth conditions (such as hormonal supplementation) or nutrient availability may also be responsible 

for the stress, suffered by the cells. 

Following the development of Helos suspension cultures, and from the analysis of all growth 

and nutrient consumption parameters, we can conclude that both HPS and Helos responded in a 

overall similar way, despite their morphological differences (clump formation) or any other inherent 

divergences existing between these two H. perforatum accessions. Nonetheless, and although 

statistically similar, Helos growth was faster but lower maximum yields of biomass were observed. While 

sugar consumption showed a similar pattern on both H. perforatum cell suspension cultures, 

phosphate ion (a key nutrient necessary for cell division) consumption in Helos was faster in the initial 8 

- 10 days. Moreover, consumption of other minor medium components, also necessary for cell growth, 

were not monitored in this study. Therefore, the faster intake of phosphate and other nutrients (possibly 

due to an increased cell surface area in contact to the medium or due to higher metabolic rates), could 

be responsible for the faster growth, observed in Helos. On the other hand, the lower biomass yield 

observed in Helos cultures could be related to differences in metabolic channeling of some nutrients, 

between primary and secondary metabolism. In fact, as shown in chapter 7, Helos cell suspension 

cultures accumulate 10x more flavonols than HPS. The relevance of this channeling will be further 

referred in the next chapter. 

The analysis of major nutrient consumption allow us to conclude that sugar was the limiting 

nutrient, responsible for the growth arrest of both suspension cells, namely after glucose depletion from 

the MS medium. Sucrose was the first nutrient to be uptaken, followed by glucose, fructose and 
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ammonium, while phosphate and nitrate were still available in the medium, in relatively high amounts, 

at the end of the study. Furthermore, the late increase in the phosphate available in the medium seems 

to be related to the increased autolysis of suspended cells, after passing their stationary stage. These 

results are in accordance to what is usually found in batch cell suspension cultures from other plant 

species [Cheng et al., 2005]. 

The medium pH shifts observed during the course of the study may have occurred, not only 

because of the increase in cell death, but also due to the complex interaction between H. perforatum 

suspension cells, the medium constituents and their differential consumption profiles, especially in the 

case of glucose and nitrogen sources. The fast, initial ammonium uptake could be responsible for the 

decrease in medium pH values observed a few days after inoculation, since the intake of this ion is 

known to be associated with a release of H+ from the cell into the medium [Smith et al., 1976; Minocha, 

1987]. When present in the medium, this toxic nutrient is readily metabolized for amino acid 

biosynthesis [Salisbury et al., 1992; Vance, 1997]. The transient medium acidification was followed by 

a slow, constant increase in medium pH, in a pattern similar of that found for glucose and nitrate 

consumption. In fact, the intake of glucose involves the co-transport of H+ by the action of a 

monosaccharide H+ symport system [Minocha, 1987; Azevedo et al., 2006] while a similar mechanism 

exists for nitrate intake, therefore increasing the medium pH [Kirby et al., 1987]. 

By comparing the consumption parameters for all the nutrients studied, we can predict that the 

lag phase, associated with the adaptation to the fresh medium, may be influenced not only by the 

change in nutrient availability but also by their effect in the osmolarity of the medium, especially in the 

case of sucrose, as previously described. 

Considering the analysis of all these parameters, most of the following experiments shown in 

this thesis were performed only until the end of exponential growth phase, at days 12 and 14 (for Helos 

and HPS, respectively), in order to avoid other sources of plant stress than the ones we intend to study. 
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4. Nutrient consumption and growth parameters on 

elicited H. perforatum L. suspended cells. 
 

 

 

4.1. Introduction 

 

When plants are faced with a possible pathogen, several biochemical and molecular changes 

occur, not only in the site of attempted infection and close vicinities, but also on other “distant” plant 

tissues. Our aim, during the course of the following experiments, was to evaluate possible changes on 

growth, survival and nutrition parameters when H. perforatum cell suspension cultures were challenged 

with the pathogen C. gloeosporioides and/or treated with two phytohormones, Salicylic acid (SA) and 

Methyl-jasmonate (MeJ), known to be related to plant defense mechanisms against biotic stress. 

In one set of experiments, cell suspension cultures from both H. perforatum accessions were 

challenged with autoclaved biomass from the pathogenic fungus C. gloeosporioides. Two other sets of 

experiments were carried out by adding MeJ or SA to the suspension cells. These compounds play a 

significant role in induced plant defense responses, namely, in both systemic resistance pathways 

against pathogen infection known, SAR and ISR, as previously described in chapter 1.4. Finally, in two 

other sets of experiments cell cultures were treated with MeJ or SA, prior to elicitation with C. 
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gloeosporioides biomass. The elicitor and the phytohormones were prepared as described in chapters 

2.1.7 and 2.1.8 (respectively) and administered to both HPS and Helos cell suspension cultures, at an 

early stage of their exponential growth phase (as described in chapter 2.1.9). 

With these experimental models we intended to reproduce the most common situations 

occurring during plant-pathogen biotic interactions. In detail, suspension cultures treated only with the 

pathogen-derived elicitor may respond as the first plant tissues facing the incoming pathogen. On the 

other hand, MeJ and SA-treated cultures may represent plant tissues that were not in direct contact with 

the pathogen but were primed (or conditioned) for defense by one of the known systemic signaling 

pathways. The last two sets include those tissues that were primed for defense by systemic signaling 

and were, afterwards, faced directly with the spreading pathogen. These 5 experimental models, plus 

the control group, were used for all subsequent studies on H. perforatum defense mechanisms against 

C. gloeosporioides infection, described in this chapter and the following ones. Furthermore, all the 

following experiments were carried out on both suspension cultures from H. perforatum (HPS and 

Helos), unless stated otherwise. Our aim was to study possible divergences in their defense responses 

that could explain the differences in susceptibility to C. gloeosporioides infection, found between these 

H. perforatum accessions in vivo. 

 

 

4.2. Changes on growth and survival parameters of elicited suspension cells 

 

 Cell suspension cultures of H. perforatum responded differently according to the elicitor 

treatment, systemic signaling treatment or the combination of both, when compared to control cultures. 

Both HPS and Helos accessions showed similar patterns of response to all the treatments they were 

subjected. Namely, a decrease in cell viability and culture growth was observed in C. gloeosporioides-

elicited cultures while phytohormonal treatment had no effect in these parameters when applied alone, 

as described below. However, it is worthwhile to mention that, despite the pattern similarity, the 

negative impact on biomass accumulation and cell viability was predominantly higher in Helos 

suspension cultures than on HPS, the more anthracnose-susceptible H. perforatum accession (Fig. 

4.1). 
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Figure 4.1: Changes on biomass accumulation in H. perforatum (A) HPS and (B) Helos suspension cell cultures observed 
until the end of their exponential growth period. Cell viability measurements for (C) HPS and (D) Helos cultures. Suspension 
cells were treated with MeJ (100 µM), SA (25 µM), or C. gloeosporioides elicitor (Cg). The samples indicated as MeJ+Cg and 
SA+Cg represent cells primed with MeJ (100 µM) or SA (25 µM), respectively, 24h before the addition of the fungal elicitor. 

 

As observed in figure 4.1 (A and B), elicitor treatment led to a significant decrease in biomass 

accumulation in both cell cultures, from day 9 until the end of the study. Similar results were found for 

other plant species, such as in Hyoscyamus muticus cell suspension cultures treated with a fungal 

elicitor preparation from Rhizoctonia solani [Carvalho et al., 2002]. Treatment with MeJ or SA at the 

final concentrations of 100 µM and 25 µM, respectively, had no effect on biomass accumulation, when 

compared to control. The effect of MeJ and SA in biomass accumulation varies greatly between species. 

Treatment of several Taxus canadensis cell lines with the same MeJ final concentration (100 µM) led to 

a significant decrease in biomass accumulation [Kim et al., 2004], as also observed in Panax ginseng 

cell cultures, treated with MeJ at concentrations ranging from 50 to 400 µM [Thanh et al., 2005]. In the 

case of our H. perforatum cell cultures, concentrations up to 200 µM of MeJ were tested, showing no 

impact on biomass accumulation. On the other hand, SA concentration values over 40-50 µM were 

responsible for a stall on growth due to an increased cell death in both HPS and Helos cultures (data 

not shown) while, in Salvia miltiorrhiza, SA concentrations up to 500 µM had minor effect on growth 
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[Chen et al., 1999]. Although the concentrations of 100 µM and 25 µM used for MeJ and SA 

(respectively) had no direct impact on biomass accumulation, subsequent treatment of these cultures 

with the elicitor led to a decrease in biomass accumulation, reaching dry-weight values lower than those 

observed in cultures treated only with the elicitor (Fig. 4.1 – A and B). Furthermore, all the results 

obtained for biomass accumulation were corroborated by those observed during the time course of the 

experiment, for cell viability analysis (Fig. 4.1 – C and D and Fig. 4.2), performed as described in 

chapter 2.2.1.2. An increased cell death was observed in cultures facing the elicitor, especially in those 

treated with MeJ or SA, prior to elicitation with C. gloeosporioides biomass. Similar decreases in 

biomass accumulation and cell viability are well documented for cell suspension cultures of many plant 

species, in which oxidative burst and hypersensitive response were detected after elicitation. As an 

example, suspension cultures of A. thaliana elicited with Fusarium oxysporum displayed high ROS 

production, associated with up to 50% increase in cell death, 44 h after treatment [Davies et al., 2006]. 

These defense mechanisms related to PCD will be studied and discussed in more detail in the following 

chapter. Treatment with SA (25 µM) showed a transient, negative effect on cell viability (1-2 days after 

treatment) while MeJ (100 µM) had no effect at all (Fig. 4.1 – C and D). Interestingly, suspension cell 

cultures from an H. perforatum variety from Macedonia, treated with MeJ (100 µM), displayed a 

significant decrease in cell viability, to values close to 70% [Gadzovska et al., 2007] showing, again, that 

variability in response to treatment occur not only between plant species, but also within a given 

species. 
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Figure 4.2: Cell viability of H. perforatum (Helos) suspension cells observed in (A) control cultures and 4 days after 
treatment with (B) MeJ, (C) SA or (D) C. gloeosporioides. Cultures pre-treated with (E) MeJ or (F) SA, prior to pathogen 
elicitation, are also shown. Viable cells are stained in green (FDA) while non-viable cells are stained in red (PI). All images are 
representative of the most common results found under the specified treatments. 
 
 
 During the course of this experiment, we also looked for any possible changes in the medium 

pH values (Fig. 4.3). Regarding this parameter, we can clearly see that treatment with C. 

gloeosporioides elicitor was responsible for lower medium pH values, in both HPS and Helos 

accessions. After the pathogen elicitor treatment, at day 5, pH values lowered significantly and no 

longer rose, as usually observed in control cultures. Changes in medium pH upon pathogen elicitation 

vary greatly according to the plant species studied. While for most plant species medium alkalinization 

is observed, suspension cultures from many species display a significant acidification of the medium 

[Hagendoorn et al., 1994; Nef-Campa et al., 1994], as in the case of our H. perforatum cell cultures. 

As previously referred in chapter 3, cell death and subsequent release of their content into the medium 

is known to affect the medium pH, lowering its values. Therefore, cell death could be one reason for the 

medium pH drop, since a significant decrease in cell viability was observed in both suspension cultures, 

from the seventh day (24 h after elicitor treatment) until the end of the study (Fig. 4.1 – C and D). 

Moreover, possible changes in the nutrient uptake may also have a role in this situation and will be 

discussed later in this chapter. Another mechanism possibly implicated with medium acidification may 

be the uptake of Fe3+ by the cells. Peroxidases have a Heme group that requires Fe2+ as a cofactor for 

correct enzymatic activity. Upon pathogen attack, an increase in peroxidase activity is usually observed, 

associated with lignin synthesis, constituting a common defense mechanism found in plants. It has 
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been postulated that a Fe3+ membrane transporter, also known as turbo system, is responsible for the 

transport of Fe3+ into the cell, with consequent release of H+, acidifying the medium [Bienfait, 1988]. As 

for the effects of the systemic defense signaling phytohormones, MeJ priming leads to a transient 

increase in medium pH values for both H. perforatum cultures, 24 h after treatment (Fig. 4.3). Despite 

this increase, the values observed 48 h after priming were similar to those found in control cultures, 

and remained alike until the end of the study. Treatment with SA alone had no effect on medium pH, 

when compared to control. Moreover, cells treated with the elicitor, 24 h after MeJ or SA priming, 

displayed a similar decrease in medium pH values, as observed for elicitor-treated suspension cells 

(Fig. 4.3). 

 

Figure 4.3: Changes on the medium pH values observed in both H. perforatum (A) HPS and (B) Helos suspension cell 
cultures during their exponential growth period. Suspension cells were treated with MeJ (100 µM), SA (25 µM), or C. 
gloeosporioides elicitor (Cg). The samples indicated as MeJ+Cg and SA+Cg represent cells primed with MeJ (100 µM) or SA 
(25 µM), respectively, 24 h before the addition of the fungal elicitor. 
 

 

4.3. Changes on nutrient uptake parameters of elicited H. perforatum suspension cells 
 

 In these experiments we analyzed the nutrient consumption profiles for the three major nutrient 

sources. Namely, sugar (sucrose, glucose and fructose), phosphate and nitrogen (nitrate and 

ammonium) consumption were monitored during the exponential growth period of HPS and Helos cell 

cultures, when these were challenged with the phytohormones (MeJ or SA) and/or the C. 

gloeosporioides elicitor suspension. 

 

4.3.1. Sugar 

 

 During the course of this experiment we observed that the sugar concentration in the culture 

medium was significantly higher after treatment with C. gloeosporioides, when compared to the 
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medium of control cultures. Nonetheless, this information can be misleading since the amount of viable 

biomass lowered significantly after C. gloeosporioides elicitation, as previously described. Therefore, we 

will only present the final results for sugar consumption, related to the viable biomass available in each 

experimental set. Figure 4.4 (A and B) shows the total sugar consumption rates for HPS and Helos, 

while figure 4.4 (C and D) shows the relation between the consumption of sugar and cell growth for 

both cultures (biomass yield per gram of sugar). 

From figure 4.4 (A and B) we can see that C. gloeosporioides elicitor treatment was responsible 

for an increase, of approximately 30%, in the rate of sugar consumption, observed between days 7 (24h 

after treatment) and 10, in both HPS and Helos cell cultures. While in some cases a repression in sugar 

uptake has been reported [Bourque et al., 2002; Amborabé et al., 2008], the most common response 

of plant cells upon pathogen elicitation is an increase, at least transient, in sugar uptake [Truernit et al., 

1996; Fotopoulos et al., 2003; Azevedo et al., 2006]. The increase in sugar consumption by H. 

perforatum suspension cells seems to be a direct consequence of C. gloeosporioides elicitation since no 

significant changes were observed on cultures pre-treated with MeJ or SA, prior to C. gloeosporioides 

elicitation. Moreover, MeJ or SA alone seem to have no significant effect on sugar consumption rates in 

HPS or Helos, although a transient increase in the consumption rate was observed, at day 7, in MeJ-

treated HPS cultures. 

The differences in sugar consumption become more evident when we analyze their impact on 

cell growth (Fig. 4.4 – C and D). By observing the results obtained for HPS (Fig. 4.4 – A and C) and 

Helos cultures (Fig. 4.4 – B and D) we can see that, although there was a small increase in sugar 

consumption after elicitor treatment, this extra sugar was not used for cell growth, during days 7 and 

10. Therefore, this carbon source could have been diverted to other cellular needs, such as energy 

production or biosynthesis of new structures/compounds, probably implicated in H. perforatum defense 

mechanisms. As discussed later in chapters 6 and 7, pathogen elicitation is responsible for a boost in 

xanthone accumulation, in both H. perforatum accessions. In fact, the role of sugar in fuelling the 

biosynthetic pathways of defense-related compounds has already been widely accepted [Herbers et al., 

1996; Ehness et al., 1997; Bourbouloux et al., 1998]. While in our case a reduction of 40 - 50% (for 

HPS and Helos, respectively) in biomass yield per gram of sugar was observed after pathogen 

elicitation, values close to 70% were found in elicited H. muticus cell suspension cultures, when 

compared to control [Carvalho et al., 2002]. Moreover, while pre-treatment with MeJ or SA apparently 

had no effect on sugar consumption rates (Fig. 4.4 – A and B) in both H. perforatum cell cultures 
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studied, this pre-treatment, prior to C. gloeosporioides elicitation, was responsible for a sharper 

reduction in the conversion of sugar into new biomass, observed between days 7 and 12, approximately 

(Fig. 4.4 – C and D). The lowest biomass yield per gram of sugar was observed at day 10, when 

reductions close to 65% - 85% (for HPS and Helos, respectively) were found, when compared to control 

cultures (Fig. 4.4 – C and D). Despite their synergistic effect, MeJ or SA alone had no significant 

influence on this parameter for HPS cultures (Fig. 4.4 – C) while only a transient decrease was 

observed for Helos cultures, between days 7 and 10 (Fig. 4.4 – D). 

 

 

Figure 4.4: Changes on (A,B) sugar consumption rates (qC) and (C,D) biomass productivity in H. perforatum HPS and 
Helos suspension cell cultures, during their growth period. Suspension cells were treated with MeJ (100 µM), SA (25 µM), or 
C. gloeosporioides elicitor (Cg). The samples indicated as MeJ+Cg and SA+Cg represent cells primed with MeJ (100 µM) or 
SA (25 µM), respectively, 24 h before the addition of the fungal elicitor. 

 

 

4.3.2. Phosphate 

 

 As observed in figure 4.5 (A and B) it seems that, unlike sugar, phosphate consumption by H. 

perforatum suspension cultures was negatively influenced by elicitor treatment, especially from day 10 

until the end of the study. Although phosphate uptake inhibition by pathogen elicitation was observed in 

parsley suspension cells [Strasser et al., 1983], any comparison of these results with those found on 
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our H. perforatum suspensions can be deceivable. As previously discussed (chapter 3.3.2.2), plant cell 

death and release of its contents is known to be responsible for an increase in the concentration of 

phosphate in the medium, as observed in H. perforatum control cultures, after passing their stationary 

stages (Chapter 3 – Fig. 3.4). Apparently, a similar conclusion can be drawn from this experiment since 

a decrease in cell viability (Fig 4.1 – C and D; Fig. 4.2 – D to F) was observed after C. gloeosporioides 

elicitation, with or without prior treatment with MeJ or SA. The release of phosphate from death cells 

into the medium may constitute a background noise strong enough to mask any changes on phosphate 

consumption rates related to the viable cells available. In a similar way, no useful conclusions can be 

drawn from the relation between consumption rates and cell growth for cultures treated with the C. 

gloeosporioides elicitor (4.5 – C and D). As for MeJ or SA, it is clear that none of these phytohormones 

related to systemic defense signaling pathways have any impact, alone, on phosphate consumption 

rates, in both H. perforatum cell cultures studied. 

 

 

 
Figure 4.5: Changes on (A,B) phosphate consumption rates (qP) and (C,D) biomass productivity in H. perforatum HPS 
and Helos suspension cell cultures, during their growth period. Suspension cells were treated with MeJ (100 µM), SA (25 
µM), or C. gloeosporioides elicitor (Cg). The samples indicated as MeJ+Cg and SA+Cg represent cells primed with MeJ (100 
µM) or SA (25 µM), respectively, 24 h before the addition of the fungal elicitor. 
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4.3.3. Nitrate and Ammonium 
 

 Besides sugar and phosphate consumption, nitrogen uptake was also evaluated in H. 

perforatum suspension cells, upon elicitation treatments. As observed below, the profiles of total 

nitrogen (nitrate + ammonium) consumption rates, for HPS and Helos cells, show a general decrease in 

nitrogen consumption due to C. gloeosporioides treatment (namely after day 10) and regardless any 

pre-treatments with the phytohormones MeJ or SA (Fig. 4.6 – A and B). This result may be associated 

to the increased cell death, observed upon pathogen elicitation. In fact, as discussed later in chapter 5, 

H. perforatum cells developed a hypersensitive response upon treatment with the pathogen elicitor. As 

referred by some authors, programmed cell death, induced by biotic stress, can be responsible for a 

decrease in the protein content within the cells (as observed for P. pinaster suspension cultures elicited 

with B. cinerea [Azevedo, 2005]) as well as for an efflux of nitrate to the culture medium [Wendehenne 

et al., 2002]. Furthermore, although no effects were observed in H. perforatum suspension cells treated 

with the phytohormones (Fig. 4.6), MeJ has been found to affect nitrate consumption by decreasing its 

uptake, as reported in Brassica napus plants [Rossato et al., 2002]. 

As observed in figure 4.6 (C and D), both H. perforatum cell cultures also showed a significant 

reduction in productivity (after day 7), as previously observed for sugar consumption (chapter 4.3.1). 

While nitrogen consumption was reduced upon pathogen elicitation, some of this nutrient could also 

have been diverted to defensive processes instead of growth. In fact, a myriad of proteins, known to 

accumulate upon biotic stress, have already been identified, in many plant models, displaying not only 

direct defensive functions but also other roles, such as storage (VSPs) [Wendehenne et al., 2002; van 

Loon et al., 2006]. 
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Figure 4.6: Changes on (A,B) consumption rates of nitrogen sources (qNtot) and (C,D) biomass productivity in H. 
perforatum HPS and Helos suspension cell cultures, during their growth period. Suspension cells were treated with MeJ 
(100 µM), SA (25 µM), or C. gloeosporioides elicitor (Cg). The samples indicated as MeJ+Cg and SA+Cg represent cells 
primed with MeJ (100 µM) or SA (25 µM), respectively, 24 h before the addition of the fungal elicitor. 
 

 

4.4 Discussion 

 

 From the analysis of the previous growth and survival parameters we can conclude that 

pathogen challenging was responsible for an increased cell death, estimated by the decrease in cell 

viability but also by the medium pH drop and reduced biomass accumulation, observed after treatment 

with the C. gloeosporioides elicitor preparation. This response is probably associated with plant defense 

mechanisms such as hypersensitive response (ROS production) and/or an increase in the synthesis of 

phytoalexins, which can also become toxic for the plant cells [Dmitriev, 2003; Qin et al., 2004; Davies 

et al., 2006]. In fact, both ROS burst and hypersensitive cell death were observed in C. gloeosporioides-

elicited cell cultures, as discussed in the next chapter. Moreover, accumulation of secondary 

metabolites, namely xanthones, occurred in elicited cells, as shown in chapters 6 and 7. Concomitantly, 

no significant changes on survival parameters were observed due to phytohormone (MeJ or SA) 

treatment only, much like what will be discussed further, for ROS production and phenylpropanoid 

metabolism, where these phytohormones had a low or absent impact when used alone. The relevance 

of these two mechanisms in H. perforatum defense against C. gloeosporioides will be analyzed in more 

detail in the following chapters. 

Besides these parameters, the increase in sugar consumption, observed upon pathogen 

elicitation and not directly related to suspension cell growth, may be a clue to the possible shift of 

carbon sources from primary to secondary metabolism. It is known that a significant proportion of the 

carbon that enters both glycolytic and tricarboxylic acid (TCA) cycle pathways is channeled to the 
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synthesis of secondary metabolites [Plaxton, 1996]. Further support for the interaction between sugar 

consumption and plant defense comes from the fact that cell wall invertases can be induced by viral, 

bacterial and fungal infections [Kanabus et al., 1986; Herbers et al., 1996]. Moreover, whereas sugars 

can be directly used as a source of energy or as carbon-skeletons for the synthesis of defensive 

compounds, they may also be associated to gene expression, including those involved in systemic 

acquired resistance [Herbers et al., 1996; Bourbouloux et al., 1998]. 

While useful results from sugar consumption could be observed, the study of phosphate 

consumption became inconclusive, most likely due to an increased cell death observed upon pathogen 

elicitation. Consumption of nitrogen sources was also affected by pathogen elicitation. Unlike what was 

observed for sugar intake, H. perforatum suspension cell cultures displayed a significant decrease in 

nitrogen consumption. As previously referred, the hypersensitive response observed after pathogen 

treatment could be responsible for an efflux of nitrate, as observed in other plant models. Despite this 

difference to sugar consumption, a decrease in productivity was also observed, most likely due to a shift 

of nitrogen sources from growth to storage and/or defensive functions [Rossato et al., 2002; 

Wendehenne et al., 2002; van Loon et al., 2006]. 

Considering the effect of the phytohormones on nutrient consumption parameters, we could 

see that, although SA alone (25 µM) had no effect on any of the parameters analyzed, MeJ (100 µM) 

was responsible for a transient reduction on biomass yield per gram of sugar, in a pattern closely 

related to that observed for C. gloeosporioides-elicited cultures and, probably, with similar implications 

in defense mechanisms. In fact, an increase in lignin accumulation was observed, on both H. 

perforatum suspension cell cultures, upon MeJ treatment (Chapter 7). Despite their low effects when 

used alone, pre-treatment of cultures with MeJ or SA, prior to C. gloeosporioides elicitation, potentiated 

H. perforatum cell responses to the pathogen presence in terms of biomass accumulation and cell 

viability, as well as in biomass yield per gram of sugar consumed. The role of these phytohormones in 

H. perforatum defense priming will be discussed along the next chapters. 
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5. The role of reactive oxygen species on H. perforatum 
response to elicitation. 
 

 
 
 

5.1. Introduction 

 
 The importance of Reactive Oxygen Species (ROS) in host defense was originally found in 

mammalian cells, associated with the respiratory burst of neutrophils [Hancock et al., 2001]. Apart 

from their direct oxidative damage ability, another role has been widely studied and assigned to ROS, as 

signaling agents in defense mechanisms. While initial studies were focused on animal cells, soon it 

became evident that similar defense mechanisms, associated with ROS, existed in plant systems. 

In plants, it has been found that ROS play an important role against both biotic and abiotic 

stresses [Apel et al., 2004; Mittler, 2006]. Moreover, ROS are also responsible for the cross-talk and co-

ordination of distinct plant responses [Fujita et al., 2006]. The response to one stress may lead to 

increased resistance to a second exposure of a similar stress but also to other types of stress. As an 

example, mild ozone exposure may be responsible for increased resistance to virulent pathogens 

[Sharma et al., 1996; Hancock et al., 2002]. 
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In terms of biotic interaction, pathogen recognition by plants is known to be responsible for 

oxidative bursts, the modulation of several defense-related genes and, eventually, hypersensitive cell 

death [Tenhaken et al., 1995; Resende et al., 2003; Bhattacharjee, 2005]. The increase in ROS 

accumulation, observed as oxidative bursts, may be due to an increased production but also due to a 

suppression in their degradation. Plant cells contain many components able to remove such reactive 

molecules, which include several antioxidant compounds (such as phenolic compounds, ascorbate or 

carotenes) as well as enzymes (such as catalases, peroxidases or superoxide dismutases). In this 

chapter we evaluated ROS production in both H. perforatum L. suspension cells available upon C. 

gloeosporioides challenging. The effect of SA or MeJ in ROS production was also studied in both 

pathogen-elicited and non-elicited cultures. Along with ROS production, H. perforatum ROS-scavenging 

capacity (both enzymatic and nonenzymatic) and hypersensitive cell death evidences were also 

monitored. 

 

 

5.2. Quantification of intracellular ROS (O2
-) in H. perforatum suspension cultures 

  

 Reactive oxygen species, such as the superoxide radical (O2
-), are formed during biotic stress 

conditions, as previously described in chapter 1.4. Intracellular accumulation of superoxide radical was 

quantified by the XTT method, according to Able (1998), as described in section 2.2.4.1. According to 

this method, XTT was directly added to the suspension cultures. Interaction of XTT with superoxide 

radical is responsible for an accumulative/irreversible production of the XTT-reduced form (formazan). 

Results obtained are depicted in figure 5.1. 

 Following H. perforatum elicitation with C. gloeosporioides biomass, a double burst of 

superoxide radical accumulation was observed, in both HPS and Helos cell suspension cultures. The 

first burst aroused immediately after elicitation (15 min), reaching a peak of accumulation during the 

first hour (Fig. 5.1). A second burst started more than one hour later, reaching a peak 4 h after C. 

gloeosporioides elicitation, in both H. perforatum cell cultures. Despite the response pattern similarity 

found in both cell cultures, an increased accumulation of superoxide radical was found in Helos, 

reaching values twice as high as those found in HPS (Fig. 5.1). It is although unclear whether this 

response is the result of an increased accumulation of O2
- or due to the morphological differences 

existing between these H. perforatum cultures. HPS increased cell aggregation, reported in chapter 3, 
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could difficult XTT interaction with intracellular O2
- as well as the release of formazan into the medium. 

Similar increases in O2
- levels were found in cell cultures pre-treated with SA and MeJ (at final 

concentrations of 25 µM and 100 µM, respectively), prior to C. gloeosporioides elicitation. Although pre-

treatment with these phytohormones had no effect in superoxide radical production in H. perforatum, a 

small increase in O2
- accumulation was observed when these compounds were used alone. When 

compared to control cultures, an increase of approximately 2-fold was observed after SA or MeJ 

treatment, in both H. perforatum cultures. Although significant, these values remain residual when 

compared to the double burst produced by elicitation with the pathogen (Fig. 5.1). 

 

 

Figure 5.1: Accumulative production of formazan in H. perforatum (A) HPS and (B) Helos suspension cell cultures 
following C. gloeosporioides elicitation and/or phytohormone (SA or MeJ) treatment. The samples indicated as MeJ+Cg and 
SA+Cg represent cells primed with MeJ (100 µM) or SA (25 µM), respectively, 24h before the addition of the fungal elicitor. 

 

 Intracellular ROS was also monitored recurring to H2DCFDA, in a method described in chapter 

2.2.4.2. This compound was used for assessing the total oxidative stress in both H. perforatum 

suspension cells available. The results, depicted in figure 5.2, are in accordance with those found 

previously with the XTT-formazan method. 

 Elicitation of H. perforatum cell cultures with C. gloeosporioides biomass was responsible for 

the typical double oxidative burst, found in non-host (type II) and host resistance mechanisms. In HPS, 

the first peak reached the highest value 30 min after C. gloeosporioides elicitation, while in Helos it 

occurred 1 h after pathogen challenge. Moreover, these values were 80% and 130% higher than those 

found in control cultures of HPS and Helos, respectively (Fig. 5.2). The second burst reached its peak 4 

h after pathogen challenge, in both HPS and Helos cultures. This peak was responsible for an increase 

of 100% and 300% on the internal ROS accumulation, when compared to HPS and Helos control 

cultures, respectively (Fig. 5.2). In accordance to the XTT method, we can see that the double oxidative 
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bursts occurred approximately at the same time in both cell cultures and were, again, significantly more 

intense in Helos cultures. In fact, while the basal levels were nearly the same for both cell cultures, the 

second burst developed by elicited Helos cultures was approximately 170% more intense than the 

corresponding burst found in HPS cultures. 

Pre-treatment with SA or MeJ, at the usual concentrations, had no influence on the oxidative 

bursts observed for C. gloeosporioides-elicited cultures. Nonetheless, MeJ or SA alone were responsible 

for a small, transient increase in the internal ROS accumulation for both H. perforatum cell cultures, 

which lasted approximately 8 - 12 h before basal levels were fully restored. 

 

 

 

Figure 5.2: Quantification of intracellular ROS by the H2DCFDA method in H. perforatum (A) HPS and (B) Helos 
suspension cell cultures, following C. gloeosporioides elicitation and/or phytohormone (SA or MeJ) treatment. The samples 
indicated as MeJ+Cg and SA+Cg represent cells primed with MeJ (100 µM) or SA (25 µM), respectively, 24h before the 
addition of the fungal elicitor. 

 

 Regardless of the experimental method used, it is clear that both H. perforatum suspension cell 

cultures respond similarly to C. gloeosporioides elicitation. This double oxidative burst response shows 

a rapid and short phase I burst (common also to compatible interactions) that occurs within 1 h [Low et 

al., 1996; Janisch et al., 2004] and a phase II burst that occurs only in incompatible interactions. 

Usually, this second burst is more intense and lasts longer than the first one [Wojtaszek et al., 1997], 

starting approximately 2 h after pathogen recognition, although the kinetics may vary greatly according 

to the plant and/or the non-host pathogen [Allan et al., 2001]. 
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5.3. Quantification of extracellular ROS (H2O2) in H. perforatum suspension cultures 
 

 Among the several reactive oxygen species produced by plants upon pathogen recognition, 

hydrogen peroxide (H2O2) plays a central role in plant defense. Although also toxic to invading 

organisms, H2O2 is known to act mainly as a signaling molecule in plants, due to its easy diffusion 

through the cell membrane, unlike other ROS, such as the superoxide radical [Huang et al., 2002]. The 

central role of H2O2 in plant defense is further supported by several studies that associate this molecule 

with programmed cell death, by activating MAPK cascades, changing Ca2+ fluxes or redox status as well 

as interacting with other signaling molecules like SA or nitric oxide [Levine et al., 1994; Gechev et al., 

2005; Torres et al., 2005]. Due to its increased relevance in plant defense, we also investigated any 

possible changes in H2O2 accumulation in H. perforatum suspension cultures following MeJ, SA and/or 

C. gloeosporioides treatment. A xylenol-based method was used, as described in chapter 2.2.4.3. 

Results of H2O2 accumulation through time (12 h) are depicted in figure 5.3. 

 

 

Figure 5.3: Quantification of hydrogen peroxide (H2O2) accumulated in H. perforatum (A) HPS and (B) Helos suspension 
cell cultures, following C. gloeosporioides elicitation and/or phytohormone (SA or MeJ) treatment. The samples indicated as 
MeJ+Cg and SA+Cg represent cells primed with MeJ (100 µM) or SA (25 µM), respectively, 24h before the addition of the 
fungal elicitor. 

 
 Extracellular accumulation of H2O2 was observed on H. perforatum cell suspension cultures, 

under normal growth conditions. Control cultures showed a stable, constant production of this 

molecule, with concentrations of 5 µM (approximately) found on culture media from both HPS and 

Helos accessions (Fig. 5.3). Considering the innumerous roles and hormonal nature of H2O2, its 

constitutive presence in the media, under normal growth conditions, could be expected and associated 

to physiological processes other than a direct defensive function [Orozco-Cardenas et al., 1999]. 
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Treatment with SA was responsible for a significant increase in extracellular accumulation of 

H2O2. Both H. perforatum accessions showed, 12 h after treatment, an increase of 40 - 60% 

(approximately) in the extracellular H2O2 levels (Fig. 5.3). Nonetheless, values returned to normal 24 h 

after treatment (data not shown). The cross-talk between SA and H2O2 has already been extensively 

reported. On the one hand, Rao et al. (1997) reported the accumulation of H2O2 in Arabidopsis leaves 

after plant exposure to exogenous SA. In Triticum aestivum, application of SA (1mM) was also 

responsible for a substantial increase in H2O2 content [Agarwal et al., 2005]. On the other hand, 

exogenous application of H2O2 induced the accumulation of SA and its direct precursor, benzoic acid, in 

N. tabacum leaves [Leon et al., 1995]. A similar pattern in extracellular H2O2 accumulation was 

observed upon MeJ treatment. Although less intense than the one observed for SA treatment, the 

results suggest that H2O2 production in H. perforatum may also be influenced by this phytohormone. As 

reported for other plant models, MeJ treatment has already shown to enhance H2O2 generation. Per 

instance, MeJ concentrations as low as 10 µM were applied to Eriobotrya japonica fruits, improving 

H2O2 accumulation [Cao et al., 2008]. 

Elicitation with C. gloeosporioides biomass was also responsible for a significant increase in 

H2O2 accumulation levels, readily observable 30 minutes after treatment, on both H. perforatum 

accessions (Fig. 5.3). In both cases, a peak in accumulation was observed 2 h after treatment. While 

Helos showed absolute values higher than those found in HPS (23 µM and 18 µM, respectively), both 

accessions responded equally, displaying a 3 fold increase (approximately) in H2O2 accumulation, when 

compared to control cells. Suspension cell cultures from other plants developed a similar response to 

pathogen elicitation. For instance, A. thaliana, elicited with a preparation from Fusarium oxysporum, 

displayed a single peak in H2O2 accumulation of 20 µM, 60 – 80 minutes after treatment [Bindschedler 

et al., 2006; Davies et al., 2006], curiously showing both timing and accumulation values similar to 

those observed in elicited H. perforatum cell cultures. Phaseolus vulgaris suspended cells showed a 

faster response to a C. lindemuthianum elicitor preparation, reaching a peak of 15 µM, 10 -15 minutes 

after treatment [Bindschedler et al., 2001]. A single H2O2 peak was also observed in N. tabacum 

suspended cells, 30 min after treatment with an elicitor preparation from P. syringae [Baker et al., 

2005] while a double burst response was observed in tobacco leaves upon elicitation with 

oligogalacturonides [Bellincampi et al., 2000]. The results obtained for H. perforatum cells are dubious, 

being difficult to conclude whether these cells display a second peak in extracellular H2O2 accumulation 
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or not. If present, this second peak should occur approximately 8 h after pathogen treatment, displaying 

similar accumulation levels as those observed for the first peak (Fig. 5.3).  

Although the existence of a second peak in H. perforatum suspension cells is not clear, we can 

conclude that, in general, external ROS accumulation occurred in accordance to what was previously 

observed for the accumulation of internal ROS (chapter 5.2). While a lower response was observed 

upon SA or MeJ treatment, elicitation with C. gloeosporioides biomass was responsible for an intense 

response, associated with bursts of ROS production, both intra- and extracellularly. Additionally, no 

significant differences were observed on pathogen-elicited cultures, pre-treated with SA or MeJ (Fig. 

5.3), as previously observed for intracellular ROS accumulation (chapter 5.2). Apparently, the 

recognition of the pathogen elicitor by H. perforatum cells seems to play a central role in the 

establishment and intensity of ROS defensive responses, regardless the presence of the defensive 

phytohormones SA or MeJ at the site of infection. 

 
 

5.4. Antioxidant enzymes in H. perforatum suspension cultures 
 
 
 Accumulation of ROS, typical of incompatible biotic interactions, may be the result of an 

increase in their production. Nonetheless other mechanisms, including suppression of degradation, 

may equally contribute to ROS build-up. Due to their toxicity, living organisms have developed several 

approaches to scavenge such highly reactive compounds, thus maintaining the ROS balance within the 

cell. As previously referred, these scavenge mechanisms include nonenzymatic as well as enzymatic 

means (such as catalases, peroxidases or superoxide dismutases). It is therefore important to study 

how the activity of H. perforatum ROS-scavenging enzymes is affected during pathogen elicitation 

and/or SA or MeJ treatment. 

 
5.4.1. Superoxide dismutase (SOD) 
 

 Superoxide dismutases (E.C. 1.15.1.1) are metaloenzymes responsible for the conversion of 

the extremely reactive O2
- into H2O2 (2O2

- + 2H+ --- H2O2 + O2). Several isoforms exist, being differentially 

distributed in the cytosol, peroxisomes, glyoxisomes, mitochondrias or in the chloroplasts [Asghari et 

al., 2006]. Overall SOD activity was measured according to its ability to inhibit the photochemical 

reduction of NBT, as described in chapter 2.2.6.2. Results observed for H. perforatum protein extracts 

are shown in figure 5.4. 
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Figure 5.4: Changes on superoxide dismutase (SOD) activity observed in protein extracts from H. perforatum (A) HPS and 
(B) Helos suspension cells, following C. gloeosporioides elicitation (Cg) and/or phytohormone (SA or MeJ) treatment. The 
samples indicated as MeJ+Cg and SA+Cg represent cells primed with MeJ (100 µM) or SA (25 µM), respectively, 24h before 
the addition of the fungal elicitor. 

 
 As observed in figure 5.4, suspension cells from both H. perforatum accessions developed 

similar response patterns, according to the treatments they were subjected. Treatment with C. 

gloeosporioides biomass was responsible for an initial increase in SOD activity and, 4 h after elicitation, 

values observed in protein extracts from HPS cells were 40% higher than observed in control samples, 

while Helos displayed an increase of up to 60%. Despite this initial increase, SOD activity returned to 

basal levels, 12 h after elicitation (approximately). Values kept decreasing thereafter and, 2 days after 

elicitor treatment, SOD activity on both H. perforatum accessions reached values approximately 70% 

lower than those observed in control samples (Fig. 5.4). Pathogen recognition has also shown to be 

associated to a decrease in SOD activity from other plant species. When P. pinaster suspension cells 

were elicited with B. cinerea spores, a decrease in the activity of several SOD isoforms was observed 

within 24 h [Azevedo, 2005]. In a similar way, P. vulgaris leaves showed reduced SOD activity upon a 

viral infection [Clarke et al., 2002]. Despite these and other cases, SOD activity seems to vary greatly 

according to the plant-pathogen model used. Incompatible interactions between N. tabacum and 

Peronospora tabacina [Edreva et al., 1991] or between Coffea arabica and Hemileia vastatrix [Daza et 

al., 1993] have displayed opposite results, with an increase in SOD activity. Moreover, the complexity 

and specificity associated to this defense mechanism is further supported by the interaction between 

Pennisetum glaucum and Sclerospora graminicola. While SOD activity decreased when a susceptible 

genotype from P. glaucum was inoculated with S. graminicola, a resistant genotype showed increased 

SOD activity upon pathogen recognition [Babitha et al., 2002]. 

Along with the differential response developed by cells upon pathogen recognition, treatment 

with SA was also responsible for significant changes (Fig. 5.4). Upon SA treatment, both H. perforatum 
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cells displayed an overall increase in SOD activity. Unlike the transient increase previously observed 

during C. gloeosporioides elicitation, SOD activity levels begun raising only 6 h after SA treatment 

(approximately) but no longer decreased, reaching a somewhat constant level. As shown in figure 5.4, 

SOD activity found between the 12th hour and the last day of the study was 40 - 50% higher than the one 

found in control cells of HPS and Helos, respectively. The incremental effect of SA in SOD activity has 

also been reported in other plants such as T. aestivum [Agarwal et al., 2005], Nicotiana plumbaginifolia 

[Bowler et al., 1989] or A. thaliana [Rao et al., 1997]. Furthermore, SA was also found to up-regulate a 

gene encoding a Cu,Zn SOD isozyme in P. pinaster [Azevedo et al., 2004]. As observed for SA 

treatment, changes in SOD activity due to MeJ treatment were qualitatively similar, although displaying 

minor increases, on both H. perforatum accessions studied (Fig. 5.4). As reported for other plants, 

exogenously applied jasmonates frequently increase SOD activity, as observed in Helianthus annuus 

[Naik et al., 2002] or Brassica napus [Comparot et al., 2002]. Nonetheless, some physiological 

mechanisms are known to interact with this process. For instance, it has been reported that cytokinins, 

such as benzyladenine, can interfere with jasmonates, thereby blocking its effects on SODs [Naik et al., 

2002]. 

Furthermore, although both H. perforatum suspension cells displayed a differential response to 

SA or MeJ treatment alone, when these pre-treated cells were later elicited with the pathogen biomass, 

the levels of SOD activity followed a pattern similar to the one shown by cells elicited with C. 

gloeosporioides only (Fig. 5.4). Although the results obtained (Fig. 5.4) show a stronger response in SA 

pre-treated cells (SA+Cg) during the first 6 – 12h, it is unclear whether the higher activity is associated 

to a boost in response or if that is simply related to the higher basal levels, found on SA-treated cells at 

the time of elicitation. Despite this difference, SOD activity found 24 – 48h after C. gloeosporioides 

elicitation seems to depend solely on the pathogen, regardless the pre-treatment effects or the presence 

of any of the phytohormones used. 

 
5.4.2. Catalase (CAT) 
 

 Catalases (E.C. 1.11.1.6) play an important role in several plant developmental processes 

including defense, aging and senescence; consequently, they are under strict temporal and spatial 

regulation [Magbanua et al., 2007]. These enzymes are responsible for the final step in ROS 

degradation, converting hydrogen peroxide into harmless water (2H2O2 --- H2O + O2). In order to study 

the influence of catalases in H. perforatum defense mechanisms, its activity was measured 
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spectrophotometrically according to Aebi (1984), as described in chapter 2.2.6.2. Results obtained for 

both Helos and HPS suspension cells are shown in figure 5.5. 

 

 

Figure 5.5: Changes on catalase (CAT) activity observed in protein extracts from H. perforatum (A) HPS and (B) Helos 
suspension cells, following C. gloeosporioides elicitation (Cg) and/or phytohormone (SA or MeJ) treatment. The samples 
indicated as MeJ+Cg and SA+Cg represent cells primed with MeJ (100 µM) or SA (25 µM), respectively, 24h before the 
addition of the fungal elicitor. 

 
 As observed in figure 5.5, elicitation of H. perforatum cells with C. gloeosporioides biomass was 

responsible for a transient increase in CAT activity. Although the peak was not fully defined, it is clear 

that an increase in activity, of at least 60%, occurred on both H. perforatum accessions. Despite this 

initial increase, CAT activity eventually decreased, reaching values lower than those observed in control 

samples, 24 h after elicitation. Until the end of the study, at the 48th hour, CAT activity in pathogen-

elicited cells kept decreasing, reaching values 40 - 50% lower than those found in control samples from 

HPS and Helos, respectively (Fig. 5.5). The decrease in CAT activity upon pathogen elicitation is a 

widely reported feature. A. thaliana cultured cells showed lower CAT activity after elicitation with the 

phytotoxin fusicoccin [Beffagna et al., 2007] while, for instance, the pathogen Phytophthora nicotianae 

was responsible for the down-regulation of CAT gene expression in N. tabacum [Blackman et al., 2008]. 

 Unlike what was previously observed for SOD activity, neither SA nor MeJ treatment were 

responsible for differential responses. During the time course of the experiment, no changes in CAT 

activity were observed on suspension cells from both H. perforatum accessions used (Fig. 5.5). 

Furthermore, pre-treatment of cells with these phytohormones, prior to elicitation with the pathogen, did 

not affect the results previously referred for cells treated with the pathogen only (Fig. 5.5). While 

pathogen elicitation usually results in a decrease in CAT activity, the effects of SA or MeJ treatments are 

not so easily generalized, varying among host and pathogen species studied. As observed in H. 

perforatum suspension cells, CAT activity in N. tabacum was also not affected by SA treatment [Fodor 
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et al., 1997]. Nonetheless, SA is usually responsible for a decrease in CAT activity and/or gene 

expression, as reported for Hordeum vulgare [Zeshuang et al., 1997], Solanum tuberosum [Panina et 

al., 2004] or Oryza sativa [Shim et al., 2003]. Furthermore, reports exist indicating increases in CAT 

activity upon SA treatment [Agarwal et al., 2005]. As for MeJ, divergence in results also exists. For 

instance, while in one study using A. thaliana plants a decrease in CAT activity was observed after 

treatment with MeJ (10 µM) [Maksymiec et al., 2002], a similar study reported a significant increase in 

CAT activity upon treatment with 100 µM of MeJ [Jung, 2004]. Additionally, the same MeJ 

concentration (100 µM) effectively induced CAT activity in Morinda elliptica, 24h after treatment. 

Considering all these variations in response, described for both SOD and CAT activities, it is 

clear that multiple parameters influence enzymatic ROS-scavenging mechanisms. Pathogen species, 

host species, phytohormonal concentrations used or timings, all exert significant effects in the fine-

tuning of plant defense responses. In fact, the defensive fine-tuning seems to be a continuous process, 

associated, for example, to shifts in enzymatic activity. Both SOD and CAT activities have been shown to 

change drastically with time. As reported in L. esculentum – B. cinerea interaction, both SOD and CAT 

activities increase initially, upon pathogen recognition. Nonetheless, this increase is followed by a sharp 

decrease in enzymatic activities, 2 - 3 days after elicitation, as disease advances in the host [Kuzniak et 

al., 2005]. 

The initial, transient increase in ROS-scavenging enzymes activity, observed during H. 

perforatum – C. gloeosporioides interaction, could be associated to a basal or general response to the 

increase in ROS, accumulated immediately after elicitation by the pathogen. The following decrease in 

SOD/CAT activities, on the other hand, could be related to a specific, regulated plant response upon 

recognition of a particular pathogen or simply due to cell integrity/viability losses, as disease advances 

or HR occurs. Further support in this topic should come, per instance, from gene expression studies, 

concerning CAT or SOD isozymes from elicited H. perforatum cells, as referred in chapter 8.6. 

 
 

5.5. Antioxidant potential of H. perforatum methanolic extracts 
 
 
 Along with the ROS-scavenging enzymes, we also evaluated the scavenging potential of H. 

perforatum crude methanolic extracts. For this purpose, the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay 

was performed, as described in chapter 2.2.7. The results for the antiradicalar activity of methanolic 

extracts are depicted in figure 5.6. 
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Figure 5.6: Antioxidant potential of methanolic extracts obtained from H. perforatum (A) HPS and (B) Helos suspension 
cell cultures 48 h after C. gloeosporioides elicitation and/or phytohormone (SA or MeJ) treatment. The samples indicated as 
MeJ+Cg and SA+Cg represent cells primed with MeJ (100 µM) or SA (25 µM), respectively, 24h before the addition of the 
fungal elicitor. 

 

 Methanolic extracts from H. perforatum suspended cells have shown distinct antioxidant 

potentials, according to the accession studied as well as the treatments applied. In all six conditions 

assayed, Helos extracts (Fig. 5.6 – B) showed higher antioxidant potential than the corresponding HPS 

ones (Fig. 5.6 – A). Under normal growth conditions, Helos achieved an EC50 value of 0.65 mg DW/mL 

(Fig. 5.6 – B) while, for HPS extracts, this value was only achieved at concentrations 2 fold higher of, 

approximately, 1.31 mg DW/mL. Identical results were observed after SA or MeJ treatment (for 48 h), 

on both H. perforatum accessions. Nonetheless, extracts from treated HPS cells showed a tendency for 

higher ROS-scavenging potential than control cells, reaching EC50 values of 1.13 mg DW/mL 

(approximately), for both SA or MeJ treatment (Fig. 5.6 – A). 

 Unlike the small (or absent) effects of MeJ or SA treatments, elicitation with C. gloeosporioides 

biomass was responsible for a substantial increase in the antioxidant potential of H. perforatum 

extracts. As previously reported, elicitation of Helos cells with A. tumefaciens was responsible for an 

increase in the ROS-scavenging properties of methanolic extracts [Franklin et al., 2009]. Concomitantly, 

48 h after C. gloeosporioides treatment, EC50 values had dropped to 0.90 and 0.33 mg DW/mL in HPS 

and Helos, respectively (Fig. 5.6). Furthermore, pre-treatment of Helos cells with SA or MeJ, prior to 

pathogen elicitation, had no differential effect on the extracts’ antioxidant potential (Fig. 5.6 – B). On the 

other hand, a decrease in the EC50 values was observed in HPS cells pre-treated with SA (0.76 mg 

DW/mL) or MeJ (0.74 mg DW/mL), prior to pathogen elicitation (Fig. 5.6 – A). 

 The increase in antioxidant properties from H. perforatum methanolic extracts, observed upon 

C. gloeosporioides elicitation, should be directly associated to the significant changes in its composition, 

namely, the increase in xanthone production, described in the following chapters. As reported by some 
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authors, xanthones were found to effectively suppress ROS accumulation [Pinto et al., 2005; Foti et al., 

2005]. Furthermore, some major xanthones isolated from A. tumefaciens-elicited H. perforatum cells, 

but equally present in C. gloeosporioides-elicited cells, had proven to display antioxidant properties 

[Franklin et al., 2009].  

 
 

5.6. Lipid peroxidation in H. perforatum suspension cultures 
 

Free radicals are responsible for the damage of a myriad of cellular components such as DNA, 

proteins and lipids. Due to the results previously reported for ROS accumulation and scavenging, we 

decided to study its possible implications in lipid peroxidation of H. perforatum suspension cells, by 

quantifying the formation of MDA-TBA complexes (chapter 2.2.5). Figure 5.7 displays the results 

obtained for both HPS and Helos cell suspension cultures, elicited with C. gloeosporioides biomass 

and/or the phytohormones SA and MeJ. 

Lipid peroxidation is a biological process often associated with ROS production and 

hypersensitive cell death [Göbel et al., 2003]. Both plants and animals have evolved enzymatic and 

nonenzymatic mechanisms for the production of lipid peroxidation products [Sattler et al., 2006]. 

Although being a common, constant process in living organisms, lipid peroxidation levels can increase 

dramatically during stress situations, both biotic and abiotic [Baryla et al., 2000; Thoma et al., 2003; 

Mithöfer et al., 2004]. Pathogen recognition in incompatible interactions, for example, is responsible for 

oxidative stress conditions. The ROS produced interact with cell membrane components, resulting in 

the peroxidation of polyunsaturated fatty acids (PUFAs) in membrane lipids, therefore disrupting the 

selective permeability of the lipid bilayer. In the process, some lipid peroxidation products, such as 

jasmonates, can be formed, acting as signaling phytohormones, related to several plant defense 

mechanisms [Sattler et al., 2006]. 

 As depicted below in figure 5.7, elicitation of H. perforatum cultures with C. gloeosporioides 

biomass was responsible for a steady increase in lipid peroxidation, starting 6 h after treatment. The 

increase observed during this time may be associated with the increase in ROS production described 

earlier (chapters 5.2 and 5.3), which occurred within the first 8 h after cell suspension elicitation. 

Despite the initial increase in ROS levels, values observed 12 h after treatment were lower (in Helos) or 

no longer distinct from control cells (in HPS) (chapters 5.2 and 5.3). Nonetheless, lipid peroxidation 

levels kept rising (up to 100% in Helos and 40% in HPS) until the end of the study, 48 h after C. 
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gloeosporioides treatment. This suggests that other mechanisms, distinct from direct ROS contact, may 

be associated with the increase in lipid peroxidation. In fact, enzymes such as peroxidases or 

lipoxygenases may also be implicated in the conversion of unsaturated fatty acids into lipid peroxides 

[Mithöfer et al., 2004]. Additionally, other nonenzymatic mechanisms may be acting. Lipid peroxyl 

radicals, formed earlier by interaction with ROS, are known to interact with neighboring PUFAs, 

propagating a chain reaction of lipid peroxidation through the membranes [Sattler et al., 2006]. 

 

 

Figure 5.7: Lipid peroxidation in H. perforatum (A) HPS and (B) Helos suspension cell cultures, following C. 
gloeosporioides elicitation and/or phytohormone (SA or MeJ) treatment. The samples indicated as MeJ+Cg and SA+Cg 
represent cells primed with MeJ (100 µM) or SA (25 µM), respectively, 24h before the addition of the fungal elicitor. 

 

As previously observed for ROS production (chapters 5.2 and 5.3), pre-treatment of H. 

perforatum cultures with SA or MeJ, prior to C. gloeosporioides elicitation, had no effect on lipid 

peroxidation. However, when MeJ was used alone, a minor increase in lipid peroxidation was observed 

on both cell cultures (Fig. 5.7). This small increase could, at first, be related to the equally small 

increase in ROS levels observed before (Figs. 5.1 and 5.2). Nonetheless, SA alone had similar effects in 

ROS accumulation but no significant change on lipid peroxidation was observed (Fig. 5.7). It is therefore 

possible that other mechanisms, associated with jasmonate signaling, play a role in this situation. 

Véronési et al. showed that MeJ at high concentrations (800 µM) was responsible for lipoxygenase 

induction in tobacco cell suspension cultures [Véronési et al., 1996; Dubery et al., 2000]. Furthermore, 

Ali et al. (2006) have shown that lipid peroxidation increased significantly when Panax ginseng roots 

were treated with MeJ, while SA (both at 200 µM) had no effect in MDA production. In the case of our 

study, lower concentrations of MeJ were used (100 µM) but similar plant response mechanisms could 

be involved. Further studies of lipoxygenase or allene oxide synthase activity/expression (for example) in 

H. perforatum suspension cell cultures should be carried out in order to bring new clues to the possible 

relevance of these results. 
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5.7. Evidences on Hypersensitive Response in H. perforatum suspension cultures: TUNEL 
assay. 
 
 

Upon attempted infection and pathogen recognition, plants usually deploy a plethora of 

defensive reactions, including the previously described ROS build-up. These reactions are often 

accompanied by activation of mitogen-activated protein kinases, and the up- and down-regulation of 

gene expression, often leading to programmed cell death (PCD) processes, such as Hypersensitive 

Response (HR), at the infection site [Hancock et al., 2002]. 

 Considering the results previously shown along this chapter, we decided to evaluate the 

possibility of cell apoptosis occurrence by TUNEL, in order to better understand the effects of all the 

physiological changes taking place in H. perforatum cells upon elicitation. The TUNEL (Terminal 

Transferase dUTP Nick End Labeling) assay method is described in chapter 2.2.9 and the results are 

depicted in figure 5.8. 
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Figure 5.8: TUNEL assay performed in H. perforatum HPS suspension cell cultures. (A) Control cells exhibiting 
autofluorescence. (B) C. gloeosporioides-elicited cells, collected 18 h after treatment. (C) SA pre-treated cells, collected 18h 
after C. gloeosporioides elicitation. (D) Cells presenting apoptosis exhibited intense nuclei fluorescence. Nonfluorescent 
nuclei and autofluorescence indicated the absence of DNA cleavage. 

 
 

As a typical phenomenon from apoptotic cells, DNA cleavage results in several 3’-hydroxyl 

termini, target sites for the action of an enzyme (TdT) that catalyzes the addition of a fluorescent-tagged 

nucleotide. As observed in figure 5.8, HPS control cells developed autofluorescence, most likely 

associated to cell wall components, while TUNEL-positive nuclei were very few (Fig. 5.8 – A). C. 

gloeosporioides treatment, on the contrary, was responsible for a significant increase in nuclei 

fluorescence, indicating that DNA cleavage was taking place 18 h after elicitation (Fig. 5.8 – B and D). 

Pre-treatment of HPS cells with SA, prior to pathogen elicitation, led to similar results (Fig. 5.8 – C) 

while SA alone had no significant effects (data not shown), showing similar proportions of TUNEL-

positive nuclei than observed in control cells. 

The results obtained by TUNEL assay come in accordance with some evidences, previously 

observed in chapter 4. A decrease in biomass accumulation and cell viability, as well as phosphate 

leakage into the medium, indicated that programmed cell death in H. perforatum suspension cultures 

should be underway, following elicitation with the pathogen.  

 
 

5.8. Discussion 

 

Pathogen challenge often leads to a variety of defensive responses from plants. One of the 

earliest reactions include the accumulation of reactive oxygen species, such as superoxide or hydrogen 

peroxide which may, eventually, lead to hypersensitive response at the infection site [Hancock et al., 

2002; Bhattacharjee, 2005]. Upon C. gloeosporioides elicitation, H. perforatum suspension cells 

developed a classic, incompatible response, described in many other plant-pathogen interaction 

models. 

Production and accumulation of ROS has been one of the most studied defense mechanisms, 

not only in plants, but also in animal models, especially in phagocytic cells [Gelderman et al., 2007]. In 

both H. perforatum accessions studied, pathogen recognition was responsible for an immediate ROS 

build-up, both internally and extracellularly. A typical two-phase burst was observed for internal ROS 

accumulation, reaching peaks 1 and 4 hours after C. gloeosporioides elicitation (chapter 5.2). These 
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responses, associated with an increase in ROS accumulation, are not present in type I nonhost 

resistance but are common to both host (gene-for-gene) and type II nonhost resistance, as mentioned in 

chapter 1.4. Furthermore, in incompatible interactions two ROS bursts are observed, being the second 

one more intense and prolonged, often considered as an indicator of recognition and mediated 

response against the invading pathogen [Lamb et al., 1997; Azevedo, 2005]. 

 Besides the increase in ROS accumulation, C. gloeosporioides elicitation was also responsible 

for the decrease in enzymatic ROS-scavenging potential. Protein extracts from both H. perforatum 

accessions showed reduced SOD and CAT activities, already observable 24 h after elicitation and 

decreasing thereafter. Similar decreases have been observed in many other plant-pathogen models, as 

discussed in chapter 5.4. Under most circumstances, these enzymes act as control agents, preventing 

the accumulation of ROS, inevitable by-products from basal plant metabolism, as referred in chapter 

1.4. In fact, SOD and CAT activities showed a significant (but transient) increase during the first hours 

after pathogen elicitation, perhaps driven by a fast, basal response to increased ROS levels and not by a 

fine-tuned response to a specific, recognized invader. While apparently contradictory, suppression of 

ROS-scavenging enzymes activity during oxidative bursts is a necessary step towards an efficient and 

fast accumulation of reactive species, aimed for a local hypersensitive response, thus restraining the 

pathogen spread and protecting the plant as a whole, at the expenses of restricted tissues. 

 While enzymatic ROS scavenging means had been suppressed during H. perforatum – C. 

gloeosporioides interaction, one non-enzymatic mechanism had shown to improve upon pathogen 

recognition. Methanolic extracts from pathogen-elicited H. perforatum cells had shown an increased 

antioxidant potential, when compared to control cultures (chapter 5.5). While the differential regulation 

of enzymatic/non enzymatic scavenging mechanisms may seem conflicting, the compounds present on 

these extracts may have been synthesized to display other roles, more relevant in defense (such as 

antimicrobial activity), than providing antioxidant protection to H. perforatum cells. As discussed in 

detail in the following chapters, these extracts contain great amounts of one particular class of 

secondary metabolites, xanthones. Although able to contribute for the maintenance of ROS 

homeostasis, these compounds have shown to be scarce to circumvent the damaging effects of the 

increased accumulation of ROS observed and discussed below. 

 The combined effects of an overwhelming production of ROS and suppression of enzymatic 

ROS-scavenging means (despite the increase in scavenging potential from methanolic extracts) were 

responsible for an increased lipid peroxidation (chapter 5.6), observed in cell suspension cultures from 
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both H. perforatum accessions studied. While ROS accumulated during the double oxidative burst could 

account for the initial increase in lipid peroxidation, their values decreased within 12 h but lipid 

peroxidation kept increasing thereafter. Thus, other mechanisms (perhaps signaled by the previously 

accumulated ROS) could be responsible for the propagation of this plant response, as discussed in 

chapter 5.6. Impaired membrane structure and function may contribute to plant cell necrosis/apoptosis 

observed during hypersensitivity [Dubery et al., 2000]. Therefore the increased lipid peroxidation, as 

well as the DNA cleavage observed by the TUNEL labeling, may be associated to the decrease in cell 

viability, biomass accumulation and phosphate leakage, previously discussed in chapter 4, as evidences 

of programmed cell death in C. gloeosporioides-elicited H. perforatum cell cultures. As an extreme PCD 

reaction, the hypersensitive response is performed by the plant cells in order to restrict pathogen 

growth, being especially effective against biotrophic invaders. On the other hand, its advantages against 

necrotrophic pathogens are still a matter of debate since HR is thought, in fact, to favor the invading 

pathogen by providing it with new entry points in the local environment [Kliebenstein et al., 2008]. 

 While the leading responses were observed upon pathogen elicitation, treatment of H. 

perforatum suspension cell cultures with the phytohormones SA or MeJ also led to significant changes 

in ROS accumulation and scavenging. A small, transient increase in intracellular ROS was observed, as 

well as a later, yet significant, increase in H2O2 accumulation in the culture medium (chapters 5.2 and 

5.3). Although other ROS-scavenging enzymes (such as peroxidases) were not studied, it is curious to 

note how these phytohormones may have influenced the increase in extracellular H2O2 levels, by 

improving SOD activity without affecting degradation by CAT (chapter 5.4). Furthermore, while neither 

SA nor MeJ influenced the antioxidant potential from H. perforatum methanolic extracts (chapter 5.5), 

lipid peroxidation was affected by MeJ only (chapter 5.6). Since the last decade, SA and jasmonates 

have been generally considered as antagonizing hormones, with considerable data supporting it [Niki et 

al., 1998; Fidantsef et al., 1999; van Wees et al., 1999]. Nonetheless, increasing studies suggests that 

the cross-talk between these two hormones is more complex, with greater subtlety than simple 

antagonism [Mur et al., 2006; Liu et al., 2008]. Several aspects, such as hormone concentration, may 

influence the overall plant response. Per instance, studies in A. thaliana and N. tabacum suggested 

that, while antagonistic effects are dose dependent, synergistic effects are observed when SA and 

jasmonates are used at low concentrations, whereas high doses are responsible for cell death [Mur et 

al., 2006], as observed on both H. perforatum accessions, when SA concentrations higher than 50 µM 

were tested (unpublished results). Furthermore, it has also been suggested that some forms of cell 
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death require both jasmonate and SA signaling [Asai et al., 2000]. Although related to distinct defense 

signaling pathways, both phytohormones do not have necessarily to influence distinct aspects of plant 

defense. In our experimental model, both SA and MeJ had a similar, yet minor influence in ROS 

production and scavenging. Considering the always growing list of known variables influencing and 

interacting in plant defense, it would be naïve to point one single variable as responsible for one specific 

plant response without further, deeper studies. For this purpose, the use of H. perforatum cultures 

should be avoided and surrogated by better characterized and flexible plant models, such as A. 

thaliana. Regardless the individual roles of SA or MeJ in plant defense modulation, it is clear that C. 

gloeosporioides recognition was the prime source of response and no significant effects were observed 

by pre-treatment of H. perforatum cultures with these phytohormones, at the concentrations used. 

While response patterns were similar in both accessions, Helos showed a significantly higher 

accumulation of ROS, especially within the cell, when compared to elicited HPS suspension cultures. 

Considering their direct high toxicity (besides their signaling properties), it is possible that increased 

accumulation of ROS, observed in Helos, could account for its higher tolerance to C. gloeosporioides 

infection in vivo. Despite the simplistic nature of our experimental model, the defensive mechanisms 

developed by H. perforatum suspension cells are in accordance to those found in other plant models, 

studied both in vitro and in vivo. Nonetheless, further studies at the plant level should be carried out 

before drawing definite conclusions for this plant-pathogen model. 
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6. Induction of phenolic compounds in Hypericum 

perforatum L. cells by Colletotrichum gloeosporioides 

elicitation. 

 

 
6.1 Introduction 

 

Hypericum perforatum L. (St. John’s wort) is a medicinal plant used all over the world. Extract 

of HP is widely used to treat mild to moderate depression. The efficacy of the extract has been 

supported by some pharmacological and clinical studies [Erdelmeier et al., 2000, Izzo et al., 2003; 

Butterweck, 2003], attracting the interest of pharmaceutical industries. Presently, HP is one of the 

leading medicinal herbs sold both in EU and in USA [Erdelmeier et al., 2000]. 

The growing demand for HP-derived products and their phytochemical consistency lead the 

producers to utilize the biomass of cultivated plants instead of wild collection. Nowadays, HP cultivation 

covers several hundred hectares in Europe [Gaudin et al., 2003]. Most of these plants are grown 

organically, so they are highly exposed to pathogens. One of the main problems concerning the long-

term cultivation of HP is the fungal disease anthracnose, caused by Colletotrichum gloeosporioides 

[Gaudin et al., 2003]. This pathogen is responsible for heavy losses in HP plantations by lowering yield 
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and modifying the chemical composition of the plant extracts. Several efforts have been taken to obtain 

HP plants resistant to anthracnose. Nevertheless, little is known about the defence responses of this 

plant against pathogen attack. Differential accumulation of hyperforin and hypericin after elicitation of H. 

perforatum plantlets with C. gloeosporioides was reported [Sirvent et al., 2002]. 

Plant cell cultures of several species have been utilized successfully as models to study the 

biochemical changes related to plant defence responses against pathogens [Hagemeier et al., 1999; 

Conrath et al., 2002; Hahlbrock et al., 2003]. This system is relatively easy to manipulate and provides 

a better control of external factors that can interfere with the metabolic activities and thus advantageous 

over in vivo plant–pathogen interaction. 

Here, we report the utilization of HP cell suspension cultures as a tool to study the defence 

responses related to phenolic metabolism against C. gloeosporioides attack. 

 

6.2. Phenolic profiles of non-elicited and elicited H. perforatum cultures. Identification of HPS 

cell cultures major compounds. 

 

Fig. 6.1 (A) shows a typical HPLC profile of the phenolics produced by HPS cell cultures (control). 

A major group of compounds were putatively identified as xanthone derivatives with 1,3,6,7 oxygenation 

pattern based on their characteristic UV spectra previously defined [Dias et al., 2000 and 2001]. A 

major xanthone (compound X1) was putatively identified as mangiferin. HPLC–MS/MS analysis of this 

compound gave a molecular ion m/z [M - H]- of 421.5 and major –MS2 fragments at m/z 331.0 [M - H 

- 90]- and 301.2 [M - H - 120]-, losses characteristics of C-hexosyl compounds [Cuyckens et al., 2001]. 

HPLC–DAD–MS/MS comparison analysis with a commercial standard of mangiferin (Extrasynthèse, 

Genay, France) confirmed this identification. Xanthones X7 and X10 were identified as 1,3,7-trihydroxy-

6-methoxy-8-prenylxanthone (molecular ion m/z [M - H]- of 341.5) and y-mangostin (molecular ion m/z 

[M - H]- of 395.5), respectively, by HPLC–DAD and HPLC–MS–MS comparisons with pure compounds 

previously isolated from Hypericum androsaemum cell cultures [Dias et al., 2000]. Several other minor 

compounds were classified as 1,3,6,7-xanthone derivatives by HPLC–DAD–MS/MS analysis, but not 

fully identified.  

A second set of phenolics (F2–F4) produced by HPS cell cultures were identified as flavonols 

based on their characteristic UV spectra. An intense deprotonated ion of the aglycone (m/z 300.2) was 

observed for these compounds indicating that they are quercetin derivatives. Compounds F2 and F3 
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contained similar deprotonated molecular ion m/z at 463.6 and a major –MS2 fragment at m/z 301.0, 

corresponding to the loss of a hexoside residue from quercetin aglycone. Commercial standards 

(Extrasynthèse, Genay, France) were used to confirm the compound F2 as hyperosid and F3 as 

isoquercetrin. Compound F4 shared similarity with F2 and F3 in UV-spectra indicating its quercetin 3-

derivative nature. It has a deprotonated molecular ion at m/z 505.2 and –MS2 fragments at m/z of 

462.7 [M - H - 42]- (quercetin 3-hexoside), that resulted from the loss of an acetyl group, and m/z of 

301.0 (quercetin aglycone). According to its UV and mass spectra, this compound could be an acetyl 

derivative of hyperoside or isoquercetrin, a compound recently identified in H. perforatum plants [Silva 

et al., 2005]. 

HPS cells primed with MeJ produced several compounds that were not detected in the control 

cells (Fig. 6.1 – B, compounds F1, F5–F10). Compound F1 has shown a similar UV and MS–MS 

spectra (m/z of 463.8 and 301.0) to those of compounds F2 and F3, indicating that it is a quercetin-3- 

hexose derivative. Compounds F5–F10 were identified as flavone derivatives. Compounds F5 and F6 

have a deprotonated molecular ion at m/z 447.9, –MS2 fragment at m/z of 285.7 (aglycone) and a 

similar UV spectra (267 and 339 nm). They were characterized tentatively as 6- and/or 8-OH-apigenin-

7-hexosides based on their UV and MS–MS spectra. Compound F9 was identified as luteolin-C-prenyl by 

HPLC–DAD–MS/MS after comparison with the pure compound, previously isolated from H. 

androsaemum cell cultures [Dias et al., 1998]. Compounds F7, F8 and F10 were also assigned as 

luteolin derivatives due to their UV spectra (255, 277 and 346 nm) and the presence of an intense –

MS2 fragment at m/z of 285.9. Cells primed only with SA did not produce any new compounds. 

Several compounds were produced de novo in HPS cultures when elicited with C. gloeosporioides 

biomass (Fig. 6.1 – C) mainly in those cells previously primed with MeJ (Fig. 6.1 – D). On perusal of 

the UV spectra, the compounds were identified as 1,3,6,7 xanthone derivatives. Similar HPLC profiles 

were obtained when the cultures were first primed with SA and then elicited with CG extract (results not 

shown). Compound X2 was identified as 1,3,6,7-tetrahydroxyxanthone aglicone (single intense 

molecular ion m/z [M - H]- of 259.9). Compound X3 was putatively identified as mangiferin-C-prenyl. 

HPLC–MS/MS analysis of this compound gave a molecular ion m/z [M - H]- of 489.6 and major –MS2 

fragments at m/z 399.1 [M - H - 90]- and 369.2 [M - H - 120]-, which are losses characteristics of C-

hexosyl compounds [Cuyckens et al., 2001]. Compound X4 gave a molecular ion m/z [M - H]- of 517.7, 

major –MS2 fragments at m/z of 365.0 and an intense fragment at m/z of 257.1 characterized it as a 

dimer of 1,3,6,7-tetrahydroxyxanthone. Compounds X5 and X6 had an UV spectra characteristic of 
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1,3,6,7-oxygenated xanthones and molecular ion m/z [M - H]- of 326.9. Consequently, these 

compounds were identified as 1,3,6,7-tetrahydroxyxanthone-C-prenyl isomers. Compounds X8, X9 and 

X11 were putatively identified as isomers of y-mangostin (1,3,6,7-tetrahydroxyxanthone-C-bis-prenyl), 

since they have a similar molecular ion m/z [M - H] of 395.4 but different UV spectra and retention 

times. Several minor compounds were also identified as 1,3,6,7-tetrahydroxyxanthone derivatives but 

their identification was not fully accomplished. 
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Figure 6.1: HPLC–DAD chromatograms of methanolic extracts from H. perforatum HPS cells, at the 7th day of growth: (A) 
control samples; (B) MeJ-treated cultures; (C) cultures elicited with C. gloeosporioides elicitor; (D) cultures primed with 
MeJ, prior to C. gloeosporioides elicitation. Compounds: X1– mangiferin; X2– 1,3,6,7-tetrahydroxyxanthone; X3– 
mangiferin-C-prenyl; X4– 1,3,6,7-tetrahydroxyxanthone dimer; X5, X6– 1,3,6,7-tetrahydroxyxanthone-C-prenyl isomers; X7– 
1,3,7-trihydroxy-6-methoxy-8-prenylxanthone; X8, X9, X11– isomers of y-mangostin; X10– y-mangostin (1,3,6,7-
tetrahydroxyxanthone-bis-prenyl). F1– quercetin-3-hexose derivative; F2– hyperosid; F3– isoquercetrin; F4– acetyl 
quercetin-3-hexoside; F5 and F6– glycoside apigenin derivatives; F7, F8 and F10– luteolin derivatives; F9– luteolin-C-
prenyl. 

 

6.3. Differential accumulation of phenolics due to MeJ or SA priming and/or C. gloeosporioides 

elicitation. 

 

The accumulation of major phenolic groups, 24 h after of C. gloeosporioides elicitation of seven 

days old HPS cell suspension cultures is shown in Fig 6.2. HPS suspension cultures treated with the 

fungal elicitor showed a significant increase (seven fold) in xanthone accumulation. This burst was due 

to an increased production of usual xanthones (like X7 and X10) as well as the synthesis of new ones 

(Fig. 6.1 – C). This effect was particularly noticeable when HPS cells were primed with MeJ prior to 

elicitation with C. gloeosporioides biomass (Fig. 6.1 – D). In this condition, total xanthone content in 

HPS increased approximately twelve times when compared to the control (Fig. 6.2 – A). Addition of SA 

alone to HPS cultures also increased xanthone accumulation significantly (P<0.05).  

Flavonoids accumulation in HPS suspension cultures also changed considerably after priming 

and elicitation procedures (Fig. 6.2). Flavonoids were not detected in cells exposed only to the fungal 

elicitor. Accumulation of these compounds decreased in the cells primed with MeJ or SA, followed by C. 

gloeosporioides elicitation (P<0.05). HPS suspension cultures exposed only to MeJ produced a new 

class of flavonoids, the flavones (Fig. 6.2). Flavones represent a significant proportion (approx. 40%) of 

the total flavonoids accumulated in those cells. Interestingly, in this condition, the total accumulation of 

flavonoids (flavonols plus flavones) did not change significantly from the control (P>0.05). 

In spite of the significant changes in the accumulation of different phenolic classes, the total 

amount of phenolics produced by MeJ and SA-elicited cells was not statistically different to that of the 

control. However, HPS cells elicited with C. gloeosporioides biomass produced a higher amount of 

phenols, mainly due to the increase in xanthone accumulation (Fig. 6.2). 
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Figure 6.2: Total phenols produced by cell cultures of H. perforatum (accession HPS), at the 7th day of growth, 24 h after 
fungal elicitor addition. Cultures were treated with MeJ (100 µM), SA (25 µM) or C. gloeosporioides elicitor (Cg). The bars 
indicated as MeJ+Cg and SA+Cg correspond to cells primed with MeJ (100 µM) or SA (25 µM), respectively, before the 
addition of the fungal elicitor. Results are means (±SD) of six independent replicates, from two independent experiences. All 
the values are statistically different (P<0.05) except those signalized with the same letter. 

 

 

6.4. Time course changes of phenolic accumulation in cells due to MeJ and SA priming and CG 

elicitation. 

 

The elicitation process also induced significant changes in the phenols accumulated throughout 

the culture period by the cells (Fig. 6.3). HPLC analysis of the cell culture medium did not show any 

traces of phenolics, at any stage of culture growth. Apparently, the phenolics produced were either 

accumulated or metabolized intracellularly. Similar results have been described for the accumulation of 

xanthones in Centaurium species [Beerhues et al., 1995]. 

In HPS cell suspension cultures elicited only with MeJ, xanthone accumulation remained 

constant throughout the culture period (Fig. 6.3 – A). However, cells elicited with SA only showed a 

significant increase in xanthone production during growth period (P<0.05). Xanthone level of HPS cells 

primed with MeJ reached the maximum 24 h after the addition of C. gloeosporioides elicitor (Fig. 6.3 – 

A). Cell suspensions treated with the fungal elicitor, with or without SA priming, attained the highest 

xanthone accumulation 72 h after elicitor addition. After day 9, the amount of xanthones started 

decreasing gradually. By the day 12, control cultures and cells elicited with C. gloeosporioides biomass 

produced the same amount of xanthones. However, cells primed with MeJ and SA prior to fungal elicitor 

addition retained a higher xanthone level even after 12 days (Fig. 6.3 – A).  
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MeJ and SA addition to the suspension significantly decreased the accumulation of flavonols in 

HPS suspension cultures, at the end of the culture period (Fig. 6.3 - B). Flavonols accumulation in HPS 

suspension cultures was negatively affected by the addition of C. gloeosporioides elicitor, resulting in 

their rapid disappearance throughout the culture time. It is interesting to mention that this 

disappearance coincided with the onset of xanthone production (Fig. 6.3). 

Addition of MeJ to HPS cells induced the synthesis of a new group of phenolic compounds, the 

flavones, which accumulated during the first 48 h after MeJ addition and subsequently declined (Fig. 

6.3 – C). Addition of the fungal elicitor to those cells resulted in a fall of flavone levels until they could 

no longer be detected, 72 h after elicitation. 

 

 

Figure 6.3: Accumulation of main phenolic compounds by cell suspension cultures of H. perforatum (accession HPS), 
throughout growth period, treated with MeJ (100 µM), SA (25 µM), or C. gloeosporioides elicitor (Cg). The lines indicated as 
MeJ+Cg and SA+Cg correspond to cells primed with MeJ (100 µM) or SA (25 µM), respectively, before the addition of the 
fungal elicitor. Results are means (±SD) of six independent replicates, from two independent experiences. 
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6.5. Discussion 

 

In the presence of a pathogen, plants develop a vast array of metabolic defense responses 

sequentially activated in a complex multicomponent network that may be local and/or systemic 

[Hahlbrock et al., 2003]. Defense responses to pathogen infection include the production of several 

secondary metabolites such as phenolics [Dixon et al., 1995; Dixon, 2001; Tan et al., 2004]. 

In the present study, H. perforatum (HPS) cell suspension cultures developed a differential 

phenolic response upon C. gloeosporioides elicitation which includes an increase in xanthone 

accumulation and the production of new constituents (Fig. 6.1 – C). Beerhues et al. (1995) already 

observed an increase in the accumulation of new xanthones in the cultures of Centaurium sp., upon 

elicitation with yeast but not with the cell-wall preparations of various pathogenic fungi. Xanthones are 

known for their pharmacological activities [Hostettmann et al., 1989] such as antibacterial and anti-

fungal [Beerhues et al., 2000; Braz-Filho, 1999]. In addition, xanthones produced by H. androsaemum 

cell cultures have shown to inhibit the growth of Candida utillis and Saccharomyces cerevisae [Dias, 

2003]. 

H. perforatum (HPS) cell cultures elicited with fungal biomass accumulated a significant amount 

of mangostin, a xanthone known to display anti-fungal activity [Hostettmann et al., 1989]. Moreover, the 

majority of the xanthones accumulated after elicitation of both suspension cell cultures have a non-polar 

nature, which renders higher antimicrobial activity to the compounds. Therefore, the increase in 

xanthone accumulation observed in HPS cells can be described as a defense response triggered by 

some of the components present in the fungal elicitor. It is known that several fungal products such as 

proteins, glycoproteins or oligosaccharides can trigger the defense mechanisms in plants [Dmitriev, 

2003]. 

The increase of xanthone accumulation observed in HPS cultures after treatment with the fungal 

elicitor could be the reason why flavonols became undetectable after elicitation (Fig. 6.1 – C and D). It 

is known that xanthones and flavonoids are biosynthetically related compounds, sharing a pool of 

precursors [Schröder, 1997; Dias, 2003; Liu et al., 2003]. Those precursors could have been shifted 

for the xanthones biosynthesis, in detriment to the flavonoid pathway, resulting in a too low flavonol 

production to be detectable by HPLC. 

Plant defense can be triggered by local recognition of pathogens but more effective responses 

include systemic signaling pathways [Conrath et al., 2002]. Two of the most important compounds 
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having this ability are Salicylic Acid (SA) and Jasmonic Acid (JA). Systemic responses include those 

dependent on SA signaling and are named Systemic Acquired Resistance [Dempsey et al., 1999]. The 

Induced Systemic Resistance is known to be dependent on JA [Feys et al., 2000]. SA, JA and its 

derivatives, like MeJ, have been used as inducers in plants and were found to stimulate their secondary 

metabolism [Hahlbrock et al., 2003; Thomma et al., 2000]. For this reason we evaluated the possible 

effects of those molecules on the phenolic composition of H. perforatum cell suspensions. An overall 

increase in xanthone production and a quick response of H. perforatum HPS cells to the C. 

gloeosporioides elicitor (Figs. 6.2 and 6.3) after the pre-treatment with MeJ or SA suggests that these 

molecules primed HPS cells defensive mechanisms. This faculty is known for a long time but progress 

in understanding is still scarce [Conrath et al., 2002]. The ability of jasmonate to boost plant defenses 

against fungal pathogens has already been reported [Thomma et al., 2000]. The mechanism of action 

of SA and MeJ (one of several “jasmonates” known) is still a matter of debate [Felton et al., 2000]. 

These two compounds seem to act independently via antagonistic pathways, giving rise to different 

plant responses. Nevertheless, a clear dichotomy does not always exist. In our case, both SA and MeJ 

were able to induce the priming for increased xanthone accumulation in HPS cell suspensions, as a 

response to the fungal elicitation, at different levels. However, significant differences were observed (Fig. 

6.2 and 6.3). SA was able to increment the production of xanthones by itself, whereas MeJ alone did 

not interfere significantly in xanthone biosynthesis but resulted in a selective accumulation of flavones. 

The physiological significance of this pattern is not clear but might indicate that SA and MeJ stimulate 

different pathways in H. perforatum cells, independently of the result being the same: priming of the 

xanthone biosynthesis due to fungal elicitation. 

The use of JA and SA in H. perforatum cell suspension cultures was already reported [Walker et 

al., 2002]. The authors have observed that the utilization of JA originated an increase in hypericin 

production in H. perforatum cultures. On the contrary, this response was not observed when SA or a 

pathogen extract was used. The elicitation of H. perforatum plantlets with SA, MeJ and C. 

gloeosporioides resulted in a differential accumulation of hyperforin and hypericin, depending on the 

treatments [Sirvent et al., 2002]. Moreover, hypericin proved to inhibit the growth of C. gloeosporioides. 

Thus hyperforin and hypericin could be considered as presumptive phytoanticipins of H. perforatum. In 

our case, we did not observe the accumulation of either hypericin or hyperforin in suspension cell 

cultures after elicitation with C. gloeosporioides, in agreement with previous studies [Dias, 2003]. This 
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could be due to the fact that compounds like hypericins are accumulated in specialized tissues (glands) 

and not in cells of an undifferentiated state, as previously described in chapter 1.1. 

In conclusion, the accumulation of xanthones in H. perforatum (HPS) cultures was strongly 

induced by C. gloeosporioides elicitation especially when primed with SA and, namely, MeJ. The results 

indicate that these compounds could act as defense-related compounds in HPS cells, and eventually in 

in vivo plants. H. perforatum plants do not accumulate xanthones in significant amounts at the aerial 

parts, with the exception of mangiferin [Kitanov et al., 1998]. Nevertheless, we detected other 

xanthones in the biomass of H. perforatum plants occasionally (unpublished results). Taking in account 

the results presented here, this could be due to a biotic stress suffered by the plants in field conditions. 

Further studies are needed to validate this thesis. Additionally, isolation of the major xanthones 

produced by H. perforatum cells due to the elicitation process are ongoing, in order to test their 

potential activity against C. gloeosporioides. 
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7. Differential responses of two H. perforatum 

accessions to C. gloeosporioides challenging. 

 

 

7.1 Introduction 

 
Hypericum perforatum L. is a perennial shrub distributed all over the world that has been 

described as a medicinal plant since ancient times. The increasing demand for H. perforatum biomass, 

for commercial purposes, can only be attended by field cultivation of selected HP accessions. The main 

drawback of mass production of Hypericum perforatum is contamination by Colletotrichum 

gloeosporioides, a fungus known to cause anthracnose on several commercially valuable plant species, 

as previously described in chapter 1.2. To our knowledge, no HP accession seems to be fully resistant 

to C. gloeosporioides. Nevertheless, the level of susceptibility (as well as the chemical composition) may 

vary between distinct H. perforatum accessions. One particular accession developed in Denmark, 

Helos, is referred as displaying an increased tolerance to anthracnose infection [Pundt et al., 2005; 

Hammer et al., 2007] but the mechanisms associated with this resistance are still unclear. 
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One of the known plant responses to biotic stress includes the accumulation of phenolic 

compounds, as previously described in chapter 6. These compounds play an important role in plant 

defense either by acting as constitutive phytoanticipins or newly-formed phytoalexins, produced upon 

pathogen recognition [VanEtten et al., 1994]. A broad range of metabolites, derived from the 

phenylpropanoid pathway, have already been identified in many plant species and are usually divided 

into 3 broad classes, as described in chapter 1.3.4. These greatly diverse compounds are known to 

display a multitude of biological activities, not only against biotic stresses, but also against abiotic ones, 

such as UV radiation. Nonetheless, most secondary metabolites have relatively broad-spectrum 

activities against pathogens and do not constitute targeted responses to specific pathogens [Dixon, 

2001; Azevedo, 2005]. 

While pathogen recognition may be responsible for the triggering of phenolic compounds 

accumulation in plants, several molecules are also known to modulate this defensive process. Salicylic 

acid (SA) and jasmonates (such as methyl-jasmonate) are phytohormones related to two plant systemic 

resistance mechanisms. The relevance of SA and MeJ in the modulation of Systemic Acquired 

Resistance (SAR) and Induced Systemic Resistance (ISR), respectively, has been pointed by many 

authors in the past decade [Gaffney et al., 1993; Shulaev et al., 1995; Pieterse et al., 1999; Durrant et 

al., 2004]. Nonetheless, the full extent of these systemic signaling pathways and the depth of their 

cross-talking, aiming for the fine-tuning of plant defenses, is still a matter of debate [Bostock, 2005; 

Adie et al., 2007]. 

Here we evaluated some differences in phenylpropanoid metabolism, occurring between cell 

suspension cultures from two H. perforatum accessions, HPS and Helos, which display distinct 

susceptibilities to anthracnose in vivo. While chapter 6 was focused in the study of accumulation and 

identification of soluble phenolic compounds in elicited HPS suspension cells, this chapter presents new 

results related to changes in H. perforatum phenylpropanoid metabolism upon elicitation. In order to 

bring new clues about the differences on resistance to C. gloeosporioides infection, displayed by the two 

H. perforatum accessions available, other parameters were evaluated. Along with soluble phenolics, 

lignin accumulation, PAL enzymatic activity and expression of some key phenylpropanoid pathway 

enzymes were also monitored. 
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7.2 Accumulation of phenolic compounds upon elicitation. Differences between two H. 

perforatum accessions. 

 

One of the known metabolic changes found in plants, related to pathogen recognition, is the 

production of soluble phenolic compounds, as described before (chapter 1.4). To complement the 

results previously found for H. perforatum HPS accession (chapter 6), a similar experiment was carried 

out with suspension cell cultures from the less anthracnose-susceptible accession Helos. Cells were 

elicited with C. gloeosporioides biomass and/or the phytohormones SA and MeJ, as described in 

chapter 2.1.9. In order to better compare the results obtained for HPS [Conceição et al., 2006] and 

Helos cell cultures, figure 7.1 shows the accumulation of phenolics observed 72h after C. 

gloeosporioides elicitation. Moreover, time course changes in soluble phenolic compounds 

accumulation, observed under all treatments described, are shown in figure 7.2. 

      

 

Figure 7.1: Total phenols produced by cell cultures of H. perforatum HPS and Helos, at the 9th day of growth, 72 h after 
fungal elicitor addition. (A) Accumulation of xanthones. (B) Accumulation of flavonoids (flavonols and flavones). Cultures 
were treated with MeJ (100 µM), SA (25 µM), or C. gloeosporioides elicitor (Cg). The bars indicated as MeJ+Cg and SA+Cg 
correspond to cells primed with MeJ (100 µM) or SA (25 µM), respectively, before the addition of the fungal elicitor. Results 
are means (±SD) of six independent replicates, from two independent experiences. 

 

 
Accumulation of xanthones in HPS reached a peak 72 h after C. gloeosporioides elicitation, as 

previously described (Fig. 6.3 – A). Concomitantly, Helos, the H. perforatum accession less susceptible 

to anthracnose infection showed, 72 h after fungal elicitation, an increased amount of xanthones, 

reaching values 45x higher than those observed in control samples (Fig. 7.1 – A). While both H. 

perforatum accessions accumulate similar amounts of xanthones in normal growth conditions 

(approximately 0.5 mg/g DW), the burst observed in elicited Helos cultures was significantly stronger 
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(up to 6x) than the one observed in HPS cultures. Moreover, while the amount of xanthones 

accumulated in HPS eventually returned to levels found on control cultures, accumulation in Helos 

cultures kept rising until the end of the study, reaching values 50x higher than those observed in control 

samples (Fig. 7.2 – A). 

Unlike what was observed for HPS cell suspension cultures, pre-treatment of Helos cultures 

with SA or MeJ, prior to C. gloeosporioides elicitation, made no significant changes in xanthone 

accumulation throughout the exponential growth period, leading to values similar to those observed in 

cultures treated only with the C. gloeosporioides elicitor preparation (Figs. 7.1 – A and 7.2 – A). On the 

contrary, treatment with SA or MeJ alone led to a small but significant increase in xanthone 

accumulation, as also observed for HPS cell suspension cultures (Figs. 7.1 – A and 7.2 – A). Although 

showing a pattern similar to HPS, the amount of xanthones accumulated in Helos, due to MeJ or SA 

treatment, were 3x and 6x higher (respectively) than observed in control samples (Fig 7.1 – A). 

Xanthones were, quantitatively, the most prominent group of phenolic compounds identified on 

H. perforatum suspension cells. Nonetheless, a differential accumulation of flavonoids (flavonols and 

flavones) was also observed due to the treatments that both H. perforatum accessions were subjected. 

Accumulation of flavonols in Helos cell cultures was negatively affected by C. gloeosporioides 

elicitation. As previously observed in HPS cultures, flavonols could no longer be detected in elicited 

Helos cells, at the end of exponential growth (Fig. 7.2 – B). Moreover, pre-treatment of Helos cultures 

with SA or MeJ, prior to pathogen elicitation, led to similar results. Accumulation of flavonols also 

decreased significantly after treatment with MeJ or SA alone, in a pattern similar to that found in HPS 

cell cultures (Figs. 7.1 – B and 7.2 – B). A sharp decrease was observed until the 9th day, stabilizing 

thereafter. At the end of the exponential growth period, values were approximately 4x lower than those 

found in control samples (Fig. 7.2 – B). Despite this decrease, the total amount of flavonols 

accumulated in Helos was still 4x higher than observed in HPS cultures (Figs 6.3 – B and 7.2 – B). 

Flavones were produced de novo by HPS cultures only after treatment with MeJ (Fig 6.3 – C). In 

Helos cell cultures, however, these compounds accumulate in normal growth conditions (Fig. 7.2 – C). 

Despite the decrease in accumulation observed in Helos control cells during the exponential growth 

period (Figure 7.2 – C), flavone levels build up later on, during stationary stage, reaching the original 

values (data not shown). Elicitation of Helos cells with C. gloeosporioides biomass, with or without prior 

treatment with SA or MeJ, led to the irreversible decrease in flavones available and, 24 h after 

treatment, these compounds could no longer be detected by HPLC-DAD. Furthermore, treatment of 
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Helos suspension cells with MeJ or SA alone also led to a transient decrease in flavones accumulation, 

observed between days 6 and 7 and recovering to levels similar to control thereafter (Fig. 7.2 – C). 

 

 
Figure 7.2: Accumulation of main phenolic compounds by cell suspension cultures of H. perforatum (var. Helos), 
throughout the growth period, treated with MeJ (100 µM), SA (25 µM), or C. gloeosporioides elicitor (Cg). Namely, 
accumulation of (A) xanthones, (B) flavonols and (C) flavones was observed. The lines indicated as MeJ+Cg and SA+Cg 
correspond to cells primed with MeJ (100 µM) or SA (25 µM), respectively, before the addition of the fungal elicitor. Results 
are means (±SD) of six independent replicates, from two independent experiences. All the values are statistically different 
(P<0.05). The straight arrow indicates the addition of SA or MeJ, while the dotted arrow indicates addition of fungal elicitor. 

 

 
7.3. Changes on lignin accumulation 

 

 Apart from soluble phenolics, we also studied possible variations on the lignin content of H. 

perforatum cell suspension cultures. Lignin plays an important role in plant defense, reinforcing the 

plant cell-wall against pathogen penetration, as previously described in chapters 1.2 and 1.4. The 
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variations found in both HPS and Helos accessions are depicted in figure 7.3. Unlike what was 

observed for soluble phenolics, elicitation with C. gloeosporioides biomass was not responsible for an 

increase in lignin deposition in the cell-wall. This result is contrary to what is usually observed in 

pathogen-elicited cell suspension cultures from most plant species [Smith et al., 1997; Mandal et al., 

2007; Egea et al., 2001]. In fact, while elicitation of Helos cultures had no effect in lignin accumulation 

(Fig. 7.3 – B), HPS cultures treated with the pathogen elicitor showed a significant decrease in its 

contents (Fig. 7.3 – A). Although unusual, similar results were observed, per instance, in P. pinaster 

suspension cells elicited with B. cinerea spores [Azevedo, 2005]. 

SA-treatment of both suspension cell cultures had no significant effect in lignin accumulation. 

On the other hand, MeJ was responsible for a significant increase in lignin deposition, on both H. 

perforatum cell cultures, reaching values up to 100% higher at end of the study. In fact, MeJ-treated 

HPS cultures showed a peak in lignin deposition at day 9 of 3x (approximately) when compared to 

control cultures (Fig. 7.3 – A). Concomitantly, Helos cultures displayed 2x more lignin accumulation at 

that day, due to MeJ-treatment (Fig. 7.3 – B). Finally, when MeJ-treated cultures were later faced with 

the pathogen elicitor, a gradual decrease on lignin accumulation was observed. Nonetheless, these 

values were still significantly higher than those observed on cultures elicited with C. gloeosporioides 

only, throughout most of the period of time studied. 

 

 

Figure 7.3: Accumulation of lignin on the cell-wall of cell suspension cultures from H. perforatum (A) HPS and (B) Helos, 
during exponential growth phase. Suspension cultures were treated with MeJ (100 µM), SA (25 µM) and/or C. 
gloeosporioides elicitor (Cg). The lines indicated as MeJ+Cg and SA+Cg correspond to cells primed with MeJ (100 µM) or SA 
(25 µM), respectively, before the addition of the fungal elicitor. Results are means (±SD) of three independent replicates, 
from three independent experiences. The straight arrow indicates the addition of SA or MeJ, while the dotted arrow indicates 
addition of fungal elicitor. 
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7.4. Phenylpropanoid pathway and elicitation: The effect of C. gloeosporioides in some key 

phenylpropanoid pathway enzymes. 

 

 The differential accumulation of phenolic compounds (both lignin and soluble phenolics), 

observed upon phytohormonal priming and/or pathogen elicitation, was further studied by accessing 

the gene expression of some key phenylpropanoid pathway enzymes. Namely, expression of the three 

general phenylpropanoid pathway enzymes (PAL, C4H and 4-CL) was assayed, as well as the PKS 

enzymes in the entry point of flavonoid biosynthesis (CHS) and BPS, an enzyme directly related to 

xanthone biosynthesis in Hypericum. Furthermore, PAL enzymatic activity was assayed as well. Figure 

7.4 represents a simplified view of the general pathway and the following branches studied (lignin, 

flavonoid and xanthone biosynthetic pathways).  

 

 

Figure 7.4: Schematic view of the phenylpropanoid pathway. Dotted arrows represent reactions not studied and carried out 
by one or more enzymes. PAL – phenylalanine ammonia-lyase; CHS – Chalcone synthase; C4H – Cinnamate 4-
hydroxylase; BPS – Benzophenone synthase and 4-CL – 4-coumarate:CoA ligase. 

 

7.4.1. Phenylalanine ammonia-lyase (PAL) enzymatic activity. 

 
 Phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) is the entry point of the phenylpropanoid 

pathway, connecting both primary and secondary metabolism, as previously discussed in chapter 1.3. 

This enzyme catalyzes the deamination of the aminoacid L-phenylalanine into cinnamic acid, as 

depicted in figure 7.4. Due to its relevance in phenylpropanoid metabolism, the enzymatic activity of 

PAL was assayed using H. perforatum crude protein extracts, as described in chapter 2.2.7.1. Figure 
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7.5 shows the results obtained, for all experimental conditions previously described, in both HPS and 

Helos cell suspension cultures. 

 

 

Figure 7.5: Activity of phenylalanine ammonia-lyase (PAL) in cell suspension cultures from H. perforatum (A) HPS and (B) 
Helos. Suspension cultures were treated with MeJ (100 µM), SA (25 µM) or C. gloeosporioides elicitor (Cg). The lines 
indicated as MeJ+Cg and SA+Cg correspond to cells primed with MeJ (100 µM) or SA (25 µM), respectively, before the 
addition of the fungal elicitor. 
 

 From figure 7.5 we can assume that both H. perforatum accessions display similar changes in 

PAL activity. These results are in accordance with what was previously observed, regarding phenolic 

compounds accumulation. Namely, an increased PAL activity was found in cultures elicited with C. 

gloeosporioides biomass, reaching a peak 9 h after treatment, in both cell suspension cultures (Fig. 

7.5). Moreover, PAL activity in Helos cultures remained at the highest levels, for up to 12 h (Fig. 7.5 – 

B). During this time, activity was approximately 4 to 5 times higher than observed in control samples, in 

HPS and Helos, respectively. The relatively fast PAL response, observed upon pathogen recognition, is a 

common feature found in many plant models. Cistanche deserticola suspension cells achieved a peak 

in PAL activity 24 h after yeast extract elicitation [Cheng et al., 2005b] while in Manihot esculenta and 

Medicago sativa suspended cells the peak was observed 15 h and 8 h after elicitation, respectively 

[Gómez-Vásquez et al., 2004; Ni et al., 1996]. Following that peak in PAL activity, an equally sharp 

decrease was observed and values obtained 48h after elicitation, for both H. perforatum accessions, 

were similar to their corresponding control extracts. The fast decrease in PAL activity (within 1 - 3 days) 

was also observed in the cell cultures from the plants referred above. 

Pre-treatment of Helos cultures with MeJ or SA, prior to C. gloeosporioides elicitation, led 

results similar to those described for cultures treated with the elicitor only (Fig. 7.5 – B). In contrast, 

protein extracts from HPS cultures, pre-treated with SA or MeJ, showed a significantly higher activity 9h 
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after pathogen elicitation (up to 50% and 30%, respectively), when compared to cultures elicited with the 

pathogen extract only (Fig. 7.5 – A). 

Protein extracts from both H. perforatum accessions, treated with MeJ only, also showed a 

significant increase in PAL activity. Although not as prominent as previously found for C. 

gloeosporioides-elicited cultures, the peak in activity (also observed 9 – 12 h after treatment) reached 

values 2 to 3 fold higher than in extracts from control cells of Helos and HPS, respectively. The peak in 

PAL activity was no longer observed 48 h later, with values returning to basal levels (in Helos) or even 

reaching significantly lower levels, as for HPS (Fig. 7.5). A similar response was observed in 

Lithospermum erythrorhizon cultured cells. While PAL activity reached a peak 8 h after yeast elicitor 

treatment (decreasing in 3 days), activity in MeJ-treated cultures also increased sharply within hours but 

kept at the highest levels until the end of the study, 3 days later [Tsuruga et al., 2006]. Furthermore, in 

a similar study, H. perforatum cell suspensions were shown to increase PAL activity by 6 fold, 24 h 

after treatment with MeJ (at the same final concentration) decreasing thereafter. Despite the similarity 

of this study, values remained significantly higher than in control cultures, for more than 20 days 

[Gadzovska et al., 2007]. Treatment with SA only also led to a small but constant increase in PAL 

activity, starting 9 h after treatment. The activity was approximately 20% - 30% higher than in extracts 

from HPS and Helos control cells (respectively) and was observed until the end of the study, 48 h after 

SA-treatment (Fig. 7.5). Vitis vinifera berry tissues, treated with SA to a final concentration of 150 µM, 

showed similar results, as a 2 fold increase in PAL activity was observed 1 to 3 hours after treatment, 

decreasing thereafter [Wen et al., 2005]. 

Despite the similarities observed for both H. perforatum accessions, extracts obtained from 

Helos suspension cells have shown a tendency for higher PAL activity, when compared to HPS extracts. 

Under normal growth conditions, PAL activity was significantly higher in Helos, the only exception 

occurring at the end of the study, when activity was similar. Furthermore, the peak observed at 9h 

reached PAL activity values 2.5 times higher in Helos cultures elicited with C. gloeosporioides only. Pre-

treatment of HPS cultures with MeJ or SA have shown to increase PAL activity. Nonetheless, values 

found in Helos were still 60% higher, regardless of MeJ or SA priming, prior to pathogen elicitation. 

Accordingly, peak activity observed 9 h after MeJ treatment was higher (2 fold) in Helos extracts than in 

the matching HPS protein extracts. 
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7.4.2 Identification of genes of interest from phenylpropanoid pathway enzymes. 

 

 The results obtained for PAL activity in crude protein extracts were further complemented with 

studies on gene expression. For this purpose, homologous probes for the enzymes of interest (referred 

in figure 7.4) were produced. In order to obtain the cDNA for H. perforatum PAL, a heterologous probe 

from Digitalis lanata was used to screen the H. perforatum cDNA library, available in the lab. The probe 

was radiolabeled as described in chapter 2.3.8, the library screening was carried out as described in 

chapter 2.3.3 and resolved in autoradiographic films (chapter 2.3.8.4). After several attempts, no 

positive clones were obtained, probably due to low copy number of Pal clones in the cDNA library or low 

similarity between D. lanata Pal fragment and H. perforatum Pal nucleotide sequence. 

As a new approach, a homologous Pal probe was synthesized by PCR (chapter 2.3.11), after 

reverse transcription (chapter 2.3.10) of H. perforatum mRNA (obtained as described in chapter 

2.3.1.2). Since no Pal sequences for Hypericum species were available in GenBank databases, 

degenerated primers (Table 7.1) were designed for a conserved region, deduced from the alignment of 

several nucleotide sequences from other dicots. PCR was carried out as previously described, the 

expected fragments were isolated from agarose gel (chapter 2.3.9.2), cloned in a suitable vector 

(chapter 2.3.13; Table 7.1) and used to transform E. coli DH5-α cells (chapter 2.3.14). After 

sequencing, the fragment was subjected to BLAST analysis, confirming the high homology to Pal 

sequences from other plants. The Pal fragment obtained was then used as a homologous probe to 

screen the H. perforatum cDNA library (without success) and to perform northern blotting assays, as 

described below (chapter 7.4.3). A similar RT-PCR approach was used to obtain homologous probes for 

the genes coding C4H and 4CL enzymes. Due to the variety of 4CL sequences expected (as described 

later), 4cl degenerated primers were designed considering the enzymes’ nucleotide sequence coding 

the substrate binding pocket and the highly conserved flanking motifs, namely, Box-I and Box-II (Table 

7.1) [Stuible et al., 2001]. This approach resulted in two distinct 4cl fragments, showing increased 

homology to A. thaliana 4cl1 (fragment 4cl “1”) or A. thaliana 4cl3 (fragment 4cl “2”). 

While RT-PCR was used to obtain homologous probes for Pal, C4h and 4cl, the library 

screening approach was successfully used for obtaining the H. perforatum cDNA of CHS, by using a H. 

androsaemum heterologous probe available in the lab. To obtain the H. perforatum Bps probe, an RT-

PCR was performed using primers designed according to the only Bps sequence available in GenBank, 

from a closely related species, H. androsaemum. The following cloning steps were performed as 
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described for Pal and, after sequencing confirmation, one positive clone was successfully used for 

screening the cDNA library. Furthermore, H. perforatum cDNA sequence for BPS was submitted to 

GenBank (acc. nº EF507429.1). All 5 homologous probes obtained were then used in gene expression 

studies, as described in the following chapters. 

 
Table 7.1: Homologous probes obtained from H. perforatum mRNA or cDNA library. 

Enzyme Cloning vector Origin Primers (5’ – 3’) 

PAL pGEM-T Easy (Promega) 

RT-PCR 

Fw: CCDYTDCARAARCCWRAACAA 
Rv: CDCCYTTDAABCCRTAATC 

C4H pCR 2.1 (TOPO - Invitrogen) 
Fw: AYGARGACAAYGTTCTTTAC 
Rv: CGATCRTGGAGGTTCA 

4-CL “1” 
pKS- II (Bluescript - Stratagene) 

Fw: CCGGGATCCGACRGGNKTNCCXAAAGGRGTSATG 
Rv: CGCTCTAGAGCCNCKDATGCARATYTCACC 4-CL “2” 

CHS pJET1.2 (Fermentas) cDNA library 
screening 

X 

BPS pDONR (Gateway - Invitrogen) X 

 

7.4.3 Effect of C. gloeosporioides elicitation and MeJ priming in phenylpropanoid pathway gene 

expression. 

 

 The expression analysis for all phenylpropanoid pathway enzymes were performed by Northern 

blotting (as described in chapters 2.3.7 and 2.3.8) using total RNA (chapter 2.3.1.1) obtained from H. 

perforatum cell suspension cultures. Figure 7.6 shows the results for Pal expression in Helos 

suspension cells, grown under normal conditions or elicited with C. gloeosporioides biomass. As 

observed, Pal expression was very low and barely detectable by northern blotting, under normal growth 

conditions (Fig. 7.6). On the other hand, C. gloeosporioides-elicited cultures displayed an increase in 

Pal expression, starting 3 h after pathogen recognition. Although Pal upregulation seems to occur 

continuously until the end of the study (12 h), this result can be misleading. In fact, a peak in Pal 

expression was observed 8h after elicitation, as shown later, in figure 7.7. 

 

     

Figure 7.6: Northern blotting results for the expression of phenylalanine ammonia-lyase (PAL) in H. perforatum Helos cell 
suspension cultures grown under normal conditions or elicited with C. gloeosporioides biomass. 
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Considering the result obtained for Pal transcription, a new assay was performed in order to 

study the expression of genes coding for all previously referred phenylpropanoid pathway enzymes. 

During the laboratory work, HPS suspension cells had proven to be easier to handle than Helos, 

especially when samples from longer elicitation periods were needed. Upon elicitation, the integrity of 

Helos RNA decreases continuously, compromising the production of proper northern membranes. 

Therefore, HPS cells were preferably used for the expression studies shown below. Figure 7.7 shows 

the changes in expression of the genes of interest, obtained from HPS cells elicited with C. 

gloeosporioides, with or without prior treatment with MeJ. 

 

 

Figure 7.7: Gene expression of some key phenylpropanoid pathway enzymes found in H. perforatum, HPS accession. PAL 
– phenylalanine ammonia-lyase; C4H – Cinnamate 4-hydroxylase; 4-CL – 4-coumarate:CoA ligase and the PKSs from 
H.perforatum  (BPS – Benzophenone synthase and CHS – Chalcone synthase). 

 

 

As depicted, and with the exception of 4cl, expression of all other genes was higher in cells 

primed with MeJ (prior to C. gloeosporioides elicitation) than in cells treated with the pathogen only (Fig. 

7.7). This result confirms what was previously found for phenolic compounds accumulation and PAL 

enzymatic activity, suggesting that upregulation of genes is necessary for an increased phenolic 

accumulation in elicited H. perforatum cells. Furthermore, and although no data exists for the shortest 

elicitation periods, the timing of the responses was similar for all upregulated genes, with the highest 

transcription levels found not later than 8 h after pathogen recognition, decreasing thereafter. This 

result comes in accordance with the general idea that organized metabolic channeling occurs in several 
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biosynthetic pathways, being a common feature in secondary metabolism [Hartmann, 2007]. Enzymes 

found in the beginning of the phenylpropanoid pathway (such as PAL), or at a “relatively distant” point 

(like CHS), may form multienzyme complexes. As referred in chapter 1.3, these complexes provide a 

better control on the synthesis of secondary metabolites, such as phenolic compounds. Therefore, it is 

reasonable to consider that a co-ordinated expression should be observed, for genes coding these 

closely related, phenylpropanoid pathway enzymes [Winkel, 2004].  

 As shown in figure 7.7, it is clear that Pal transcript levels reached a peak no later than 8 h 

after pathogen recognition, regardless of prior MeJ priming. This result confirms what was previously 

observed for PAL activity, using protein extracts from C. gloeosporioides-elicited cells (Fig. 7.5 – A). The 

highest levels of activity (9 h after elicitation) were preceded by upregulation or the corresponding gene, 

while the decrease in enzymatic activity was equally accompanied by lower levels of transcripts. 

Transcription of C4h, on the other hand, showed no change upon pathogen elicitation. 

Nonetheless, priming of HPS cells with MeJ (24 h before C. gloeosporioides elicitation) was responsible 

for the upregulation of the gene, as observed for Pal and the Pks’s genes. C4H is the second enzyme 

found in the general phenylpropanoid pathway and catalyzes the conversion of cinnamate into p-

coumarate (Fig. 7.4). Therefore, C4H competes for a substrate also required for SA biosynthesis 

[Schoch et al., 2002]. Although the pathway for SA synthesis is not fully understood, studies with 

inhibitors of C4H, such as piperonylic acid (PIP) [Schalk et al., 1998], have shown to promote the 

accumulation of SA in tobacco suspension cells [Chong et al., 2001; Schoch et al., 2002]. The close 

relation between C4H and the phytohormone SA makes it a strong candidate for regulation by 

jasmonates, therefore contributing for the cross-talk between the two systemic defense pathways. In 

fact, C4h expression is known to be upregulated by wounding [Mizutani et al., 1998; Reymond et al., 

1998], a stress condition often associated with jasmonate signaling, as described in chapter 1.4. 

 4CL, the last enzyme of the general phenylpropanoid pathway, catalyzes the formation of CoA 

thiol esters of the distinct hydroxycinnamates (Figs. 1.12 and 7.4), therefore playing a pivotal role at a 

divergence point of phenylpropanoid metabolism, into several major branch pathways, such as 

flavonoids or xanthone biosynthesis. Associated with the relatively broad variety of substrates, this 

enzyme presents many distinct isoforms, with variable affinity to the hydroxycinnamates available. The 

divergence in 4CL isoforms (4 disctinct ones, at least), and its branching position in the general 

pathway, may be also associated with distinct physiological roles [Hu et al., 1998]. In fact, it has been 

hypothesized that some 4CL isoforms should channel metabolism through flavonoids biosynthesis 
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(such as A. thaliana 4CL3) while others are associated with lignin production (such as A. thaliana 4CL1 

and 2) [Ehlting et al., 1999; Stuible et al., 2000; Fofana et al., 2005; Davies et al., 2006]. As previously 

referred in table 7.1, PCR fragments for two distinct 4CL isoforms were obtained. H. perforatum 4cl “1” 

fragment was chosen for this work due to its theoretically closer association to lignin biosynthesis. As a 

result, and while Pal and C4h were strongly upregulated (upon one or both treatments that suspended 

cells were subjected), 4cl transcript levels did not change significantly upon elicitor treatment (Fig. 7.7). 

Moreover, cells previously primed with MeJ showed only a minor increase in 4cl expression, especially 

when compared to all other genes studied. These results resemble what was previously observed for 

lignin accumulation (Fig. 7.3), suggesting that, while precursor depletion could have played the central 

role in the decrease of flavonoids accumulation (as discussed below), the levels found for lignin 

production, on the other hand, could also be associated to the levels of 4cl transcription observed. 

Additional work on the expression of other 4CL isoforms from H. perforatum should be carried out, in 

order to confirm these results. 

Furthermore, in a parallel study, the remaining 4cl fragment obtained (4cl “2”) was used as a 

probe in the study of Agrobacterium tumefaciens interaction with H. perforatum suspended cells. In this 

work, an increased accumulation of 4cl transcripts was observed, starting 4h after A. tumefaciens 

elicitation and reaching a peak after 12h, decreasing thereafter [Franklin et al., 2008]. Although being a 

distinct experiment, the transcription levels of Pal followed a similar pattern of co-expression as 

described here, for C. gloeosporioides elicitation. Despite the resemblance of these experiments, further 

studies comparing the expression levels of both 4cl gene fragments available, especially in suspension 

cultures treated only with MeJ, should be carried out in order to draw reasonably accurate conclusions 

about the role of 4CL isoforms in H. perforatum defense against C. gloeosporioides infection. 

 Along with the general phenylpropanoid pathway enzymes, we studied the gene expression of 

the PKSs responsible for the branching point between flavonoids biosynthetic pathway (CHS), as well as 

xanthone biosynthesis (BPS) in H. perforatum. Due to the relevance of xanthones in this work, and the 

close connection existing between BPS and CHS, their study will be discussed in more detail below. 
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7.4.4. Benzophenone synthase and Chalcone synthase: branch point in flavonoids/xanthone 

biosynthesis 

 

 Both BPS and CHS are polyketide synthases (PKSs). These enzymes catalyze an early step in 

the biosynthesis of polyketides, an extremely broad group of compounds produced by bacteria, fungi, 

plants and animals. Divided into three classes, PKSs types I and II consist of many subunits and active 

sites. On the other hand, type III PKSs (which include BPS and CHS) are structurally simpler enzymes, 

catalyzing the chain elongation between a starter unit (usually an aromatic CoA) and acetyl units (from 

malonyl-CoA) [Tsai, 2004]. The remarkable functional diversity, found between these enzymes, derives 

from small differences in the active site, which greatly influence the selection of substrates as well as 

their further modifications [Abe et al., 2005]. 

CHS was the first type III PKS enzyme to be discovered, being a ubiquitous enzyme in higher 

plants. This enzyme provides the first committed step in flavonoid biosynthesis, catalyzing the 

sequential decarboxylative addition of three acetate units (from malonyl-CoA) to a p-coumaroyl-CoA 

starter molecule, derived from the general phenylpropanoid pathway [Austin et al., 2003], as described 

in chapter 1.3. BPS, on the other hand, is an enzyme associated to xanthone biosynthesis that employs 

the same mechanism of reaction as CHS but uses benzoyl-CoA, a minor substrate for other plant PKSs, 

as the preferred starter molecule [Benye et al., 2003]. 

Although BPS and CHS differ in the starter substrates, these, in their turn, arise from the same 

earlier precursors in the general phenylpropanoid pathway [Austin et al., 2003], as shown in figure 7.4. 

As a result, aside from flavonoid biosynthesis, intermediates and products from the general 

phenylpropanoid pathway are diverted to synthesize other classes of compounds, such as coumarins, 

lignin precursors [Austin et al., 2003] or, as described in this work, xanthones. 

Despite their functional diversity, the nucleotide sequence and aminoacidic composition of 

these two PKSs show increased similarity. Figure 7.8 shows the nucleotide and aminoacidic alignments 

of CHSs and BPSs from H. perforatum and a closely related species, H. androsaemum. 
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Figure 7.8: Two PKSs, BPS and CHS, from H. perforatum (HP) and H. androsaemum (HA). (A) Nucleotide and (B) 
deduced amino acid sequence alignments. The single letter code is used for amino acid depiction. Residues that match the 
consensus exactly are shown with solid gray shade. Coding sequences were analyzed using ClustalW and maximum-
likelihood algorithms. GenBank accession numbers were the following: HP BPS (EF507429.1), HA BPS (AF352395.1), HP 
CHS (AF461105.1), HA CHS (AF315345.1). 
  

As observed in figure 7.8, BPS genes from both Hypericum species are highly conserved, as 

expected. Analyzing in detail (Fig. 7.9), a 95% identity was observed between both BPSs while, for CHS 

genes, an equally high identity was found (98%). Furthermore, the similarity between these two PKS 

enzymes was also high, displaying values close to 60%. 

 

 

Figure 7.9: Nucleotide sequence identity found between the CHS and BPS present in two related Hypericum species, 
namely, H. perforatum (HP) and H. androsaemum (HA). 
 

Due to the similarity observed between CHS and BPS nucleotide sequences (Fig. 7.8 – A and 

7.9), it has not been possible to study gene expression of these enzymes individually by northern 

blotting. No radiolabeled probes could be specific enough to study one particular PKS gene without 

binding also to the mRNA from the other PKS. Furthermore, not only both CHS and BPS genes are alike 

in their coding sequences but also their mRNAs are similar in their sizes (data not shown). This fact 
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rendered it impossible to distinguish their specific bands in the membrane precisely and, therefore, 

study the changes in radiolabelling intensity for each enzyme individually. 

Taken together, transcription of Pks genes in H. perforatum was upregulated by elicitor 

treatment, as previously observed for Pal. Moreover, HPS cultures pre-treated with MeJ showed higher 

levels of transcription then cultures elicited with C. gloeosporioides only (Fig. 7.7).  

It is not clear whether the decrease in flavonols accumulation, observed upon C. 

gloeosporioides treatment, was due only to a depletion of a pool of precursors (common also to 

xanthones) or due to a decrease in Chs transcript levels. Nonetheless, the increased PKSs transcripts, 

accumulated upon pathogen elicitation, could be mostly due to an increase in Bps expression since a 

direct relation between xanthone accumulation and the level of PKSs genes expression could be found, 

as shown in figure 7.10. As observed, basal gene expression is present but barely detectable in Helos 

control cultures, as well as in those treated with MeJ only, resembling the lower levels of xanthones 

accumulated under these situations, in cell cultures. On the other hand, treatment with C. 

gloeosporioides biomass is responsible for the increase in gene transcription, starting 6h after 

elicitation. Priming with MeJ, prior to pathogen elicitation, led to the highest levels of transcripts 

available (Fig. 7.10), in accordance to what was observed for xanthone accumulation, under this 

condition. 

 

 

Figure 7.10: PKSs (BPS/CHS) gene expression in H. perforatum Helos cell suspension cultures. 

 

Despite the similarities in the pattern of responses found between HPS and Helos cultures, 

PKSs gene expression was relatively higher in Helos than in HPS suspension cells. As observed from 

figure 7.11, when both suspended cells were exposed to the pathogen elicitor, Helos cell cultures 

showed a stronger (and perhaps faster) response in terms of gene expression. Therefore, an increased 

synthesis of BPS by Helos the cells could possibly account for the higher amounts of xanthones that 

accumulate it this H. perforatum accession. 
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Figure 7.11: PKSs (BPS/CHS) expression in H. perforatum HPS and Helos cell suspension cultures, elicited with C. 
gloeosporioides only. 
 

7.5 Discussion 

 

The relevance of plant phenolic compounds as agents against Colletotrichum infection has been 

reported for some time [Conceição et al., 2006b]. For instance, C. lagenarium is known to cause 

enhanced incorporation of cell wall-associated phenolics in cucumber [Dean et al., 1987] and 

epicatechin is involved in the resistance of unripe avocado fruits to C. gloeosporioides [Wattad et al., 

1994], while a reduction in the phenolic content of leaves of water lilies has been associated to a higher 

disease severity, caused by C. nymphae [Vergeer et al., 1997]. 

Among these phenolic responses against Colletotrichum infection is H. perforatum increased 

accumulation of xanthones [Conceição et al., 2006]. As previously referred in chapter 6, cell 

suspension cultures from an anthracnose-susceptible accession (HPS) are known to differentially 

accumulate three major classes of soluble phenolic compounds (xanthones, flavonols and flavones) 

upon C. gloeosporioides elicitation. As discussed, these classes include several compounds that display 

antimicrobial activities [Conceição et al., 2006]. H. perforatum cell suspension cultures from the less 

anthracnose-susceptible accession, Helos, follow a pattern of soluble phenolic compounds 

accumulation similar to HPS, upon the treatments applied. A general increase in xanthone 

accumulation occurs, starting 24h after C. gloeosporioides elicitation. Meanwhile, the depletion in the 

pool of precursors, shifted towards xanthone biosynthesis, may be responsible for the decrease in 

flavonoids accumulation, as previously discussed for HPS cultures [Conceição et al., 2006 and 2006b]. 

Furthermore, a small but significant increase in xanthone accumulation, observed in cultures treated 

only with SA or MeJ, is another common aspect to these H. perforatum accessions, which may also be 

related to the minute decrease in flavonols accumulation observed. The effect of jasmonates in H. 

perforatum suspension cultures has also been evaluated in other labs. For instance, jasmonic acid was 

also responsible for a differential accumulation of phenolic compounds [Gadzovska et al., 2007]. 

Namely, while flavonols and other phenolic compounds were found in higher amounts, anthocyanins, 
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for example, were negatively affected by jasmonate treatment. Despite some divergence in the results 

(increase/decrease in flavonols), both works support the idea of a metabolic channeling of 

phenylpropanoid precursors in H. perforatum suspension cells, according to the treatments applied. 

As occurred with HPS, Helos newly synthesized xanthones have a non-polar nature, probably 

incrementing its efficacy as antimicrobial compounds [Conceição et al., 2006]. The antimicrobial 

proprieties of H. perforatum xanthones were recently studied in our lab. The whole soluble phenolic 

extract, as well as one major xanthone present in Helos suspension cells, paxanthone, proved to 

effectively inhibit bacterial growth [Franklin et al., 2007 and 2008]. Although effective against bacteria, 

the efficacy against C. gloeosporioides is still not resolved. Nonetheless, extracts from H. perforatum 

plants have proven to inhibit C. gloeosporioides growth in vitro, most likely due to their content in 

hypericin and/or hyperforin [Sirvent et al., 2002]. 

Despite the general similarity, the level of response is clearly distinct between the two H. 

perforatum accessions. HPS and Helos cells accumulate similar amounts of xanthones in normal 

growth conditions. Nonetheless, upon pathogen recognition, the xanthone levels found in Helos cultures 

raise to values 6x higher than observed in HPS cells, at the peak of their xanthone accumulation. The 

increased accumulation of xanthones in Helos is corroborated by the higher levels of Pks transcription, 

observed upon C. gloeosporioides elicitation of both H. perforatum accessions, as shown in figure 7.11. 

Additionally, while the levels of xanthones produced in HPS could be incremented by SA or MeJ pre-

treatment (prior to elicitor treatment), Helos suspension cultures did not respond differentially to 

phytohormonal priming. Xanthones accumulated at the same levels as in cultures elicited only with C. 

gloeosporioides. This result could mean that Helos not only accumulates more xanthones than HPS, 

but also do it without any need for externally applied priming compounds. In other words, pathogen 

recognition could be enough to trigger the maximum phenolic response from Helos, readily depleting 

the pool of precursors previously referred. 

Differences in soluble phenolic accumulation between HPS and Helos are not solely related to 

xanthones. Flavonoids accumulation in both accessions is clearly distinct. Helos control cells 

accumulate approximately 10x more flavonols than the corresponding HPS cultures. Furthermore, upon 

the several treatments applied, their values were still higher (after MeJ or SA treatment) or lasted longer 

before becoming undetectable (after C. gloeosporioides treatment). Another significant difference 

observed between these two H. perforatum accessions was the accumulation of flavones. While 

flavones were only detectable in HPS after MeJ treatment, these compounds were present, in Helos, at 
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normal growth conditions. The overall difference in soluble phenolic compounds accumulation, found 

between the two H. perforatum accessions, is summarized in figure 7.12. For several decades, the high 

phenolic contents of given plants have been correlated to their increased resistance to infection against 

many pathogens [Sztejnberg et al., 1983; Luzzatto et al., 2007], as previously described, although 

some exceptions exist [Ranger et al., 2007]. Therefore, it seems plausible to assume that the 

significantly higher amount of soluble phenolic compounds, accumulated by Helos, could be related to 

an increased tolerance of this H. perforatum accession to C. gloeosporioides infection in vivo. Further 

studies on the plant level, regarding the quantity and antimicrobial properties of both HPS and Helos 

soluble phenolics should be carried out, in order to complement this hypothesis. 

 

 

Figure 7.12: Accumulation of soluble phenolic compounds in cell suspension cultures of H. perforatum HPS and Helos, at 
the 9th day of growth. Values include xanthones and flavonoids produced. 

 

Along with soluble phenolics, our study also focused on the accumulation of lignin, another 

class of metabolites derived from the phenylpropanoid pathway. Although pathogen recognition is often 

associated to increased lignin accumulation in plants, a significant reduction in lignin levels was 

observed upon C. gloeosporioides elicitation of HPS cell cultures. As previously predicted for the 

decrease in flavonoids accumulation, it could be the case that a depletion of phenolic compound 

precursors, channeled for xanthone biosynthesis, is directly responsible for this result. References exist 

for the connection between lignin pathway and other phenylpropanoid pathway branches. Per instance, 

suppression of the lignin pathway in A. thaliana led to the redirection of the metabolic flux through 

flavonoids biosynthesis [Besseau et al., 2007], while inhibition of 4CL led to the accumulation of 

benzoic acids in Vanilla planifolia suspension cells [Funk et al., 1990]. Although this hypothesis could 

be true (at first) in the case of H. perforatum, a similar study with P. pinaster suspension cells showed 
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no increase in accumulation of soluble phenolics, as well as lignin, upon B. cinerea elicitation. 

Therefore, other mechanisms, such as gene expression, are most likely responsible for this result. Early 

expression studies have shown that transcription of a 4cl gene, coding for a 4CL isoform associated to 

lignin biosynthesis, was not upregulated by pathogen elicitation. Plant cell penetration is known to be a 

typical infection mechanism found on biotrophic fungi, being uncommon in necrotrophs [Lucas, 1998]. 

Concomitantly, cell-wall reinforcement is usually found to occur against biotrophic pathogens. 

Considering that C. gloeosporioides nutrition model is quite complex, recurring to both strategies at 

distinct situations (as described in chapter 1.2), it is not easy to predict how a specific host will respond 

to the presence of this particular pathogen. Nonetheless, from Fig. 7.3 we can predict that both H. 

perforatum accessions showed a typical response against necrotrophic pathogens, upon C. 

gloeosporioides elicitation. Further support comes from the fact that H. perforatum cells were 

responsive to MeJ but not to SA. It is known that, in general, SA is effective against biotrophs while 

jasmonate signaling is generally effective against necrotrophic pathogens [Glazebrook, 2005]. 

The experimental sets used along the work, mimicking distinct plant-microbe interaction 

situations, may provide other conclusions/hypothesis as well. The initial contact with the invading 

pathogen was responsible for the metabolic channeling towards the production of active phytoalexins 

(namely, xanthones) instead of being used in the reinforcement of passive, physical barriers, by lignin 

deposition. It’s still not clear whether soluble phenolics were produced for their antimicrobial properties. 

Nonetheless, it seems that H. perforatum tissues in the close vicinities of the attempted infection 

(mimicked by cells elicited with C. gloeosporioides only) tend to develop a more definite and drastic 

approach against contamination while distant parts of the plant, signalized for the spreading pathogen 

(mimicked by MeJ-treated cultures), shifted its phenolic metabolism towards a less intense physical 

barrier reinforcement. 

The results observed for the accumulation of phenolic compounds were further complemented 

by the study of PAL activity. This parameter shows great resemblance to what was previously found for 

phenolic compounds accumulation, in both H. perforatum cell suspension cultures. An increase in PAL 

activity was observed when cells accumulated either soluble phenolics or lignin. Additionally, a 

significant difference was observed between both H. perforatum accessions, as PAL activity in Helos 

was predominantly higher. In general, these results support the idea of PAL as being a key enzyme in 

phenylpropanoid metabolism. Another important aspect in PAL activity is its tight regulation, in order to 

control the costly production of secondary metabolites. This idea is further supported by the close 
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relation existing between PAL activity and regulation of transcription levels of the corresponding Pal 

genes. Despite the tight regulation, it seems that the increase in PAL activity is a common feature to a 

broad range of distinct stresses, both biotic and abiotic. Root cultures from Lotus corniculatus, for 

instance, displayed a peak in PAL activity 8h after treatment with the abiotic stress elicitor glutathione 

(GSH), with values returning to basal levels, 24h after treatment [Robbins et al., 1991], much like what 

was observed in this study. 

Regardless of the stress origin, PAL activity is known to be closely associated to other 

phenylpropanoid pathway enzymes, developing multienzyme complexes. These complexes are thought 

to optimize the biosynthesis of compounds based on substrates or intermediates that may occur in low 

concentrations, or that may be potentially dangerous to the plant [Winkel, 2004]. Therefore, the 

expression of their corresponding genes should also be directly correlated and fine-tuned, thus 

developing an optimal response against a specific stress. In fact, expression of some phenylpropanoid 

pathway enzymes studied here followed a closely related, co-expression pattern, supporting the idea 

that these enzymes act “as a whole” (and not independently) towards the production of distinct 

phenolic compounds. Nonetheless, changes in gene expression can still occur, playing a pivotal role in 

the regulation of biosynthetic activity of some branch pathways, as observed in the decrease of lignin 

production and 4cl expression, upon C. gloeosporioides elicitation. 
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8. Final Considerations and Future Perspectives 

 

 

8.1. H. perforatum defense mechanisms: Setting up an in vitro model 

 

 Despite their sessile nature, plants thrive virtually in all ecosystems, adapted to extreme 

environmental conditions and corresponding abiotic stresses. Along with these challenges, plants also 

have to cope with biotic stresses from a multitude of highly diverse pathogens and herbivores. 

Therefore, their ubiquitous nature is only possible due to an intricate and effective defense system, able 

to repel most organisms, continuously attempting to invade them. From their co-evolution with 

pathogens, plants developed three general defense approaches. Pre-formed, constitutive defenses act 

as the first barriers, protecting plants from most surrounding organisms. Other defenses are induced 

only upon threat recognition, acting locally and/or systemically. Despite the distinction, all mechanisms 

seem to act in consonance, developing a “tailor-made” response to a particular stress. Along the work 

presented in this thesis, some of these basic defense mechanisms, developed by H. perforatum against 

infection by the fungus C. gloeosporioides, were evaluated. 
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For this purpose, an elicitation model composed of H. perforatum cell suspension batch 

cultures from two accessions, distinct in their susceptibility to anthracnose infection in vivo, was 

established and characterized, as described in chapter 3. Relevant growth and survival parameters, 

including consumption of some major nutrients, were considered. Both cell suspension cultures 

displayed somewhat similar values for these parameters, under normal growth conditions, enabling 

easier assessment and comparison of responses to further elicitation treatments. In both tissue 

cultures, an initial lag period preceded the exponential growth phase that occurred until sugar depletion. 

Sugar was a major nutrient limiting growth, unlike what was observed for phosphate, ammonium or 

nitrate. After sugar depletion, a stationary stage was observed and followed by a gradual increase in cell 

death. These growth stages, observed on both H. perforatum cultures, resembled what is usually 

reported for cell suspension batch cultures from other plants, validating both in vitro cultures for the 

following studies on H. perforatum defense mechanisms (though keeping always in mind the “artificial” 

nature of this biological system). 

Following culture establishment and characterization, the elicitation model was designed, taking 

advantage that suspended cells usually respond in consonance. This response is often associated to the 

elicited cells only, unlike what is seen in all-plant models. In these models, differential responses 

existing between elicited cells and those neighboring the infection site are often disregarded [Azevedo, 

2005]. Furthermore, our model included not only elicitation by the pathogen but also by two of the most 

relevant phytohormones associated to systemic plant defense against biotic stress, namely, methyl-

jasmonate and salicylic acid. As previously described in chapter 4, these hormones were used alone or 

prior to C. gloeosporioides elicitation, contributing for the understanding of systemic signaling that 

occurs between locally infected and distant H. perforatum cells. 

 
 

8.2. C. gloeosporioides elicitation 

 

Elicitation of H. perforatum suspension cells with a preparation from the pathogen C. 

gloeosporioides was responsible for several physiological responses, as summarized in figure 8.1. First 

of all, an increase in sugar consumption (per viable cell) was observed (chapter 4). The additional sugar 

consumed, not directly associated to cell growth and division, may have been channeled to other 

biological processes. Protein synthesis, production and accumulation of diverse metabolites or other 

energy-related expenses are known to require sugar as a carbon and energy source. In H. perforatum 



 
 

 

 

 
 

229 
Study of Hypericum perforatum defense mechanisms against Colletotrichum gloeosporioides: Relevance of 

phenolic metabolism and hypersensitive response. Luis Eduardo F.R. Conceição 

Final Considerations 

suspension cultures, an increase in the synthesis of some secondary metabolites, namely xanthones, 

was observed upon pathogen recognition (chapters 6 and 7). Although confirmation studies are still 

needed, this could be an example of the connection between primary and secondary metabolisms in H. 

perforatum cells. Phosphate levels in the medium even increased upon treatment, most likely due to 

the decrease in cell viability and concomitant cell disruption, observed in this condition. While sugar 

consumption increased, the intake of nitrogen sources (nitrate + ammonium), was negatively affected 

by pathogen elicitation. As referred in chapter 4, a decrease in nitrate uptake, as well as its efflux, are 

common features found in cells during programmed cell death [Wendehenne et al., 2002], 

corroborating the results for hypersensitive response showed on chapter 5. Furthermore, a reduction in 

productivity was observed. As previously referred for sugar consumption, it is possible that a shift of 

nitrogen sources from growth to defense and/or storage could have occurred upon pathogen elicitation. 

The decrease in cell viability and biomass accumulation (chapter 4) was in accordance with the 

increased lipid peroxidation, DNA cleavage and cell death, due to hypersensitive response (HR), 

reported in chapter 5. Upon C. gloeosporioides elicitation, a double oxidative burst, required for an 

effective HR [Yakimova et al., 2005], was observed on both H. perforatum accessions. Curiously, Helos 

cells displayed significantly higher levels of internal ROS, which could account for the increased lipid 

peroxidation levels and cell death observed in this H. perforatum accession, when compared to HPS 

cells. On both accessions, the increased accumulation of ROS, upon C. gloeosporioides elicitation, was 

associated to a decrease in superoxide dismutase (SOD) and catalase (CAT) enzymatic activities, 

observed 24 h after treatment. It is clear that the coordination of these ROS-scavenging mechanisms is 

also involved in the oxidative burst development, by ensuring the control of ROS levels [Hancock et al., 

2002]. In fact, it has been suggested that hypersensitive response can only occur due to the inhibition 

of ROS-scavenging mechanisms, therefore allowing ROS to build up to the levels required for 

programmed cell death development [Apel et al., 2004]. While a decrease in some enzymatic ROS-

scavenging means was observed, methanolic extracts obtained from pathogen-elicited H. perforatum 

cells displayed significantly higher antiradicalar properties (up to 2 fold in Helos) than extracts from 

control cultures. As referred in chapter 5, xanthones isolated from elicited H. perforatum cells (such as 

paxanthone) have proven to display an increased antioxidant potential [Franklin et al., 2008b]. Despite 

the boost in xanthone production observed upon elicitation, the resulting increase in non-enzymatic 

antioxidant properties has proven to be insufficient to control the overwhelming production of ROS, 
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responsible for the increased cell death observed in pathogen-elicited cell cultures from both H. 

perforatum accessions. 

As discussed in chapters 6 and 7, the boost in xanthone biosynthesis, more evident in Helos 

suspension cells, could be associated to a role in defense due to their known antimicrobial properties. 

Acting as phytoalexins, these xanthones could prevent the spread of the fungal disease within the plant. 

The possible implications of H. perforatum xanthones as anti-C. gloeosporioides compounds will be 

discussed below, in chapter 8.6. The burst in xanthone production could also be responsible for the 

decrease in accumulation of other phenolic compounds, namely, flavonoids and lignin (chapters 6 and 

7). While up-regulation of genes coding for the PKSs (CHS and/or BPS) was observed upon elicitation, 

the decrease in the level of flavonoids could be due to the depletion of a common pool of precursors, 

shared between xanthones and flavonoids biosynthetic pathways or due to down-regulation of Chs 

transcription, as observed for the reduction of lignin levels in the cell wall, where no increase in gene 

expression (4cl ) was observed, as previously discussed in chapter 7. 

 

 

Figure 8.1: Schematic representation of the main physiological changes observed in H. perforatum suspension cells 
treated with an elicitor preparation from C. gloeosporioides (CG). Green color represents increased responses while red color 
represents decreased or absent responses. Responses similar to control conditions are shown in black. 

 

8.3. The influence of signaling molecules: SA and MeJ 

 

 The elicitor preparation was responsible for several physiological changes in H. perforatum 

suspension cells, common to many other plant models. On the other hand, treatment of cell cultures 
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with SA or MeJ, key phytohormones associated to Systemic Acquired Resistance (SAR) and Induced 

Systemic Resistance (ISR) in plants, did not result in such marked responses. Nonetheless, the most 

relevant results are summarized below, in figure 8.2. 

Treatment of H. perforatum cell cultures with MeJ, at a final concentration of 100 µM, was 

responsible for a significant (yet transient) increase is sugar consumption, while no changes were 

observed for consumption of other major nutrients (chapter 4). In accordance with the previously 

hypothesized connection between sugar consumption and xanthone biosynthesis (chapters 4 and 8.2), 

the increased carbon uptake observed upon MeJ treatment could be associated to the concomitant 

increase in lignin biosynthesis (chapter 7). Further studies on sugar transport and metabolism should 

be carried out before taking definite conclusions on this subject, as discussed below, in chapter 8.7. 

As previously referred, responses developed by suspension cell cultures treated only with the 

phytohormones could resemble those found in plant tissues distant from the infection site, but warned 

for an invasion attempt (chapter 4). It is curious that, only upon MeJ signaling, a substantial increase in 

lignin deposition in the cell wall was observed, while elicitation with a pathogen preparation showed 

absent or opposite results. These differential responses could be associated to distinct plant strategies, 

according to the proximity of the invader, as discussed in chapter 7. Furthermore, the increase in lignin 

deposition was accompanied by a small raise in xanthone accumulation and a decline in flavonoids 

accumulation, bringing more evidence about the extensively reported channeling/shifting of 

phenylpropanoid precursors and the fine-tuning of plant responses upon systemic signaling [Liang et 

al., 2006; Hendrawati et al., 2006]. 

Besides its effects in phenylpropanoid metabolism, MeJ was also responsible for a small 

increase in ROS accumulation within H. perforatum cells. Nonetheless this was a transient, single burst 

response. Working in parallel, some ROS-scavenging mechanisms had also improved. Non-enzymatic 

scavenging means improved marginally, due to the small accumulation of xanthones, while a significant 

increase in SOD activity was also observed (chapter 5). Despite the transient changes in ROS 

homeostasis, no HR reaction was triggered in H. perforatum cells. 

As observed for MeJ treatment, H. perforatum suspension cell cultures treated with SA, at a 

final concentration of 25 µM, developed rather similar responses, for most parameters evaluated (Fig. 

8.2). In fact, the only tangible differences between SA and MeJ treatments occurred in sugar 

consumption and lignin biosynthesis, where the absence of significant changes were observed, when 

compared to control conditions. Accumulation of xanthones and flavonoids, as well as ROS production 
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and scavenging, followed patterns similar to those found in MeJ-treated cultures. As discussed in 

chapters 5 and 6, a clear dichotomy between the two systemic signaling pathways is not always 

observed and increasing reports confirm that, per instance, SA treatment may lead to the accumulation 

JA in the cells [Salzman et al., 2005]. Furthermore, several variables, such as the plant species or 

concentration of the phytohormones used, may influence the plant metabolism, culminating in a 

concerted defensive response [Asai et al., 2000; Mur et al., 2006; Liu et al., 2008]. 

 

 

 

 

Figure 8.2: Schematic representation of the main physiological changes observed in H. perforatum suspension cells 
treated with MeJ (100 µM) or SA (25 µM). Green color represents increased responses while red color represents decreased 
or absent responses. Responses similar to control conditions are shown in black. 
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8.4. Priming of H. perforatum cells for defense: Effects of MeJ or SA pre-treatment, prior to 

elicitation 

 
While treatment of H. perforatum suspension cells only with the phytohormones didn’t confer 

marked, definite responses for most parameters studied, it doesn’t mean that some physiological 

changes, aiming for an improved defense, couldn’t be taking place within the plant cell. In fact, as 

observed for xanthone production in HPS, pre-treatment with MeJ, prior to C. gloeosporioides elicitation, 

led to an improved boost in accumulation, when compared to cells treated with the pathogen elicitor 

only (chapter 6). Concomitantly, sugar consumption had also increased on elicited cells pre-treated with 

the phytohormones (chapter 4). Finally, while no significant changes were observed for ROS 

accumulation and scavenging, a tendency for increased cell death was observed in elicited cells, pre-

treated with SA and MeJ, as reported in chapters 4 and 5. Therefore, while treatment with the 

phytohormones didn’t render noticeable effects in H. perforatum metabolism, these compounds could 

be responsible for signaling several defensive mechanisms against the upcoming pathogen, resulting in 

improved response, upon recognition of the threat. One example of this signaling cascade in H. 

perforatum cells could come from H2O2 accumulation. As referred in chapter 5, SOD activity increased 

upon phytohormonal treatment while CAT activity was not significantly affected. These responses could 

have possibly accounted, during the following hours, for the increase in extracellular H2O2 accumulation, 

observed when cultures were then elicited with the pathogen preparation. Considering the hormonal 

nature of H2O2 in plants [Dempsey et al., 1999], an amplification of plant defense signals could be 

taking place, inducing an improved resistance. Further studies of H2O2 metabolism in H. perforatum 

should help clarifiying this hypothesis. 

It has been suggested that ISR is associated to resistance against necrotrophs while SAR 

provides resistance to biotrophs [Thomma et al., 1998; Ton et al., 2002]. H. perforatum suspension 

cells responded similarly after pathogen elicitation, regardless the systemic signaling pathway induced. 

Therefore, through the experiments shown in this thesis, it is not possible to point the most relevant 

systemic resistance pathway for this plant-pathogen model, especially considering the dual nature of C. 

gloeosporioides, a fungus that displays both nutrient acquisition models. Furthermore, increased 

evidence suggests an intense cross-talking and coordination exists between both systemic defense 

pathways, in order to organize and prepare the plant metabolism against a wide range of potential biotic 

and abiotic stresses [van Wees et al., 2000; Spoel et al., 2003; Salzman et al., 2005]. 
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Figure 8.3: Priming of H. perforatum suspension cells with MeJ (100 µM) and SA (25 µM) prior to pathogen elicitation 
may lead to some improved responses. 

 
8.5. H. perforatum suspension cells: Drawbacks of their use in secondary metabolism studies 

 
While some classes of secondary metabolites from H. perforatum were present and differentially 

accumulated upon C. gloeosporioides elicitation, at least one important group of secondary metabolites 

found in Hypericum species, the naphtodianthrones (which includes compounds like hypericin, 

described in chapter 1.3), was not present in cell cultures from both accessions studied, as previously 

discussed [Conceição et al., 2006]. Despite their absence, an increase in hypericin accumulation was 

found in other H. perforatum suspension cell cultures upon, per instance, jasmonate treatment 

[Gadzovska et al., 2007]. Most authors support the idea that undifferentiated tissues, such as 

suspension cells, cannot accumulate hypericins [Pasqua et al., 2003]. Nonetheless, other authors 

suggest that cell aggregation, as well as certain growth conditions, play an important role in the 

production of some classes of secondary metabolites [Bais et al., 2002] by promoting a certain degree 

of differentiation to the previously undifferentiated suspension cultures [Gadzovska et al., 2005]. 

Despite the ongoing debate about tissue culture differentiation, it is clear that caution should be taken 

before generalizing results obtained from suspension cell cultures. Although technically convenient, 

some studies may be compromised by its use. In fact, hypericins were found to accumulate at high 

amounts in pathogen-elicited H. perforatum plants and, therefore, could also play a role in plant 

defense [Sirvent et al., 2002; Sirvent et al., 2003; Çirak et al., 2005]. For those reasons, the use of 

plants in vivo should be regarded as the following, definite step in the study of H. perforatum secondary 

metabolism and its relevance in C. gloeosporioides infection. 
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8.6. H. perforatum accessions vs. C. gloeosporioides 

 
While disadvantages may be pointed from the use of undifferentiated tissue cultures, some 

results obtained with this tool may give early insights about the mechanisms underlying the reduced 

susceptibility observed in plants from H. perforatum Helos accession in vivo. While suspension cultures 

from both H. perforatum accessions were able to recognize the pathogen, developing a resistance 

response, Helos cells showed higher levels of ROS during the double oxidative burst. The increased 

production of ROS may be associated to the stronger HR developed by these cells. Accordingly, Helos 

cultures also accumulated greater amounts of xanthones than HPS upon elicitation. The boost in 

xanthone biosynthesis was responsible for a contradictory (yet ineffective) increase in antiradicalar 

properties from methanolic extracts, as previously referred in chapter 5. Nonetheless, xanthones are 

known to play a dual function in defense against biotic stress, acting also as antimicrobial compounds 

[Franklin et al., 2008]. At first, the non-polar nature of the newly-synthesized xanthones [Conceição et 

al., 2006] sounded as promising anti-C. gloeosporioides compounds. However, fungal growth was only 

slightly reduced by crude methanolic extracts (unpublished data). On the other hand, both crude 

methanolic extract and isolated xanthones (namely, paxanthone) displayed antibacterial activity against 

A. tumefaciens and A. rhizogenes [Franklin et al., 2008]. While keeping in mind the in vitro nature of 

our experimental model, it seems that, whereas H. perforatum defense mechanisms were effective 

against pathogens like Agrobacterium, providing antimicrobial compounds as well as protecting plant 

cells from lethal ROS damage, the same may not occur for the interaction with C. gloeosporioides, 

resulting in H. perforatum infection, as usually seen in vivo. In fact, methanolic extracts from H. 

perforatum plants have also proven to be poorly effective against C. gloeosporioides spore germination, 

reducing it by 15%, approximately [Silva et al., 2008], although displaying antimicrobial activity for other 

fungi [Lu et al., 2002]. On the other hand, some authors suggest that hypericins and/or hyperforins 

may stall C. gloeosporioides growth [Sirvent et al., 2002]. Further studies on C. gloeosporioides growth 

and spore germination should be carried in order to clarify this situation. 

 Therefore, in H. perforatum cultures, the basal (or non-host type II) resistance was able to 

prevent bacterial infection (incompatible interaction), without damaging the plant cells [Franklin et al., 

2008]. C. gloeosporioides, on the other hand, is known to be virulent to H. perforatum in vivo, while 

responsible for increased cell death by HR, as observed in vitro (host resistance). Thus, H. perforatum 

and C. gloeosporioides also appear to display an incompatible interaction. Upon elicitation with the 

pathogen (C. gloeosporioides biomass) or non-pathogenic organisms (Agrobacterium), H. perforatum 
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cells displayed qualitatively similar responses. As referred in chapter 1.4, distinction between host and 

non-host type II resistance is rather difficult since both may use similar defense mechanisms, such as 

HR and phytoalexins synthesis [Heath, 2001; Nimchuk et al., 2003; Peart et al., 2002]. H. perforatum 

responses triggered by C. gloeosporioides elicitation were stronger, leading not only to higher xanthone 

accumulation but eventually culminating in cell death by HR. Although host resistance is known to be 

faster and/or more intense than non-host [Mysore et al., 2004], we can’t assume that the difference in 

response intensity found between Agrobacterium and Colletotrichum is due to these distinct 

mechanisms since some parameters, like the inoculum concentration, were found to interfere with the 

intensity of the response [Franklin et al., 2008]. Regardless the resistance model used by the plant, and 

considering that C. gloeosporioides may use both biotrophic and necrotrophic nutrition models, the 

development of HR by H. perforatum could indeed be more profitable for the pathogen than for the 

plant, by providing clear access to nutrients from the death plant cells, therefore explaining the success 

of C. gloeosporioides as a pathogenic fungus, able to infect a broad range of hosts. 

 

8.7. Future Perspectives 

 
 Considering the results presented and discussed in this thesis, some suggestions can be 

outlined, in order to continue this research project, aiming to a better understanding on H. perforatum 

defensive responses against C. gloeosporioides. 

 In general, the most promising results presented here should be confirmed in vivo, on fully 

differentiated H. perforatum plants, whenever possible. As previously referred, cell suspension cultures 

can be seen as an interesting tool for basic research, due to its easy manipulation and control, but also 

because these cultures usually display concerted responses to a given stimulus. Nonetheless, it is clear 

that some cell culture responses may fail to resemble those found in vivo. Furthermore, while the 

experiments regarding systemic resistance pathways described in this thesis were performed with 

exogenously applied phytohormones, the presence/relevance of endogenous jasmonates and salicylic 

acid should also be considered. Therefore, it could be interesting to access the levels of these 

phytohormones in H. perforatum upon pathogen recognition, as well as the effects of defense signaling 

pathway inhibition. 

 Other research lines could be considered, regarding the results shown in each chapter, 

individually: 
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 As described in chapter 4, an increase in sugar consumption was observed upon pathogen 

elicitation. It could be interesting to confirm this result by studying both sugar uptake and gene 

expression of the corresponding transporters, when suspension cells are faced with the pathogen 

preparation. Regarding this research line, a cDNA sequence coding for one monosaccharide transporter 

(MST) from H. perforatum was already obtained. Furthermore, tracking sugar metabolism using, for 

example, radiolabeled glucose, could be employed in order to find out whether the sugar uptaken upon 

C. gloeosporioides elicitation is channeled to xanthone/lignin biosynthesis or used in other physiological 

processes. 

 The results described in chapter 5 could be complemented by gene expression analysis of 

enzymes associated to ROS scavenging, such as catalases, superoxide dismutases or peroxidases. For 

this purpose, the cDNA sequence coding for a catalase from H. perforatum was already obtained. 

Further in-gel activity assays, after Native PAGE of H. perforatum protein extracts, could also 

complement the results obtained by accessing the presence and/or activity of distinct enzyme isoforms, 

when available. Activities of catalase and superoxide dismutase isoforms, for example, are known to be 

differentially regulated according to the stimulus the plant is subjected [Frugoli et al., 1996; Azevedo 

2005]. Besides ROS-scavenging, ROS production could also be complemented by studies on 

activity/expression of key enzymes, upon pathogen elicitation. For instance, the role of NADPH oxidase 

in the development of the oxidative bursts, as well as the roles of MAPK or calcium channels in signal 

transduction could also be evaluated by using specific inhibitors like DPI (NADPH oxidases inhibitor), 

staurosporine (MAPK inhibitor) or LaCl3 (calcium channel inhibitor). 

 The work presented in chapters 6 and 7 could be further supported by activity assays for other 

key phenylpropanoid pathway enzymes, such as BPS, CHS or 4-CL. Moreover, new expression studies, 

focused on enzymes directly associated to flavonol, flavone and lignin biosynthesis should be 

performed. This approach could help understanding whether gene regulation plays a role in the 

decrease in accumulation of these phenolic compounds (observed upon pathogen recognition) or if the 

depletion in the pool of precursors, channeled to xanthone synthesis, is the only mechanism 

responsible for this result. It could also be interesting to analyze the monomeric composition of lignin. 

Besides the differences observed in overall lignin accumulation upon C. gloeosporioides elicitation or 

MeJ treatment, the ratio between the monomeric units that compose the lignin polymers are known to 

play a significant role in cell wall strengthening, by regulating its crosslinking level. Another research line 

can be suggested, associated to new 4-CL isoforms. It could be interesting to search and characterize, 
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in H. perforatum, the 4-CL isoform associated to benzoyl-CoA synthesis, a main precursor in xanthone 

biosynthesis. Furthermore, the differential expression of all isoforms should be accessed, for the 

conditions studied, in order to better understand the channeling of phenylpropanoid precursors upon 

biotic stress and systemic defense signaling. 
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