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ON REGULAR IMPLICIT OPERATIONS

JORGE ALMEIDA and ASSIS AZEVEDO

1 — Introduction

This paper is concerned with the structure of semigroups of implicit oper-
ations. Implicit operations were shown by Reiterman [15] to be an important
theoretical tool in the study of pseudovarieties of finite algebras. Specifically,
every pseudovariety may be defined by a set of formal equalities of implicit op-
erations on any larger pseudovariety. This result has been used to solve specific
problems in the theory of finite semigroups [1], 6], [8], [10].

The main difficulty that one faces when trying to use Reiterman’s Theorem
lies in the non-explicit character of implicit operations on a given pseudovariety
V. Indeed, implicit operations are defined as new operations on the members
of V that commute with all old homomorphisms. Among these operations there
are, of course, all those that may be constructed from the old operations and the
component projections by composition, which are called “explicit operations” .
But, in general, there are many other implicit operations.

Thus, it is worthwhile to endow sets of implicit operations with some structure.
As a first step, one collects implicit operations on V according to their arity,
denoting by €1,V the set of all n-ary such operations. Then we may operate
on this set just as in the members of V by defining the operations pointwise.
Moreover, we get for 1,V a structure of a compact algebra by taking the initial
topology for all homomorphisms from 2,V into members of 'V, which are viewed
as discrete spaces [15], [11], [2].

In the case of semigroups, most results that have been obtained so far depend
on the availability of a certain kind of factorization for every implicit operation
on a given pseudovariety V of semigroups. Since (,,V is a semigroup, its regular
elements will, in general, play an important role. In section 3, we give two
characterizations of regular implicit operations: regularity is a pointwise property
and it may also be described in terms of V-recognizable languages. Now, for
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36 J. ALMEIDA and A. AZEVEDO

some pseudovarieties V, it turns out that every element of 0,V is a product of
regular and explicit elements. The best understood case where this happens is
the pseudovariety of J-trivial semigroups [5]. This paper presents an extension
of this result to the pseudovariety DS of semigroups in which each J-class is
a subsemigroup (section 4) and the study of semidirect products of the form
V # Dy (section 5) where Dy 1s the pseudovariety of semigroups in which every
product of k factorsis a right zero. In the second case, we obtain a representation
of 01,(V * D) which allows us to show that this semigroup has the desired
factorization property if we take for V the pseudovariety Com of commutative
semigroups. Further structural results are obtained for {1,(Com % Dy) in section
6, including a description of the minimal ideal. We also give an example showing
that 0,V does not always have the mentioned factorization property.

A preliminary version of this paper was presented at the Colloquium on Semi-
groups, Szeged, August, 1987.

2 — Preliminaries

For general background on semigroups see, e.g., Howle [13]. A pseudovari-
ety V is a class of finite algebras of a given type, closed under formation of
homomorphic images, subalgebras and finitary direct products.

Definition 2.1. Let X beasetand V a pseudovariety. An implicit operation
is a family ® = (74) s4ev such that:

i) for each A€V, 74: AX — A is a function;

ii) for each homomorphism ¢: A — B with A,B € V, the following diagram

comrnutes:
AX TA A

I e

BX I8 B

The set of all implicit operations on V, denoted by Q1xV, is an algebra of the
same type as the elements of V. We endow {1xV with the initial topology for
all homomorphisms into elements of V. The subalgebra of QxV generated by
the projections is denoted by {1 xV.

It is possible to show that QxV is a compact algebra admitting 2xV as
a dense subalgebra [15], and NxV is the free object over X in the variety of
topological algebras generated by V (all topologies considered here are supposed
to be Hausdorff) [2]. The algebra (1xV may be naturally identified with the free
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object on | X| generators in the variety generated by V. We also denote by 02,V
and 2,V the algebras QxV and QxV, respectively, in case X is a set with n
elements.
For a variety V and a set A we denote by 4V the free object in V on A.
The next theorem is the analog for pseudovarieties of Birkhoff’s Theorem for
varieties. To state it, it is convenient to use the following definition.

Definition 2.2. A pseudoidentity for V is a formal equality # = p with
7 and p in some (1, V. An algebra A € V is said to satisfy the pseudoidentity
n=pifmg = py. For asubclass € of V and a set 3 of pseudoidentities for V,
we write C |= X in case every member of C satisfies every pseudoidentity in X.

It is easy to prove [7] that, if (7,)nemN is a sequence in (IxV and 7 € QxV,
then her]lr{I nn, = m if and only if
n

(1) VpeIN JkeN: (AEV, ]AISp,mZk) > AEm,=n.

For a set T of pseudoidentities for V, we also let the subclass of V defined by
3 be

[Zlv = {aeV: AEz).

Theorem 2.3 (Reiterman [15]). Let W be any subclass of a pseudovari-
ety V. Then W is itself a pseudovariety if and only if there is some set & of
pseudoidentities for V such that W = [Z]y.

In general we write [X] instead of [£]g, where S denotes the class of all finite
semigroups.

The following is a list of some pseudovarieties of semigroups which will appear
in the sequel. We represent by z* the implicit operation defined so that, for a
semigroup S and an element s of S, (z¥)g(s) is the idempotent, denoted by
§*, of the subsemigroup of S generated by s. The semigroups considered in the
following classes are all finite.

Sl = {semilattices} = [2? = z, zy = yz] ,

Com = {commutative semigroups} = [zy = yz| ,

LG = {semigroups such that all idempotents are J-equivalent }

G = {groups} = [z¥y = yz¥ = y] ,

J = {J-trivial semigroups} = [z¥+1 = v, (zy)? = (y2)“] ,

K = {semigroups such that idempotents are left zeros} = [[x“’y = xw]] ,
D = {semigroups such that idempotents are right zeros} = [yz¥ = z¥] .
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For a nonvoid set A we denote by AT (A*) the free semigroup (monoid)
generated by A. As the class S satisfies no nontrivial identity, {248 may be
identified with A%.

Recall that an element a of a semigroup S is regular if there exists = € S such
that aza = a. In this work we Jook for some characterization of regular implicit
operations on certain pseudovarieties of semigroups. The case of unary implicit
operations is easy and is given by the following proposition.

Proposition 2.4 [7]. If V is a pseudovariety of semigroups and m € 14V,
then w is either regular or explicit.

For implicit operations of arity greater than 1, the situation is much more
complicated as is shown below. On the other hand, even in the case of unary
implicit operations, not every one is a composite of explicit operations and the op-
eration z¢ [7]. The following is an example of a regular binary implicit operation
on S which can not be constructed using only explicit and unary operations [7].

Example 2.5. Let p be the endomorphism of {z,y}" (i-e, 12S), defined
by u(x) = zy and u(y) = yz. Then the sequence given by wp, = u*(z) satisfies
Wnt2 = wy 1" (y)]*wn, and so any accumulation point of (wn)neN 10 ;S is a
regular operation. The sequence (Wn)nelN 18 known as the Thue-Morse sequence
[14].

3 — Systems of equations in 0,V

In the following, V denotes a pseudovariety of an arbitrary type, n, 7, S
nonnegative integers, o, Bi (i € I) (r + s)-ary implicit operations, and 7, ..., Tr
n-ary implicit operations.

Definition 3.1. The system of equations
(2) ai(71, .oy Try T1s vy Tg) = Bi(71, s Ty, T wnty) (Gel)
is said to have a solution in Q,V if there are p1,...,0s € Q,.V such that (2) holds
forz; =p; (=1 ey 8)-

Definition 3.2. The system (2) is said to be pointwise solvable in V if, for
each A €V and all ay,...,an € 4, there are by, ...,bs € A such that

(3) o5 4 (1!'1A(a1, vy )y e TrA(G1) oo an), b1, .. bs) =

= ,31‘,4(“1,4(0'1, ey Gn)s o, Tralar, .ty Gn), b1, ...,b,) (teI).



ON REGULAR IMPLICIT OPERATIONS 39

These two definitions are related by the following compactness theorem.

Theorem 3.3. For a pseudovariety V of an arbitrary type, the system of
equations (2) admits a solution in Q,V if and only if it is pointwise solvable in

Proof: If z; = p; (=1, ..., s) gives a solution of (2)inQ,V, then,for Ac V
and ay, ...,a, € A, the elements of A given by bj = pj(a1,...,an) (7 = 1,...,8)
satisfy (3), so that (2) is pointwise solvable.

Conversely, suppose (2) is pointwise solvable in V. By [2], the topological
algebra 0,V may be viewed as a projective limit. Specifically, consider any
directed set (D, <), A4 € V, ayq4, ..., Gng € Ay (d € D), and any homomorphisms
©ea: Ag — A, (c < d) such that:

i) Ag is generated by {ayq, ..., ang};

ii) for every A € V and ay, ...,a, € A, there is d € D and a homomorphism
¥: Ag — A such that ¢(ag) = ap (k= 1,...,n);

iii) pgq = ida,;
iv)e<d<e = =00 Pae;
v) pei(akd) = age fork=1,... n.
_ Then, by [2, Thm. 2.2], we have the following projective limit description of

1,V given by an isomorphism

(ﬁnV;prl, ‘..,prn) ~ lim (Ad; aq, ...,and)
deD

under m — (74,(a14,...,@n4))dcp Where pri denotes the n-ary projection into
component k.

Since (2) is pointwise solvable in V, for each d € D, there are byg,...,b,q € Ay
such that

(44) Qia, (MAd(ald, vy @nd)y ooy Tra, (@14, ooy Ga), b1d, .., bsd) =

= ﬂiAd (”lAd(alth ey a‘nd)7 seey WrAd(ald’ erey a’nd); bld; ceey bsd) (1 € I) .
By i), for each d € D, there is pia € 2,V such that
(54) bja = pjay, (@14, .., ana) -

Since 0,V is compact and, for every cofinal subset of D, properties i)-iv)
still hold, we may assume that each net (pjd)aecp converges to some p;j in 2,V
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(j =1,...,s). Denote (a1d, -, Gna) by da. To show that (2) holds with z; = p;
(j =1,...,8), by ii) it suffices to verify that, for each d € D,

(6) QiAy (ﬂ-lAd(a:d)’ ) “TAd(ad)a Play (ad), ey PsAd(ad)) =

= Biny (m14,(@a), s 7ra,(@a), P14, (), opoag(@)) GED).
But, for d € D, there is cq € D such that, for j = 1,...,s and ¢ > ca,

(7) pchd(ald;-",and) = ijd(ald>'-'>and) .

Now, let ¢ > d,cq. Then, applying ©4. to both members of each equation
in (4.) taking into account (5), (7) and v), and the characteristic property of
implicit operations — they commute with homomorphisms — we obtain (6).
Hence (2) is solvable in 1,V .u

The following result contains some applications of Theorem 3.3 for pseudova-
rieties of semigroups.

Corollary 3.4. Let V be a pseudovariety of semigroups and * € Q,V.
Then

i) 7 is regular if and only if it is pointwise regular;

ii) if w is not explicit then there are p, x' and »" in Q,,V such that * = «'p¥ x".

Proof: For i), apply Theorem 3.3 to the equation # = Ttz 7.

For ii), assuming 7 is not explicit, consider the equation 7 = z' y* z". By the
preceding theorem, it suffices to prove that this equation is pointwise solvable. Let
(wk) ke be a sequence in 2,V converging to =, which implies that limg oo |wik| =
0.

For any semigroup S in 'V, let k be such that S = 7 = w; and |w| > |S|
according to (1). Then, given s1,...,5n € 5, wi(s1, .-, 5n) admits a factorization
we(s1, ..., 5n) = s et for some s,¢,¢ € S with e = e? [12], proving local solvability
of our equation. &

To formulate another characterization of regular implicit operations using
Corollary 3.4, we first state a definition.

Definition 3.5. Let V be a pseudovariety of an arbitrary type. We say that
a subset L of 0,V is V-recognizable if there are F € V and a homomorphism
¢: 1,V — F such that L = o 1 (p(L)).

There is a topological characterization of V-recogn_ifable__subsets of 02,V:
L C 0,V is V-recognizable if and only if its closure L in 0,V is open and
L=LnA,V [4].
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We may now express regularity of implicit operations in terms of combinatorial
properties of sequences of “words”. We say that a sequence of elements of a set
X lies eventually in a subset A of X if all but a finite number of terms of the
sequence lie in A.

Theorem 3.6. Let V be a pseudovariety of semigroups. Then, if (wi) e
is a sequence in Q,V with limit = in Q,V, the following are equivalent:

i) 7 is regular;

ii) for every V-recognizable language L C ,V,
rel = re€LQ, VL,
iii) for every V-recognizable language L C .V,

(wi) ke is eventually in L == (wy)ren Is eventually in LQ, VL .

Proof: Of course i) implies ii). To prove that ii) is equivalent to iii) just
note that, since the > product operation is continuous in 0,V and Q,Vis compact,
LO. VL =L,V L and apply the above characterization of V-recognizability.

Finally, suppose that ii) holds. By Corollary 3.4 i), to prove i), it suffices to
verify that 7 assumes only regular values. Let S € V and let p: 0,V — S be
a continuous homomorphism. Then the set K = ¢~ !(p(n)) is the closure of a
V-recognizable subset of (2, V, namely K = L with L = KN, V. Indeed, since
¢ is continuous, K is a clopen set and so, as 1,V is dense in {2,V it follows that
K =1L. By ii), we have 7 € KQ, VK. Hence 7 = 71 p 7y for some 7y, 79 € Q,V
such that ¢(r1) = @(72) = ©(x), whence (1) = o(7) p(p) p(r) and  is regular
inS.m

4 — Regular implicit operations on DS

The rest of this paper is concerned with semigroups.

In this section, which is based on the second author’s doctoral thesis [9],
we give combmatorlal characterizations of regular implicit operations on some
pseudovarieties. More precisely, for certain pseudovarieties V, given a sequence
in 2,V with limit 7 in Q,,V, we obtain conditions determlmng when 7 is regular.

For a pseudovariety V and 7 = n(zy, ...,z,) € 0,V we say that = depends on
z; if there exists § € V such that ng depends on the i*’-component, and define
¢(m) as the set of all such ;. For 7 € Q,V, ¢(r) is said to be the content of r.
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Lemma 4.1 [9]. IfVisa pseudovariety, then the content function
c: 0,V — P{z1, .., Tn}

is a continuous homomorphism (where P{z1, ...,Tp} is seen as a discrete topo-
logical semigroup under union, and, therefore, as an element of Sl) if and only
if S1ICV.

Example 4.2. Let 7 = (zy)* € 0,V with S1C V. Then

o((29)*) = lime((z9)") = lim {2, 4} = {,9} -

Definition 4.3. The pseudovariety DS is the class of all finite semigroups
whose regular J-classes are subsemigroups.

Using Green’s Lemma [13], one can easily prove that DS is defined by the
pseudoidentity

(8) [(29)* (v2)* (29)]” = (20)"

and that DS is the class of all finite semigroups whose regular elements are group

elements. ,
The following lemma will be useful in the characterization of the implicit

operations on DS.

Lemma 4.4.

i) A finite semigroup S belongs to DS if and only if, for any idempotent e,
the set of elements J-above e Is a subsemigroup.

ii) If » and p are implicit operations on DS such that c(p) C c(w) then
(r@pm¥)¥ = m¥.

iii) DS is the largest pseudovariety V, such that, for regular implicit opera-
tions m,p € 0, V, 7 and p are J-equivalent if and only if they have the
same content.

iv) For any subpseudovariety V of DS containing S, 2,V has 2" —1 regular
J-classes.

v) DS is defined by the pseudoidentity [(zy)e izt = (zy) Ttz

Proof: i) Let S be a finite semigroup of DS, e an idempotent of S, a,b
elements of S J-above € and z,y,%,t € S such that

e=zay, e=zbt.
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Using the pseudoidentity (8), we have
e=e" = (2bt)" = ((zbt)“’ (tzb)* (zbt)“’)w <sb(zbt)” =be<;e

and, in a similar way,

e=e¢’=(zay)*<yjea<;e.
Hence ea and be are J-equivalent to e. As the J-class of e is a subsemigroup, we
have (ea - be)Je, and so ab is J-above e.

ii) Let (up)nemn be a sequence of explicit operations converging to p. By
Lemma 4.1, we may assume that c(u,) C c¢(n) for every n so that, by i), we have

™ u, JrY .

Thus, by compactness, there exist convergent sequences of implicit operations
(an)nemw and (Br)nem such that

= ap 7 up Bn .
As the semigroups of implicit operations are topological semigroups, we have
™ =ar“pf,

where o and @ are the limits of the sequences (an)new and (Bn)nem, and so
T Jr¥p.

From i), it follows that (7“p n“)¥ = x%.

iii) The first part is a consequence of ii) and the continuity of the content
function.

Suppose now that V is a pseudovariety such that for any regular implicit
operations 7,p € ,V, 7 and p are J-equivalent if and only if they have the
same content. Let 7 = (zy)” and p = ((zy)* (yz)* (zy)¥)*.

If S1 C V, then, by 4.1, the content function defined in 2,V is continuous.
Then, as 7 and p have the same content, they are J-equivalent idempotents. As
np = pm = p, we conclude that = and p are ¥-equivalent and so = = p, which
means that V C DS.

If Sl is not contained in V then one can easily show that V C LG, and so
V C DS.

iv) It is an immediate consequence of iii).

v) Let V = [(zy)* 'z = ((zy)¥*'z)¥*1]. If S € DS and a,b € S, then, by
i), (ab)“*a is regular, because it is J-equivalent to (ab)“. But, for semigroups
of DS, regular is equivalent to group element, and so (ab)**1la = ((ab)**la)**1,
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Suppose now that S is a semigroup of V. To prove that S 1s a semigroup of
DS we will prove that every regular element of S is a group element. Let a be a
regular element of S, e be an idempotent of S R-equivalent to a, and b € S such
that e = ab. Then we have

a=e€ea= (ab)a — (ab)za - = (ab)w+1a :
and, as S € V, a= (ab)w-i-la — ((ab)w+1a)w+1. .

For our characterization of regular implicit operations on DS, we need the
following definition.

Definition 4.5. Let V be a pseudovariety such that 2,V is equal, as a
semigroup, to {x1,...,zp}". For w,u € Q,V, define

w .
[ ] = max{r: u” is a subword of w}
u

where, viewing words as finite sequences of letters, we use the term “subword”
in the usual sense of “subsequence”.

Lemma 4.6 [5]. IfV is a pseudovariety containing J and u € 1,V, then

the mapping
N, v — N

is uniformly continuous, and so it extends to a continuous mapping

2,V — NuU{oo}

ro— Gl

Thus, in the situation of the lemma, if 7 = klim wy with wy € Q, 'V, then [Z]
ande. )

may be computed by taking kli_'rglo [";"]
The following lemma is crucial for the characterization of regular implicit

operations on DS. It extends the case of J-trivial semigroups considered in [5].

Lemma 4.7. If S is a semigroup of DS and w and u are words with the
same content such that [:‘j] > |S|, then w assumes only regular values in S, that
isS | w=uw"

Proof: Let ¢(w) = {z1,...,2n} and w = uy---ugt, where t,uy,...,u; are
words such that k= [¥] and [%] = 1.
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Let b, = uj---u, with p < k. For ay,...,a, € S, as k > |S|, there exist
r,8 € IN such that r < s < k and b,(ay, ...,an) = b,(ay, ...y @p). If, for simplicity,
we denote u;(ay, ..., an) by u;, then we have

by =bruppreru, = bs Upgp vt
— 2 _ — w+1l
= br(ur+1"'us) == br(ur+1"'us) >
and so

— 1
w = br(ur+1 T us)w+ Ugpp® o Upl

]w+l

= [b,(u,.H v )l ugt by Lemma 4.4 v)

=w*t!l g

As a consequence we have the following corollary in view of Corollary 3.4 i).

Corollary 4.8. IfVisa subpseudovariety of DS containingJ and = € Q,V,
then w is regular if and only if, for any word u, (7] €{0,00}.m

For the factorization of implicit operations on DS, in terms of explicit and
regular ones, we need some remarks.

Let A = {z1,...,zn}, let B be the set of all u € A without repeated letters
such that ¢(u) = A, and consider the mapping ¢ : 0,DS — N where, for
m € 0,D8, p(r) denotes the number of words u € B such that [*] ¢ {0, 00}.
This mapping enjoys the following properties:

e if p(7) = O then = is regular;

o if p(x) # 0, then, for u € B such that [*] = r ¢ {0, 00}, there exists a
sequence (vg)kem in 2,D8 such that

— 7 = limvy;
P k>
T Vk = Vk,00G1 """ Uk,s—1as Vs Where u” = a;---q, and a; & c(vg-1);
- liinvk,i = m;
~ p(m) < p().
This is a straightforward generalization of a similar result proved in [5] for

J instead of DS. Using induction and the pointwise characterization of regular
implicit operations, we obtain the following theorem.

Theorem 4.9. LetV be a subpseudovariety of DS. If € Q, 'V, then 7 can
be decomposed as 7 = ug w1 uy -+ mpup (k € N) such that

o u; € {z1,...,z}",
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e 7; is regular,
e last letter of u; & C(7Fi+1),
o first letter of u; & c(m;),

e if u; = 1, then c¢(m;) and c(miy1) are incomparable under inclusion. s

For DO, the class of semigroups of DS such that the regular J-classes are
orthodox, we know more about regular implicit operations. We begin with a
lemma.

Lemma 4.10. Let S € DO and e,a,b€ S be such that e = €% and e <y a,b.
Then eabe = eaebe.

Proof: As ea and be are group elements (since they lie in the J-class of €),
we have

eabe = ea - (ea)” (be)” - be .

As the J-class of e is orthodox, (ea)® (be)* is an idempotent. But, as (ea)* (be)*
is ¥-equivalent to e, (ea)” (be)” = ¢ and so eabe = eaebe. n

Theorem 4.11. If Vis a subpseudovariety of DO, then every regular
implicit operation on V is determined by its restriction to V N G.

Proof: Let 7 € £,V be regular (7 = 7*1) and let (um)men be a sequence
in 2,V with limit 7. For S € V, let k € IN be such that S |= 7 = ug.

For aj,...,an € S and € = 7%(ay, ..., an), let H be the ¥-class of e. Then
He VNG and

rs(a1, ..., an) = (a1, vy Gn)
= eug(ai,...,an) €
= u(eaye,...,eane) by Lemma 4.10

=ry(eare, iy €Qp€) . W

At the level of J, a complete description of implicit operations has been ob-
tained. In particular, one can establish uniqueness of the factorization given by
Theorem 4.9. This result may also be interpreted as the solution of the word
problem for a certain presentation of 0,J.

Theorem 4.12 [5]. Let m,p € 0, J. Then:
i) J | n=pifand only if, for all u € Qnd, r= B

u
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i) if # = wgmyuy---7mpup and p = ugpyvy---psvs are factorizations as in
Theorem 4.9, then J |= 7 = p ifand only if k = 5, u; = v; ( = 0,...,k)
and c(m;) = c(pi) (1 =1, ..., k).

Moreover, 2,J is the free semigroup with a unary operation (z — z*) over the

set {1,...,z,} in the variety defined by the identities (zy)* = (yz)* = (z¥y*)¥
and gz = zz¥ = z¥ = (g¥)v.

5 — A representation of 01,,(V *D;)

For k € IN, let Dy be the class of all semigroups such that every product of k
elements is a right zero. Let D = U,epy Dk and let Dy = (D)* be the class of all
finite semigroups of D;. The definition of K, K and K, is dual.

For pseudovarieties V and W we define their semidirect product V * W to
be the pseudovariety generated by the semidirect products of elements of V with
elements of W. The definition of the semidirect product of varieties is similar.
The definition of semidirect product of semigroups that we use here is the one
Eilenberg [12] calls “left unitary” semidirect product.

The following result is the motivation for the remainder of this paper.
Theorem 5.1 [3].

i) Com * Dy = (Com * D)F.

ii) The variety Com * Dy is generated by Com * Dy.

iii) Com * Dy |= u = v if and only if Ni(u) = Ni(v).

Here, for a word u, Ni(u) represents the network with: set of vertices the set
ck(u) of all factors of u of length k; set of arrows ck+1(u); an arrow w; — wy with
capacity |uly if w1 = ix(w), wa = tx(w) are, respectively, the longest initial and
terminal segments of w of length < k and w occurs |u|,, times as a factor of u;

source i(u); and sink t;(u). In case the length |u| of u is less than k, we define
Ni(u) to be wu.

Consider a finite alphabet A = {z,...,7,} and let
Akz{w€A+: |w|=k}, B;,={w€A+: |w|<k} .

Let S be a semigroup and let f: AT — S! be a mapping. Consider the set
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M,S = B U (A X S X A;) endowed with the following operation:

uv if luv| <k
u-v=

(ik(uv), f(uv),tk(uv)) otherwise (u,v € By)

(wi, s, w2) - v = (wl, sf(wgv),tk(wzv))
u-(wy,s,wg) = (ik(uwl), f(uwl)s,wz)
(w1, s, w2) - (21,8, 22) = (wl,sf(w221)t, Zz) -

A simple calculation shows that the following condition on f ensures that
M} S is a semigroup:

(9) Vu,v€ AY, f(uv) = f(u) f(te(u)v) = f(uir(v)) f(v) -

Then, A x S x Ag forms a Rees matrix semigroup over S under this operation
and an ideal of MyS.

Also using (9) and assuming that f(Bg) = {1}, another easy calculation shows
that the following mapping is a homomorphism:

©s - A+ _— MkS
w if we By
(ik(w), f(w),tk(w)) otherwise .

w

Example 5.2. Let S be the free commutative monoid on the set A, and
let f: AT — S be given by fu(u) = |u|w where, for w & Ag+1, fo denotes the
w-component of f. Clearly each fu satisfies (9), whence so does f. Thus, we
have a semigroup M;S and a homomorphism @5 : At — M;S. By Theorem 5.1,
for two words u and v in AT, Com * Dy = u = v if and only if Ni(u) = Ni(v),
i.e., if and only if pg(u) = ps(v). Hence pg factorizes through Q4(Com * Dy)

At £ MS
T"ﬁk
Q A(Com * D k)
and the mapping ¢ is an embedding.
As the next proposition shows, the construction My__ is intimately related

with the operator __ * Dy. We will show later that the situation portrayed by
Example 5.2 is quite general.
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Proposition 5.3. Let V be a variety of semigroups, let S be a monoid in Y
and let f: A* — S be any function satisfying (9) such that f(By) = {1}. Then

MkSEKkV(v*Dk).

Proof: Consider the partial function

1 Bey1 X S X By — M;S
(wl,s, wz) if (wl,s, ‘wz) € A x S x A
(wi,s,wg) +—s w fw=w=w,€B,ands=1

0 in the remaining cases .

We claim ¢ defines a covering
M,S <, BY 5o Bl
k o Dpyiq X ( © k+1) >

where B,(CZ)_I (resp. B,(Ql) denotes the set By, ; endowed with the operation u-v =

ik(uv) (resp. u-v = t;(uv)) and So B,Er_zl denotes the semigroup of the wreath
1
product of the transformation semigroups (S, S ) and (B,(c:z1 ,B,(cﬁr)l) [12]. Since

B,(cl_)H € Ky and B,(;r)l € D, the proposition will follow (cf. Eilenberg [12]).

Indeed, cover (w1, s, wz) by (w1,g,ws) and w € By by (w,h,w) where g, h:
Biy1 — S are given by vg = f(vw;)s and vh = f(vw). Then, for v,w € By,
5,t €S and vy, vy, wy, wy € Ay,

1 [ew if jow| < &
(U> ) pw = (z'k(vw), f(vw),tk(vw)) otherwise ,

(v, L, v)(w, h,w) p = (ik(vw), f(vw), tk(vw)> ©
vw if jvw| < k
{ (z’k(vw), f(vw), tk(vw)> otherwise ,

where the first case uses the hypothesis f(By) = {1};
(v,1,v) o (wy, 5,w3) = (z’k(vwl), flvwy)s, wz) = (v,1,v) (w1,9,ws) ¢
(vi,t,ve) pw = (111, tf(vzw),tk(vgw)) = (v1,t,v3) (w, h,w) p
(v1,¢,v2) o (w1, 5, wy) = (vl,tf(vzwx)S,wz) = (v1,¢,v2) (w1, 9,ws) o .

* Hence pw C (w, h,w)p and p(wi, s, wz) C (w1,9,w2)p. m
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Corollary 5.4. Let V be a variety containing a nontrivial monoid, let S be
a monoid in V and let f: AT — 5 bea function satistying (9) and f(Bk) = {1}.
Then MiS € V * D.

Proof: Under the assumption on V, we have K, C V% Dy, (see, e.g., Straubing
[16]).m

We call a function f: AT — S 1 satisfying (9) and f (Bg) = {1} good.

Note that Proposition 5.3 and Corollary 5.4 remain valid if, throughout, we
replace varieties by pseudovarieties (Dr and Kk being replaced by Dy and Ky,
respectively). ’

A variety V of semigroups is said to be monoidal if S 1 ¢V whenever S € V.
In other words, V is monoidal if and only if V is generated by its monoids.

Theorem 5.5. Let V be a nontrivial monoidal variety and let S = Qkkﬂ'\).
Let f: AT — S where f(w) is the product in S of the successive factors of w of
length k + 1, by order of appearance from left to right. Then f is good and the
homomorphism @g: At — M;S induces an embedding Q4(V * Dk) — M;S via
the canonical mapping At — Qa(V * D). Hence ps(A™) =~ Qa(V = Dg).

Proof: It is immediately verified that f is good. Moreover, since M S € V*Dy
by Corollary 5.4 and A(V#Dy) is freely generated by A in the variety V#Di, we do
indeed have an induced homomorphism ¥: 2a(V*Dk) —» M S. The claim is that
¢ is injective. To establish it, we use the description of Q4(V*Dy) given by (3,
Thm. 2.2): Qa(V#Dk) is isomorphic to the subsemigroup of n(nkpk)xAv * (4 Dk
generated by the set {a: a € A} where a = ((1,a),a) and the action in the
semidirect product is given by t(s,a) = (ts,a).

Now, let aj---ap, b1-++bg € A+ be such that ps(ar---ap) = ©s(br-+bg)-
We verify that ai«--ap = by-- -Bq thereby showing that, if the words ay**dp
and by - - - by have the same image under ps, then they are also identified under
the canonical mapping AT — Qa(V * D).

By the definition of pg, if p < k then ¢ < k and aq---ap = by by, 8O that

Ay Gp = by - --bg. Thus, we may assume that p,q > k, and so ps(ar--ap) =
ps(b1---bg) yields

ir(ar---ap) = ik(b1- - bo)
(10) fa1+--ap) = f(b1-+bq)
tk(al . -ap) = tk(bl s bq) .



ON REGULAR IMPLICIT OPERATIONS 51

In view of the above description of Q4(V * Dj), we have

al"'ap = ((l’al) (aljaZ)"°(al"'ak—1aa’k)'
(11) : (01 cr Qg ak+1) (az T TS ak+2) T (ap—-k trrlp-1, ap),
tk(al . .ap))

and a similar expression for b;-+-b,. By (10), it follows that, line by line,
@y++-@p = by---b, since the first line on the right side of (11) is determined by
ig(a1---ap), the third by ty(a; - - -a,) and the middle one by f(a;---a,). Hence
¢ is injective. m

Corollary 5.6. If V is a nontrivial monoidal pseudovariety, then V % Dy, is
generated by all M S with S € V and f: A* — S! good.

Proof: By Corollary 5.4, all such MS liein V * D. Since V is the union of
a chain of monoidal pseudovarieties, each generated by a single semigroup, we may
assume V itself has this property. Then V = V¥ where V is a variety generated
by a finite monoid. By Theorem 5.5, 4(V * D)) embeds in Mkngmv. Hence
the semigroups M;S suffice to generate V «*Dj. »

Suppose V and W are two nontrivial monoidal varieties with ¥V C W. Then
we have homomorphisms
ayy: n}4k+1w — n}{mv
leaving A4 pointwise fixed and
Bwy: Qa(W D) — Qa(V = Dy)
leaving A pointwise fixed. The first of these induces a homomorphism
Ollwv . Mk Q}&le — Mk er4k+1 Y
w —— w for we By
(wi,8,wg) +— (w1, awys,ws).
Denote by fy : AT — Q}‘HIV the mapping defined in the statement of
Theorem 5.5 and let
Ly QA(V * Dk) — M, Qhkﬂv
represent the embedding given by Theorem 5.5. Then, for V and W as above, we
have a commutative diagram of homomorphisms

QA(W * Dk) Eﬂ* QA(‘V * Dk)
(12) & |w

MpQy, W —5 M 0.,V
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Consider now a nontrivial monoidal pseudovariety V and let A denote the set
of all monoidal varieties which are generated by a single semigroup of V. The set
A is directed when ordered by inclusion. By (2, Thm. 2.2}, the projective limit

lim Qa(V * Dk)
VeA

(under the mappings Bwv) is isomorphic to the semigroup Q4(V * D) since
each Q24(V * Di) lies in V + Dy and every A-generated member of V * Dy Is a
homomorphic image of one of these relatively free semigroups. In view of (11),

we deduce that T14(V *Dj) embeds in lim Mg}, V.
VeA

Lemma 5.7. There is a good mapping fv: AT — ﬁkkHV such that

lim MiQy,,,V =~ Milly,,, V.
Vea

Proof: It is well known that the given projective limit consists of all

(ev)vea € ] M Q};Hlv
VeA

such that oy, ey = ey whenever V,WeA,V CW. From this observation, it is
easy to see that, as a set, the given projective limit is naturally identified with T =
BrU(Ag x_ﬁikﬂv x Ay) since ﬁikﬂv = lim Q}hﬂ V where the “V-component”
Vea
of w € By is w and the “V-component” of (wy, T, wg) € Ag X ﬁkkHV X Ap is
(w1, s, wa) where s is the value of 7 in Q, 41V when evaluated at the generators
a € Ags1. The operation in the projective limit gives an associative operation on
T which agrees with the definition of Mkﬁ};k + ,V with fv: At — ﬁ;k +1V given
by: fy(w) is the Agiq-ary implicit operation on V (or 1) corresponding to the

member (fy(w))vea of the projective limit lim Qg4,,,Y.»
Vea

The above considerations together with Lemma 5.7 yield the following.
Theorem 5.8. Let V be a nontrivial monoidal pseudovariety. There is a good
mapping fy: AT — ﬁ;k_HV and a continuous embedding vy : Qa(V*Dy) <
Mkﬁhk +1V' In particular, if we let
(m,1,m) if vy (7) € Bg

(wi, ', wg) ifey (7) = (wy, 7', wa)

(4, Il () = {
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the mappings || || : 5A(V *Dy) — ﬁimv and iy, t: ﬁA(V*Dk) ~ By, are
continuous. Via the canonical projection Q4 W — (1, (V *Dy), these mappings
may be extended to Q4 W for any W 2D V+Dy;. a

Of course, we do not need pseudovarieties “as large as” V « Dy, to get conti-
nuity of the mappings 15 and ¢; defined above.

There are several interesting consequences of Theorem 5.8. Here are some of
them.

Corollary 5.9. Let V be a nontrivial monoidal pseudovariety and let
7,0 €§148. Then V Dy |= m = p if and only if

(™) =1k(e), Nl = llolle, te(r) = tx(p) .

Corollary 5.10. Let V be a nontrivial monoidal pseudovariety and let
m,p € Q48. Then VD = m = p if and only if, for all k > 1,

w(m) =1k(0), |nlle=llolle, te(r)=ti(p) . n

Corollary 5.10 is somewhat unsatisfactory since in effect it is not portraying
the structure of ﬁA(V + D) explicitly, rather it is giving this semigroup as a
projective limit

liinﬁ A(V «Dy) .
k>1

It would be interesting to have a representation of ﬁA(V * D) of the same kind
as the one provided by Theorem 5.8 for {1, (VD).

6 — The structure of Q,(Com * D)

We now return to the pseudovariety Com  D.
The main simplification produced from the general case when we take
V = Com comes from the existence of an isomorphism

— — b'e
Q;{Com o~ (QiCom) (direct power)

for any set X.
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We define, for a pseudovariety W containing Com*D,, © € Q4W and
w € Apy1, |7|u to be the u-component of ||x||,. Then we may extend the def-
inition of network of a word given at the beginning of section 5 so that, for a
pseudovariety W containing Com D, and 7 € QuW, Ni(r) is described by:
let

cp(m) = {u € Ag: |T|u # 0}

(as usually, we think of commutative semigroups as additive structures and so
0 stands for the identity element of _ﬁiCom); then Ni(m) has set of vertices
ci(r), set of arrows cr41(7), an arrow wy , wy with capacity |7 |y if w1 = ix(w),
wy = te(w), source ig(r) and sink ty(r). From Corollary 5.9, we deduce the

following result which extends Theorem 5.1 1ii) to the case of pseudoidentities.

Theorem 6.1. Let m,p € Q4S. Then Com * Dy = n = p if and only if
Ni(m) = Ni(p)-

For the rest of this paper, we analyze the local structure of {14(Com % D)
using Theorem 6.1.

Theorem 6.2. Let m,p & Q4(Com * D). Then:
i) = is regular if and only if, for all u € Agy1, |7 |u is regular;
ii) if 7 and p are regular, then wJp if and only if cg+1(7) = ce+1(p);

iii) if = is regular, then ® = r@*l (ie., = lies in a group) if and only if
e (te(m) 1r(7)) € er1(7)-

Proof: (We think of 7 as a “traversal” of Nj(n) where, for each w € ces1(m),
the capacity ||y of the arrow w counts the “number of times” 7 goes through
w. In this interpretation, we identify each explicit operation z™ € —ﬁiCom with
the natural number m, where z denotes the identity unary operation symbol.)

Since Com = Uy, ;>3 Comm, where Com,,,; = [zy = yz, g™t = z™], by the
results of section 3 it suffices to work with each Comyy, 1 *Dpg instead of Com * Dy.
We may then define, for 7 € 4 (Com * Dy), a network N (x) in which the
capacities |7|, of arrows are reduced by the relation gmtl = z™. Then |r|y, is
regular if and only if |7}y > m or |r|y = 0. Moreover, Corollary 5.9 again yields
that, for 7, p € 048, Comp * Dy = 7 = p if and only if N,:""l(n) = N,:n’l(p).

i) Now, let ||y 2 m or |7|y =0 for all u € Ag+1. For our present purposes,
it suffices to consider the case m > 2 (the case m = 1 has to be phrased in
a somewhat different manner since then |7|u regular modulo 1t = 7 is always
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satisfied). Then, each arrow of N i ’l(7r) may be traversed at least twice and hence
there must be, for each such arrow, a directed path in N i ’l(7r) from the arrow’s
end to its beginning. It follows that, for any two vertices v and w in N]:n'l(ﬂ')
(i.e., v,w € ci(r)), there is a directed path from v to w. In particular, there is
a directed path P in N’:n'l(ﬁ) from the sink to the source which passes through
enough vertices so that the path described by 7 followed by P followed again by
the path described by 7 is described by a product mpx (for this, it suffices to
assume that P has length k). Then, for each u € A4y, ||, = |(p)t7|, modulo
g™t = g™ and so 7 = (mp)* m, proving that = is regular in ﬁA(Comm’l * Dy).
The converse in i) is obvious in view of Theorem 5.8.

ii) Here, for the nontrivial part of the statement, suppose 7 and p are regular
(in ﬁA(Comm,l *Dyg) withm > 2, 1> 1 fixed) and cpq1(7) = ck+1(p). Then &
and p have the same underlying digraph in their network N i * and this digraph
has the property that, for any two vertices v and w, there is a directed path from
v to w. Thus, there are long enough paths P; and P, respectively from t;(r)
to 1x(p) and from tx(p) to tx(x) so that we can go from 4x(7) to tx () following
mo1p 0oy, whence 7 = n(0ypo3)' and so 7 < p.

iii) Suppose m > 2 and 7 is a regular element of the semigroup _ﬁA(Comm,l *
Dy) such that ck+1(th(7) ik(7)) C cxp1(n). Then cpy1(m?) = ck+1(7) and so
x2Jr by ii). Since ﬁA(Comm,I * Dy) is finite, it follows that 7 lies in a group.
The converse is again immediate. u

The argument given above for the proof of ii) also yields the following.

Proposition 6.3. Let 7,p € (14(Com * D) be regular elements. Then:
i) # <, p if and only if cpr1(m) 2 cp41(p);
ii) # <z p if and only if egr1(7) 2 ck+1(p) and k(7)) = 1k(p);

iii) = < p if and only if cy41(n) D ck+1(p) and tp(r) = ti(p). u
We illustrate these results with an example.

Example 6.4. The partial order of the regular J-classes of 15(Com * D,)
can be represented by the following diagram:
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(=*y")" v z¥ (a?y)*  (=y")° (zy)*

/

(=*y @) @By @) (@) (zvey’)”
\
(=*y°)” («?yzy®)” (Pyay)”  (zy2y®)"
(«3yzy?)” (z2yey®)”
_
(e%yzy®)”

For example, the J-class of (z2y®)* has 4 R-classes and 4 [-classes. The following
picture gives us an element of each ¥-class of Jz2y2)e. The star means that the

corresponding ¥-class is a group. This group is isomorphic to 0,G since the
underlying digraph of the corresponding networks is a simple cycle.

. (2242)" (2242)" = (z2y?)" 22 (22y2)* 22y
y(z2y2)w y(zzyZ)wz y(z2y2)wz2 % y(z2y2)wx2y

2 (2242)" i P (z2y?) z | * y?(22y?)" a° W (s?y?) 2y
22 (s292)” | * zv° (2242)“ = oy (22y?)" 22 zy? (224?)¥ 5%y
I R B

As we move down on the partial ordering of the J-classes, the under-
lying digraphs of the corresponding networks become more complicated. For
instance, we have the following digraph for the elements of the minimal ideal of

'ﬁz(Com * D2)
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()

O

As Com*D = Uk>1 Com * Dy, the following corollary is a consequence of
the previous results.

Corollary 6.5. Let m,p € ﬁA(Com * D). Then 7 is regular if and only
if, for all k € N and u € A, |7| is regular. Moreover, in case = and p are
regular, we have:

i) m <; p if and only if, for all k € N, ciy1(7) 2 epr1(p);

ii) # <g p if and only if, for all k € N, ck+1(m) 2 crv1(p) and iy (7) = tk(p);
iii) 7 <; p if and only if, for all k € N, cir1(7) 2 crt1(p) and ti(n) = te(p);
iv) # = ¥t if and only if, for all k € N, cpy1(te(n) ie(n)) C cpra(n). u

The following theorem gives a factorization of implicit operations on Com * D,
in terms of a product of “words” and regular implicit operations.

Theorem 6.6. Every implicit operation on Com % Dy is a finite product of
explicit operations and regular ones.

Proof: For r € (14(Com * Dy) let v(m) represent the number of words
w € Ag41 such that |7y = 0. Note that, if () is maximal, then 7 is an explicit
operation.

We proceed by induction on v(x). Suppose that all 7 Q4(Com Dy)
such that v(r) > r are products of explicit operations and regular ones. Let
7 € 4(Com * Dy) be such that v(r) = r. I, for every u, |r|, is not an
explicit operation then, by Proposition 2.4, ||, is regular for every u and so, by
Theorem 6.2, « is regular. So, we may assume that there exists u € A, such
that ||, is explicit.

Since 14(Com * D;) is dense in Q4(Com + D;) and |7|s 1s a continuous
function of x, there is a sequence (wm)mem of words converging to 7 such that
|Wi|u = |7|y for every m € N. Isolating the occurrences of u in each of the
words w,, for which there may be overlappings but whose possible configurations
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depend only on u and |7|y, by taking a subsequence of (wm)mem, if necessary,
we may assume that there are factorizations wm = Wom U1 Wim U2° " Up Wpm such
that |wim|uw = 0 for all m, ¢ and the sequences (wim)meIN converge. To conclude,
just apply the induction hypothesis to m; = 17%51100 Wiy A

The following example shows that the analog of this theorem for Com =D is

not true.

Example 6.7. Let 7 be an accurnulation point, in (J2(Com * D), of the se-
quence (ab ab?ab3 - -ab"a)peN. Then is not a finite product of regular implicit
operations and explicit operations.

To prove this result, start by observing that, for any k,s € N, |7|spkq..abkte—1a
—1. Thus, f r=m---m 15 a factorization of 7 in terms of regular and explicit
operations, then, for each m € IN, there exist p,1 € IN with p > m such that
|milabra = 1. 1 we take m large enough, m; must be regular and so |m;[abra = 0,
which is absurd since |7 |gprq = 1.

Much more structural information concerning Q 4(Com * D) may be read
off the representation provided by Theorem 5.8. We proceed by describing the
maximal subgroups of the minimal ideal of that semigroup.

First, an observation from graph theory. Let A be a digraph with v vertices,
¢ arrows and w connected components in its underlying undirected graph. The
incidence matrix M of A is the v X e-matrix with entries 0 or 1 in which
the column corresponding to an arrow has entries 1 and —1 in the positions
corresponding to its beginning and its end, respectively, and 0 elsewhere. The
following result is elementary and well-known.

Lemma 6.8. With the above notation, rank M = v — w.

Proof: Since the sum of the entries in each column is 0, we deduce that,
for each connected component, the sum of the rows corresponding to 1ts vertices
is 0. Moreover, if the sum of certain rows is 0, then the corresponding vertices
must be isolated from the remaining vertices. On the other hand, since the only
way to eliminate a particular entry performing row operations is to add to the
corresponding row another row, if thereis a relation of linear dependence between
certain rows (all with nonzero coefficients), then the sum of those rows must be
gero. The lemma follows easily. =

Theorem 6.9.  The maximal subgroups of the minimal ideal Km; of
Q4(Comy,; * Dy) are isomorphic to I] where r = nkf(n - 1)+ 1, n = |Al,
m>2,and! > 1.
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Proof: By Theorem 6.2 and Proposition 6.3 (or, better, their analogs for
24(Com,y, ; +Dy), K, 1 consists of all 7 such that ¢k+1(m) = Agyq and |7, > m.
The X-class of such an element 7 of K, is determined by the pair (14(r), tr(7)).
Choose such an ¥-class H for which 1x(7) = te(m) = wy. Then, the elements
m of H are determined by |||, € Q4(Com,,; N G) = Z?Hl. However, not all
elements of this group are realized as some lm|lx with 7 € H.

Foru € Ag;q,let a: H — T be defined by ay(7) = |m|y+t, where ¢, = |wd],.
Then, for 7,p € H, |7p|, = |7y + |p|y + tu, and so ay(mp) = au(m) + au(p).
Hence, each a, (u € A1) is a homomorphism. It remains to be shown that r
of these homomorphisms separate the points of H and their images are totally
independent and arbitrary.

Since any 7 € H provides a traversal of the same underlying digraph A of
the network N ’l(7r), such a 7 describes a closed path starting at w. Hence,
for each vertex of A, such a path must go through arrows which end at that
vertex as many times as it goes through arrows which begin at it. Thus, the
numbers 7|y (u € Agy1) must satisfy a system § of homogeneous equations in
; whose matrix of coefficients (a 0, +1-matrix) is the incidence matrix M of A.
By Lemma 6.8, rank M = n* — 1 since A is obviously connected. Moreover, since
each column of M has precisely two nonzero entries which are 1 and —1, this
matrix may be reduced to row echelon form by perfoming row operations which
maintain all coefficienis 0 or +1. Hence, there are u; € A, (1=1,..,n*- 1),
independent of 7, such that each of the numbers |7|u; is determined by the |x,
with u € Ap  \{u;: 1 =1,.. nF— 1}, so that the corresponding homomorphisms
o, separate points of H.

Let C be a closed path starting at wy and going through every arrow, and
let o denote a word obtained by traversing m + t consecutive times the path C,
where ¢ is such that m+¢ =0(l) and m+t > m. Then o € H and lolu =m+t
for u e Agy.

Consider next a solution (py)yca, +1 of the system §. Since each vertex of A
has the same in-degree as out-degree, (Pu—m—t)yea, +1 18 also a solution of §.
Although we view § as a system of equations in Z;, we may choose the p, to be
integers such that all p, — m — ¢ are nonnegative and the system $ is satisfied in
I (take the p, with u ApriMu: i=1,..,n%— 1} sufficiently large by adding
appropriate multiples of [ and then adjust the p,; also by appropriate multiples
of [ so as to get equality in each equation in § — this is possible since we may
solve for the p,; and adding the same number to all Pu produces another solution
of the system).

We proceed by induction on ¥, A1 (Pu— m —t) to show that there is some
7 € H such that, for all u € A, |T|u = py. If the sum is zero, o does the
job. Otherwise, there is some Py, > m +t and so there must be some cycle
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(vy, ..., Us) With py; > m +t(j = 1,...,s). Applying the induction hypothesis
to (Pu — qu)ucArt where g, = 1 for u € {v1,...,ve} and qu = 0 otherwise, we
obtain some ® € H with |%|lu = Pu— Qu for all u € Agt1. To obtain 7' such
that |7’y = Pu for all u € Ag41, just traverse A as indicated by 7 until reaching
the vertex 1x(v1) and then make the detour (v, ...,Vs), proceeding afterwards as
indicated by n. This completes the induction step. Hence H =~ 1. »

_ Corollary 6.10. The maximal sEbgroups of tge minimal ideal K of
Q4(Com # Dy) are isomorphic to (G)" (ie, Q,(Com N G)) where
r:nk(n—l)—}-l,n:lAI.

Proof: Here, also by Theorem 6.2 and Proposition 6.3, K consists of all
x such that cgr1(7) = Ak+1 and all ||, are regular. We again consider an
Y-class H consisting of all 7 € K such that ix(r) = tg(n) = wo. For each
m,l > 1, let Hmy denote the corresponding X-class of Km,. Then it is obvious
that the canonical mapping Q4(Com * Dy) — 4(Comyy,; * Di) induces an
onto homomorphism H — Hp,; and these homomorphisms behave well with
respect to the canonical Hpy pp — Hmy1- Hence we have an onto homomorphism
H — lim H . Moreover, ecach 7 € H is characterized by the array (I7]w)ucArss

which in turn corresponds to the same kind of array interpreted in Qa, +1Comu
in Hp, ;. Hence H is isomorphic to lim Hy 1 and this projective limit is the desired

group by Theorem 69.m
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