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Abstract 

 

Type 2 DM is a metabolic disorder that results from genetic and environmental 

factors and affects 100 million people worldwide. It is characterized by hyperglycemia due 

to: i) decreased secretion of insulin by the pancreas and ii) resistance to the action of 

insulin in tissues as muscle, liver and adipocytes, leading to impaired glucose uptake.  

The objectives of the present work were: i) the characterization of the HIT-T15 cell line 

(hamster pancreatic β-cell line) as an in vitro model to assess the anti-diabetic potential of 

plant extracts/compounds; ii) the evaluation of the anti-diabetic potential of C. roseus 

aqueous extracts as well as that of their major flavonoids (quercetin and kaempferol) in the 

β-cell context, through the assessment of parameters such as insulin secretion and insulin 

gene expression, β-cell protection against oxidative stress induced by dRib and other 

oxidant compounds, GSH levels and apoptosis. 

Concerning the effects of C. roseus extracts on glucose-induced insulin secretion, we 

observed no effects on insulin secretion. However, the aglycones of the major flavonoid 

glycosides present in the extracts, Q and K at 20 μM, exhibited a strong induction of 

insulin secretion to levels above those achieved by glb (10 nM). That stimulatory effect 

was inhibited by both nifedipine and diazoxide indicating a mechanism similar to that of 

the pharmaceutical drug, which is targeting the insulin exocytosis process. 

Under conditions of oxidative stress induced by dRib (30 mM) cell viability was decreased 

in approximately 50%, a condition that was not prevented by the co-incubation of dRib 

with the three C. roseus extracts. Despite this fact, Q, K and NAC (200 μM) exhibited 

protective effects against dRib-induced damage, in a concentration-dependent manner, 

except for K (40 μM). 

Regarding GSH levels, a significant diminishment was observed in the presence of 

30 mM dRib when compared to control, a situation that was rescued by NAC, Q and K. 

The increase of GSH levels induced by NAC was mainly due to its role as precursor of 

GSH shynthesis, since the effect was totally abolished in the presence of BSO, an inhibitor 

of γ-GCS. Q and K alone also increased GSH levels of HIT-T15 cells indicating the 

potential of these flavonoids for maintain GSH homeostasis and prevention of oxidative 

stress, particularly beneficial in a diabetic condition. 

Taken together, these results indicate that C. roseus extracts might exert their 

attributed anti-diabetic activity in other organs like liver or skeletal muscle and that both Q 

and K, due to their antioxidant and remarkable insulin secretagogue effects, are good 

candidates for the prevention and/or management of type 2 DM. 
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Resumo 

 

DM tipo 2 é uma desordem metabólica resultante de factores genéticos e ambientais 

que afecta 100 milhões de pessoas em todo o mundo. É caracterizada por uma condição de 

hiperglicémia devido a: i) um défice na secreção de insulina pelo pancreas e ii) resistência 

à acção da insulina em tecidos como o músculo, fígado e adipócitos, comprometendo a 

absorção de glucose. 

Os objectivos deste trabalho experimental consistiram na: i) caracterização da linha 

celular HIT-T15 (células β-pancreáticas de hamster) como modelo in vitro para avaliar o 

potencial anti-diabético de extractos/compostos de plantas e ii) avaliação do potencial anti-

diabético de extractos aquosos de C. roseus e flavonóides maioritários (quercetina e 

canferol), ao nível das células beta, através da avaliação de parâmetros tais como indução 

da secreção de insulina e expressão do gene da insulina, protecção das células beta contra o 

stresse oxidativo induzido pela 2-desoxi-D-ribose (dRib) e outros compostos oxidantes, 

níveis de GSH e apoptose. 

Relativamente aos efeitos dos extractos de C. roseus na secreção de insulina induzida 

pela glucose, não se observaram efeitos a esse nível. Contudo, as agliconas dos principais 

flavonóides presentes nos extractos, Q e K a 20 μM, exibiram uma forte indução da 

secreção de insulina para níveis superiores aos alcançados pela glb (10 nM). Este efeito 

estimulatório foi inibido pela nifedipina e diazoxida, indicando um mecanismo de acção 

semelhante ao do fármaco, atingindo o processo de exocitose da insulina. 

Em condições de stresse oxidativo induzido pela dRib (30 mM), a viabilidade celular foi 

diminuida em cerca de 50%, uma condição que não foi prevenida pela co-incubação da 

dRib com nenhum dos três extractos de C. roseus. Apesar deste facto, foi observado um 

efeito protector contra os danos induzidos pela dRib por parte da Q, K e NAC (200 μM), 

de uma forma dependente da concentração, excepto para o K (40 μM). 

No que diz respeito aos níveis de GSH, ocorreu uma diminuição significativa destes 

na presença de 30 mM de dRib quando comparado com o controlo, sendo esta situação 

revertida pelo NAC, Q e K. O efeito do NAC no aumento dos níveis de GSH deveu-se 

maioritariamente ao facto deste ser um precursor da síntese de GSH pois o seu efeito foi 

totalmente inibido na presença do BSO, um inibidor da γ-GCS. Por si só, Q e K também 

aumentaram os níveis de GSH nas células HIT-T15, indicando o potencial destes 

flavonóides na manutenção da homeostasia da GSH e na prevenção do stresse oxidativo, 

uma situação particularmente benéfica numa condição diabética. 

No conjunto, estes resultados indicam que os extractos de C. roseus podem exercer o 

seu potencial anti-diabético em outros órgãos, como no fígado ou músculo esquelético, e 

que a Q e o K, devido à actividade antioxidante e efeitos como secretagogos da insulina, 

são bons candidatos para a prevenção e/ou controlo da DM tipo 2. 
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Introduction 

1. Diabetes mellitus – general considerations 

 

Diabetes mellitus (DM) is a clinically and genetically heterogeneous group of 

disorders characterized by abnormally high levels of glucose in the blood (hyperglycemia). 

Hyperglycemic states are caused by absolute or relative insulin deficiency associated or 

not with insulin resistance that often leads to a disturbance in glucose homeostasis and in 

fat and protein metabolism (LeRoith et al., 2004; Robertson, 2004). The prevalence of DM 

has reached epidemic proportions worldwide and is one of the worst global threats to 

mankind. The increase in diabetes prevalence seems to be associated with the spread of the 

western lifestyle, which is linked with increasing overweight and sedentary populations. 

Statistics revealed a prevalence of the disease of 2.8 % in 2000; this is estimated to be 

4.4% in 2030, a scenario that is translated in an increase of 171 million people in 2000 to 

366 million in 2030, making the human and economic costs derived from this situation 

enormous (Wild et al., 2004).  

The first observation that DM is not a single disorder remounts to Chakrata and 

Susruta (600 B.C.), two Indian physicians that differentiated two forms of the disease. 

During the 18
th
 and 19

th
 centuries a variety of the disorder was identified. This form, which 

today is recognized as type 2 DM, was less symptomatic, detected in later life, associated 

with overweight and identified by heavy glycosuria (increase of glucose levels in urine as a 

result of saturation of glucose reabsorption by the kidney). In the mid-1930s, Himsworth 

differentiated two clinical types of DM, with regard to the sensitivity and insensitivity of 

peripheral tissues to insulin (LeRoith et al., 2004). Modern classification systems set by 

the National Diabetes Data Group of USA (1979) and by Word Health Organization 

(WHO, 1980) have distinguished two main types of DM. Type 1 DM also known as 

insulin-dependent DM, accounts for 5 to 10 % of the cases of DM, is characterized by 

auto-immune destruction of beta-cells of the endocrine pancreas leading to loss of insulin 

secretion. Type 1 diabetic patients dramatically depend on insulin administration for 

survival (LeRoith et al., 2004; Robertson, 2004). Type 2 DM or non-insulin-dependent 

DM, comprising 90 to 95 % of cases in the diabetic syndrome, is a combination of genetic 

and nongenetic (age, high caloric diet, overweight or sedentary lifestyle) factors that cause 

insulin resistance and a relative insufficiency in insulin secretion (LeRoith et al., 2004; 

Surampudi et al., 2009). Among type 2 DM patients, there is a minority that exhibits a 
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form of the disease that results from mutations in a single gene. The most common subtype 

is the inherited maturity-onset diabetes of the young (MODY) characterized by early onset, 

usually before 25 years of age (McCarthy, 2004). Other type of DM, gestational DM, 

occurs in less than 5 % of all pregnancies, can also be distinguished from the former 

groups and is caused by insulin resistance and relative insulin deficiency during pregnancy 

(LeRoith et al., 2004; McCarthy, 2004). 

Diabetes mellitus could persist as an asymptomatic disease for a long period of time 

and secondary complications may arise before hyperglycemia is detected. For that reason, 

surveillance/prevention has to be a priority (Wallander et al., 2008). Therefore, 

classification of glucose abnormalities in an asymptomatic person should, according to 

WHO, be based on the following diagnostic observations: i) occasional plasma glycemia 

≥200 mg/dL (11.1 mmol/L), obtained at any time of day and without regard to when food 

was last ingested; ii) fasting plasma glycemia ≥126 mg/dL (7.0 mmol/L), fasting being a 

period of at least 8 hours without ingestion of food, or iii) plasma glycemia ≥200 mg/dL 

(11.1 mmol/L) at 2 hours after an oral glucose tolerance test (OGTT). The test must be 

carried out according to WHO criteria, with 75 g of anhydrous glucose dissolved in water 

(Conget, 2002). Diabetes is preceded by gradual stages of increasing glucose intolerance as 

listed in table I. 

 

Table I – Diagnostic criteria of diabetes mellitus and other categories of hyperglycemia (from Stumvoll et 

al., 2005). 

 

 

In the present work we will focus on type 2 DM, attempting to characterize 

potentially preventive effects that may result from the use of plants and particular attention 

will be paid to their action in the pancreatic beta cells. 
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1.1 Type 2 Diabetes mellitus 

Type 2 DM affects 100 million people worldwide and is characterized by 

hyperglycemia, resulting from: i) decreased secretion of insulin by the pancreas and ii) 

resistance to the action of insulin in peripheral tissues as muscle, liver and adipocytes, 

leading to impaired glucose uptake (Cheng and Fantus, 2005; Montecucco et al., 2008). 

Insulin resistance can be defined as the state of reduced responsiveness to normal 

circulating levels of insulin (Montecucco et al., 2008). The convergence of factors (fig.1) 

such as obesity, physical inactivity, age and poor dietary habits that cause impaired insulin 

signaling in association with genetic susceptibility increases the risks of developing type 2 

DM (Muoio and Newgard, 2008; Surampudi et al., 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Proposed etiology for type 2 diabetes mellitus 

(from Surampudi et al., 2009). IGT: impaired glucose 

tolerance; HGO: hepatic glucose output. 

 

 In healthy subjects, the maintenance of glucose tolerance is a process achieved by 

different factors. After glucose ingestion, an increase in plasma glucose concentration 

occurs and stimulates insulin secretion by pancreatic beta cells. This combined situation of 

hyperinsulinemia and hyperglycemia leads to glucose uptake by the liver, gut and 

peripheral tissues and suppresses endogenous glucose production (DeFronzo, 2004). 

Glucose uptake by peripheral tissues occurs in mainly by muscle (80-85 %) and to a 

smaller degree (4-5 %) by adipocytes. These, have an important role on body glucose 

homeostasis as they regulate the release of free fatty acids (FFA) from stored triglycerides 

and the production of adipocytokines that influence insulin sensitivity in muscle and liver. 
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In a non-diabetic situation, the increased plasma insulin in response to glucose ingestion, 

will promote a decline in plasma FFA, which, in turn, increase muscle glucose uptake and 

contributes to the inhibition of hepatic glucose production. Endogenous glucose production 

is responsible for maintaining basal glucose levels in a fasting state and is derived from 

liver (85 %) through glycogenolysis and gluconeogenesis and also from kidney (remaining 

15 %). Glucagon, another hormone from the endocrine pancreas, also plays a central role 

in glucose homeostasis through the stimulation of hepatic glucose output, under 

postabsorptive conditions. Any disturbance in this process can contribute to hyperglycemia 

in diabetic patients (DeFronzo, 2004). 

 

1.1.1 Cellular response to insulin 

 

 Under a condition of type 2 DM the glucose homeostasis suffers disturbances. 

Insulin resistance, usually present before the onset of diabetes, is associated with 

dyslipidemia, hypertension increased platelet aggregation, vascular inflammation, 

endothelial dysfunction and premature atherosclerosis (Cheng and Fantus, 2005), which 

explain the circulatory diabetes related complications. 

 The cellular mechanisms that contribute to insulin resistance are related with defects 

in insulin receptor and/or signal transduction cascade (DeFronzo, 2004). The insulin 

receptor is necessary to mediate insulin action and it consists of a heterotetrameric 

membrane glycoprotein composed of two α- and two β-subunits, linked together by 

disulfide bonds. The binding of insulin molecule to the receptor’s extracellular α –subunit 

brings α and β subunits closer together, inducing a conformational change that enables 

ATP bind to the β-subunit’s intracellular domain. ATP binding results in receptor 

autophosphorylation and tyrosine phosphorylation of insulin receptor substrates - IRS 

(Kido et al., 2001). The activation of insulin signal transduction in insulin target tissues, 

such as muscle and adipose tissue, ends with the translocation of glucose transporters to 

the plasma membrane. In muscle cells and adipocytes, GLUT4 is responsible for glucose 

transporter. Individuals with type 2 DM exhibit a 20 to 30 % reduction in insulin binding 

to adipocytes, caused by a reduction in the number of insulin receptors without change in 

insulin receptor affinity whereas, in muscle, a severe impairment in IRS-1 tyrosine 

phosphorylation occurs (DeFronzo, 2004). 

 In early stages of the disease process, to compensate insulin resistance, pancreatic 

beta-cells increases insulin secretion and this is sufficient to maintain normoglycemia. The 
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progression from normal to impaired glucose tolerance (IGT) is due to a decrease in tissue 

sensitivity to insulin and an increase in both fasting and glucose-stimulated plasma insulin 

levels occurs due to β-cell compensation (DeFronzo, 2004; Surampudi et al., 2009). 

However, the subsequent decline in beta-cell function leads to a hyperglycemic condition 

and the establishment of the diabetic condition. This hyperglycemic condition (fig. 2), per 

se, is responsible to aggravate both insulin resistance and impaired insulin secretion – 

glucotoxicity (Cheng and Fantus, 2005; Surampudi et al., 2009).  

 

Figure 2 – Abnormalities in type 2 diabetes mellitus that contribute to hyperglycemia and circulating free 

fatty acids (from Stumvoll et al.,2005). 

 

 DM type 2 is established only in the presence of both insulin resistance and insulin 

secretion defects. The last parameter will be treated with more detail in subsequent 

sections, regarding the incidence of the present work on beta-cells defects and its potential 

protection by natural compounds. 

 

2. The pancreas: structure and role in glucose homeostasis 

 

The pancreas is an organ located in the abdominal cavity and is divided in two 

portions according to its functions: the exocrine and the endocrine pancreas. The exocrine 

pancreas is responsible for the secretion of enzymes involved in the process of digestion 

whereas the endocrine pancreas secretes hormones involved in regulation of energy 

metabolism and fuel homeostasis. The endocrine pancreas represents a small part of the 
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pancreas and consists of groups of cells – islet of Langerhans – that comprise about 1 to 

2% of the total mass (i.e., approximately one million islets in the human pancreas) and are 

imbedded in the exocrine portion. Each islet is a structure highly irrigated by blood vessels 

that facilitates the secretion of the hormones directly to them and innervated by 

sympathetic, parasympathetic, and sensory nerves. There are four different cell types 

composing the islets, each of them responsible to synthesize and secrete distinct hormones 

(fig. 3). 

 

 

 

 

Figure 3 - Diagrammatic representation 

of the endocrine cell distribution in a 

typical mammalian islet of Langerhans 
(from Rodríguez, 2004). 

 

 

The cell types are α, β, δ and F cells, which constitute 25%, 60%, 10% and 1% of 

total islet cells, and are responsible for the secretion of glucagon, insulin, somatostatin and 

pancreatic polypeptide (PP), respectively. The remaining 4 % consists of connective tissue 

and blood vessels. Both insulin and glucagon are involved in regulation of blood glucose 

concentration and are inhibited reciprocally. Somatostatin regulates hormone secretion by 

the α and β cells whereas the function of PP has not been fully characterized (Rhoades and 

Pflanzer, 2004). 

Glucose homeostasis is maintained by the interaction of three different processes: 

insulin secretion by the beta cells, tissue glucose uptake and hepatic glucose production. 

Therefore, keeping blood glucose concentration constant regulates a constant supply of 

glucose by the organism. This normal level is achieved by a balance between glucose 

absorption from the gut, tissue utilization (glycolysis, pentose phosphate pathway activity, 

tricarboxilic acid cycle activity, glycogen synthesis) and endogenous production by 

glycogenolysis and gluconeogenesis. This complex process is regulated by the pancreatic 

hormones insulin and glucagon (Kawahito et al., 2009). 
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2.1 Insulin 

 

Biologically active human insulin is a protein that consists of two polypeptide 

chains, the A chain (21 amino acids) and the B chain (30 amino acids), joined by two 

interchain disulfide-linked bridges and this structure is highly conserved in higher 

vertebrate evolution (LeRoith et al., 2004). In pancreatic β-cells the insulin gene is 

transcribed and translated as preproinsulin, the precursor molecule, which contains a signal 

peptide that facilitates its translocation from cytoplasm to rough endoplasmic reticulum, 

where the signal sequence is cleaved to originate proinsulin. This proinsulin molecule is 

packaged into vesicles (granules) in the Golgi apparatus and undergoes a maturation 

process (fig. 4) during which specific endopeptidases cleave the proinsulin originating an 

insulin molecule and a C-peptide molecule. It appears that this maturation process is highly 

affected by Ca
2+

 dependent proteases. Granules are then translocated to the cell surface and 

its content released by exocytosis (LeRoith et al., 2004; Rodríguez, 2004). 

 

 

Figure 4 - Insulin maturation. Proinsulin is cleaved specifically by β-cell 

peptidases producing the mature insulin and the C-peptide (from 

Rodríguez, 2004). 

 

 

 

2.2 Glucose-sensing in the β-cell 

 

Blood glucose is maintained at concentrations very near 5 mM, with glucose 

transporter isoform 2 (GLUT2), liver glucokinase and pancreatic beta-cells being 

responsible to monitoring blood glucose levels (Im et al., 2006). Glucose is the strongest 

natural stimulus for insulin secretion from β-cells, because it was most likely a principal 

food component during evolution (Suckale and Solimena, 2008). However, pancreatic beta 

cells also respond to other breakdown products from food, such as other monossacharides, 

amino acids and fatty acids. As examples, leucine, arginine and palmitate can increase 

insulin secretion of rat islets pre-cultured in glucose; fructose, alone, does not stimulates 

insulin secretion but increases its synthesis and potentiates glucose-induced insulin 

secretion (Suckale and Solimena, 2008). There are other molecules that potentiate glucose-

induced insulin secretion such as glucagon-like peptide-1 (GLP-1), glucose-dependent 
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insulinotropic peptide (GIP) or pituitary adenylate cyclase-activating polypeptide 

(PACAP) that interact with G-protein-coupled receptors to generate second messengers 

such as cAMP and Ca
2+

 (Rutter, 2001; Surampudi et al., 2009). 

Glucose enters the beta-cell through GLUT2 and an equilibrium between intra- and 

extracellular media is rapidly obtained. GLUT2, unlike GLUT4, does not require 

mobilization by insulin and its low substrate affinity (Km=17 mM) promotes a high rate of 

glucose influx, proportional to blood glucose concentrations up to 10 mM (Suckale and 

Solimena, 2008).  

After entering the β-cell, glucose is phosphorylated, and thus entrapped inside the 

cell, by a glucokinase (GK), specific for beta and liver cells. GK unique properties 

distinguishes it from other hexokinases and allow it to function as glucose sensor: i) low 

affinity for glucose (Km= 6 mM), which is in the middle range of blood glucose after a 

meal, whereas other hexokinases are already at its maximum speed at this concentration 

and ii) is not inhibited by its product – glucose-6-phosphate – which allows a continuous 

activity despite high glycolysis load (Suckale and Solimena, 2008). 

Glucose transport through β-cell membrane is rapid and thus unlikely to be rate-

limiting for glucose metabolism (Rutter, 2001). On the other hand, glucose 

phosphorylation by GK is the rate-limiting step in the glycolytic cascade that leads to 

insulin secretion, thus a small change in GK activity significantly alters the threshold for 

glucose-stimulated insulin secretion (Im et al., 2006). 

 

2.3 Insulin gene expression regulation 

 

The regulation of insulin gene expression in β-cells is achieved by a variety of 

pancreatic transcription factors and the A3, C1 (RIPE3b, in rat) and E1 elements (fig. 5) in 

the insulin gene enhancer region are of great importance for the activation of insulin gene 

transcription (Kaneto at al., 2009). Pancreatic and duodenal homeobox factor-1 (PDX-1) 

binds to the A3 element whereas NeuroD binds the E1 element and both proteins play 

critical roles in insulin gene expression and islet development and function. Recently, a 

transactivator, MafA, was identified, which controls β-cell-specific insulin gene 

transcription through binding to the C1 (RIPE3b) element (Kaneto et al., 2009). In addition 

to insulin gene, PDX-1 is also responsible for the activation of other genes involved in 

glucose sensing and metabolism such as GLUT2 and GK. Both PDX-1 and NeuroD are 

expressed in various cell types in the pancreas while MafA expression is restricted to the β-

cells (Kaneto at al., 2009). MafA is a weak transactivator of the insulin promoter when 
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expressed alone as are PDX-1 and NeuroD. However, co-expression of these three factors, 

synergistically and strongly activate the insulin promoter. Furthermore, MafA, PDX-1 and 

NeuroD seem to be also involved in proliferation and survival of β-cells in the adult 

pancreas (Aramata et al., 2007; Kaneto at al., 2009). 

 

 

 

Figure 5 – Key transcription factors involved in insulin gene transcription (from Kaneto et al., 2009). 

 

In pancreatic beta-cells these processes are regulated by extracellular stimuli, such as 

glucose metabolism, under both physiological and pathological conditions. Insulin gene 

transcription is stimulated by short-term exposure to high glucose concentrations (Aramata 

et al., 2007). However, under a diabetic condition, hyperglycemia and consequentially the 

production of oxidative stress and dyslipidemia provokes a decrease in insulin gene 

expression due to a decreased expression and/or DNA binding activities of MafA and 

PDX-1 (Kaneto et al., 2009). These adverse effects may be prevented by treatment with 

antioxidants (Tanaka et al., 1999; Tanaka et al., 2002). 

 

2.4 Signal transduction in insulin secretion 

 

As many other endocrine cells and neurons electrical signals play a central role in the 

regulation of secretion and pancreatic beta cells which also have been reported to be 

electrically excitable by Dean and Matthews in 1968 (Rorsman et al., 2000). An increase 

in extracellular glucose concentration from basal levels (5 mM) to a stimulatory 

concentration (10 mM) leads to a β-cell slow depolarization from the resting potential (-70 

mV). This change in membrane potential is the central step in the signal transduction 

cascade, which generates an increase in intracellular Ca
2+

 concentration, leading to insulin 

secretion (Rorsman et al., 2000).  

Glucose-induced insulin secretion (GIIS), in vivo, exhibits a biphasic pattern of 

response (fig. 6). The “first phase secretion” consists of a rapid increase in insulin 

secretion shortly after an increase in glucose concentration, reaches a peak after 3 to 4 

minutes and then rapidly declines to a nadir at 8 minutes (Rorsman et al., 2000; Straub and 
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Sharp, 2002). The “second phase secretion” arises from the nadir and is characterized by a 

steadily increasing rate until it reaches a plateau after a further 25 to 30 minutes. Type 2 

DM patients always have the first phase of insulin secretion compromised (Straub and 

Sharp, 2002). In 1984, the ATP-sensitive potassium channel (KATP) was identified and 

found to be responsive to glucose. 

 

 

 

 

 

 

Figure 6 – Biphasic profile of glucose-induced insulin 

secretion (from Straub and Sharp, 2002). 

 

The first and second phase of insulin secretion occur through different pathways, 

which are the KATP channel dependent pathway and KATP channel independent pathway 

that are associated with first phase insulin secretion and second phase secretion, 

respectively (Straub and Sharp, 2002). 

 

2.4.1 KATP channel dependent pathway 

 

After a meal, glucose enters beta-cell through GLUT2 and its metabolism, initiated 

and controlled by GK, leads to an increase in the ATP/ADP ratio, inducing KATP channel 

closure (fig. 7A). This situation provokes a depolarization of the β-cell, which, in turn, 

results in the opening of voltage-dependent calcium channels. The resulting increase in 

intracellular free Ca
2+

 concentration, [Ca
2+

]I, modulates kinases or other effector systems 

involved in secretion, triggering the movement of secretory vesicles to the cell surface, 

their fusion with the plasma membrane and finally releasing stored insulin. The presence 

of aggregates of Ca
2+

 channels, granules and exocytotic machinery in specific locations of 

the membrane constitute the evidence for the location of “hot spots” for exocytotic activity 

(LeRoith et al., 2004; Straub and Sharp, 2002). 

Insulin-containing granules (fig. 7B) can be docked at the plasma membrane or free to 

move in the cytosol – reserve granules. After a glucose challenge only a small fraction of 

the docked granules will be released. On arrival at the membrane after translocation from 

the reserve pool, the granules dock and are primed for release. The priming process 
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involves chemical modifications between granules membrane and plasma membrane 

proteins, preparing them for fusion, in a process dependent of ATP (Eliasson et al., 1997). 

Therefore, the granules could be primed or unprimed and the former may be divided into 

readily releasable and immediately releasable. The latter would be the ones that make up 

the first phase insulin secretion and are located in the specialized areas of the membrane 

(LeRoith et al., 2004; Rorsman et al., 2000; Straub and Sharp, 2002). 

 

 

  

 
 

 

 

 

 

 

 

Figure 7 – A) KATP channel-dependent pathway of glucose sensing in the β-cell (from Rodríguez, 2004); B) 

β-cell granule pools in resting and activated states (from LeRoith et al., 2004). 

 

Sulfonylureas, as glibenclamide, used in the present work, are clinically approved 

therapeutic agents for the management of type 2 DM for more than 40 years. They exert 

their pharmacological activity by promoting the closure of KATP channels leading to 

membrane depolarization, opening of Ca
2+ 

channels and initiation of insulin secretion. This 

effect is mediated by the binding to a sulfonylurea receptor (SUR1), which together with 

protein Kir6.2, forms functional KATP channels. Sulfonylurea’s effect on this channel is 

independent of the cell’s metabolic state (Rorsman et al., 2000). 

 

2.4.2 KATP channel independent pathway 

 

The demonstration of a second pathway, KATP channel independent pathway, 

separate from KATP channel dependent pathway, which acts by the increase of secretory 

response to [Ca
2+

]i was published in 1992. Since both pathways act in a synergistic form 

they are not strictly independent (fig. 8) (LeRoith et al., 2004; Straub and Sharp, 2002). 

The facts that under maximal activation of KATP channel-dependent pathway, glucose 

A B 
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still increases insulin secretion and that β-cells exhibited a partial secretory response to 

glucose without changes in [Ca
2+

]i which is already elevated at low glucose concentration, 

suggests that an amplifying pathway - KATP channel-independent pathway- exists (Rutter et 

al., 2001). This independent pathway is Ca
2+

 dependent, since Ca
2+

i has to be elevated, but 

is not mediated by any further rise in Ca
2+

i ((Henquin, 2000). 

 

 

 

 

 
Figure 8 - Schematic representation 

of the KATP channel-dependent and -

independent pathways of glucose 

sensing in the β-cell (from 

Rodríguez, 2004). 

 

 

 

However, the mechanisms involved in this pathway are still under discussion, despite 

some mechanisms and second messengers have been suggested, such as malonyl-CoA, 

glutamate or the ratio between guanosine triphosphate (GTP)/ guanosine diphosphate 

(GDP) (Straub and Sharp, 2002). 

 

In summary, KATP channel-independent pathway serves to optimize the secretory 

response induced by the KATP channel-dependent signal and remains functionally silent 

until a depolarization, induced by the last pathway, occurs. This hierarchy between the two 

pathways ensures that no insulin is inappropriately secreted in the presence of low glucose 

concentrations (Henquin, 2000). 

 

3. β-cell failure in type 2 diabetes mellitus 

 

The pathophysiology of type 2 DM, at the beta-cell level, is characterized by a 

decrease in β-cell mass and/or defects in the secretory machinery. Despite the controversy 

about the relative contribution of each factor for the development of the disease, it is now 

established that these factors are not dissociable, once the pathways regulating β-cell 

turnover are also implicated in β-cell insulin secretory function (Donath et al, 2005). In 

type 2 DM patients a decrease in β-cell mass of about 25-50 % was observed after 
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increased rates of β-cell apoptosis (Cnop et al., 2005). These values suggest that β-cell 

dysfunction also contributes to the initial stages of disease process (Chang-Chen et al., 

2008). 

In the early stages of the development of type 2 DM the scenario of insulin resistance 

is highly compensated by an increase in β-cell mass and function. However, the 

progression of hyperglycemia and elevated circulating free fatty acids leads to impaired β-

cell function and, ultimately, β-cell failure and death by apoptosis (Chang-Chen et al., 

2008).  

Pancreatic β-cell mass depends on the interplay between three major processes, that 

are proliferation, neogenesis and apoptosis and disturbances will result in loss of β-cell 

mass. Proliferation of pre-existing β-cell ensures the maintenance of β-cell mass during 

adult life, under normal conditions, and this process depends on three major groups of cell 

cycle proteins – cyclins, cyclin-dependent kinases and cyclin-dependent kinase inhibitors. 

Neogenesis is the process by which new β-cells are formed from precursor cells of the 

pancreatic ducts. Finally, β-cell apoptosis is a process directed by pro- and anti-apoptotic 

genes, extracellular signals and intracellular ATP levels, which appears to be a major 

contributor to β-cell failure in late stages of the development of type 2 DM (Chang-Chen et 

al., 2008). 

There are several mechanisms underlying β-cell failure, including the generation of 

reactive oxygen species (ROS), alterations in metabolic pathways, increases in intracellular 

calcium and the activation of endoplasmic reticulum (ER) stress (Chang-Chen et al., 

2008). 

 

3.1.1 Glucotoxicity 

 

Glucose concentration is the principal determinant for regulation of β-cell mass and 

function and transient increases in its plasma levels induce insulin secretion (Chang-Chen 

et al., 2008). However, in a setting of chronic hyperglycemia, glucotoxicity occurs – the 

toxic effects on the beta-cell function and mass as the result of chronic exposure to 

supraphysiological glucose levels (Robertson et al, 2004). Glucotoxicity acts through 

mitochondrial dysfunction with production of ROS, ER stress and increased levels of 

intracellular calcium. The long-term increases in intracellular calcium leads to a 

proapoptotic situation (Chang-Chen et al., 2008). Furthermore, glucotoxicity induce a 

reduced expression of genes involved in glucose-induced insulin secretion (GIIS), such as 

insulin, GLUT2, GK, voltage-dependent Ca
2+

 channels and the transcription factors that 
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regulate their expression (Cnop et al., 2005). 

 

3.1.2 Lipotoxicity 

 

A diabetic profile is also characterized by dyslipidemia, which is an increase in 

circulating FFA. In healthy subjects, FFA induces stimulatory effects on insulin secretion, 

but in individuals with a genetic predisposition to diabetes, is a factor to progressive β-cell 

failure by apoptosis and impairment of insulin secretion (Chang-Chen et al., 2008; Cnop et 

al., 2005). Since lipotoxicity only adversely affects β-cells if hyperglycemia has been 

established (Robertson 2009), it constitutes an additional cause of beta-cell dysfunction 

and death in a set of type 2 DM. 

 

3.1.3 ER stress 
 

The ER of β-cell is a highly active and well-developed structure due to its high 

secretory demands and, because of that fact, ER stress plays a role in the pathogenesis of 

diabetes, contributing to pancreatic β-cell loss (Donath et al., 2005). ER stressors are 

addressed to increased biosynthetic demands induced by chronic hyperglycemia, elevated 

FFA and chronic over-nutrition. When a stress situation is caused in the ER, provoked by 

misfolded proteins that aggregate in the ER lumen, FFA esterification that delay 

processing and export of newly synthesized proteins or precipitation of saturated 

triglycerides (Cnop et al., 2005; Donath et al., 2005), occurs the activation of a signal 

response – Unfolded Protein Response (UPR). The UPR alleviates ER stress, restores 

homeostasis and prevents cell death through: i) decrease new protein arrival to the ER, ii) 

increase the amount of ER chaperones to increase folding capacity and iii) increase the cell 

capacity to dispose of misfolded proteins. If the steps described above fail, the apoptotic 

cascade is triggered (Chang-Chen et al., 2008; Eizirik et al., 2008). However, UPR play a 

dual role in β-cells because its action as beneficial regulator under physiological conditions 

turns into a cause of β-cell dysfunction and apoptosis under stress situations such as 

hyperglycemia and dyslipidemia (Chang-Chen et al., 2008; Eizirik et al., 2008). 

 

3.2 Hyperglycemia-induced chronic oxidative stress in β-cell dysfunction 

 

Hyperglycemia and resulting glucotoxicity is recognized as the causal link between 

diabetes and diabetic complications (Rolo and Palmeira, 2006). Hyperglycemia-induced 

oxidative stress seems to be involved in the progression of pancreatic β-cell dysfunction 
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(Rolo and Palmeira, 2006; Kajimoto and Kaneto, 2004). Chronic hyperglycemia is the 

cause for secondary complications of type 2 DM such as retinopathy, kidney failure, 

neuropathies, micro and macrovascular disease (Robertson, 2004). 

Several biochemical pathways and mechanisms of glucotoxicity have been suggested 

(fig. 9). These include glucose autoxidation, protein kinase C activation, methylglyoxal 

formation and glycation, hexosamine metabolism, sorbitol formation and oxidative 

phosphorilation (Robertson, 2004). All these pathways have in common the formation of 

ROS, which in physiological concentrations help to maintain homeostasis but when 

accumulated over time cause chronic oxidative stress, leading to defective insulin gene 

expression, insulin content, impaired insulin secretion and increased apoptosis (Robertson, 

2004; Robertson et al., 2007). This situation becomes particularly relevant to β-cell due to 

its low levels of intrinsic antioxidant defenses when compared with other cell types 

(Robertson, 2004; Robertson and Harmon, 2006; Robertson et al., 2007; Kajimoto and 

Kaneto, 2004). 

 

 

 

 

 

 

 

Figure 9 – Six biochemical 

pathways through which glucose 

metabolism can lead to the 

formation of reactive oxygen 

species (from Robertson and 

Harmon, 2006). 

 

 

Under physiological conditions, glucose preferentially undergoes glycolisis and 

oxidative phosphorylation (fig. 9, pathway 6). In hyperglycemic conditions the excessive 

levels of glucose a high load in the glycolitic pathway and inhibit glyceraldehyde 

catabolism. This implies that substrates such as glucose, fructose-1,6-biphosphate and 

glyceraldehyde-3-P are pushed to alternative pathways. The progression through all these 

pathways leads to an excessive formation of ROS and advanced glycated end products 

(AGE’s) (Robertson, 2004). Reducing sugars, like glucose, glucose-6-P, fructose or 2-

deoxy-D-ribose form reversible early glycation products with proteins (for example, 
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glycated hemoglobin). These early glycation products may undergo further rearrangement 

and oxidations to produce AGE’s, a process that alter proteins structure and function 

irreversibly. Aldehydes, such as glyoxal and methylglyoxal that are produced in excess 

under a hyperglycemic condition, can produce AGE’s more efficiently than glucose (Han 

et al., 2007; Mostafa et al., 2007). 

The molecular mechanisms of glucotoxicity and defective insulin gene expression 

involve the loss of two critical proteins that activate the insulin promoter (fig. 10), namely 

the PDX-1 and the RIPE-3b1 activator, recently identified as MafA (Robertson, 2004; 

Robertson et al., 2007). In addiction, hyperglycemia induce superoxide production by 

mitochondria, which activates UCP-2 that is a subtype of mitochondrial carrier proteins 

which acts as proton carrier in the mitochondrial inner membrane and modulate the 

coupling between the respiratory electron transport chain and ATP synthesis. The 

activation of UCP-2 by superoxide decreases the ATP/ADP ratio thus reducing the insulin 

secretory response (Rolo and Palmeira, 2006). 

 

 

 

 

Figure 10 - A proposed molecular 

mechanism for β-cell glucose 

toxicity in diabetes (from Kajimoto 

and Kaneto, 2004). 

 

 

The prevention of the deleterious effects of glucotoxicity, via oxidative stress, on β-

cell function may be achieved by the use of antioxidants and overexpression of antioxidant 

enzymes (Kajimoto and Kaneto, 2004; Robertson and Harmon, 2006; Tanaka et al.,1999). 

The antioxidant systems consist of antioxidant enzymes and diverse endogenous and 

dietary antioxidant compounds that react with and inactivate ROS (Roberts and Sindhu, 

2009). The primary antioxidant enzymes include superoxide dismutases (SOD), which 

catalyzes the dismutation of superoxide anion to oxygen and hydrogen peroxide, catalase 

(CAT) that converts H2O2 to water and molecular oxygen and glutathione peroxidase 

(GPX), involved in the reduction of H2O2, lipoperoxides and other hydroperoxides to their 
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corresponding hydroxylated compounds using glutathione as hydrogen donor. Among the 

nonenzymatic antioxidants there are vitamin C, vitamin E, β-carotene and reduced 

glutathione (GSH). The cell’s antioxidant potential must be maintained either by dietary 

intake and/or de novo synthesis (Roberts and Sindhu, 2009). 

The islet is among the least capable tissues in terms of intrinsic antioxidant enzyme 

expression and activities. For instance, the expression of SOD-1, SOD-2, CAT and GPX in 

the beta-cells was reported to be very low (Robertson, 2004; Robertson et al., 2007). On 

the other hand, gene expression of γ-glutamylcysteine ligase (γ-GCL) that is the rate-

limiting enzyme in the GSH synthesis is well represented in islets and GSH levels are 

closer to that of other tissues. However, it is known that γ-GCL expression is down-

regulated in hyperglycemic scenarios that occur during the progression of type 2 diabetes 

(Robertson, 2004; Robertson et al., 2007). Several studies revealed that overexpression of 

antioxidant enzymes in islets produce beneficial effects against oxidative damage. For 

instance, overexpression of SOD and CAT promote an enhanced β-cell tolerance to 

oxidative stress as well as protection against prooxidant toxicants and these effects were 

more expressive in a combinatorial rather than single overexpression. The protection of 

islet against increased levels of peroxide, induced by glucose and ribose, was attained by 

increasing islet GPX activity (Tanaka et al., 2002). Additionally, overexpression of γ-GCL 

has been shown to protect against oxidative damage of β-cell insulin gene expression, 

insulin content and secretion (Robertson, 2004; Robertson et al., 2007). 

Antioxidant drugs have been used in the management of type 2 DM. Several studies 

have demonstrated that vitamins and supplements can help lower the markers of oxidative 

stress in diabetic subjects and animals (Rahimi et al., 2005). N-acetylcisteyne (NAC), a 

ROS scavenger and a precursor of GSH (Rahimi et al., 2005), exhibit protective effects 

against oxidative damage, preserving insulin gene expression, PDX-1 binding to the 

insulin promoter, insulin content, GIIS and β-cell apoptosis (Kho et al., 2005; Robertson, 

2004; Robertson et al., 2007; Tanaka et al., 1999). Also, sulphonylureas, like 

glibenclamide and glipizide, seem to exhibit antioxidant activities in diabetic animals 

(Rahimi et al., 2005). 

Recently new interest has emerged in natural antioxidants from plants to replace the 

synthetics that are utilized. Phytochemicals with antioxidant activity are present in all parts 

of higher plants and include phenolic acids, flavonoids, monoterpens, phenylpropanoids, 

tannins and triterpens (Rahimi et al., 2005).  
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4. Phenolic compounds and antioxidant activity 

 

Phenolic compounds are plant secondary metabolites that arose from the pentose 

phosphate, shikimate and phenylpropanoid pathways. This group of phytochemicals 

constitute the most widely occurring and its physiological and morphological importance 

in plants relies on their role in growth, reproduction, protection against pathogens and 

predators and color and sensory attributes of fruits and vegetables. Among a wide range of 

beneficial activities such as anti-allergenic, anti-inflammatory, anti-microbial, anti-

thrombotic, cardioprotective and vasodilatory, it appears that the antioxidant activity is one 

of the major contributors to their beneficial effects. Taking this fact in consideration, 

phenolic compounds become a great natural source of antioxidants (Balasundram et al., 

2006). 

With regard to the chemical structure, phenolic compounds possess an aromatic ring 

(benzene) with one or more hydroxyl group directly attached to it and the structural 

diversity implies that its classification into several classes of compounds (table II) 

(Balasundram et al., 2006; Vermerris and Nicholson, 2006). 

 

Table II – Classification of phenolic compounds based on the number of carbons in the molecule, according 

to Harborne and Simmonds, 1964 (from Vermerris and Nicholson, 2006). 

 

 

Among these classes, phenolic acids, flavonoids and tannins are considered the main 

dietary phenolic compounds (Balasundram et al., 2006). In the context of the present work 

we will focus on the flavonoids.  

Flavonoids encompass the largest group of plant phenolics, accounting for half of the 

8,000 naturally occurring phenolic compounds. They are low molecular weight 
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compounds, consisting of 15 atoms of carbon and their basic chemical structure are 

represented in figure 11 (Balasundram et al., 2006). 

The flavonoid basic structure consists of two aromatic rings (A and B rings) linked by 3 

carbons that are usually in an oxygenated heterocycle ring, the C ring. Variations in 

substitution patterns in C ring are used to classify as flavonols, flavones, flavonones, 

flavonols, isoflavones, flavanonols and anthocyanidins (Balasundram et al., 2006; 

Vermerris and Nicholson, 2006). 

 

 

 

Figure 11 - Generic structure of a flavonoid molecule (from 
Balasundram et al., 2006). 

 

 

Substitutions in A and B rings, including oxygenation, alkylation, glycosilation, 

methylation or hydroxylation originate different compounds within each class of 

flavonoids, conferring to this class wide chemical, physical and biological properties 

(Balasundram et al., 2006; Pinent et al., 2008). 

These compounds are present in vegetables, nuts, fruits and beverages such as 

coffee, tee and red wine and are reported as beneficial due to their antioxidant effects, 

which makes them good candidates for the development of functional foods with potential 

protective/preventive properties against several diseases, including type 2 DM (Pinent et 

al., 2008). Also, these compounds exert their beneficial actions on cells through their 

modulation of proteins (and enzymes), gene expression and cell signalling cascades. 

The antioxidant properties of flavonoids are due to their capacity to i) scavenge free 

radicals by donating a hydrogen atom from an aromatic OH group to a free radical, 

because they are able to stabilize an unpaired electron through its delocalization, ii) chelate 

metal cations and iii) inhibit the activities of enzymes that have oxidant activities such as 

lipoxygenase, cyclooxygenase or monooxygenase (Balasundram et al., 2006; Moon et al., 

2005; Nijveldt et al., 2001; Rice-Evans et al., 1997). 

Plants have been utilized as medicines for thousands of years. These medicines 

initially took the form of crude drugs but, recently, the use of plants as medicines has 

involved the isolation and characterization of pharmacologically active compounds 
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(Balunas and Kinghorn, 2005). A great number of aromatic, spicy, medicinal and other 

plants contain chemical compounds exhibiting antioxidant properties. However, scientific 

information on antioxidant properties of those plants that are less widely used in culinary 

and medicine, is still scarce (Miliauskas et al., 2004). Quercetin (fig. 12A), one of the best-

described flavonoids, and kaempferol (fig. 12B) were used in the present work, since they 

represent the major constituents (aglycones) found in C. roseus aqueous extracts (Pereira et 

al., 2009). 

 

 

 

 

 

 

Figure 12 – Structure of the flavonoids quercetin (A) and kaempferol (B). 

 

Several in vivo studies (table III) concerning the effects of several flavonoids, 

quercetin among them, on pancreatic β-cell function has been performed. These studies 

showed the effects of flavonoids on insulin secretion, maintenance of plasma glucose 

levels, beta-cell apoptosis and as well as oxidative stress (Pinent et al., 2008). 

In vitro studies, using insulin-secreting cell lines have also been performed, 

corroborating the same beneficial effects described above (Pinent et al., 2008). Quercetin 

has been associated with enhanced insulin secretion in vitro (Hii and Howell, 1985) 

whereas kaempferol effects at the beta-cell level have not been established. 

 

 

 

 

 

 

 

 

 

A B 
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Table III – In vivo effects of flavonoids on insulin secreting capacity, beta-cell apoptosis and oxidative stress 

(from Pinent et al., 2008). EGCG: epigallocatechin gallate; GSPE: grape seed procyanidin extract. 
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4.1 Catharanthus roseus (L.) G. Don 

 

Catharanthus roseus (L.) G. Don belongs to the Apocynaceae family and it is known 

by several names such as Madagascar periwinkle, Vinca rosea and Lochnera rosea. 

C. roseus, originally an endemic specie of Madagascar, is an 

erect herb or subshrub with either pink or white flowers that 

has now a wide tropical distribution. It is cultivated as an 

ornamental plant in gardens throughout the world (Svoboda, 

1983). 

Figure 13 – Catharanthus roseus (L.) G. Don flower. 

Traditionally, hot water decoction of the leaves and/or the whole plant is used as 

household remedy for treatment of diabetes, as an oral hypoglycemic agent, in several 

countries such as Brazil, Cook Islands, Dominica, England, Jamaica, Mozambique, 

Pakistan, Taiwan, Thailand and West Indies (Nammi et al., 2003; Ferreres et al., 2008; 

Singh et al., 2001). The fresh leaf juice of C. roseus has been used by Ayurvedic practices 

in India with beneficial action. With the study of the plant’s hypoglycemic activity, the two 

terpenoid indole alkaloids – vinblastine and vincristine – the first anticancer agents 

clinically used in chemotherapy were discovered (Ferreres et al., 2008; Sottomayor et al., 

2004). Since these alkaloids are produced at very low levels in C. roseus leaves a great 

interest directed by the investigation of their biosynthetic pathways arose. However, 

information about other natural compounds produced by C. roseus remains relatively 

limited and water extracts of this plant are used for purposes like controlling bleeding, 

diabetes, fever and rheumatism without the active compounds being known (Ferreres et al., 

2008). In fact, several studies using C. roseus leaves extracts show a blood sugar lowering 

capacity (Chattopadhyay, 1999; Nammi et al., 2003; Singh et al., 2001) but the exact 

mechanism by which hypoglycemic action was performed have not been elucidated. 

Recently, studies regarding the phenolic composition of C. roseus seeds, stems, 

leaves and petals were performed by Ferreres and colleagues (2008) and Pereira and co-

workers (2009) leading to the characterization of caffeoylquinic acids and flavonol 

glycosides (di- and trisaccharides of kaempferol, quercetin and isorhamnetin). Also, the 

scavenging ability against DPPH• radical and against reactive oxygen (superoxide radical) 

and reactive nitrogen (nitric oxide) species was evaluated and an antioxidant effect was 

observed. These results highlight the potential of C. roseus extracts to function as natural 
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antioxidants in the prevention/management of type 2 DM and lead us to further investigate 

their effects in the beta-cell context. 

 

5. Objectives 

 

The objectives of the present work are: 

 

 Characterization of the HIT-T15 cell line (hamster pancreatic β-cell line) as an in 

vitro model to assess the anti-diabetic potential of plant extracts/compounds. 

 

 Evaluation of anti-diabetic potential of C. roseus aqueous extracts as well as their 

major flavonoids (quercetin and kaempferol), in the β-cell context, through the 

assessment of parameters such as insulin secretion and insulin gene expression, β-

cell protection against oxidative stress induced by dRib and other oxidant 

compounds, GSH levels and apoptosis. 
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Materials and Methods 

1. Chemicals 

 

Roswell Park Memorial Institute medium (RPMI), 3-(4, 5-dimethylthiazolyl-2)-2, 5-

diphenyltetrazolium bromide (MTT), tert-butyl hydroperoxide (tBHP), 2-deoxy-D-ribose 

(dRib), N-Acetyl-L-cysteine (NAC), glucose oxidase (GOX; EC 1.1.3.4), glibenclamide 

(Glb), quercetin (Q), kaempferol (K; kindly supplied by Dr. Alberto Dias), trypsin, bovine 

serum albumin (BSA), HEPES (N-[2-hy-droxyethyl]piperazine-N’-[2-ethane-sulfonic 

acid]), glutathione reductase (EC 1.6.4.2.), 5,5’-dithio-bis-(2-nitrobenzoic acid) (DTNB), 

β-nicotinamide adenine dinucleotide phosphate reduced form (β-NADPH), buthionine 

sulfoximine (BSO), diazoxide and nifedipine were purchased from Sigma-Aldrich (St. 

Louis, MO, USA). Glyoxal was purchased from Fluka (Switzerland). Fetal Bovine Serum 

(FBS) was obtained from Lonza (Switzerland). 

 

2. Cell culture 

 

HIT-T15 cells (hamster pancreatic -cell line), obtained from ATCC Global 

Bioresource Center, were maintained in culture in 75 or 25 cm
2
 polystyrene flasks (TPP, 

Switzerland) with RPMI 1640 media containing 5.6 mM glucose with 10% FBS and 1% 

antibiotic-antimycotic solution under an atmosphere of 5% CO2 at 37ºC. Assays were 

performed in complete media except with dRib where FBS was decreased to 0.5%. Media 

was changed every 2-3 days and cells were split once a week with a 0.25% (w/v) trypsin-

0.02% (w/v) EDTA solution. Cell number and viability was determined by counting in a 

Neubauer chamber using trypan blue staining. The cells were subcultured at a density of 

3.0×10
6
 cells/75 cm

2
 flask or 1.0×10

6
 cells/25 cm

2
 flask. 

 

3. Plant material: Catharanthus roseus 

Plants of Catharanthus roseus (L.) G. Don cv. Little Bright Eye were grown at 25°C 

in a growth chamber, under a 16 h photoperiod, using white fluorescent light at a photon 

flux density of 70 μmol/m2/s. Seeds were acquired from AustraHort (Australia) and 

voucher specimens were deposited at the Herbarium of the Department of Botany of the 
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Faculty of Sciences of the University of Porto (PO 61912). Stems, leaves and petals were 

separated, frozen and lyophilized. The dried materials were powdered and kept in a 

desiccator, in the dark. 

3.1 Aqueous extracts of Catharanthus roseus 

 

Aqueous extracts were prepared by boiling 1.5 g of dried material for 20 min in 300 

mL of water and filtering through a Büchner funnel. The resulting extracts were then 

lyophilized. The lyophilized extracts were kept in a desiccator, in the dark (Pereira et al., 

2009). E1 represents aqueous extract of C. roseus leaves, E2 refers to aqueous extract of C. 

roseus senescent leaves and E3 to aqueous extract of C. roseus flowers. The quantification 

of the phenolics, present in different parts of C. roseus, was performed by Pereira and 

colleagues (2009) and it is described in table IV. They also assessed the organic acids and 

amino acids profiles. 

Table IV – Quantification of phenolic compounds in C. roseus plant parts aqueous extract (adapted from 

Pereira et al., 2009). 

Compounds Concentration (mg/kg dry basis) 

Petals Leaves Senescent Leaves 

3-O-caffeoylquinic acid 
 

nd 2971.6 5692,3 

Kaempferol-3-O-(2,6-di-O-

rhamnosyl-galactoside)-7-O-
hexoside 

nd 52.7 nd 

4-O-caffeoylquinic acid 

 

11153.2 5156.8 11892,3 

5-O-caffeoylquinic acid 

 

nd 187.7 742,7 

Quercetin-3-O-(2,6-di-O-

rhamnosyl-galactoside) 

1027.9 310.9 549,1 

Kaempferol-3-O-(2,6-di-O-

rhamnosyl-galactoside) 

8120.8 8.5 218,0 

Kaempferol-3-O-(2,6-di-O-
rhamnosyl-glucoside) 

4296.3 nd nd 

Kaempferol-3-O-(6-O-

rhamnosyl-galactoside) 

9567.2 nd nd 

Kaempferol-3-O-(6-O-

rhamnosyl-glucoside) 

4639.8 nd nd 

Isorhamnetin-3-O-(6-O-

rhamnosyl-galactoside) 

989.2 nd nd 

Isorhamnetin-3-O-(6-O-

rhamnosyl-glucoside) 

1330.4 nd nd 

Σ 
 

41125 8688 19094 

 nd – not detected. 
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4. MTT reduction test 

 

A MTT reduction assay was performed in order to: i) select a range of concentrations 

of C. roseus aqueous extracts that were not cytotoxic to HIT-T15 cells; ii) determine 

concentrations of oxidative toxicants – dRib, glyoxal, glucose oxidase and tBHP – that 

induce 50% of cell damage in these cells and iii) assess protective effects by extracts, Q 

and K against oxidative-induced toxicity in the same cells. 

The MTT assay was used as marker of cell metabolic capacity in order to estimate 

cell viability. It is based on the reduction of a tetrazolium salt to formazan by cellular 

dehydrogenases. Expansion in the number of viable cells results in an increase in the 

overall activity of the dehydrogenases and subsequently an increase in the amount of 

formazan dye formed. For that, two hours before the end of the incubation period, MTT 

(final concentration 0.5 mg/mL) was added to each well. Hydrogen chloride 0.04 M in 

isopropanol was then added to dissolve the formazan crystals.  The dye produced by viable 

cells was quantified with a spectrophotometer by measuring the absorbance at 570 nm 

against a blank. 

 

4.1 Assessment of C. roseus extracts toxicity 

 

HIT-T15 cells were plated in 24-multiwell culture plates at 2.0×10
5 
cells per well and 

grown for 2 days. Cells were then treated with different concentrations of C. roseus 

aqueous extracts for 48 h. The number of viable cells was estimated by the cell capacity to 

reduce MTT, and the results were expressed as percentage relative to the control (cells 

without test compound). 

 

4.2 Assessment of dRib, glyoxal, GOX and tBHP tocixity 

 

In order to determine the concentration of toxicant that induced 50% of cell death 

(IC50) a MTT assay was performed. Cells were plated in 24-multiwell culture plates at 

2.0×10
5 

cells per well, grown for 2 days and incubated with different concentrations of 

glyoxal, glucose oxidase (GOX), 2-deoxy-D-ribose (dRib) and tert-butyl hydroperoxide 
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(tBHP) for 48, 48, 24 and 2 h, respectively. The Hill slope was calculated graphically using 

a computer program (GraphPad Prism, version 4.00, GraphPad Software Inc.). Based on 

the dose–response curves of cell viability, the IC50 concentrations were estimated and used 

in the following experiments to evaluate the protective potential of the C. roseus extracts 

as well as that of quercetin (Q) and kaempferol (K) as described below.  

 

4.3 Protection by C. roseus extracts, quercetin and kaempferol against oxidative-

induced toxicity 

 

The prevention of cell death induced by the oxidative compounds was measured by 

MTT assay by i) co-incubations of the extracts or Q or K (Q and K dissolved in DMSO 0.5 

% v/v final concentration) at several concentrations with dRib for 24 h, with glyoxal and 

GOX for 6 h and with tBHP for 2 h and ii) pre-incubation of the extracts or Q or K, at 

different concentrations for 24 h followed by a 24 h incubation with dRib, a 6 h incubation 

with glyoxal and GOX and a 2 h incubation with tBHP. 

 

5. Insulin Secretion  

 

Since HIT-T15 cells are known to lose their ability to produce insulin over time, the 

ability of plant extracts/isolated compounds to induce the secretion of insulin were 

assessed between passages 65 and 80.  

HIT-T15 cells were seeded into 24-well plates at a density of 3x10
5
 cells per well 

and grown for 2 days. The cells were washed twice with Krebs–Ringers Bicarbonate 

(KRB) buffer (115 mM NaCl, 4.7 mM KCl, 2.56 mM CaCl2, 1.2 mM KH2PO4, 1.2 mM 

MgSO4, 20 mM NaHCO3, 16 mM HEPES, pH 7.4, and 0.2% bovine serum albumin), pre-

incubated for 30 min in KRB buffer and washed again with the same buffer. Then, cells 

were incubated for 1 h at 37 ºC with KRB buffer containing 4 mM glucose in the presence 

or absence of the plant extracts or isolated compounds. After incubation, aliquots of the 

media were stored at -20°C until insulin measurement. The content of insulin in the 

samples was measured using an ELISA-based commercial kit – Rat Insulin ELISA Kit 

TMB (Shibayagi - Gunma, Japan) – following the manufacturer’s specifications. 
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6. Quantification of total protein  

 

Total protein was measured in cell lysates and used for normalization of other 

measured parameters. Protein concentration was quantified using a Bio-Rad DC protein 

assay (Bio-Rad Laboratories, Inc., Hércules, CA, USA) and bovine serum albumin was 

used as a protein standard. 

 

7. Glutathione content 

 

HIT-T15 cells were plated in 12-multiwell culture plates at 4.0×10
5 
cells per well and 

grown for 2 days. Cells were then treated with the test compounds for 24 h. After washing 

with PBS, cells were scrapped in 300 μl of 5% (w/v) 5-sulfosalicylic acid for protein 

precipitation and centrifuged 2 min at 12,000 rpm. The glutathione content of HIT-T15 

cells was determined spectrophotometrically by the DTNB-GSSG reductase recycling 

assay as described in Anderson (1985), with some modifications (Lima et al., 2004). The 

final concentration of the assay reagents was 0.6 mM DTNB, 0.21 mM NADPH and 2 

U/ml glutathione reductase.  

 

8. Assessment of apoptosis by nuclear condensation assay 

 

Cells treated with the test compounds at chosen concentrations for 48 h were 

collected and fixed with 4% paraformaldehyde for 15 min at room temperature and 

attached to a polylysine treated slide using a Shandon Cytospin. Cells were then washed in 

PBS and incubated with Hoechst for nuclei staining. Stained cells were observed under the 

fluorescent microscope and the percentage of cells with condensated DNA were obtained 

from a counting of at least 400 cells. 

 

9. Western blotting 

 

After treatment with the chosen concentration of test compounds, cells were washed 

with PBS and lysed for 15 min at 4ºC with ice cold RIPA buffer (1 % NP-40 in 150 mM 

NaCl, 50 mM Tris (pH 7.2), 2 mM EDTA), supplemented with 20 mM NaF, 1 mM 
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phenylmethylsulfonyl fluoride (PMSF), 20 mM Na2V3O4 and protease inhibitor cocktail 

(Roche, Mannheim, Germany). Twenty five micrograms of total protein from each cell 

lysate were separated by SDS gel electrophoresis and then electroblotted to a Hybond-P 

polyvinylidene difluoride membrane (GE Healthcare). Membranes were blocked in TPBS 

(PBS with 0.05 % Tween-20) containing 5 % (w/v) non-fat dry milk , washed in TPBS and 

then incubated with primary antibody. 3After washing, membranes were incubated with 

secondary antibody conjugated with IgG horseradish peroxidase and immunoreactive 

bands were detected using the Immobilon solutions (Millipore, Billerica, MA, USA) under 

a chemiluminescence detection system, the Chemi Doc XRS (Bio-Rad Laboratories, Inc.). 

β-actin was used as loading control. 

 

10. Quantitative Real-Time PCR 

 

Total RNA was extracted from the cells using the RNeasy Mini Kit (QIAGEN, 

Chatsworth, CA) according to the manufacturer’s instructions, and total RNA was reverse 

transcribed with the iScript cDNA synthesis kit (BioRad) using a My Cycler
TM

 Thermal 

Cycler (BioRad); the thermal profile consisted of 5 min at 25ºC, 60 min at 42ºC and 5 min 

at 85ºC. Real-time PCR for quantification of hamster insulin and acidic ribosomal 

phosphoprotein P0 (36B4), as housekeeping gene, was carried out with SsoFast EvaGreen 

supermix (BioRad) in the CFX96 Real-Time system (BioRad). The thermal profile 

consisted of 2 min at 50ºC, 10 min at 95ºC, followed by 40 cycles of 30 sec at 95ºC, 30 sec 

at 68ºC, and 30 sec at 72ºC. Primers sequences, according to Kawamura and colleagues 

(2006), used for the amplification, were: 

hamster insulin forward primer – AGAAGCCATCAGCAAGCAGG; 

hamster insulin reverse primer – AGAGTGCCTCCACAAGGTGG; 

36B4 forward primer – CAATGGCAGCATTTACAACCC; 

36B4 reverse primer – CCCATTGATAATGGAGTGTGG. 

 

11. Statistical analysis 

Data are expressed as means ± SEM. Significant differences between control and 

treated cells were determined by Student’s t-test. Differences were considered significant 

when P≤0.05. 
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Results and Discussion 

 

1. Evaluation of Catharanthus roseus aqueous extracts cytotoxicity 

 

Regarding the objectives of this work, the assessment of HIT-T15 cell line 

susceptibility to the C. roseus aqueous extracts had to be done firstly, in order to choose a 

range of concentrations that did not induce cell death for the following experimental work. 

For that purpose, the effects of extracts on cell viability and growth was measured by the 

MTT assay, which determines the metabolically active cells. In figure 14 is represented the 

cell viability as percentage of the control in the presence of increasing concentrations of 

the C. roseus extracts.  

 

Figure 14 – Effect of different concentrations of C. roseus aqueous extracts in HIT-T15 cells, for 48 h, 

measured by MTT reduction assay. E1: leaves aqueous extract; E2: senescent leaves aqueous extract; E3: 

flower aqueous extract. Values are mean±SEM of 3 independent experiments. Cell viability was calculated 

as percentage of the control (without extracts). 

 

Since the assay was done after 48 h of treatment, cells grow in between, and 

therefore the MTT reduction capacity in the beginning of the assay was subtracted from all 

the results after 48 h of treatment (including the control). In this way, we can distinguish 

between inhibition of cell growth (values between 0 and 100%) and cell death (values 

above 0%). As shown in Fig. 14, cell toxicity was induced by higher concentrations than 

50 ug/ml for E1, 100 ug/ml for E2 and 400 ug/ml for E3. The differential effect of the 

three extracts is well evidenced at 50 ug/ml being the potential to inhibit cell growth 

ordered as E1>E2>E3. The IC50 for cell growth inhibition of the extracts was 22 μg/mL, 45 
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μg/mL and 125 μg/mL for E1, E2 and E3, respectively. This behavior could be explained 

by differences in extracts phytochemical profile, described in table IV. The 

characterization of C. roseus extracts and quantification of phenolic compounds, organic 

acids and amino acids was performed by Pereira and co-workers (2009), pointing out the 

differences between distinct plant parts, namely, flowers, leaves and senescent leaves. The 

phenolic profile of the extracts demonstrated their richness in these compounds, namely in 

caffeoylquinic acids and flavonoid glycosides. Interestingly, comparing the three extracts, 

the E3 flower less cytotoxic extract present the higher content of phenolic compounds (in 

addition to a great variety), whereas E2 leaves extract were more cytotoxic and presented 

the lower content and variety of phenolic compounds. It seems, therefore, there are an 

indirect relationship between extract phenolic content and its induced toxicity (or 

inhibition of proliferation) in HIT-T15, indicating that they may not be involved. Other 

compounds, besides phenolics, organic acids and amino acids, present in the extracts may 

account for the toxic effects since more than 80% of the crude extracts were not 

characterized. 

 

2. Assessment of glucose-induced insulin secretion on HIT-T15 cells 

 

A diabetic condition occurs when there is an absolute or relative lack in insulin 

production by the endocrine pancreas in response to glucose associated or not with a 

deficient response of target tissue cells to insulin (Robertson, 2004; Klover and Mooney, 

2004). This impaired glucose-stimulated insulin secretion is the cause of hyperglycemia, a 

characteristic of type 2 diabetes patients, that leads to secondary complications (Robertson, 

2004; Robertson and Harmon, 2006; Robertson, 2009). In this way, when a study of anti-

diabetic potential of new compounds is performed in the beta-cell context, the parameter of 

glucose-stimulated insulin secretion appears to be one of the most important to be 

evaluated. 

The HIT-T15 cell line is a clonal line of pancreatic β-cells that secretes insulin in 

response to a glucose stimulus. However, this cell line loses this ability in a passage-

dependent manner, a effect that is accelerated culturing the cells in medium with a high 

concentration of glucose (Santerre et al., 1981; Zhang et al., 1989). For this reason all the 

experiments were performed between passages 65 and 80, as recommended by Zhang and 
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co-workers (1989) for glucose-induced insulin secretion assays and cells cultured in 

medium with relatively low concentration of glucose (5.6 mM). 

Figure 15 represents the insulin secretion in response to different glucose 

concentrations. We can observe a marked increase in insulin secretion at 0.5 mM of 

glucose, which stabilizes between 1 and 4 mM and tends to slightly increase again for 

glucose concentrations above 4 mM. 

 

 

Figure 15 – Insulin secretion in response to glucose in HIT-T15 cells after 1 h incubation with the designated 

glucose concentration. Values are mean±SEM of 3 independent experiments. 

 

This pattern of response was consistent with that reported by Zhang and co-workers 

(1989) when testing the same range of glucose concentrations, despite that they achieved 

higher values of insulin concentration for all the tested concentrations of glucose. The 

higher insulin concentration achieved by them was possibly because they use the double of 

the cells we used here. In addition, another reason may be to the fact they grow cells in 

medium containing 11.1 mM of glucose, once they wanted to reproduce a hyperglycemic 

condition, which may increase insulin secretion at first, but will decrease it faster along 

cell passage as we discussed previously. In our case, the preventive effects of C. roseus on 

beta cells directed our work, supporting once more culturing the cells in normoglycemic 

conditions (5.6 mM) as we did. This preliminary assay allowed us to choose 4 mM glucose 

as stimulatory concentration to proceed testing the stimulatory potential of C. roseus 

aqueous extracts, Q and K on glucose-induced insulin secretion. Park and co-workers 

(2008) and Yoon and collaborators (2007) also used a similar glucose concentration (5 

mM) to assess the insulin-stimulating potential of natural compounds in the HIT-T15 cell 

line. From the first work resulted a response in terms of insulin secretion slightly higher 
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(≈100 μU/mL) than that obtained by us (≈ 40 μU/mL) and from the former a similar 

insulin concentration (≈ 30 μU/mL) was achieved.  

 

2.1 Effects of Catharanthus roseus aqueous extracts, Q and K on glucose-induced 

insulin secretion 

 

The pathogenesis of type 2 diabetes is associated with defective sensing of glucose 

stimulus by the β cells (Robertson and Harmon, 2006). Although lifestyle modifications as 

diet, physical exercise, weight loss and stop smoking should be present in both diabetes 

prevention and therapy, most of the times pharmacotherapy is also needed in order to 

achieve a better glucose regulation, and in some cases exogenous insulin administration is 

needed (Triplitt, 2007; Robertson, 2009). Sulfonylureas, like glibenclamide (glb), a group 

of drugs that target the pancreatic β cells, increase insulin secretion by binding to 

sulfonylurea receptor on β-cell, leading to closure of ATP-sensitive K
 +

-channels. This 

action causes membrane depolarization and opening the voltage-dependent Ca
2+ 

channels 

leading to a calcium influx and exocytosis of insulin contained in vesicles (Cheng & 

Fantus, 2005). 

In this work, glibenclamide 10 nM was used as positive control (fig. 16 and 17) and 

its known stimulatory effect on insulin secretion was observed. Glb significantly increased 

insulin secretion in HIT-T15 cells from 101.2 μU/mL to 143.8 μU/mL (42% increase), a 

similar result as previously described by Leu et al. (2009) with a 140% increase and as 

occurred in human β cells (Guerra et al., 2009) with an increase from 24.3 μU/mL to 41.2 

μU/mL, in the presence of 1 μM glb. 

Regarding the effects of C. roseus (fig. 16) as insulin secretagogue, any of the 

aqueous extracts increased insulin secretion at the tested concentrations. We did not test 

higher concentrations since they affect cell growth and viability as shown in Fig. 14 and 

Fig. 19 (see in section 3.1 below). These results indicate that the anti-diabetic potential of 

C. roseus aqueous extracts may not be at the beta-cells increasing insulin secretion. 

The screening of phenolic compounds present in these extracts was performed by 

Ferreres and co-workers (2008) and Pereira and colleagues (2009), which allowed the 

identification of three caffeoylquinic acids and flavonol glycosides (di- and trisaccharides 

of kaempferol, quercetin and isorhamnetin). Once the acquisition of these glycosides was 

not possible and their purification is difficult to achieve, the aglycones quercetin and 

kaempferol were tested in this study for their ability to affect insulin secretion. 
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Figure 16 – Insulin secretion in response to C. roseus aqueous extracts and glibenclamide in HIT-T15 cells 

in the presence of 4 mM glucose after 1 h incubation. E1: leaves aqueous extract; E2: senescent leaves 

aqueous extract; E3: flowers aqueous extract. Values are mean±SEM of 4 independent experiments. *P≤0.05 

when compared to control. 

 

Several authors support the view that most flavonoids must be modified, namely 

deglycosilated, in order to be absorbed in the form of aglycones; intestinal enzymes or 

colonic microflora in the intestine makes these modifications (Crespy et al., 2003; Pinent 

et al., 2008; Williamson et al., 2000). Under these conditions, the aglycone form of parent 

compounds would be one of the forms that internal organs, such as the endocrine pancreas 

(β-cells in particular), would become exposed to, after ingestion of plant foods or extracts 

(such as herbal teas). 

Q and K (the aglycone flavonoids present in C. roseus) at 20 μM exhibited a 

remarkable effect potentiating insulin secretion (fig. 17) above those achieved by glb. The 

effect was concentration-dependent, being the result similar to that of gbl when flavonoids 

were tested at 5 μM. The insulin release was not due to cell death as confirmed by trypan 

blue assay (data not shown) and by MTT assay (see fig. 20 in section 3.1 below). 

The insulin secretagogue effect of Q was already reported in literature. Hii and 

Howell (1985) reported that exposure of isolated rat islets at Q enhances insulin release by 

44-70%. Also a study of Coskun and colleagues (2005) showed that Q-treated diabetic rats 

has increased insulin immunohistochemical staining as well as preservation of islet cells. 

Regarding K results, this compound had been associated to an increase in insulin staining 

in islets of STZ-induced diabetic rats only due to its presence in the extract of Eucommia 

ulmoides Oliv. (Lee et al., 2005). However, it seems there are no reports of a marked 

increased in insulin secretion as the observed in our present study. 
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Figure 17 – Insulin secretion in response to quercetin, kaempferol and glibenclamide in HIT-T15 cells, 

stimulated by 4 mM glucose, in the presence or absence of Ca2+ channel blocker (I1-nifedipine) and of K+ 

channel activator (I2-diazoxide) after 1 h incubation. Values are mean±SEM of 4 independent experiments. 

*P≤0.05; ***P≤0.001 when compared to control; #P≤0.05; ### P≤0.001 when compared to the respective 

compound. 

 

Next, to examine by what mechanism Q and K enhance the glucose-stimulated 

insulin secretion, nifedipine (I1) that opens K
+
 channels and diazoxide (I2), a L-type of 

Ca
2+

 channel blocker were used. These inhibitors allowed us to understand if the Q and K 

mechanism of action relied on insulin degranulation process, that is, a sulfonylurea-like 

mechanism. In this way, in the presence of either I1 or I2 it is expected that the whole 

process of membrane depolarization and Ca
2+

 influx would be compromised, consequently 

leading to insulin secretion cessation. Figure 4 demonstrates a significant decrease in 

insulin secretion compared to control when I1 or I2 were present. The same inhibitory 

effect was observed in the presence of glb, Q or K; in other words, the insulin stimulatory 

effect of these compounds was significantly reverted by I1 and I2. Taken together, these 

results indicate that both Q and K may exert their action in beta cells through the same 

mechanism that glb, targeting the insulin exocytosis process. The use of I1 and I2 also 

corroborates that insulin secretion induced Q and K was not due to cell death or loss of 

membrane integrity. 

Hii and Howell (1985) also associate the performance of certain flavonoids 

(quercetin being one of them) in beta cells to their ability, at least in part, to alter Ca
2+

 

fluxes. Yoon and colleagues (2007), as well as Park and co-workers (2008), also reported 

the same pattern of response by HIT-T15 cells to nifedipine and diazoxide, indicating an 
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association between the insulin secreting potential of their tested compounds 

(ginsenosides) and the insulin exocytosis. 

 

3. Effects of dRib-induced damage in HIT-T15 cells 

 

Hyperglycemia is a hallmark of diabetes mellitus and may lead β-cell failure. This 

state of chronic exposure to supraphysiologic levels of glucose cause irreversible β-cell 

damage – glucose toxicity – and oxidative stress is known as the main mechanism 

underlying it (Kho et al., 2005; Tanaka et al., 2002). 

Sugars that contain aldehyde groups that are oxidized to carboxylic acids are 

reducing sugars and they can produce reactive oxygen species (ROS) through autoxidation 

and protein glycosylation (Kaneto et al., 1999; Kho et al., 2005). Glucose is the sugar with 

lower reducing capacity, therefore, long-term exposure to high glucose concentrations is 

needed in order to exert toxic effects in β-cells (Kho et al., 2005). However, it has been 

reported that 2-deoxy-D-ribose (dRib), a reducing sugar with high reactivity with proteins, 

promotes apoptosis by increasing oxidative stress within 24 h in a HIT-T15 cell line, being 

a good in vitro surrogate for glucose toxicity and diabetic complications studies (Kho et 

al., 2005; Kho and Woo, 2008). Therefore, we choose dRib to induce oxidative damage in 

cells. It is known that, as glucose, dRib toxicity causes decreased insulin mRNA levels, 

diminished β-cell insulin content and defective glucose-induced insulin secretion (Tanaka 

et al., 2005). 

A preliminary assay was performed in order to assess the effects of different dRib 

concentrations in HIT-T15 viability, through a MTT assay (figure 18). 

 

 

Figure 18 – Viability of HIT-T15 cells after treatment with various concentrations of dRib for 24 h, by a 

MTT assay. Cells were cultured in RPMI medium containing 5.6 mM glucose and 0.5% FBS. 
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This pattern of response was consistent with that reported by Kho et al. (2005), which 

demonstrates that 24 h incubation with 30 mM dRib decreases approximately 50% cell 

viability. So, this concentration was chosen to proceed testing its effects on other 

parameters such as insulin secretion, GSH levels, apoptosis, insulin mRNA levels, as well 

as Q and K protection against dRib-induced β-cell toxicity. 

 

3.1 Effects of extracts, Q, K and NAC on prevention of dRib toxicity to β-cells 

 

The effects of dRib-induced toxicity in HIT-T15 were measured by the MTT assay. 

The protective effects of C. roseus aqueous extracts (fig. 19), Q and K (fig. 20), as well as 

NAC (a reference antioxidant; fig. 20), on the prevention of this type of toxicity were also 

evaluated. 

 

 

Figure 19 – Effect of C. roseus aqueous extracts in dRib-induced toxicity (30 mM) in HIT-T15 cells, after 

24 h exposure. E1: leaves aqueous extract; E2: senescent leaves aqueous extract; E3: flowers aqueous extract. 

Values are mean±SEM of 2 independent experiments. 

 

The toxicity induced by dRib 30 mM affected HIT-T15 cells inducing 

approximately 50% of cell death. However, co-incubation of dRib with the three C. roseus 

extracts did not prevent toxicity. In fact, the extracts alone, with the exception of E3, 

induced some decrease of reduction of MTT, most probably due to inhibition of cell 

growth during the 24 h of treatment (see Fig. 14). Once again it seems that the reported 

hypoglycaemic potential of C. roseus (Chattopadhyay, 1999; Li et al., 2004; Singh et al., 

2001) is not targeted for β-cell protection against oxidative stress, or at least not in this 

tested concentrations and extracts. 
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In figure 20, the toxic effects of dRib is again observed, being reverted by NAC 200 

μM. This protective effect of NAC against glucose and dRib-induced toxicity was already 

described by Tanaka and colleagues (2002) but using NAC 10 mM, a considerably higher 

concentration that the one used in the present study. They had reported that both glucose 

and dRib increased intracellular peroxide levels in human and rat pancreatic islets and 

NAC, as a potent antioxidant, reverted that situation. In this work, Q and K also exhibited 

some protective effect against dRib-induced damage, in a concentration-dependent 

manner, except for K (40 μM). The possible cytoxicity of the compounds alone was also 

assessed and shown to be not present in the tested concentrations (Fig. 20). 

 

 

Figure 20 – Effects of Q and K, as well as the antioxidant NAC, in dRib-induced toxicity (30 mM) in HIT-

T15 cells, after 24 h exposure. Values are mean±SEM of 2 independent experiments. 

 

However, more replicates will be necessary to evaluate Q and K potential in protecting 

beta-cells in order to get statistically significance and to ensure their efficacy as a 

preventive or adjuvant to type 2 diabetes mellitus. 

 

3.2 Effect of dRib-induced damage in insulin secretion  

 

The effects of dRib and tBHP, another oxidant compound, in the insulin release by 

HIT-T15 and the protective effect of Q and K on dRib-induced toxicity can be observed in 

figure 21. Insulin secretion was not significantly decreased by dRib 30 mM, contrarily to 

what was expected. Tanaka and colleagues (2002) observed a significant decrease but used 

a longer incubation period with dRib, which may explain the lack of effect by us. In our 

assay dRib was incubated for 1 h, with and without Q or K, whereas Tanaka and co-
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workers performed a 72 h preincubation before measuring insulin release. Despite the 

weak dRib-induced  

 

 

Figure 21 - Insulin secretion in response to the oxidants tBHP and dRib in HIT-T15 cells, stimulated by 4 

mM glucose, in the presence or absence of quercetin and kaempferol, after 1 h incubation. Values are 

mean±SEM of 3 independent experiments. *P≤0.05; **P≤0.01 when compared to control; #P≤0.05 when 

compared to dRib alone. 

 

toxicity, when this compound was co-incubated with Q or K an increase in insulin 

secretion continued to occur when compared to the levels of dRib alone. This increase was 

statistically significant for Q (P≤0.05) but not for K. The insulin secretion attained was, 

however, below than the one obtained by incubating with the flavonoids alone, which may 

indicate some oxidant effect of dRib in these conditions. Incubation conditions similar to 

the ones used by Tanaka et al. (2002) may be necessary to test whether Q and K are in fact 

protective against glucotoxic-induced decrease in insulin secretion. That may be probable 

in view of the antioxidant potential already reported for Q and K (Lima et al., 2006; Wang 

et al., 2006). Tanaka et al. (2002) also reported that NAC, a potent antioxidant, could 

revert dRib-induced toxicity in insulin secretion to control levels. 

On the other hand, 1 h incubation with tBHP 200 μM, also an oxidant compound, 

was enough to significantly decrease the insulin secretion in HIT-T15. Åkesson and 

Lundquist (1999) had demonstrated that glucose-induced insulin release was rapidly and 

markedly suppressed by 300 and 3000 μM of tBHP. They had addressed this fact to either 

the inhibition of glucose-induced influx of extracellular Ca
2+

 and to tBHP oxidative action 

in thiol groups situated in the membrane and intracellulary that suppresses totally the 

glucose-induced insulin secretion. The last hypothesis was supported by the observation 

that tBHP decreased the GSH/GSSG ratio in rat pancreatic islets, especially since GSH is 

assumed to hold the thiol groups “critical” for glucose-stimulated insulin release in the 

reduced state (Ammon et al., 1977; Ammon et al., 1985). 
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Contrarily to dRib, tBHP worked decreasing significantly glucose-induced insulin 

release in our testing conditions maybe because it induces oxidant effects in the cells much 

more rapidly than dRib. 

 

3.3 Effect of dRib-induced damage on GSH levels  

 

Chronic hyperglycemia lead to the formation of ROS that, when accumulated in 

excess for prolonged periods of time, cause chronic oxidative stress. This process is 

particularly relevant for the beta cells due to its characteristic low levels of antioxidant 

defenses (Tanaka et al., 2002; Robertson et al., 2007).  

The importance of GSH in the insulin secretion process described above conjugated 

with its importance in the cellular system of antioxidant defenses led us to further 

investigate the effect of dRib in the GSH levels of HIT-T15 cells as well as the influence 

of Q, K and NAC (figure 22).  

 

 

Figure 22 – Effect of quercetin, kaempferol as well as the antioxidant NAC in the decreased levels of 

reduced glutathione (GSH) induced by 30 mM dRib, in HIT-T15 cells, after 24 h exposure. BSO, the 

inhibitor of GSH synthesis, was used with NAC. Values are mean±SEM of 3 independent experiments. 

*P≤0.05; **P≤0.01; ***P≤0.001 when compared to negative control; ### P≤0.001 when compared to dRib; 

+P≤0.05 when compared with respective compound; §§§ P≤0.001 when compared to 10 mM NAC. 

 

The GSH levels were significantly decreased (P≤0.01) in HIT-T15 cells incubated 

with 30 mM dRib for 24 h, when compared to control, a situation that was rescued by 

NAC (P≤0.001), Q (P≤0.05) and K. As mentioned before, the prevention of glucose and 

ribose toxicity by NAC in this cell line had been reported by Tanaka and colleagues (1999) 
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and this protection could be due both to its role as a stable precursor of cysteine, which can 

then enter in the glutathione synthesis cycle, and to its glutathione-sparing effect due to its 

own antioxidant properties (Rahimi et al., 2005). 

In fact, in the presence of BSO, an inhibitor of γ-glutamylcysteine synthetase (GCS) and 

therefore an inhibitor of GSH synthesis, the increase of GSH levels induced by NAC was 

totally abolished. As antioxidants, Q and K, also exhibited a protective effect in the 

presence of dRib. It has been well established that the exposure to dRib increase ROS 

levels during the first step of protein glycation while significantly lowering the GSH 

content, resulting in highly oxidative condition which leads to cell death (Fico et al., 

2008). A study performed in embryonic stem cells (Fico et al., 2008) also elucidated the 

mechanism involved in dRib induced GSH depletion. The authors concluded that both 

inhibition of GSH synthesis, through inhibition of GCS, and an increase in GSH efflux 

were involved.  

Besides the protection against dRib-induced toxicity, all the compounds alone 

increased the GSH levels, indicating the potential of Q and K for maintaining GSH 

homeostasis and prevention of oxidative stress, particularly beneficial in a diabetic 

condition. The increase of GSH levels by flavonoids, particularly in the case of Q, may 

also help to explain the protection afforded against dRib-induced toxicity (Fig. 20) in 

addition to flavonoids direct antioxidant activity. 

 

3.4 Effects of dRib on apoptosis  

 

A decrease in the number of functional insulin-producing beta cells contributes to the 

pathophysiology of type 2 diabetes (Donath et al., 2005). Regulation of the beta- cell mass 

appears to involve a balance between beta-cell replication and apoptosis (Butler et al., 

2003). In general, the apoptotic cascade is triggered by various kinds of stimuli such as 

DNA damage, cell cycle perturbation, metabolic imbalance, cytokines as well as oxidative 

stress. In a diabetic condition, hyperglycemia induces an increased production of ROS 

from enhanced glycation that leads to necrosis and/or apoptosis of beta-cells (Yoon et al., 

2004). 

The evaluation of beta-cell apoptosis induced by a range of concentrations of dRib 

and its possible protection by NAC or K was performed through the evaluation of two 

parameters: i) genomic DNA condensation and ii) expression of apoptosis markers. In 

order to assess nuclear condensation, cells were exposed at 20, 30 and 40 mM of dRib, for 

24 or 48 hours, and dRib 30 mM was co-incubated with NAC 5mM and K 20 μM. The 
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observations showed no differences in DNA condensation between the tested dRib 

concentrations (with or without test compounds) in comparison to control (data not 

shown). The differences denoted were related to cell density, corroborating the above 

effects of dRib in cell viability and/or proliferation. There was a marked diminution in cell 

density as dRib concentration increases while NAC and K restored the density to control 

levels (data not shown). The absence of chromatin condensation despite the effect on cell 

density were not concordant with another previous study, where the pro-apoptotic effects 

of 24 h exposure with 30 mM dRib in HIT-T15 cells and its protection by 10 mM of NAC 

are documented (Koh et al., 2005). As in this study, we also decrease serum concentration 

in the medium to 0.5% predispose cells for apoptosis; therefore, maybe other factors in the 

milieu of the cells were protecting cells from apoptosis. A different study using this cell 

line had demonstrated also induction of chromatin condensation and apoptotic bodies in 

the presence of hydrogen peroxide (Yoon et al., 2004).  

Corroborating our results of chromatin condensation, the expression of apoptosis 

markers, evaluated by western blotting, in particular the cleavage of PARP and caspase-9, 

as well as p53 and Bcl-2 expression levels, were not changed by dRib (data not shown). 

Nevertheless, more experiments have to be performed in order either to confirm these 

results and/or optimize the assay conditions. 

 

3.5 Effects of dRib in insulin mRNA levels  

 

The toxic effects of long-term exposure of HIT-T15 cells in media containing high 

glucose concentrations have been described (Harmon et al., 2005; Moran et al., 1997; 

Olsen et al., 1993; Robertson et al., 1992; Robertson et al., 2007) and are associated with 

reduction of insulin gene expression, content and secretion due to loss of binding of 

transcription factors – PDX-1 and RIPE-3b1 activator – to the promoter region of the 

insulin gene. 

In the present study, we proposed to evaluate the effects of Q and K on dRib-induced 

disruption of insulin gene expression. To accomplish this objective a preliminary assay 

was preformed on determine the differences in insulin mRNA expression, in the presence 

or abence of dRib 30 mM, over time. To do so, total RNA was extracted from cells and 

quantified. Total RNA yielding ranged from 23.47 ng/μL to 196.9 ng/μL with a good level 

of purity (A260/A280≈2.05). Then, RNA was reverse transcribed and the Real-Time PCR 

analysis performed (fig. 23) using the acidic ribosomal phosphoprotein P0 (36B4) as 
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housekeeping gene, because of its highly conserved regions that make it an effective 

standard for use in gene expression analysis (Akamine et al., 2007). 

 

Figure 23 – Real-Time PCR quantification of insulin mRNA contents in HIT-T15 cells treated with glucose 

5.6 mM with or without dRib (30 mM) for 1, 8, 24 and 48 hours. 

 

The obtained results of this preliminary experiment did not allow to take any 

definitive conclusions. Due to time restrictions, the optimization of culture conditions as 

well as the experiment replication was not possible. Nonetheless, we would expect a 

decrease in insulin gene expression in the presence of dRib over time (Tanaka et al., 2002). 

In our case, we observe a continuous decrease of insulin gene expression up to 8 h of 

incubation with dRib, apparently restoring control levels after 24 and 48 h of incubation. It 

is possible that, after an initial effect of dRib on insulin gene expression, cells were able to 

recover after 24h of treatment and return to initial levels of insulin transcripts. 

In this way, work is needed to analyze Q and K effects in the insulin gene 

expression, being for this a point of awareness for future work in view of the interesting 

results here reported. 

 

4. Susceptibility of HIT-T15 cells to other oxidant toxicants  

 

As previously described, oxidative stress is the mechanism underlying glucose 

toxicity in beta cells and consequent impairment of insulin secretion and beta cell’s 

apoptosis. Considering that, HIT-T15 susceptibility to other oxidant toxicants, namely 

glyoxal, glucose oxidase and tert-butyl hydroperoxide, was evaluated. Additionally, the 

protective effects of C. roseus aqueous extracts, Q and K, against the effects of these 

toxicants were also assessed in terms of co- and pre-incubation experiments. 
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4.1 Glyoxal and Glucose oxidase (GOX) 

 

Glyoxal is a reactive α-oxoaldehyde and a physiologic metabolite, formed by lipid 

peroxidation, ascorbate autoxidation, oxidative degradation of glucose, and degradation of 

glycated proteins (Mlakar et al., 1996; Wells-Knecht et al., 1995). Glucose forms 

reversible early glycation products with proteins, that undergo further rearrangement and 

oxidation, originating advanced glycation end-products (AGEs), which alter protein 

structure irreversibly and, consequentially, their function (Han et al., 2007; Shangari and 

O`Brien, 2004). In fact, aldehydes like glyoxal, are 20,000 times more reactive than 

glucose in glycation processes (Thornalley et al., 2005; Mostafa et al., 2007) by binding 

with free sulphydryl and amino groups of proteins (Han et al., 2007). Under physiological 

states, glyoxal detoxification is made by GSH. A decrease in cellular GSH concentration 

during oxidative stress subsequently increases intracellular levels of glyoxal and AGE 

formation, potentially leading to apoptosis, necrosis or cell growth arrest (Shangari and 

O`Brien, 2004). 

HIT-T15 susceptibility to glyoxal-induced toxicity was, in the present study, 

evaluated by the MTT assay (fig. 24A and 24C). In the presence of glyoxal, an abrupt 

decrease in cell viability was observed for concentrations between 1 and 5 mM. The 

calculated IC50 was 1.94 mM for 48 h incubation. Next, glyoxal 5 mM was tested in 

different incubation times (fig. 24C) and the calculated IC50 was 4.9 h. This allowed us to 

chose the 5 mM concentration for 6 h as the condition to perform the protection assays. 

Glucose oxidase (GOX) is a flavoenzyme that in presence of glucose generates 

hydrogen peroxide (H2O2) – a central ROS molecule that can act over a wide range of 

targets while easily penetrating cell membranes, working also as a signaling molecule 

(Rost et al., 2007). A range of GOX concentrations was tested in HIT-T15 cells (fig. 11B) 

and a rapid decrease in cell viability occurred between 5 and 10 mU/mL. The estimated 

IC50 was 6.5 mU/mL for a 48 h exposure. Using 10 mU/mL of GOX at different incubation 

times (fig. 24C) an IC50 of 5.8 h was obtained. The subsequent protection assays against 

GOX-induced toxicity was carried out using 10 mU/mL for 6 hours. 
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Figure 24 – Concentration effect of glyoxal (A) and 

GOX (B) – induced toxicity in HIT-T15 cells; C: 

time effect of 5 mM glyoxal and 10 mU/mL GOX-

induced toxicity. Cells were incubated for 48 h with 

different concentrations of the toxic agents and cell 

viability measured by MTT assay. Concentration 

scale was logarithmized in order to obtain sigmoidal 

response curves. Values are mean±SEM of, at least, 

3 independent experiments. 

 

 

Furthermore, the potential protective effect of C. roseus extracts against glyoxal-

induced toxicity was assessed through the measure of cell viability (MTT) and is illustrated 

in figure 25. 

 

Figure 25 – Effects of glyoxal (5 mM) on HIT-T15 viability for 6 h and C. roseus aqueous extracts 

protection. A: co-incubation of glyoxal with extracts for 6 h; B: 24 h preincubation with extracts, followed by 

6 h incubation with glyoxal. 

 

A       B 

C 

A B 
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The C. roseus extracts did not exhibit any protective effects against glyoxal toxicity, at the 

tested concentrations.  

The same type of results were obtained using GOX (fig. 26) were the extracts did not 

exhibit a protective effect under GOX toxicity. Despite the fact that in some cases a slight 

protection was observed, that results were not reproducible in subsequent assays. 

These results were not consistent with those published by Ferreres and co-workers 

(2008) which points out the ability of C. roseus extracts to scavenge superoxide radical and 

nitric oxide, reactive oxygen and nitrogen species, respectively. However, through the 

chemical assay (DPPH), used by the authors, the extracts presented, in fact, a 

concentration-dependent antioxidant capacity with the flowers presenting the strongest 

effects (EC50 at 197 μg/mL), followed by seeds (EC50 at 265 μg/mL) and leaves (EC50 at 

447 μg/mL). These concentrations are significantly higher than those used in the present 

work and this may be the reason for the discrepant results. 

 

 

 

 

 

 

Figure 26 - Effects of GOX (10 mU/mL) on 
HIT-T15 viability for 6 h and C. roseus 

aqueous extracts protection. A: co-

incubation of GOX with extracts for 6 h; B: 

24 h preincubation with extracts, followed 

by 6 h incubation with GOX. 

 

 

Another explanation could be that the mechanism by which the extracts exert their 

antioxidant action was not enough to protect the toxicity induced by glyoxal and GOX in 

the beta-cells. The damages induced by glyoxal, for example, in protein glycation may be 

not a target for the action of the antioxidant flavonoids present in the extracts. A protective 

effect may be exerted by extracts in scavenging the ROS but the effects on protein 

structure will be much more toxic to the cells and a protection may not be seen.  

A 

B 
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We had also to speculate about the aqueous nature of the extracts that may difficult their 

entry through the cell membrane, due to its low lipophilicity, and negatively affect their 

intracellular antioxidant activity. 

 

4.2 tert-butylhydroperoxide (tBHP) 

 

The susceptibility of HIT-T15 cell line to another prooxidant toxicant, tBHP that is 

widely used to induce oxidative stress in different biological systems, was also studied in 

the present work. tBHP is metabolized by the microsomal cytochrome P450 system to 

ROS which subsequently initiates lipid peroxidation and depletes cellular reduced 

glutathione (GSH) content (Yau et al., 2002). Figure 27 shows the effects on HIT-T15 

viability of different concentrations of tBHP, during 2 hours of exposure. 

 

Figure 27 - Viability of HIT-T15 cells after treatment with various concentrations of tBHP for 2 h, by a 

MTT assay. Cells were cultured in RPMI medium containing 5.6 mM glucose and 10 % FBS. 

 

During the incubation period a sequential decrease in cell viability was observed as the 

tBHP concentration increases. The concentration of 30 mM was chosen to evaluate the 

protective effects of C. roseus extracts, Q and K in tBHP-induced toxicity in this cell line. 

This concentration was chosen once it induces approximately 50% of cell death in 2 h. 

The protective effects of C. roseus aqueous extracts were represented in figure 28. A clear 

pattern of protection has not been seen against tBHP- induced toxicity in HIT-T15. Co-

incubation of tBHP with E2 40 mg/mL (fig. 28A) appears to induce a slight protection, 

however, this result was not reproducible. 
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Figure 28 - Effects of tBHP (30 mM) in HIT-
T15 viability for 2 h and C. roseus aqueous 

extracts protection. A: co-incubation of tBHP 

with extracts for 2 h; B: 24 h preincubation 

with extracts, followed by 2 h incubation with 

tBHP. 

 

Regarding the effects of Q and K against tBHP-induced damage (fig. 29) and given 

the results previously obtained by our work group that strongly indicated the potential of Q 

on preventing cell death induced by tBHP in HepG2 cells (Lima et al., 2007), a strong 

response by Q was expected. Furthermore ROS, tBHP radicals and intracellular iron ions 

are involved in the toxicity of tBHP (Davies, 1989) and direct effects on these parameters, 

found for Q in hepatocytes (Lima et al., 2007), would be expected to reduce the level of 

damage also in HIT-T15 cells. 

 

 

 

 

 

  

 

Figure 29 - Effects of tBHP (30 mM) in 

HIT-T15 viability for 2 h and Q and K 

protection. A: co-incubation of tBHP with 

compounds; B: 24 h preincubation with 

compounds, followed by 2 h incubation 

with tBHP. 

 

A 

B 

A 

B 



RESULTS AND DISCUSSION 

50 

Despite those facts, neither Q nor K protected HIT-T15 cells from tBHP damages. Another 

controversy is that Q alone significantly improves GSH levels (fig. 22) and that should 

revert, at least partially, the cytotoxicity induced by tBHP in depleting GSH levels (Yau et 

al., 2002). Another work by Alía and colleagues (2005) stated that ROS generation 

induced by tBHP was significantly reduced when HepG2 cells were pretreated for 2 or 20 

h with 10 μM and for 20 h with 5 μM quercetin and that some of the quercetin treatments 

prevented the significant increase of glutathione peroxidase, superoxide dismutase, 

glutathione reductase and catalase activities induced by tBHP.  

Taken together these results regarding the protective effects of C. roseus extracts and 

isolated compounds, Q and K, against prooxidative toxicants in HIT-T15 were not 

conclusive and more optimizations should be done. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  CONCLUSIONS AND FUTURE PERSPECTIVES 

  51 

Conclusions and Future Perspectives 

 

 The main objective of the present work was to investigate the anti-diabetic 

potential of aqueous extracts of leaves, senescent leaves and flowers of C. roseus, as well 

as their major flavonoid aglycones Q and K at the level of beta-cells - insulin producing 

cells. For that purpose, we investigated the extracts´ effects on processes such as protection 

against oxidative damage induced by dRib, tBHP, glyoxal and GOX, glucose-induced 

insulin secretion, apoptosis, insulin gene expression and GSH levels using the β-cell line 

HIT-T15. In the studies of β-cell protection against dRib-induced toxicity and insulin 

secretion, NAC (a potent antioxidant) and glibenclamide (an oral hypoglycemic drug) were 

used as positive controls, respectively. 

 Concerning the effects of C. roseus extracts on glucose-induced insulin secretion, 

we observed no effects on insulin secretion. However, the aglycones of the major 

flavonoid glycosides present in the extracts, Q and K at 20 μM, exhibited a strong 

induction of insulin secretion to levels above those achieved by glb (10 nM). That 

stimulatory effect was inhibited by both nifedipine and diazoxide indicating a mechanism 

similar to that of the pharmaceutical drug, which is targeting the insulin exocytosis 

process. The lack of the effect of the C. roseus extracts in our experimental model did not 

invalidate possible action in vivo on -cells, since biotranformations reactions that happen 

after absorption of the flavonoids glycosides may turn the resulting compounds (that may 

include the aglycones tested) active. 

 Under conditions of oxidative stress induced by dRib (30 mM) cell viability was 

decreased in approximately 50%, a condition that was not prevented by the co-incubation 

of dRib with the three C. roseus extracts. Despite this fact, Q, K and NAC (200 μM) 

exhibited protective effects against dRib-induced damage, in a concentration-dependent 

manner, except for K (40 μM). The possible cytoxicity of the compounds alone was also 

assessed and shown to be not present in the tested concentrations. As mentioned above, 

and considering that Q and K had protective effects, C. roseus extracts may have protective 

and antioxidant effects on -cells in vivo, despite no effects was observed in vitro here. 

Although the oxidant effects of dRib in insulin secretion have been described, using our 

experimental approach was not possible here to observe a significant decrease on insulin 

secretion. However we did observe a decrease on insulin secretion when dRib was co-

incubated with Q or K, when compared to the levels obtained with the flavonoids alone. 
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Because of this experimental fatality, we were unable to conclude if Q and K were able to 

protect significantly from the decrease of insulin secretion induced by dRib, and that 

should be considered in further studies using a different experimental approach, such as 

incubating HIT-T15 cells with dRib for a longer time. 

 Regarding GSH levels, a significant diminishment was observed in the presence of 

30 mM dRib when compared to control, a situation that was rescued by NAC, Q and K. 

The increase of GSH levels induced by NAC was mainly due to its role as precursor of 

GSH shynthesis, since the effect was totally abolished in the presence of BSO, an inhibitor 

of γ-GCS. Q and K alone also increased GSH levels of HIT-T15 cells indicating the 

potential of these flavonoids for maintain GSH homeostasis and prevention of oxidative 

stress, particularly beneficial in a diabetic condition. Therefore, in addition to their direct 

antioxidant activity, the increase of GSH levels by Q and K may also help to explain the 

protection afforded against dRib-induced toxicity. The induced toxicity by dRib in our 

tested conditions seemed to be not dependent on apoptosis, and therefore more studies will 

be necessary to investigate the mechanisms involved. With a preliminary experiment, dRib 

seemed also to affect the expression of insulin gene only in the first hours of incubation, 

but further investigation will be necessary to make final conclusions, and in particular the 

possible modulation by Q and K. 

 The toxic effects induced by glyoxal, glucose oxidase and tert-butylhydroperoxide 

was not prevented either by C. roseus extracts or by Q or K, probably due to the acute 

toxicity induced by these compounds (high toxicity in a shorten period of time) as 

compared with dRib, in cells that are believed to possess less cellular antioxidant defences. 

 Taken together, these results indicate that C. roseus extracts might exert their 

attributed anti-diabetic activity in other organs like liver or skeletal muscle and that both Q 

and K, due to their antioxidant and remarkable insulin secretagogue effects, are good 

candidates for the prevention and/or management of type 2 DM. 

 

 For purposes of future and complementary work, once the effects of Q and K on 

prevention of β-cell apoptosis and on glucotoxicity related decrease in insulin gene 

expression were not conclusive some other approaches should be tried. First, the 

assessment of β-cell apoptosis must be further evaluated probably using a lower 

concentration of dRib for a longer incubation time and performing western blotting 

experiments with more apoptotic markers. The evaluation of necrosis should also be done. 

The experiments on insulin gene expression should be repeated with longer incubation 
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times, and with smaller concentrations of dRib, in order to verify alterations over time as 

well as test the compounds Q and K for their protection of gene insulin expression.  

 Regarding the C. roseus extracts per se it would be interesting to evaluate other 

extracts obtained from plants raised under natural conditions, once that growing conditions 

are responsible for alterations in their phytochemical profile. 
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