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SUMÁRIO 
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SUMÁRIO 

Os Termoplásticos elastómeros, TPEs, têm vindo a substituir os tradicionais elastómeros devido à sua 

elevada eficiência mecânica, à sua alta processabilidade e baixo custo. Numa gama cada vez mais 

alargada de aplicações (p.e., nas indústrias automóvel e militar, componentes médicos, electrónica, 

construção civil, etc.) as exigências aumentam, assim como a necessidade de materiais com 

propriedades melhoradas. A mistura de um polímero com um outro material dá origem a um novo 

sistema polimérico com propriedades melhoradas, resultante da combinação das propriedades 

existentes. A incorporação de reforços no TPE poderá adicionar-lhe novas funcionalidades e apresentar 

melhoramentos quanto ao seu desempenho. Os compósitos de TPEs a estudar, incorporarão reforços 

de escala micro e nanométrica. Dois tipos de TPEs serão considerados pela sua natureza: amorfo-

amorfo (p.e. SBS) e amorfo-semicristalino (p.e. TPU). Isto permitirá induzir diferentes estados 

morfológicos e investigar a relevância das interacções interfásicas. Reforços como negro de fumo, 

nanofibras de carbono, nanosilica, nanoclays e vermiculites têm despertado grande interesse pelas 

propriedades que exibem. A combinação destes com os TPE pode resultar em materiais com melhores 

propriedades e “inteligentes” que podem ser integrados em sistemas como sensores/controladores de 

deformação ou força, temperatura, etc. O desenvolvimento destes compósitos requer um certo know-

how. Não é certo que adição destes reforços irá conferir as funcionalidades desejadas, mais ainda 

quando feito com percentagens de incorporação muitos baixas e de difícil dispersão. Será um 

compromisso entre vários critérios que influenciarão desde a sua processabilidade, o seu 

comportamento mecânico e a sua estabilidade a longo prazo.  

 

Este trabalho tem como principal objectivo caracterizar e compreender o comportamento (mecânico, 

térmico, eléctrico e ao fogo) dos TPEs carregados com partículas micro e nanométricas.  
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ABSTRACT 

Thermoplastic elastomers, TPEs, have been used to replace the traditional elastomers due to their high 

mechanical efficiency, easy processabillity and low cost. In an increasingly broad range of applications 

(e.g., automobile industry and military, medical component, electronics, civil construction, etc.), the 

demands increases as well as the need for materials with improved and multifunctional properties. The 

combination of a polymer with a filler gives rise to a new polymer system with improved performance 

and added functionalities as a result of the combination of the existing properties. The TPE’s composites 

selected for this study will incorporate micro- and nanometric scale reinforcements. Two types of TPEs 

will be considered for their nature: amorphous-amorphous (e.g. SBS) and amorphous-semicrystalline 

(e.g. TPU). This will lead to induce different morphological states and investigate the relevance of 

interfaces interactions. Reinforcements such as carbon black, carbon nanofibers, nanosilica, nanoclays 

and vermiculites (VC) have attracted great interest due to the properties that they exhibit. The 

combination of these materials with the TPE may result in high performance and “intelligent” materials, 

ideal to be integrated in systems like deformability or temperature sensors/controllers, that are able to 

adapt and response in different applications depending on environmental changes, among others. The 

development of these composites requires specific know-how. It is not certain that the addition of this 

reinforcements will grant the desired functionalities, even more when it is used with very low 

incorporation percentage and of difficult dispersion. It will be a commitment between different criterions 

that will influence their processability, their mechanical behavior and their long a long term stability.  

This work has as main objective the characterization and the understanding of the behavior 

(mechanical, thermal, electric and to flame) of the reinforced TPE’s with micro and nanometrics 

particles.  
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CHAPTER 1 

 INTRODUCTION  

 

This chapter provides an overview on the TPEs materials and the use of reinforcement particles 

for properties and performance improvement.  
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1.1. INTRODUCTION 

Thermoplastic elastomers, TPEs, are a class of phase separated block-copolymers which consist of soft 

rubber-segments (conferring its elastic character) and hard glassy or crystallisable chains segments that 

act as physical crosslink bonds (and impart stiffness and strength). [1,2] During service, TPE behave as 

elastomers but, in contrast to the classical elastomers, they can be processed by means of the 

conventional techniques and equipment utilized for all thermoplastics. This peculiarity of TPE is related 

to their different type of crosslinking bond in their structures. One of the monomers develops the hard, 

or crystalline, segment that functions as a thermally stable component (which softens and flows under 

shear, as opposed to the chemical crosslinks between polymeric chains in a conventional, 

thermosetting rubber); the other monomer develops the soft or amorphous segment, which contributes 

the rubbery characteristic. A key attribute of most TPEs is the ability to tailor toughness and large strain 

elasticity by varying the type of monomers, the ratio of hard/soft fractions and the lengths of the hard 

and soft segments, so the TPEs have been used in many fields. [3] TPEs exhibit an extraordinary 

combination of reprocessability, elasticity, toughness, low temperature flexibility and strength at 

relatively high temperatures that make them ideal candidates for engineering applications requiring 

excellent high mechanical properties; and broad service temperature range.[4] TPE's are used where 

conventional elastomers cannot provide the range of physical properties needed in the product: 

Automobile industry; health; shoes soles, including personal care, packaging, sporting goods, 

houseware, hardware and electronics.[2] TPE materials have the potential to be recyclable since they 

can be molded, extruded and reused like plastics, but they have typical elastic properties of rubbers 

which are not recyclable owing to their thermosetting characteristics. They require lower energy costs 

for processing, are easy of process. TPE are capable of self-assembling by micro- and nanophases 

segregation processes, allowing the development of different morphologies [5,6] and hence of new 

properties (e.g., mechanical behavior, chemical resistance). 

World consumption of TPE is around 2,1 million of tons in 2006.[7] Global demand for TPEs is forecast 

to increase 6.2% per year through 2009, reaching 3.1 million metric tons, according to a study made by 

the Freedonia Group. [8] From this total, 970 thousand tons correspond to rubbers of SBS (styrene-

butadiene-styrene) and 470 thousand tons to olefinic thermoplastic rubbers (TPO), followed by 

polyurethane thermoplastic rubbers (TPU), vulcanized thermoplastic rubbers (TPV), copolyesther 

rubbers (COPE) and thermoplastic polyamides. As target of great interest in the past decade, TPEs have 

become a highly sought class of material for replacement of conventional materials in many 

applications. [9-12]  Automobile industry, consumes 600 thousand tons from the total volume. It is 
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estimated, that approximately 45kg of the car weight corresponds to the TPE, in the more developed 

markets, Europe and the United States.  

 

Polymer composites are attractive because of the ability to form new materials with enhanced 

properties by combining existing components. Synergistic effects also occur, offering new product 

possibilities. [13] Faced with a growing number of mixtures of polymers with different properties, it is 

important to study a new class of polymers composites, as a means to further reduce the material cost 

in competitive markets and achieve a different combination of properties. Modification of TPE through 

the incorporation of micro- and nanoparticles, embedded in a continuous polymeric matrix known as 

micro- and nanocomposites. With the incorporation of reinforcing particles, TPEs will have adjustable 

properties, making them a versatile class of materials more advantageous compared to the 

thermoplastics and elastomers.  

 

Polymer nanocomposites were first heard in 1990 when Toyota noticed an eminent property 

enhancement of nylon-6 with the incorporation of a small amount of nanoclay.[14]  Such improvements 

were attributed to the increase of the interfacial area between polymer matrix and the filler when the 

clay platelets were individually dispersed. In 1998, the montmorillonite (MMT) was introduced for the 

first time by Wang and Pinnavaia [15,16] demonstrating mechanical properties improvements. In the 

last decade, research has demonstrated that composites of polymers with MMT and vermiculites often 

exhibit unexpected properties derived from synergy coming from both phases, such as improving 

thermal, mechanical and retardant properties of the material.[17-26] This lead to an increase of interest 

for the use of other particles in the preparation of nano-composites, [27-39] as TPEs. [36,38,40] Lately, 

nanosized carbon based fillers have focused the attention and interest of the scientific and technological 

community[41,42] Materials such as high structure carbon black (HSCB) and carbon nanofibers (CNF) 

dispersed in the polymeric matrix are used as components of electric conductivity, due to its excellent 

electric [43-46] and mechanical properties. [47] This makes them an excellent application for 

protection of electromagnetic interference (EMI), for dissipation of static electricity and for absorption of 

electromagnetic radiation.[48] Materials with low electrical resitivity have extraordinary economical 

potential. If theses materials have the ability to conduct electrical current without great resistance, 

enormous quantities of energies could be economized and applications like computer chips small and 

faster could be developed.  
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In this work, micro- and nanoparticles were incorporated in TPE matrix by melt blending using a 

laboratory scale mixer. Within the existing possibilities, two distinct types of TPEs where selected for this 

study according to their structure and potential application use: i) an amorphous-amorphous BC (e.g., 

SBS); ii) an amorphous-semicrystalline BC (e.g., TPU). They will allow different structuring capabilities 

by the incorporation of reinforcing particles. The incorporation of nanoclays (NC) and nanosilicas (NS) 

aimed to improve TPEs the mechanical properties. HSCB and CNF incorporation was to impart anti-

static/electrical and thermal conductivity. NC and crude plus exfoliated vermiculite (VCC and VCE) 

incorporation aimed to improve flame retardant properties. The relation between morphology and 

properties were established. 

 

Accomplishing this properties combination resulting from the morphology of nanocomposite is conquer 

a new opportunity in the conception of polymers responding to stimuli that otherwise wouldn’t be 

possible. 
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                                                                                                           CHAPTER 2 

LITERATURE REVIEW 

Most important preparation methods of polymer composites are reviewed. A basic understanding of the 

different blending processes and available equipments are mentioned. The selected method is 

described in detail as well as its usage in dealing with polymer composites. Some fundamentals on 

morphological aspects and properties of thermoplastic elastomers are provided. Special attention is 

placed on thermoplastic polyurethane and styrene-butadiene-styrene composites. In order to have 

control on the level of dispersion of the micro- and nanofillers in a polymer matrix, we need to know the 

nature of such particles in terms of structure, morphology, texture, and chemistry. In this Chapter, we 

concentrate on the basic aspects of micro- and nanofillers, namely crude and exfoliated vermiculite, 

carbon nanofibers, high structure carbon black, nanoclay, nanosilica. A state-of-the-art of type of fillers 

used and their effects on the TPE properties is presented. 
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2.1. PROCESSING OF TPE BASED COMPOSITES  

The need of reinforcing TPE with micro - and nanosize particles requires appropriate facilities for mixing, 

for controlling de-agglomeration and dispersion of fillers in polymers matrix. This new reinforcing 

materials are available in low quantities (few grams) because they are expensive to purchase at such 

early stages of development. Mixing is an extremely complex process because it can involve different 

basic operations, such as dispersing particles, wetting solid particles by the matrix, plasticizing, and 

uniformly distributing the particles to obtain a homogeneous compound.[1] To disperse 

nanoreinforcements, melt mixing methods are usually preferred due to the versatility of the production 

facilities. [2] Melt blending involves time and temperature-dependent non-Newtonian materials, and in 

addition, the flow field is a combination of shear and extensional flow.[3] During the blending process, 

melting and mixing are the most important and basic processing steps because melting affects the 

process rate, and mixing determines the morphology [4] In order to incorporate these materials into a 

new polymer material system, laboratory-scale mixing devices are essential. It is necessary for the mixer 

to be small enough to deal with tiny amounts of material, yet sufficiently powerful and appropriately 

designed to exert the shear stress and have the flow patterns essential for obtaining well-dispersed and 

uniform structures as in an industrial scale equipment [5], with minimize material waste.  

 

There are several miniature mixers commercially available, such as twin-screw extruders, MiniMaxTM, 

recirculating screw mixer and internal batch mixers for polymer blends compounding of small grams of 

material in the range of 1-10 g. However, the final blend morphology in these mixers is coarse, with 

many large dispersed phase domains existing even after 20 minutes of mixing time. [5] Our goal is to 

compound polymer blends in small quantities so that we can predict the morphology expected in larger 

production scale, without consuming large quantities of polymer. therefore it was required a better 

dispersive mixer.  

Sundararaj et all have developed a mini mixer called Alberta Polymer Asymmetric Minimixer (APAM). [5] 

This mixer has a unique, asymmetric design consisting of a varying clearance between the rotor blade 

tips and the cup wall, enabling the material to be squeezed, stretched and kneaded in high shear and 

converging zones. [5,6] Unlike the few other miniature mixing devices that are commercially available, 

the APAM has a combination of good mixing capability and complex flow modes required for dispersive 

flow, and requires minimal sample mass.[5] Small enough to deal with tiny amounts of material, yet 

sufficiently powerful and appropriately designed to exert the shear stress and have the flow patterns 

essential for obtaining well-dispersed and uniform structures as in industrial scale equipment [5], while 
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minimizing material waste. In a study made by Sundararaj et all comparing the blending results of 

APAM with the mixers above mentioned, there was evident the superior results of APAM, showing a 

well-dispersed structure.[3,5,6] For this work a miniature mixer was developed based on APAM. 

 

 

 

 

Figure 2.1 - APAM.[5]  
Figure 2.2 - Particle tracking and path 

in the metal cup.[6]  

 

2.2.THERMOPLASTIC ELASTOMER 

2.2.1.Thermoplastic polyurethane, TPU 

Thermoplastic polyurethane elastomers, belong to the class of TPE that combine the mechanical 

properties of vulcanized rubber with the processability of thermoplastic polymers. They can be 

repeatedly melted and processed due to the absence of the chemical networks that normally exist in 

rubber. TPU are linear segmented block copolymers having hard segments (HS) and soft segments 

(SS).[7] TPU are based on the exothermic reaction of polyisocyanates with polyol molecules, containing 

hydroxyl groups. Relatively few basic isocyanates and a range of polyols of different molecular weights 

and functionalities are used to produce the whole spectrum of polyurethane materials. Two types of 

diisocyanates are employed in polyurethane preparations, aromatic and aliphatic ones. Most commonly 

used chemical structures are the aromatic diisocyanates; toluene diisocyanate (TDI), and 4,4’-

diphenylmethane diisocyanate (MDI) (Figure 2.3). [7] TPU are usually made from pure MDI which is 

reacted with a substantially linear polyether or polyester diol [7,8] and with a chain-extending diol of a 

low molecular weight, such as 1,4-butanediol, (BDO) in either a one-step or a two-step reaction process. 

[86] The polyester diols are usually the condensation products of adipic acid and one or more simple 

aliphatic diols ranging from ethylene glycol to 1,6- hexanediol. 
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Figure 2.3 - Molecular structures of most common industrial isocyanates. 

 

The HS act as crosslinks, inhibiting stress-relaxation and inducing stress-crystallization, which results in 

higher tensile strength. [9] The SS form an elastomer matrix which accounts for the elastic properties of 

TPU. [7] At room temperature, the low melting SS are incompatible with the polar high melting HS, 

which leads to a microphase separation and, consequently, to a polydomain structure. [7]  

The HS segregates into a glassy or semicrystalline domain, and the polyol SS form an amorphous or 

rubbery matrix in which the HS are dispersed. [10,11] With the increase on the level of rigid segments, 

the TPU generally shows an increment on hardness, accompanied by a higher glass transition 

temperature. The ratio of thermoplastic or rubber phases determines the nature and properties of the 

product. The tendency to crystallize of the flexible segments is observed during the low and medium 

stretching, and this result in an induced crystallization affecting the modulus and strength.  

 

TPU are used in applications where a product requires excellent tear strength, abrasion resistance & 

flexual fatigue resistance, chemical/oil resistance, low permeability to oils and fuels, resistant to 

radiation exposure. Mechanical properties of the polyester TPU are generally higher. Additives can 

improve dimensional stability, heat resistance, reduce friction, or increase flame retardancy or 

weatherability. Service temperatures range from - 50 ºC to 150 ºC and all have excellent adhesion 

properties. These materials have generally offer better strength and rigidity properties than conventional 

thermoset rubbers and their high elasticity confers exceptional dynamic flex properties.  

 

 

 



CHAPTER 2: LITERATURE REVIEW 

12 

2.2.2.Poly(styrene–butadiene–styrene), SBS 

Poly(styrene–butadiene–styrene) rubber, was developed at the beginning of the 1960s. [12-14] A tri-

block copolymer, SBS belongs to the group of thermoplastic elastomers made by anionic 

polymerisation. [15] This material consist of two phase structures, a rigid polystyrene segments giving 

its durability and soft butadiene segments giving SBS its rubber-like properties. [16,17] Polybutadiene 

glass transition temperature is around -80ºC and polystyrene around 90ºC.  

 

 

Figure 2.4 - Chemical structure Styrene-Butadiene-Styrene. 

 

Unlike the repeat unit in a statistical copolymer, the repeat units in a block copolymer are arranged in 

separate blocks. In SBS rubber, each polymer chain consists of three sections, two outer sections made 

from styrene monomers and a middle section made from butadiene monomers. Since the different 

chain blocks are actually immiscible in one another, the styrene blocks phase separate from the 

butadiene blocks. [18]  

SBS behave like elastomeric rubbers at room temperature but when heated can be processed like 

plastics. Most types of rubber are difficult to process because they are crosslinked. But SBS manage to 

be rubbery without being crosslinked, making them easy to process into nifty useful shapes. [17] This 

means it can be heated and re-mold unlike covalently crosslinked elastomers. [18]  

With low polystyrene content, the material is elastomeric with the properties of polybutadiene 

predominating. This gives the material the ability to retain its shape after being stretched. [17,19] SBS 

exhibit good resistant to low temperature, good permeability, elongation percentage, and outstanding 

elasticity. [12,13] Commonly used in footwear, adhesives and tire treads food and cosmetics packaging.  
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Figure 2.5 - (a) Very simple schematic view of the SBS block copolymer molecule. (b) Chemical structure of the 
polystyrene and polybutadiene sections. Parts formed from styrene monomers (red) and butadiene monomers 
(blue) are marked. [15]  

 

 

2.3. MICROPARTICLES 

Vermiculite VC, belongs to the phyllosilicate group of minerals, the mineralogical name given to 

hydrated laminar magnesium aluminum-iron silicate which resembles mica in appearance [20,21] VC is 

a 2:1 clay, meaning its crystal lattice consists of one octahedral sheet sandwiched between two 

opposing tetrahedral sheets. [21] A tetrahedral sheet is composed of corner-linked tetrahedra, whose 

central ions are Si4+ or Al3+.[21] The octahedral sheet is composed of edge-shared octahedra with Mg2+, 

Al3+, or Fe2+. Due to isomorphic substitutions which are Al3+ for Si4+substitution in tetrahedral layers and 

Mg2+ or Fe2+ for Al3+ substitution in octahedral layers, VC layers have permanent negative charges. [21] 

VC is found in various parts of the world, and is recognized for their excellent intercalation abilities. [22] 

It is formed by hydration of certain basaltic minerals, and is often found in association with asbestos. T 

is a safe and inert mineral, characteristically yellowish brown in color. When heated it expands 

(exfoliates) up to 30 times it original volume. Natural and non toxic mineral that expands with the 

application of heat, are microsize particles between 0.1 and 100 μm in size. The expansion process is 

called exfoliation. 
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Figure 2.6 – Structure of vermiculite- Its chemical composition: 22MgO.5Al2O3.Fe2O3.22SiO2.40H2O. [21]  

VC has a medium shrink-swell capacity and is considered a limited-expansion clay. When VC is 

subjected to fast heating, its interlayer crystalline water transforms into steam and the pressure of 

steam forces the silicate layers apart from one another in which the K+ ions between the molecular 

sheets are replaced by Mg2+ and Fe2+ cations. As a result, expanded VC with a large pore volume, light 

and clear, a low bulk of density, and a high heat isolator and sound-proof property; [23] refractory 

insulation material is obtained. easily handled, odorless, and low-cost material.VC has been used in 

various industries for over 80 years: construction, agricultural (as fertilizer carrier, adsorbent, etc.), 

horticultural, and industrial markets(as fire protection, acoustic and thermal insulator, additive in 

concrete and plaster, packaging material, etc.), and environmental (as adsorbent) applications. [21,24] 

The bulk density of crude vermiculite (VCC) is in the range of 640-1120 kg/m³ and exfoliated or 

expanded vermiculite (VCE) is in the range of 64-160 kg/m³. [20]  

2.4. NANOPARTICLES 

Nanoparticles are ultrafine particles with nanometer dimensions, about 1 to 100 nm, [25] showing size 

dependency of the properties of composites. [26] There are different types of nanoparticles made out 

from very wide variety of materials, regarding their origin commercially availability, dimension and 

geometry. Normally, microparticle additives require much higher loading levels to achieve similar 

performance than nanoparticles with low loading levels. This can result in significant weight reductions, 

coming in wide interest and importance for military and aerospace applications. The nanoparticles can 

be incorporated in a polymer matrix either during polymerization or by melt compounding forming 

polymer nanocomposites, depending on the application.  
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2.4.1.Platelet Shape 

2.4.1.1.Montmorillonite, MMT 

The significant feature of layered silicates, in comparison to other more commonly used, is their high 

aspect ratio and their ability to be readily dispersible on a nanometer scale. [27] The essential nanoclay 

(NC) raw material is MMT a 2-to-1 layered smectite clay mineral with a platelet structure. Individual 

platelet thicknesses are just one nanometer, but surface dimensions are generally 300 to more than 

600 nanometers. Naturally MMT is hydrophilic. Since polymers are generally organaphilic, unmodified 

NC disperses in polymers with great difficulty. Through clay surface modification, MMT can be made 

organophilic and, therefore, compatible with conventional organic polymers. [2,28,29] Natural clay, 

containing an inorganic cation in the interlayer, are hydrophilic. After cation exchange of an inorganic 

cation to a large organic cation, the clay properties are altered and the material becomes hydrophobic. 

[22] Surface compatibilization is also known as “intercalation”. Compatibilized NCs disperses readily in 

polymers. When NCs are dispersed and exfoliated in a polymer matrix, they form a near-molecular 

blend called a nanocomposite. [30]  

 

Figure 2.7 – Nanoclays dispersion in a polymer matrix. 

This special structure of the layers results in an unusually high aspect ratio that makes NCs superior to 

all other conventional layered fillers. [29] These minerals considerably increase the mechanical and 

thermal properties of polymers through improving fire resistance by formation of a three-dimensional 

network, smoke emissions, chemical resistance, surface appearance, improved transparency, electrical 

conductivity, and barrier properties [31] usually resulting from the synergistic effect between organic 

and inorganic components. [8] This improvement of the properties may be reached with a very low 

concentration of NC. [29] The density of the NC reinforced polymers does not suffer significative 

changes leading to a definite weight advantage especially in the area of automotive applications. [29]  
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The properties of NCs strongly depend on the organic matrix, the nanoparticle, and the way in which 

they are prepared. [8] [1] The best properties are achieved if the clay is fully exfoliated. Their small size 

also results in small inter-platelet distances in a polymer/clay nanocomposite. [31]  

 

Na 1/3(Al 5/3Mg1/3)Si4O10(OH)2 

Figure 2.8 - Chemical structure of montmorillonite nanoclays. 

In the scope of this work, the platelet-like shape nanoparticles of organo-modified layered silicates, 

MMT, namely, Nanofil 5 (distearyl-dimethyl-ammonium ion exchanged bentonite, recommended for 

polyesther based polymers) are supplied by Süd-Chemie AG, Germany. This NC have long chain 

hydrocarbon, as it is schematically presented in the following. 

 

  

Figure 2.9 - Chemical functionalization of nanoclays (Nanofil 5). 

 

2.4.2.Spherical Shape 

2.4.2.1.Nanosilica, SiO2 

Nanosilica (NS) consists on spherical particles having a diameter less than 100 nm. Chemically 

speaking, they are made of silicon and oxygen atoms. Because their surface properties, particle size 

and their tendency to aggregate in the organic matrix on account of their high surface energy, it is very 

difficult to predict the properties of newly prepared nanocomposites. 

Although silica was up to now widely used in polymer formulation as additives to master the system 

rheology and enhance mechanical properties of some particular polymers, NS throws the door wide 

Layer thickness is 0.96 nm 
Octahedral  

Na+ 

Tetrahedral  alumina layer 
silicate layer 
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open for new applications. Silica synthesis evolved during last decades from thermal hydrolysis of silane 

resulting in not easily dispersible aggregated nanoparticles to sol-gel process resulting in well-defined 

nanoparticles, highly compatible with the targeted matrix. Processes enabling chemically tuned and well 

integrated particles together with the nanoscale effect are a highway to high performance 

nanocomposite materials having enhanced mechanical properties and excellent surface properties. [32]  

 

2.4.2.2.High Structure Carbon Black, HSCB 

Carbon black is an amorphous form of carbon with a structure similar to disordered graphite [33] that 

has a high surface area-to-volume ratio produced by incomplete combustion or thermal decomposition 

of gaseous or liquid hydrocarbons under controlled conditions. [34]  [2] When aromatic hydrocarbons are 

placed to incomplete combustion of carbon-containing materials, such as oil, fuel oils or gasoline, 

natural gases, coal, paper, rubber, plastics and waste material at high temperature, their molecules will 

dissociate through the rupture of C-H bonds. Also contain large quantities of dichloromethane- and 

toluene extractable materials, and can exhibit an ash content of 50% or more. [34]  

Smaller particles have higher inter-aggregate attractive forces (Van der Waals forces), resulting into a 

high secondary structure and an increased agglomerate size. This also means that the dispersion 

process requires more energy to separate them. [35] If the aggregates are composed of few prime 

particles, carbon black is designated a low structure carbon black. A high structure carbon black 

consists of relatively many prime particles. Because high structure carbon blacks tend to produce larger 

aggregates, consequently higher electrical conductivity at the same loading of low structure carbon 

black can be shown. [36,37]  

 

a) 

 

b) 

 

c) 

Figure 2.10 - a) Low structure (individual particles); b) Low structure (low agglomeration); c) High 
structure (with a high degree of openness and chaining) 

Its use in tires, rubber and plastic products, is related to properties of specific surface area, particle size 

and structure, conductivity and color. Approximately 90% of carbon black is used in rubber applications, 

9% as a pigment, and the remaining 1% as an essential ingredient in hundreds of diverse applications. 
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2.4.3.Carbon Nanofiber, CNF 

Carbon has two well known crystalline forms (diamond and graphite) but it also exists in quasicrystalline 

and glassy states. As far as fibers technology is concerns graphite is the most important structural form 

of carbon. The graphite structure consist of hexagonal layers, in which the bonding is covalent and 

strong (~525kJ/mol); these layers, which are called the basal planes, and they are stacked in an 

ABAB---- sequence, as shown in Figure 2.11, and have weak (<10kJ/mol) inter-layer bonds. The 

properties of graphite are very anisotropic. The theoretical elastic modulus of graphite is approximately 

1000 GPa in the basal plane and only 35 GPa in the c-direction perpendicular to these planes. [38]  

 

Figure 2.11- Crystal structure of graphite. 

Graphite sublimes at 3700ºC but starts to oxidize in air at around 500ºC; carbon fibers can however be 

used at temperatures exceeding 2500ºC if protected from oxygen. Carbon is a good electrical 

conductor. [38]  

CNFs are an important class of graphite-related materials produced from the catalytic decomposition of 

hydrocarbon gases or carbon monoxide over selected metal particles that include iron, cobalt, nickel, 

and some of their alloys at temperatures over the range 400±1000°C. This process is termed Catalytic 

Chemical Vapor Deposition. CNFs are composed of 90 % by weight of elemental carbon and the rest is 

made various elements mainly oxygen and hydrogen. Different types of defects are present on the 

surface such as vacancies, dislocations, edges and steps. [39] CNFs have extraordinary mechanical, 

electrical, and thermal properties and their combination with polymers offers properties improvement 

breeding a new composite material with promising scientific enhancement.  

CNFs are mainly differentiated from nanotubes by the orientation of the graphene planes: whereas the 

graphitic layers are parallel to the axis in nanotubes, nanofibers can show a wide range of orientations 
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of the graphitic layers with respect to the fiber axis. CNF composites reaches percolation threshold at 

only a few volume or weight percents of CNFs, markedly lower than metal particles or carbon black due 

to high aspect ratio and nanoscale size allowing CNFs to form conductive networks much more 

efficiently, [40-42] suitable for electrical conductive components, antistatic, electrostatically dissipative, 

and electromagnetic shielding and sensor applications.  

 

2.5. STATE-OF-THE-ART 

It has been long since the first introduction of reinforced polymers into engineering practices, and they 

have found a prominence place among common materials. There use in various applications requires 

not only good mechanical properties as well as processing facilities. Their application in new areas, 

means that other properties must be developed to meet the desired functionality without affecting the 

polymer properties.  In nanoparticles based polymer composites, physical bonding between filler and 

matrix is very critical for producing a high performance composite. [39] A prerequisite for a good 

polymer-nanofiller composite is to have an adequate interfacial adhesion between the inorganic and the 

organic material. The extent of interfacial contact depends on contact angle and viscosity behaviour of 

the nanocomposite. [39] The type of filler, their dispersion, their incorporation level, determines 

mechanical and thermal properties, and is fire behavior of the final composite system, as well as the 

electrical resistivity. [41,43-54]  

In recent years, TPE nanocomposites, long have erne the interest of scientific community showing 

improved performance and leading to a number of changes in physical properties, due to incorporated 

fillers high surface area and significant aspect ratios. [55-57] In particular, TPEs have been filled with 

several nanoparticles, such as NC, NS, HSCB, CNF, in order to improve properties like heat resistance, 

mechanical properties, anti-static/electrical properties, etc. and the achievement of multifunctional 

behaviour. 

Polymer nanocomposites can be prepared using different methods, including in-situ polymerization, 

solution processing and melt mixing [58,59] Melt mixing is the preferred method because it is 

environmentally benign and it is compatible with current industrial processes. [58-60] However, it is 

difficult to mix [61] homogeneously material such as nanoparticles into a polymer matrix due is natures 

and because of the existence of synthesis-induced entangled aggregates and the high van der Waals 

interactions between nanoparticles. [58-60,62]  
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In the last years, a huge research effort has been allocated to study the reinforced thermoplastics. 

[63,64] Researchers have found the useful advantage of using NC for TPEs properties enhancement. 

The first report on the use of NC with elastomeric polyurethane was from Wang and Pinnavaia in 1998. 

[65] These nanocomposites showed significant improvement in tensile strength and tensile modulus, 

although the clay particles remained mostly in intercalated states. Volker Altstadt et. al [66] showed 

improvement of the mechanical properties and creep resistance of SBS block copolymers also by NC 

incorporation. J. Shen at al. [67] have study TPU filled with MMT by melt blending and observed that NC 

can also improve TPU thermal stability. [67][3] Wang and Pinnavaia [65] compared TGA measurements 

of intercalated and exfoliated organically modified magadiite nanocomposites and observed that the 

exfoliated nanocomposite showed thermal improvements. Other studies have shown that the 

introduction of these particles reduces heat release and improve the fire retardancy. [68] 

Same mechanical improvement was observed with the use of NS. Wei-Dian Shen et al. Study the 

properties of TPU/silica (5% to 20% of incorporation) and shown that the incorporation of a small 

amount of NS increased the hardness, abrasion resistance, and tensile properties of the polymers, but, 

these mechanical properties could be worsened at higher NS contents. [69] The increase loading 

percentage may reduce some of the properties TPE. There is a limit amount of incorporation without 

injuring their mechanical and thermal properties maintaining a desired processability. Similar results 

have been reposted by Gupta et al. [70] These limitations encourages researchers to further study the 

application of this reinforce particles on TPE. [71] But it is still needed to understand them better, 

according to the microstructure / morphology of the material.  

 
No publications were found, by using with crude and exfoliated vermiculite (VCC and VCE). 

Polymers characteristically have a very high electrical resistance. [71] When conductive grades are 

required, base polymers are modified to prevent unwanted accumulation of charge or a conductive 

pathway. A part of developed work conducted on carbon composites is motivated by the potential of 

these fillers in TPE properties improvement, making them attractive and of critical importance for the 

integration in a wide range of high performance applications, e.g., aerospace structural components, 

heat exchangers, heat sinks, [73,74] sensors and active electrodes. [75]  

In the last few years some systematic studies of the thermo-physical [76] and electrical properties [77] 

of composites has been published. Carbon materials also have great potential to be economically 

important for thermal management as observed by Zhou et al.. [78] Carbon nanofillers like HSCB and 

CNF are excellent candidates for multi-functional nano-reinforcing for TPEs because of their high 
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strength, modulus, high thermal conductivity (higher than copper and silver suitable for thermal 

management applications), excellent electrical capacity, and thermal stability. Vaia et al [79,80] have 

evaluated CNFs as TPE reinforcing agents. They observed that low amounts of CNF (1 to 5% of 

incorporation) lead to TPU mechanical and electrical property improvements  

The electrical properties of a composite are determines by the volume fraction of the conductive filler, 

structure properties, orientation in the matrix, porosity and mixing conditions as observed by Khastgir et 

al. [81-83] when a study SBS filled with carbon black electrical and mechanical behavior. Homer et al. 

[76]  observed that electrical properties of a composite also depends on the physico-chemical properties 

of both polymer and filler, such as particle size, shape, porosity, surface area, e.g., smaller and 

spherical particles or fibers and longer particle affect differently, as well as the composite processing 

conditions, such as temperature, etc.  

For a conductor-filled polymer to be electrically conductive, the filler particles must either touch to form 

conductive paths, [41]  or be sufficiently close to each other to enable conductance via ‘‘tunneling 

effect’’ as observed by Sheng et al.. [84,85] This is usually defined as the percolation transition, 

characterised by a sharp drop in the electrical resistivity and the critical weight or volume fraction of 

filler is the threshold dividing the composite into insulator and conductor. [76] 
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CHAPTER 3  

MOTIVATION AND OBJECTIVES 

 

The motivation, main objectives of this research work, as well as the specific tasks are presented. At 

the end of the chapter a flow chart illustrates the experimental sequence used in this thesis. 
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3.1. MOTIVATION 

The information provided in the preceding chapters has demonstrated that many investigations have 

confirmed the improved properties resulting from the addition of micro- and nanosized particles in many 

conventional thermoplastics and elastomers. From among the numerous advantages offered by micro- 

and nano-reinforcement, the possibility of achieving multifunction and enhanced properties needs to be 

still explored. With the addition of reinforcing particles, TPEs allow an adjustment of their properties, 

making them a versatile class of materials more advantageous compared to the thermoplastics and 

elastomers. Few studies have focus exclusively on exploring the use of micro- and nanoparticles 

particles for TPE properties and performance reinforcement. It is well known that nanocomposites 

require low amounts of nanofillers, but most of the publications on reinforced TPE have focus on the 

use of higher incorporation amounts (superior to 1%wt.[1-6]). Large volume fractions has demonstrated 

a negative impact in deformability, processibility, surface finish, and limit the ability to maintain desired 

conductivity at extreme deformations (>100%).  

Faced with a growing interest of these composites it is important to study a new class of polymers 

composites, as a means to further reduce the incorporation percentage, and therefore the material 

cost.  

 

3.2. OBJECTIVE 

Driven by the importance of materials reinforcement (Chapter 1) and based on the research work 

embodied in this thesis, it is intended to provide a deeper knowledge in the: 

 

-Validation of dispersion ability of the developed laboratory-scale miniature mixer; 

-Evaluation of the incorporation effect of the different types of particles (eg. Micrometric and 

nanometric dimension) on multifunctional behavior, the mechanical, thermal and antistatic 

properties and TPEs (namely, TPU and SBS) flame behavior; 

-Establish a relation between the developed morphology and the reinforced TPEs mechanical 

properties with different particles. 
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3.3. WORK PERFORMED 

The materials selected for this research work, namely TPU and SBS, will be mixed with low amounts of 

microsize (crude and exfoliated VC) and nanosize (HSCB, CNF, NS, NC) particles through the following 

steps: 

 

a) TPEs reinforcement preparation 

- Setting the blending condition (temperature, rotation velocity, mixing time, incorporation %);  

- TPE molded plates preparation; 

- Evaluate the dispersion degree (Optical microscopy (OM), Scanning electron microscopy (SEM)); 

- Cut tensile test specimens for testing. 

b) Morphological characterization 

- TPEs functional groups identification (Fourier transform infrared spectroscopy);  

- Evaluation of the agglomeration, dispersion and particles adhesion in the matrix through 

microscopic techniques (OM, SEM); 

- Particles/aggregate dimension evaluation (OM, SEM); 

- Analysis of the fractured surface and morphological characterization of the deformed material; 

c) Properties characterization 

- Composites Melt Flow Index measurement.  

- Mechanical characterization (Tensile tests, hardness); 

- Thermal characterization (Thermagravimetric analysis, Scanning electron microscopy, thermal 

conductivity); 

- Flame behavior characterization (flame tests); 

- Electrical characterization (electrical resistivity); 
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Figure 3.1 - Experimental sequence.  
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CHAPTER 4 

MATERIALS, EQUIPMENTS AND EXPERIMENTAL METHODS 

 

This chapter provides information on the grades of the selected polymeric materials; micro- and 

nanoparticles characteristics; the experimental techniques and characterization methods.  
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4.1. MATERIALS 

The experimental work was conducted using a thermoplastic polyurethane (TPU) and a styrene-

butadiene-styrene (SBS). Micro- and nanoparticles were mixed with those polymers to assess the degree 

of dispersion and its effects on the mechanical, thermal and electrical properties.  

4.1.1. Polymers  

The TPEs used in this work were commercially available in the form of pellets. A thermoplastic 

polyurethane, TPU, amorphous-semicrystalline polyester based, AVALON 65 AE form Huntsman 

(Belgium) and one styrene-butadiene-styrene (SBS), Goldenplast (Italy). Table 4.1 resumes the principal 

properties of both polymers. 

 

Table 4.1 – Physical and mechanical properties of the selected TPEs. 

Property TPU SBS 

Density, g/cm3 1.18 0.932 

MFI, g/10 min 21.30(200ºC- 2.16Kg) 30 (190ºC- 5kg) 

Tensile strength, MPa 20 6.1 

Melting temperature, Tm,ºC 200 190 

Hardness , Shore A 65 55 

 

4.1.2. Reinforcing particles 

AEROSIL 200 is a highly dispersed, hydrophilic fumed silica that is produced by high-temperature 

hydrolysis of silicon tetrachloride in an oxyhydrogen gas flame. The primary particles are spherical and 

free of pores. AEROSIL 200 consists entirely of amorphous silicon dioxide. It starts to sinter and turn 

into glass above 1200°C. Crystallization only occurs after heat treatment. One gram of AEROSIL 200 

contains approximately 1 mol of silanol groups.[1] 

Table 4.2 lists main properties of AEROSIL 200. 
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Table 4.2– Silica nanoparticles detail technical specification.[1] 

Name 
Average primary 
particle size[nm] 

Specific surface 
area[m2g-1] 

Tapped density          
[gl-1] 

Behaviour 
toward water 

AEROSIL 200 12 200 ± 25 ≈ 50 Hydrophilic 

 

Nanofil 5 (distearyl-dimethyl-ammonium ion exchanged bentonite), supplied by Süd-Chemie AG, 

Germany is an organic modified nanodispersed layered silicate in form of powder. Primary particle size 

after complete dispersion is 100-500 nm x 1 nm. [2] Table 4.3 lists main properties of Nanofil 5. 

 

Table 4.3 – Clay nanoparticles detail technical specification. [2]  

Name 
Medium particles 

size [nm] 
Platelet 

thickness [nm] 
Bulk density 

[gl-1]  
Specific weight 

[g.cm-3] 
Intercalation 

Nanofil 5 8000 1 150 ≈ 1.8 
Distearyldimethyl-

ammonium chloride 

 

 

PRINTEX® XE 2 is a high structure carbon black with extraordinary properties. The major physical 

properties regarding conductive characteristics of carbon black - such as specific surface area, structure 

and pore volume - are entirely different from conventional carbon blacks. It imparts to rubber 

compounds excellent electrical conductivity. [3] Table 4.4 list main properties of PRINTEX® XE2. 

 

Table 4.4 – High structure carbon black nanoparticles detail technical specification. [3]  

Name Medium particles size [nm] Surface area [m2g-1] Pour density [g.dm-3]  

PRINTEX® XE 2 30 910 130 

 

Electrovac is as polymer-based, dust-free nanofiber masterbatches with 20 % carbon nanofofibers.[4] 

Table 4.5 resumes main properties of Carbon nanofibers. 
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Table 4.5 - TPU with carbon nanofibers detail technical specification. [4]  

Name 
Average 

diameter [nm] 
Specific surface 

area [m2g-1] 
Specific weight 

[g.cm-3] 
Young’s modulus 

Electrovac  80 - 150 20 – 100 ≈ 1.8 - 2.1 ≈ 500GPa 

 

Hoben International Ltd., vermiculite L835D Micron is micronized, followed by exfoliation to give a 

product with a carefully controlled size distribution and a melting point of 1330 ºC. [5] Palabora Europe 

Ltd., vermiculite (PMC PP&V Micron) is a crude vermiculite consisting of golden/brown flakes, un-

expanded. [6] Table 4.6 list main properties of vermiculite based particles. 

 

Table 4.6 - Vermiculite detail technical specification. [5,6]  

Name Particles size [μm] Loose Bulk density [gl-1] Specific surface area[m2g-1] 

Hoben 10 – 65 120 9.9 

Palabora  710 – 250 700 – 1050 6.4 

 

4.2. PROCESSING EQUIPMENT 

The TPE composites were prepared by melt blending. For the proper blending process a laboratory-

scale miniature mixer was developed based on existing prototype. [7] It aims at controling de-

agglomeration and dispersion of fillers in polymers matrix.  

 
 

Figure 4.1 - Design scheme of miniature mixer device. Figure 4.2 - Cylindrical rotor. 
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4.3. EXPERIMENTAL METHOD 

4.3.1. Composites preparation procedures 

A list of composites systems that were prepared is shown in Table 4.7. First task on this stage of work 

was the settlement of the blending conditions (temperature, rotation velocity, blending time, 

incorporation %). Once settled, the same conditions were fixed and used for all mixtures. 

Table 4.7 - Reinforcement and specimens.  

     Trade name/Producer Specimens
  TPU+NS
   SBS+NS

  TPU+NC

   SBS+NC

TPU+HSCB

 SBS+HSCB

Nanofil: SuD-Chemie
TPU+NC 
SBS+NC

Hoben International Ltd. (UK) 
(micronized following exfoliation)

TPU+VCE  
SBS+VCE

Palabora Europe Ltd. (UK) (Crude 
vermiculite, un-expande)

TPU+VCC 
SBS+VCC

TPU+CNF

Reinforcing fillers

 Nanosilica
Aerosil 200: Degussa advance 

Nanomaterials(Germany)

 Nanoclay Nanofil: SuD-Chemie AG

Nanoclay

Vermiculite

High-structure Carbon 
Black

Printex XE 2-B:Degussa

Carbon nanofibers
EMB11SG20 - TPU01,20%wt. CNF - 

TPU: Electrovac AG(Austria)

 

 

In this work, TPE composites were compounded using a total of 20 grams of TPEs per sample and 

1%wt. of reinforcement fillers. The TPEs were previously grinded into powder particles and dried (TPU at 

100ºC for 1-2 H and SBS at 60ºC for 2-4 H). Materials were inserted on the heated metal cup of the 

miniature mixing device (Figure 4.1). After the polymer is melted, the cylindrical rotor (Figure 4.2) 

descends into the cup, pushing molten material into the cavity and then rotates at 220 rpm for 3min.  
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Figure 4.3 - Miniature mixer, Temperature controller and Oven (from left to right).  

 

4.3.2. Compression moulding procedure 

After mixing, the TPE blend is discharged on a metallic mold spacer 145 x 106 x 0,7mm thick and 

sandwiched between two stainless steel plates covered with Teflon foil (to facilitate plates removal) at a 

pressure of 774 MPa for 5 min at 190ºC. This time was selected to ensure that the plates would be 

free of air bubbles and with an uniform 0,7mm thickness. Afterwards, the plates were quenched in 

water at room temperature (23ºC). Fifteen plates were obtained, where two are pure TPE (TPU and 

SBS) that will be used for comparison, and thirteen are composite systems specimens (Table 4.7). All 

specimens were kept in a controlled temperature room (23ºC) for at least 3 weeks before performing 

any experimental tests.  

 

4.4. MORPHOLOGICAL CHARACTERIZATION  

A preliminary dispersion, dimension of the particles/aggregates evaluation (for blending method 

validation) was performed by Optical microscopy (OM). The dispersion, exfoliation and adhesion 

between TPE and the reinforcement fillers were evaluated by scanning electron microscopy (SEM). 

 

4.4.1. Fourier transform infrared spectroscopy, FTIR 

FTIR spectra were recorded from 4400 cm-1 to 400 cm-1 in a reflectance mode and a resolution of 4 cm-1 

in a spectrum BX II Perkin Elmer v53.1 spectrometer in order to identify TPEs composition.  
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4.4.2. Optical microscopy, OM, and image analysis 

For a first evaluation of the micro- and nanoparticles distribution on the TPE matrix, OM was performed 

using a Polarized Light microscope Olympus I with a digital Leica camera. The 15 μm specimens were 

sliced from the central part of the specimens longitudinally to the flow direction with a microtome 

(Leitz1401 with a glass knife) previously freeze with CO2. Afterword specimens were immersed in 

Canada balsam resin (with the same reflection index of the glass) between two microscopic glasses 

slides.  

 

4.4.3. Scanning electron microscopy, SEM 

The nanocomposites morphology, the dispersion, agglomeration and adhesion between the micro - and 

nanoreinforced fillers and the TPEs was observed by a scanning electron microscope (Leica/Cambridge 

S360 electronic microscope Cambridge, UK), operating at 10kv - 15kv. In order to avoid electrostatic 

charging the fractured (in liquid nitrogen) surface specimens were previous gold coated (Sputter Coater 

SC502, Fisons Instruments, U.K.).  

 

4.5. PROPERTIES CHARACTERIZATION 

Effect of particles incorporation on flow index, the mechanical, the thermal, the electrical properties, 

and the flame behavior was evaluated through a set of experimental tests of the molded plates. 

Because of the limited amount of material, TGA, DSC analysis and thermal conductivity and electrical 

measurements, only one sample for each condition was tested.  

 

4.5.1. Melt flow index, MFI 

Reinforced TPE melt flow index values were measured by a melt flow indexer Ceast 6542/002 Melt 

Flow T.Q., at specified temperature and load for each TPE composite, namely: 

• TPU composites at 2.16 kg at 200ºC and SBS composites at 5 kg at 190ºC.  

Also pure TPU and SBS MFI were measured for comparison. Flow index (FI), grams per reference time 

is given by:  
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 (g/10min)                                             (4.1) 

Where, T is test temperature, in Celsius degrees; M is the nominal weight, in kg; S is the reference 

time, in seconds; m is the average weight mass of the extruded segments obtained, in grams and t  is 

the period of time between two cuts that determines a extruded segment in seconds. [8] 

 

4.5.2. Mechanical characterization 

4.5.2.1. Tensile tests 

Tensile test specimens shapes (50 x 10 x 4 mm with 0,7mm thickness) were cut from the compression 

moulding plates (Figure 4.4) and tested. The standard mechanical tests were conducted according to 

ISO527- 2:1993. Tests were performed in a universal testing machine Instron type 4505 in a controlled 

environment (at 23ºC and 55% relative humidity) and at crosshead velocity of 10mm.min-1 (nominated 

strain rate of 6.7x10 -1 s-1) until break.  

 

 

Figure 4.4– Tensile test specimens geometry (in mm). 

 
 
Grip displacement (corresponding to the rectangular parte of tensile bar) was used to determine 

stretching ratio, λ=(d+L0)/L0 , where, d is the displacement (mm) and L0  (mm) is the initial clamp 

distance. Engineering stress was determined as σ =F/A0 (MPa) where, F is the force and A0 is initial 

specimen cross-section. Engineering strain was determined by ε =d/L0 (mm/mm). The obtained 
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machine output curves were converted in the normalized stress-strain curves (normalized stress versus 

Ln λ) where, normalized stress is equal to engineering stress multiplied by stretching ratio (MPa). 

Modulus, E1, was determined by the secant modulus at 1% strain. Modulus, E2, was determined by the 

tangent to curve as schematized in figure 4.5. The Young’s modulus (E), yield stress (σy), stress at 

break (σb), yield strain (εy) strain at break (εb), were obtained directly from the force–displacement 

curves. Yield energy (Uy) was obtained by integration of area under the stress-strain curve in range of 

strain at zero till yield point. Energy at break (Ub) was assumed as the area under the stress-strain curve 

from strain at yield till break. At least six specimens per mechanical measurement were used, with 

estimated error/uncertainty not exceeding 10% in the data. 

 

 

Figure 4.5 - Conventional for evaluating mechanical properties 

 

In order to obtain more precise measurement during the test and hence an accurate assessment of the 

modulus, extensometers are normally used attached to the specimen. Because the maxims distance for 

the available extensometer for INSTRON was 50 mm with only 25mm range grip distance (not enough 

for specimens ), it was impossible to follow the specimen strain. Therefore the use of extensometer was 

put aside, even knowing that this will affect the precision of the modulus determination and not allowing 

an accurate description of the beginning of the σ−ε curves. 

After tensile tests, the morphology of the deformed area of the specimens was also analyzed.  
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4.5.2.2. Hardness 

A Shore hardness tester (model D-7938 Oberdischingen shore A) manufactured by Bareiss- prüfgeräte, 

was used to measure the relative hardness of the TPE composites. The test method is based on the 

penetration of a specified indenter forced into the material under specified conditions. Tested 

specimens were composed of plied pieces to obtain the minimum thickness required, at 23ºC and RH 

± 50% according to ASTM 2240-05, with the surfaces of the plied specimens in complete contact. The 

lateral dimensions of the specimen were 12 mm from every edge. The specimen was placed on a hard, 

flat surface and the pressure foot of the instrument was pressed onto the sample. The hardness was 

red within one second after the pressure foot was in firm contact with the sample.  

 
 
4.5.3. Thermal Characteriaztion 

4.5.3.1. Thermagravimetric analysis, TGA 

TGA was performed in nitrogen atmosphere with a TGA TA Instruments Q500. The sample was heated 

from 30ºC to 800ºC at a rate of 5ºC.min-1. The initial temperature of weight loss for the first and second 

step was denoted Td1 and Td2 and the corresponding temperatures at the maximum rate of weight loss of 

were denoted DTG1max and DTG2max, respectively.  

 

 

Figure 4.6 – A two steps TGA characteristic curve of a thermal decomposition reaction. 
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4.5.3.2. Differential scanning calorimetry, DSC, studies 

The soft segment glass transition temperature (Tg,SS), hard segment glass transition temperature (Tg,HS), 

hard segment melting point (Tm,HS) of the neat and the TPE composites, and their respective enthalpies, 

were determined using a DSC Q20 Ta Instruments.  

In order to obtain reproducible results for comparison, the DSC specimens had approximately the same 

weight (around 10 mg), 40 ml aluminium pans were used. An empty pan was used as reference. The 

test began with an initial temperature of - 80ºC up to 200ºC, at a heating rate of 20ºC.min-1. Then 

cooled to - 80ºC and reheated ate the same rate to200ºC. The 2nd sweep was performed in order to 

eliminate thermal history of the specimens. This way, it is guaranteed that all specimens are tested in 

the identical conditions, and fully understand the influence of fillers on morphology of TPEs. The same 

equal experimental procedure was always used in the measurements.  

 

4.5.3.3. Thermal conductivity, λc 

Thermal conductivity measurements were conducted by direct method with Alambeta equipment, used 

to measure textile, metal polymers, etc. [9] The used equipment, quickly measures all thermal 

properties of constant and transitory states of material. [9] The equipment simulates the heat flow. The 

sample is place on the base of the plate at T0 temperature (cold), and measurement plate in contact 

with the sample. [9] After the heat is transfer through the sample is detected by a sensor and 

registered. The thickness, h, is automatically measured under constant pressure. [9] The recommended 

measure area is ± 100 mm2 and 0.5 to 10mm of thickness. The samples area was ± 90 mm2. The λc 

[W/m.K], can be acquire through the constant heat flow, located on the end of the heat flow base. [9]  

 

4.5.4. Flame resistance 

To evaluate the effect of reinforcing fillers on burning properties, the specimens were tested in a 

horizontal burn – UL 94HB tests, conducted according to ASTM D635 – 03. The principle consists on 

measuring the burning rate in horizontal position, and subjected to a pilot flame. [10] Burning rate, in 

mm/min, between 25 and 100 mm length was measured. Tests were conducted at humidity and 

controlled temperature (23ºC e 50% HR). Specimens were: l= 125; b=13; d= ±0.7 (mm). The results 
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should be intended to serve as a preliminary indication of their acceptability with respect to flammability 

for a particular application. Linear burning rate (V) for each specimen where the flame front reaches the 

100 mm reference mark, was calculated by:  

V=60L/t        (4.2) 

Where, L is the burned length, in millimeters, and t  is the time, in seconds. 

 

4.5.5. Electrical measurements  

Resistivity measurements were performed on TPU with CNF, TPU with HSCB and SBS with HSCB 

specimens with two-point contact method at 23 ± 2 ºC and 50 ± 5 % relative humidity. A constant 

voltage was applied, and an automated Keithley 487 picoammeter/voltage source, [11] (Figure 4.7) 

was used for measure the low currents. The surface specimen was cleaned by rubbing with fuller’s 

earth (hydrated magnesium-aluminium silicate) and distilled water according to ISO 3915:1981, then 

allowing it to dry. After cleaning, specimens are coated by chemical vapor deposition (CVD) creating two 

golden layers prior to tests to glue the copper wires, theses ensuring good electrical contact. The 

distance between electrodes is larger than the radius of contact area. [12,13] The resistivity (R) was 

calculated through the slope of I-V curves, with Ohm’s law. For surface measurements configuration, 

electrode had 6 x 2 mm length and 1 mm distance (Figure 4.8 a)). For volume measurements 

configuration, electrode had 5 mm radius and 0.075 mm distance (samples thickness)(Figure 4.8 b)). 

 

 

Figure 4.7 - Automated Keithley 487 picoammeter/voltage source. 
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a) b) 

Figure 4.8 – Electrical measurements a) surface electrode configuration; b) volume electrode configuration. 
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CHAPTER 5  

RESULTS AND DISCUSSIONS  

This chapter covers the obtained experimental results in four sections: microstructural/morphological; 

mechanical; anti-static-electric and thermal characterization. A preliminary morphological analysis 

establishes some evident correlations between the blending process and the dispersion/aggregation of 

particles. The mechanical, thermal and electrical properties are used thereafter in order to quantify the 

relative significance of each particle on the TPE matrix. The particle-structure-properties relationships 

are established. 
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5.1. RESULTS AND DISCUSSIONS 

The effect of fillers incorporation on TPEs was evaluated by comparing neat TPE and composites 

system.  

 

5.1.1. TPEs identification by FTIR 

TPU typical main functional groups were assigned and demonstrated in Figure 5.1. The peak around 

3390 cm-1 and 1536 cm-1 was attributed to stretching vibration of amine groups N-H, which is due to the 

hydrogen bonded -NH in the urethane linkage. Typically, the -NH groups in the urethane linkage form 

hydrogen bonds with the carbonyls of the urethane linkage in the hard segment. The -NH groups are 

also able to form hydrogen bond with the carbonyl of ester-polyol in case of ester-TPU. Careful 

examination of -NH and carbonyl peaks in the FTIR spectra can give some information on the 

morphology of the hard and soft segments in the polyurethane as done by Pattanayak and Jana.[1] 

Carbonyl -C=O stretching are shown at 1730 cm-1. The absorption bands around 2964 cm-1 are 

attributed to the asymmetric and symmetric stretching vibration of CH2 bond. Peak 1602 cm-1 is 

attributed to C=C group and 905 cm-1 to C-O bonded.  

 

 

Figure 5.1 - FTIR Spectra of neat TPU. 
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In Figure 5.2 is shown the spectra for SBS polymers. The bands at around 2922 cm-1, 1456 cm-1 and 

700 cm-1 are attributed to stretching vibrations of C-H band. The absorption bands around 1642 cm-1 are 

attributed to stretching vibration of C=C. 

 

  

Figure 5.2- FTIR Spectra of neat SBS. 

 

In the Annex III are shown the FTIR-spectra for all the TPE composites. No new absorption bands were 

observed, but existing bands intensity has increased, demonstrating some degree of interaction 

between fillers and polymers matrix. 

 

5.1.2. Microstructural analysis 

The macroscopic observation of the obtained compression moulded plates (Figure 5.3 and Figure 5.4 

are an example of the obtained composite systems) revealed that the miniature mixing device has a 

good dispersive mixing capability, resulting in an uniform dispersion of microfillers in TPE matrices. 

Furthermore, the addition of NS did not affected the TPU transparence (agglomerate sizes smaller than 

the light wavelength. 
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Figure 5.3- TPU plate with microsized vermiculite  
(Hoben). 

Figure 5.4- TPU plate with nanosized nanosilica 
Aerosil 200. 

 

5.1.2.1. Optical microscopy, OM 

In a first assessment by optical microscopy, Figure 5.5 shows a good distribution and a size variation of 

HSCB particles (from 20 to 50 μm), reveling that the dispersion process energy was not capable of 

breaking all the characteristic HSCB aggregates. 

 

 

Figure 5.5 - OM images of TPU+HSCB surface cross-section (magnification 10 x). 

 

Figure 5.6 depict a OM images of the neat SBS. 

 

Figure 5.6 - OM images of neat SBS surface cross-section(magnification 20 x). 

 

a) 
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Figure 5.7 a) shows once again a good distribution of the HSCB in the SBS matrix. As occurs with 

HSCB filled TPU, the presence of HSCB larger aggregates is observed. Figure 5.7 b) and c) reveal a 

more coarse image compared to neat SBS (Figure 5.6), however, particles agglomerates were not 

detected for these nanofillers. 

 
 

 

 

Figure 5.7- OM images of SBS reinforced cut 

surface. a) SBS+HSCB (magnification 10 x); 

b) SBS+NC (magnification 20 x); c) SBS+NS 

(magnification 20 x). 

 

5.1.2.2. Scanning electron microscopy, SEM 

The microstructure of specimens was observed by SEM at higher magnifications and shown in Figures 

5.8 to 5.14. Figure 5.8 shows the fracture surface of neat TPU (for comparison). As presented in Figure 

5.9a) the HSBC particles are very small with 30 nm medium size and fairly good distributed on the TPU 

matrix. Occasionally, agglomerates of HSCB particles with 90 nm size were detected. As observed 

previously in OM characterization, the size variation of HSCB particles reveals that the dispersion 

process energy was not capable of breaking all HSCB aggregates. In Figure 5.9b) an uniform dispersion 

of CNF in TPU matrix, with absence of agglomerates and porosity, is shown. No appreciable breakage 

of nanofibers could be observed. Measured nanofibres diameter is between 120 and 400 nm, much 

higher than the average diameter of 80 – 150 nm indicated by the supplier. This higher diameter 

suggests that some polymer covers the nanofiber surface, indicating good interaction at the fiber-

a) b) 

c) 
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polymer interface resulting in a good phase adhesion between polymer and CNF. The SEM pictures 

depict a fairly good distribution of fillers in the matrix. 

 

 

 

 

Figure 5.8- SEM images of TPU fractured surface 
(magnification 2000 x, 15kv). 

 
2 µm2 µm2 µm

 

Figure 5.9- SEM images of TPU reinforced fractured surface. a) TPU+HSCB  (magnification 20 000 x, 
10kv); b) TPU+CNF (magnification 2000 x,15kv); 

 

1 µm1 µm1 µm  
20 μm20 μm20 μm

 

Figure 5.10 - SEM images of TPU reinforced 

fractured surface. a) TPU+NS (magnification 5000 

x,15kv); b) TPU+NC (magnification 200 x, 15kv); c) 

detail of image 5.8b) showing a tactoid with ± 

1μm (magnification 2000 x, 15 kv). 

 

a) b) 

b) 

c) 

a) 1μm 

a) 

c) 
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Figure 5.10 b) shows agglomerations of NC know as tactoids. The dispersion and exfoliation of 

nanoclays in a polymer matrix proved to be a complex chemical/physical process. The dispersion level 

depends greatly on extrinsic parameters such as screw configuration,[2,3] melt temperature and screw 

rate[3,52], as well as on intrinsic parameters, as compatibility between the matrix and the filler [2,3] 

and surface free energy [3] of the particles. [4,5] For the specific TPU nanoclay composite, the mixing 

time should be longer for better intercalation/exfoliation. 

 

The Figure 5.11 depict the good adhesion between the TPU and VCC, as well as the TPU and VCE, with 

bridges formation (Figure 5.11 b). 

 

  

  

Figure 5.11 - SEM images of TPU reinforced fractured surface. a) TPU+VCC (magnification 140 x, 15kv); b) 
Larger resolution of detail on figure 27.a) (magnification 2000 x,15kv); c) TPU+VCE (magnification 140x, 15kv); 
d) Larger resolution of detail on figure 27 c) (magnification 1000x,15kv).  

 

Figure 5.8 shows the fracture surface of neat SBS (for comparison). 

a) b) 

c) d) 
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Figure 5.12 - SEM images of SBS fractured surface. 
( magnification 2000x, 15kv). 

 

Similar results were obtained for SBS composites. In Figure 5.13a), the HSBC particles are very well 

distributed and particle size variations is observed (agglomerates with c.a. 100 nm size). In Figure 

5.13b), contrary to what happened with NS filled TPU, no coarse grains are observed. Surprisingly, the 

NC tactoids observed in the TPU systems are not so pronounced in SBS composites, as presented in 

Figure 5.13c). It is worth noting that the mixing conditions were equal for both matrices, and equal 

amount of NC were used, but SBS has chemical differences and different viscosity that could helped in 

a more effective intercalation/exfoliation. 

 

  

 

 

Figure 5.13 - SEM images of reinforced SBS 
fractured surface. a) SBS+HSCB (magnification 
5000x, 15kv); b) SBS+NS (magnification 5000x, 
15kv); c) SBS+NC (magnification 5000 x, 15kv). 

 

A good adhesion between SBS and VCC and VCE is shown in figure 5.14. 

 

1 μm
a) b) 

 c) 

1 μm
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Figure 5.14 - SEM images of reinforced SBS fractured surface. a) SBS+VCC (magnification 140x, 15kv); b) 
SBS+VCC (magnification 2000 x, 15kv); c) SBS+VCE (magnification 140 x, 15kv); d) SBS+VCC (magnification 
2000 x, 15kv). 

 

Summary 

Optical microscopy analysis contributed for a preliminary validation of the dispersion capability trough 

the adopted mixing procedure. Good distribution was achieved, but not of a complete de-agglomeration 

in the case of HSCB filled TPEs. SEM images corroborate OM analysis, were incomplete HSCB particles 

de-agglomeration reflected by size variation is once again observed. Fully NC exfoliation wasn’t 

achieved. Dispersion of the nanoparticles showed that can be difficult because they have tendency to 

aggregate. 

 

5.1.2.3. Melt flow index, MFI 

Figure 5.15 resumes the overall variation of the melt flow index of the TPE versus TPE composites. A 

sudden small increase in value torque is seen with the joining of nanofillers, as a result of the viscosity 

increasing due to the high superficial area of the fillers. In comparison with the neat TPU, only CNF and 

VCE had is MFI increased. This may indicate promoted slippage by the CNF and VCE fillers. The MFI 

results of TPU filled CNF may also be explain by the fact of the added CNF being a masterbatch, with 

c) 

b)a)

d) 
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includes another type of TPU which could have a higher MFI. HSCB, NS, NC and VCC had TPU MFI 

decreased. This could be explained by network formations. NC filled TPU shows the higher MFI drop.  

Neat SBS clearly shows higher flow index than neat TPU. With exception of NS, the micro- and 

nanofillers incorporation had highly increased SBS MF, reveling good. filler-polymer interaction. NC filled 

SBS shows the higher MFI increase of all composites systems, unlike what happened to filled TPU.  

Summarizing, same fillers in the different TPEs matrix had different effects that will be reflected in the 

melting process and composites properties. 

 

TPU/SBS +HSCB +CNF +NS +NC +VCC +VCE

TPU 21.3 11.6 28.9 15.4 10.5 16.3 27.2

SBS 28.8 42.3 27.3 53.1 43.7 36.5
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Figure 5.15 – Neat and TPEs MFI composites results. 

 

5.1.3. Properties characterization 

5.1.3.1. Mechanical characterization 

The effect of the reinforcing fillers on TPE mechanical behaviour is plot in Figure 5.16 to 5.23. In each 

TPE system, a representative curve was selected and plotted for comparison. As observed from Figure 

5.16 and 5.17, the micro - and nanoreinforced TPU shows similar behavior, but withstand more stress 

and strain (in some cases by more than 300%). This behavior indicates that TPU is more deformable 

when reinforced. Micro- and nanofillers have increased TPU ductility. The SBS presents not so notorious 

improvements with stress behavior variations. The effect of incorporation of the fillers is different 

depending upon the TPE matrix.  

 

- 
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Figure 5.16- Stress-strain curves. 

  

Figure 5.17 - Normalized stress-strain curves. 

 

The following Figure 5.18 to Figure 5.23 depicts the effect of the type of reinforcement on the particular 

mechanical properties of the composites. These results revealed that the incorporation of micro- and 

nanosize particles increases TPEs mechanical properties, with great influence on the TPU and not so 

notorious effect on SBS. 

Compared to the neat TPU, and with the exception of TPU+HSCB and TPU+NS composites, the TPU 

composites modulus, E1, show improvements. Surprisingly, TPU+CNF composite shows an enhanced of 

E1 of more than 100% (Figure 5.18). This higher modulus of the nanocomposites reflects the higher 

interfacial area and aspet ratio of CNF that allows a larger contribution of the stiffer particles to the 

modulus. It also anticipates the possible formation of a filler network that withstands the initial 

deformations. The modulus clearly increased after CNF, NC, VCC and VCE incorporation, indicating that 

TPU 

SB
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fillers had a good adhesion to the TPU matrix. On the contrary, the SBS composites show no significant 

enhancements upon E1. 
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Figure 5.18 – Variations of E1 with the incorporation of micro and nanosized in TPEs. 

 

On the other hand, it can be seen in Figure 5.19 that all composites show E2 enhancement. For TPU 

matrix, NS and NC nanoparticles presence shows the highest enhancements by more than 100%. The 

good dispersion of NS observed in SEM, and this materials high surface energy could explain this 

improvement. All TPUs composites have presented E2  improvements. A possible explanation for this 

behavior may be the formation of crosslinks by the fillers that give a higher stress levels.. 

Simultaneously the fillers promote easier matrix chain sliding increasing TPU deformability, As reported 

by Shen et all.,[6] the introduction of clay layers induced the crystallization of PU hard segments. This 

change of crystallization may lead to changes on the mechanical properties. This may anticipate that for 

the case of TPU fillers may be preferentially located in the TPU hard domains. 

With exception of VCC and VCE microparticles, all SBS composites show improvements on E2. The 

nanosized particles are again affecting the formation of crosslinks by the fillers that give a higher stress 

levels. For the VCC and VCE the micrometric size of the particles creates stress concentration leading to 

an earlier rupture of the matrix. 

 



CHAPTER 5: RESULTS AND DISCUSSIONS 

59 

0

2

4

6

8

10

12

TPU/SBS + HSCB +CNF TPU/SBS +NS +NC TPU/SBS +VCC +VCE

E 2
(M

Pa
)

carbon nanofillers nanoSiO2, nanoclay microsize vermiculites particles

 

Figure 5.19 – Variations of E2 with incorporation of micro and nanosized reinforced in TPEs. 

 

Figures 5.20 and 5.21 show that for TPU both micro- and nanofillers contributed for a small 

improvement upon the yield stress and yield strain, σy and εy, respectively. SBS composites show not so 

notorious improvements, the results indicating only a small contribution to strength by filler 

incorporation. Even the presence of VCC and VCE affects negatively SBS properties at yield. 
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Figure 5.20 – Variations of yield stress, σy, with incorporation of micro and nanosized reinforced in TPEs 
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Figure 5.21 - Variations of yield strain, εy, with incorporation of micro and nanosized reinforced in TPEs. 

 

Figures 5.22 and 5.23 further shows the effect of micro- and nanoparticles on the TPEs tensile behavior 

at break. The TPU composites had the most notorious effect with significant improvements upon the 

properties at break (stress and strain). The HSCB, CNF, NS and NC incorporation increased both the 

stress and strain at break: by ± 90% for HSCB, CNF and 480% and 372% for NS and NC, respectively. 

This enhancement of mechanical properties is thought to be associated to a good nanofiller adhesion to 

TPU matrix, the formation of crosslinks and the easier macromolecular sliding. Previously in the MFI 

analysis, with the exception of the CNF filled TPU, these same fillers increased MFI suggesting a good 

filler-polymer interaction (Figure 5.15). Both the stress and strain at break of filled TPU are significantly 

increased, making it possible to add multifunctional behaviors with improved mechanical behavior. 

 

With the exception of vermiculite fillers, the tensile properties of SBS slightly improved with the 

presence of nanofiller particles. The VC fillers have affected negatively the SBS deformability, and it is 

thought to be associated to the formed microsized particle. SBS strain at break is maintained with 

nanofillers incorporation making it possible to add multifunctional behavior without compromising 

deformability.  

 



CHAPTER 5: RESULTS AND DISCUSSIONS 

61 

0

50

100

150

200

250

300

TPU/SBS + HSCB +CNF TPU/SBS +NS +NC TPU/SBS +VCC +VCE

microsize vermiculites particlescarbon nanofillers nanoSiO2, nanoclay

st
re

ss
  a

t b
re

ak
 (

M
pa

)

 

Figure 5.22 –Variations of stress at break, σb, with incorporation of micro and nanosized reinforced in 

TPEs. 
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Figure 5.23 –Variations of strain at break, εb, with incorporation of micro and nanosized reinforced in TPEs 

In the Annex IV are shown the yield energy, Uy, and energy at break, Ub, of the micro- and 

nanoreinforced TPE.  

 

Further evidence for the significant mechanical behavior of TPE composites is provided by the 

representative SEM images of the fractured surface of the resulting tensile deformed specimens. As 

illustrated in Figure 5.24a) a massive matrix deformation of TPU filled with HSCB is observed; on image 

b) fibers maintain their good adhesion showing no voids around the nanofillers in TPU matrix, and there 

orientation is on drawing direction. 
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2 μm
 

Figure 5.24- SEM images after tensile tests of fractured surface a)TPU+HSCB (magnification 2000 
x,15kv); b)TPU+CNF (magnification 5000 x,15kv). 

 

In Figure 5.25 some fibrillation is observed for NS-TPU systems. The fibrillation is a result of a good 

interfacial bounding between filler and the matrix, and the good dispersion of the filler [7], which reflects 

on mechanical properties improvements as demonstrated on the assessed tensile properties. 

 

2 μm 5 μm
 

Figure 5.25 - SEM images after tensile tests of fractured surface a)TPU+NS (magnification 5000 x,15kv) ; 
b) TPU+NC (magnification 2000 x,15kv). 

 

Summary 

Considering the above discussions, filler particles strongly influence the polymer chain mobility. 

Microstructure evolution and resulting performance of these micro- and nanocomposites TPEs depend 

both on the composition of the matrix, as well as on the reinforcing particles. This explains the different 

results upon different polymer matrices. A good dispersion and lack of agglomerations have a positive 

effect on mechanical properties. This provides larger contact surface for the dispersed phase, avoiding 

local stress concentrations to be reflected on properties. Nevertheless, these TPE nanocomposites 

reveal clear improvements in initial modulus, ultimate strength and strain at break with the 

incorporation of such fillers without sacrificing the other mechanical properties.  

 

 

a) b)

a) b)
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5.1.3.2. Hardness 

TPEs hardness measurements clearly indicate that TPU is a harder material than SBS. Table 5.1 

summarizes the effects of the addition of micro- and nanoparticles on the TPEs hardness (see also 

Figure 5.26).  

Table 5.1 - Effect of micro- and nanoparticles on the hardness of TPU and SBS. 
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Figure 5.26 - Effect of micro- and nanoparticles on the hardness of TPU and SBS. 

 

The results show that the incorporation of small amounts of HSCB into both TPE matrices led to an 

increase of hardness, suggesting some influence of these particles. When CB is dispersed inside the 

SBS matrix, a preferential interaction of the filler is expected with the soft segment, SS, phase, as 

observed in a previous study of PS–Polybutadiene blends [8]. This may explain the increase of 

hardness, as SS are more restrained. The same it is thought to happen for the TPU SS domains. 

Furthermore, the incorporation of filler seems to allow a high density of physical crossslinks, as already 

abovementioned. Interestingly the addition of NS and NC fillers had no effect on SBS hardness. The 

incorporation of CNF decreased slightly the TPU hardness, in spite of the increase on the initial 
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modulus (Figure 5.18). NS has also decreased TPU hardness as decreased the initial modulus (Figure 

5.18). VC particles have decreased the hardness of TPEs. In some cases, VC decreases the initial 

modulus (e.g., SBS). Some sliding of fillers large tactoids may also induce a decrement upon composite 

hardness, mainly in case of good filler-matrix adhesion. 

 

5.1.4. Thermal properties 

5.1.4.1. Thermal gravimetric analysis, TGA 

The effect of reinforced particles on the thermal stability of TPE was evaluated by TGA. The results for 

neat and reinforced TPEs are shown in Figure 5.27 and Tables 5.2 and 5.3. Figure 5.27 shows the 

mass loss variation with temperature. No expressive weight loss was register between the 30ºC to 

200ºC. As reported by other researchers [6], the first degradation process corresponds to the release of 

the little molecules or unstable side chains, which will degrade at lower temperature. TPEs thermal 

degradation is a complicated process. It has been found that thermal degradation of TPEs occurs in two 

stages, [9,10] since hard and soft segments (HS and SS, respectively), respond differently at high 

temperatures. In TPU 1st step, decomposition of the HS occurs, involving dissociation of urethane from 

the original polyol and isocyanate. In 2nd step, deploy condensation and polyol degradation of the SS 

takes place. Therefore, 1st step can be associated to initial temperature of weight loss, Td1 of HS, while 

2nd step can be related to Td2 of SS. [10-12]  

 

 

a) 

 

b) 

Figure 5.27 – Mass loss a) TPU composites; b) SBS composites. 

 

1st Step 

2nd Step 

2nd Step 

1st Step 
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The TGA results for TPU composites are shown in Table 5.2. The first degradation of TPU occurred at 

192 ºC and the second degradation at 342 ºC. As it can be noticed, HSCB and CNF affect differently 

TPUs hard and soft domains. The incorporation of HSCB didn’t improve Td1, but did improve Td2, 

delaying it by ~12ºC. This indicates that HSCB may preferably interact with the SS in polyurethane 

structure. The CNF presence has delaying the 1st degradation temperature by ~4ºC, suggesting that the 

nanofibers interacted more with the TPU HS domains. Expectantly, the thermal stability is expected to 

improve with the incorporation of more thermally stable fillers such as HSCB and CNF. This was 

interpreted by: the adsorption of free radicals by the carbon fillers surface; [13]  by the uniformly 

dispersed carbon nanofillers presumably providing higher thermo-oxidative stability to the polymers in 

the vicinity of the fillers surfaces; [10] by the enhancement of the thermal conductivity of the composite 

that can facilitate heat transport and thus increase its thermal stability [14]. Table 5.2 shows also the 

thermal stability improvement of TPU filled with NS and NC.  

 

Table 5.2 - TGA results of neat and filled TPU. 

Td1(ºC) DTG1max(ºC) Td2(ºC) DTG2max(ºC)
TPU 191.8 229.7 342.1 380.0
TPU+HSCB 188.8 218.7 354.3 379.8
TPU+CNF 195.7 222.1 307.7 361.5
TPU+NS 185.4 219.6 358.0 378.8
TPU+NC 198.4 302.8 360.7 380.9
TPU+VCC 193.8 275.7 358.3 378.2
TPU+VCE 197.3 266.5 337.1 371.0

 
 

As reported by many other researchers, the introduction of MMT layers can greatly improve the thermal 

properties of the polymer matrix. [6,15]  In the 1st step, the Td1 of NS composites was lower than the neat 

TPU. This can be related to the degradation of the surface treatment of the NS filler. In the 2nd step, the 

barrier effect of the silica is higher, thus increasing Td1. The barrier effect of the NC layers in the TPU 

thermal stability is seen in both thermo degradation steps. The TPU Td1 and Td2. were both increased due 

to the interface interactions and the barrier effect of the platelet-like layered silicates, with a high surface 

area. TPU thermal stability was improved with VCC and VCE, as expected, but higher for the latter. In 

the 1st step, filled TPU show increases upon Td1 and DTG1max, showing better thermal stability. In the 2nd 

step, the VCC composite shows higher Td2 than neat TPEs, caused by the high filler barrier and strong 

interaction [16] between fillers and TPU. However, the VCE composite presents reduced Td2 than neat 

TPU. 
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The TGA results for SBS composites are shown in Table 5.3. HSCB and NS had a negative effect on 

thermal stability of SBS with a small drop on Td1 and more notorious reduction on Td2. Similar to TPU, the 

strong barrier effect of the NC layers in the SBS thermal stability is also seen in both thermal 

degradation steps. The introduction of a well-dispersed MMT can prevent the heat transport and then 

improve the thermal stability of the nanocomposites. [17] [12] As expected, SBS thermal stability was 

once again improved with VCC and VCE fillers. As for TPU, VCC filled SBS presents an increment upon 

Td1 and DTG1max and Td2 and DTG2max. This is caused by the outstanding barrier and interaction between 

fillers and TPE. [16] 

 

Table 5.3- TGA results of neat and filled SBS. 

Td1(ºC) DTG1max(ºC) Td2(ºC) DTG2max(ºC)
SBS 181.7 226.5 415.2 441.1
SBS+HSCB 180.3 228.0 402.1 439.5
SBS+NS 178.8 224.1 404.7 436.4
SBS+NC 183.3 227.5 417.7 441.3
SBS+VCC 188.1 234.4 417.7 436.7
SBS+VCE 183.5 226.8 413.9 442.0

 

 

5.1.4.2. Differential scanning calorimetry, analysis DSC 

DSC technique was used to investigate thermal transitions on heating and cooling of neat and filled TPE 

composites, allowing the evaluation of the effects of the micro- and nanoparticles on macromolecular 

mobility at Tg. The presence of fillers could not only modify Tg , but also could interfere on the melting 

and crystallization processes (for semi-crystalline polymers). Assessed thermal parameters are listed in 

Table 5.4 to 5.7. In order to eliminate samples thermal history, a 2nd melting sweep was performed. In 

this way, it is guaranteed that all specimens are tested in identical conditions. 

DSC traces of 1st melting sweep of neat and TPEs composites are shown in Figures 5.28 a) and b), 

respectively. The data is listed on Table 5.4.and 5.5. 
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Figure 5.28 - Thermal transitions a) neat and TPU composites; b) neat and SBS composites (1st melting sweep). 

 

Table 5.4 – Neat and filled TPU thermal transitions (1st melting sweep).  

TgSS TgHS Onset TmHS ∆HmHS Onset TC ∆HC 

(ºC) (ºC)  poin t(ºC)  (ºC) (J/g) point(ºC) (ºC)  (J/g)
TPU -48.0 66.2 138.9 143.7 0.2 63.5 60.6 0.6

TPU+HSCB -47.5 63.1 126.3 153.5 2.2 61.6 59.4 0.3
TPU+CNF -48.0 76.7 120.4 152.6 3.5 63.8 60.7 0.5
TPU+NS -47.1 67.0 130.0 145.2 3.1 64.1 57.0 0.6
TPU+NC -45.9 74.0 128.9 155.1 3.9 59.7 55.7 0.5

TPU+VCC -46.4 72.7 121.4 157.7 4.2 63.8 60.3 0.6
TPU+VCE -47.2 70.3 140.5 158.4 4.0 63.5 60.5 0.5

Sample

 

 

The TgSS of neat and filled TPU are around -48 ºC.. The effect of micro- and nanoparticles incorporation 

in TPU is clearly seen on TgHS values, where all fillers, with the exception of HSCB, showed a significant 

increase. The fillers incorporation had also increased HS melting temperature (TmHS), the melting 

enthalpy (ΔHmHS) (this latter implies an increment upon the degree of crystallinity). These changes in the 

crystallization lead to changes in the mechanical properties. An increase on the crystallinity degree 

would also explain the achieved mechanical properties. CNF, NC, and VC fillers have the highest effect 

in the TPU thermal transitions. As reported elsewhere, these fillers greatly improve, among others, the 

thermal stability. [10,18,19,20]  

These results are in agreement with TGA analysis, where these fillers had the highest influence upon 

the thermal stability of the TPU hard segment domains. 

 

TgSS TgHS TmHS Tg’’ Tg’ 
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Table 5.5 - Neat and filled SBS thermal transitions (1st melting sweep).  

Tg' Tg''

(ºC) (ºC)
SBS 46.1 71.1

SBS+HSCB 46.1 69.8
SBS+NS 48.2 72.2
SBS+NC 46.3 72.5

SBS+VCC 82.5 92.9
SBS+VCE 47.1 72.9

Sample

 

 

The TgSS of SBS was expected at -80 ºC, but was not possible to detect it. The TgHS of SBS is expected 

around 90ºC, corresponding to PS domains. As can be observed in Figure 5.28b), a series of 

convoluted peaks appears on DSC trace between 50 and 100 ºC, refered as Tg‘ and Tg’’. These peaks 

may correspond to several enthalpic relaxations of rich-phase HS domains. The presence of fillers 

seems to enhance these relaxations. Because polystyrene Tg appears in a series of convoluted peaks 

(Figure 5.28b)), a 2nd melting sweep was considered in order to eliminate samples thermal history and 

assess filler effect. 

DSC traces of 2nd melting sweep of neat TPEs and its composites are shown in Figures 5.29 a) and b). 

Data is listed in Table 5.6 and 5.7. 
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Figure 5.29 - Thermal transitions a) neat and TPU composites; b) neat and SBS composites (2nd melting sweep). 
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For neat and filled TPU, TgSS is around -43ºC, slightly lower than in the 1st scan. No major changes in the 

TgSS were registered. The effect of micro- and nanoparticles incorporation in the TPU is clearly seen on 

the increment of TmHS and ΔHmHS. Once again, CNF, NC and VC show a remarkably thermal 

enhancement, interacting with TPUs HS domains. But, for the TPU composites the 1st sweep evidences 

stronger thermal transitions as compared with 2dn sweep. 

 

Table 5.6 - Neat and filled TPU thermal transitions (2nd melting sweep). 

TgSS TgHS Onset TmHS ∆HmHS

(ºC) (ºC)  poin t(ºC)  (ºC) (J/g)
TPU -43.12 77.1 120.77 143.37 0.25

TPU+HSCB -42.71 76.5 125.86 145.78 1.96
TPU+CNF -43.30 76.1 119.96 149.72 1.30
TPU+NS -42.78 76.1 124.47 148.90 0.68
TPU+NC -42.34 76.2 116.02 152.17 2.35

TPU+VCC -42.75 76.7 121.30 151.94 1.56
TPU+VCE -42.91 76.2 117.38 152.44 1.95

Sample

 

 

For SBS composites (Figure 5.29b) and Table 5.7), the 2nd melting sweep show a TgHS around 80 ºC, with 

little effect upon various filler incorporation. 

 

Table 5.7 - Neat and filled SBS thermal transitions (2nd melting sweep). 

TgHS
(ºC)

SBS 81.8
SBS+HSCB 80.7

SBS+NS 80.1
SBS+NC 82.7

SBS+VCC 81.7
SBS+VCE 81.6

Sample
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5.1.4.3. Thermal Conductivity, λc 

λc measurements of reinforced TPEs showed no significant changes with filler incorporation (Figure 

5.30). But still with only 1%wt. of fillers addition, a slight increase on the TPU thermal properties was 

observed. The incorporation of HSCB, CNF, NC and VCE slightly increased λc . In the case of carbon 

nanoparticles, the filler had the ability of improving λc, allowing for a more uniform heating, as would be 

expected. Also a random orientation of fibers will give a balance of thermal properties in all directions. 

NC had a remarkable effect in TPU thermal conductivity. Thermal properties improvements of these 

fillers were once again demonstrated. It was not possible to obtain an accurate NS filled TPU result due 

to the very small red value. Probably, NS is decreasing TPU λc. VCC and VCE have different effects on 

the different TPEs. Only HSCB and VCC had a positive effect on the SBS λc. The reasons for these 

differences can be found in geometrical and structural imperfections of the material at different levels of 

magnification [21] and the polymers nature.  
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Figure 5.30 - Thermal Conductivity [W.m-1.k-1] measurements of micro- and nanoreinforced TPEs. 

 

5.1.5. Flame resistance 

Numerous studies have shown that the introduction of micro- and nanoparticles into polymers can 

greatly improve their properties such as flame resistance, reducing the heat released and improving fire 

retardancy. [20] Figure 5.31. show the variations of the linear burning rate, LBR, with filler addition for 

both TPEs. HSCB had greatly decreased TPEs linear burning rate. This enhancement is thought to be 

associated to a creation of carbon barrier that delays the combustion. NS also had a positive effect on 

both TPE composites. The CNF, NC and VCE particles had negative effect on the flammability of TPU. 
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SBS composites presents enhanced flame behavior with comparision with TPU. The thermal 

conductivity results reveals that SBS has a lower λc, but it is the particles incorporation that justifies the 

flame retardant behavior. VCs and NC show to be an inherent flame retardant material, with the SBS 

burning rate strongly decreasing. For burning, the availability of carbon and hydrogen is a pre-requisite 

[22]. Hydrogen and carbon group interactions with SBS have hindering the combustion process. These 

positive effect can limit the flame and heat diffusion of the substrate and act as an efficient protective 

barrier.[20] [15] The micro- and nanoparticles incorporation, VC and NC respectively, aim at minimizing 

the fire and its propagation risk, although, other particles achieved such an effect.  
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Figure 5.31- Linear Burning Rate of micro- and nanoreinforced TPEs. 

 

5.1.6. Electrical Resistivity Measurements  

Figura 5.31a) and b) shows how the values of surface resistivity and volume electrical conductivity 

change with the different nanofillers with the same wt.% of incorporation. Table 5.8 resumes main 

values. 

Table 5.8 - Surface and volume electrical resistance measurements. 

TPU TPU+HSCB TPU+CNF SBS SBS+HSCB
Res. sup.(Ohm) 5.00E+11 1.20E+11 6.00E+09 1.00E+14 6.00E+10
Res. vol.(Ohm.m) 3.00E+14 7.85E+08 2.09E+07 1.00E+13 7.85E+06
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Figure 5.32- Electrical measurement: a) Surface; b) Volume. 

 

Aggregates may generate connected pathway of nanofiller, forming a conducting network for the 

nanocomposites [23] and electrical resistivity is reduced. But as observed in SEM images for HSCB and 

CNF composites (Figure 5.9 a) and b) and Figure 5.11) both they have a high level of dispersion being 

difficult to establish a conductive networks. This explains why there wasn´t any significant improvement 

in electrical conductivity for the level of incorporation. The presence of agglomerates becomes more 

important, as it was noted by Sandler et al. [24] in the case of carbon nanotubes dispersed in epoxy 

resin. [25] Although, with such a small amount of conductive fillers TPE shows a small drop in electrical 

resistance (Table 5.7). The exception to this is TPU+HSCB that shows a surface resistivity with the 

same order of magnitude of the TPU. All the other composites have their electrical resistivity decreased. 

This can be attributed to surface chemistry of the graphitic structure of the carbon material and 

differences in TPE nature. Note that TPU is amorphous and semi-crystalline one, and SBS is completely 

amorphous. Carbon composites of amorphous and semi-crystalline polymers have different electrical 

conduction behavior. [3,26]  
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CHAPER 6 

CONCLUSIONS AND FUTURE WORK 

The thoroughly characterization analysis carried out on chapter 5 are combined to establish the 

relationships between the fillers, morphology and overall performance of the investigated micro- and 

nanocomposites. Some guidelines regarding the potential research and development work that can be 

made in the study of thesis composites are given at the end. 
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6.1. CONCLUSIONS 

The present work covers a study focused on the attempt to obtain a micro- and nanofilled polymer 

composite with superior properties. A Polyurethane (TPU) and a Styrene-Butadiene-Styrene (SBS) based 

thermoplastic elastomers were mixed with micronized (crude and exfoliated vermiculite) and nanosized 

(nanoclay, nanosilica, high-structured carbon black and carbon nanofibers) reinforcing particles in 1 

%wt. of incorporation, using a laboratory-scale mixing mini-device, and the same processing conditions. 
 

The importance of mixing in polymer processing is undeniable. The thoroughly characterization allows 

inferring that the attempts to disperse these fillers in a viscous material such as polymer is difficult, but 

crucial for grant enhanced properties by the micro- and nanoparticles incorporation in the polymers 

matrix.  
 

Good dispersion, adhesion and a randomly particles orientation in TPE matrix for most cases were 

possible to obtain by the adopted mixing procedure. Laboratory-scale mixing mini-device offers a 

powerful tool for processing composites and proved to be useful in dealing with materials of such 

difficult exfoliation and dispersion abilities. 
 

Morphology, mechanical, thermal and flame retardant properties and electrical resistivity were 

assessed. The results of the experiments presented here showed improvements upon the system 

performance and added functionalities of TPE. Polymer morphology play a key role in final assessed 

properties. Face to the obtain results, it was demonstrated that preparations method, chemical nature 

of pure polymer, chemical nature of the particle, particle size and distribution, their tendency to 

aggregate in the organic matrix on account of their high surface energy, all these aspects strongly 

influence the final morphology of the nanocomposites and therefore its performance. It was shown that 

different type of nanoparticles exhibited different influences on the properties of nanofilled TPE, also 

depending upon the type of TPE.  

 

Fillers have induced promising improvements in nanocomposites mechanical performance, with greater 

influence on the TPU mechanical and thermal properties. Nanofilled TPU show significant improvement 

upon the stress and strain at break. Higher tensile properties becomes from the fillers dispersion, on 

the nanometer scale and strong interaction between the micro- and nanoparticles and polymer matrix. 

Clearly the, TGA and DSC results have showed that the micro- and nanoparticles have a great effect on 

the composites thermal properties. 
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Fillers incorporation had no notorious effect on SBS mechanical properties. The nanoreinforced SBS 

present always lower tensile modulus, same deformability but enhanced flame behavior. SBS 

Nanocomposites showed to be very sensitive to the shape/size of the incorporated nanofillers.  

Fillers low content is a very important aspect in composites composition, not only because lower 

concentrations reduces composites prices, but also for the problem of minimization caused by an 

excess of the filler in the mechanical properties of the final composite. The nanocarbon black fillers 

have decreased TPEs electrical resistivity. Carbon nanofillers also positively influenced mechanical and 

thermal properties.  
 

Overall, experimental results have provided a fundamental understanding of the fillers contributing 

factors.  

 

6.2. FUTURE WORK 

We aim in future work at: 

• Studying the deformation mechanisms of TPE nanocomposites, namely the effect of 

nanofillers on deformation capabilities in a way of unraveling the factors underlying the 

mechanical characteristics, the dispersion and adherence relationship. 

•  Establishing the relationships between mechanical deformation and electrical 

resistivity in TPE nanocomposites. 

 



 

 

 

 

 

 

APPENDIX I 
Thermoplastic Elastomers Data Sheet 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

APPENDIX II 
Micro- and Nanosize Fillers Data Sheet 

 

 

 

 

 

 



 

 

 

 

 

APPENDIX III 
TPE Composites FTIR Spectra 

 

 

 

 

 

 

 



III. Fourier transform infrared spectroscopy, FTIR 

Principal neat and TPEs composite functional groups and the main peaks were assigned (Figure 

III.1 and III.2). No new absorption bands were observed, but existing bands intensity has 

increased, demonstrating some degree of interaction between fillers and polymers matrix. 

 

In Figure III.1 is shown the spectra for TPU composites. The peak around 3390 cm-1 and 1536 

cm-1 was attributed to stretching vibration of amine groups N-H, which is due to the hydrogen 

bonded -NH in the urethane linkage. Carbonyl -C=O stretching are shown at 1730 cm-1 which are 

considered to be free and hydrogen bonded carbonyls. The absorption bands around 2964 cm-1 

were attributed to the asymmetric and symmetric stretching vibration of methylene CH2. Peak 

1602 cm-1 is attributed to C=C group and 905 cm-1 to C-O bonded.  

 

 

Figure III.1 - FTIR Spectra of neat and TPU composites. 

 



In Figure III.2 is shown the spectra for SBS composites. The bands at 2922 cm-1, 1456 cm-1  and 

700 cm-1  was attributed to stretching vibration of C-H band. The absorption bands around 1642 

cm-1 were attributed to stretching vibration of C=C. 

 

 

Figure III.21- FTIR Spectra of neat and SBS composites.  

 

 

 

 



 

 

 

 

 

 

APPENDIX IV 
Yield Energy and Energy at Break Results 

 of TPE Composites  

 

 

 

 

 

 

 



IV.1.Energy results 

In Figure IV.1 and IV.2 are shown the effect of micro- and nanoparticles on the TPEs yield energy, 

Uy, and energy at break, Ub. 

 

With the exception of high structure carbon black (HSCB) carbon nanofibers (CNF) and crude 

vermiculite (VCC) fillers, the Uy of TPU decreased with the presence of micro- and nanofillers 

(Figure IV.1). CNF had no effect on TPU Uy. All fillers with the exception of HSCB had a negative 

effect on the SBS Uy.  
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Figure IV.1 - Yield energy, Uy. 

 

The TPU composites had significant improvements upon the Ub. The HSCB, CNF, nanosilica 

(NS), nanoclay (NC) and the vermiculites (VC) incorporation increased the Ub . with the most 

notorious effect observed on the TPU filled with NS (Figure IV.2). 

With the exception of VC fillers, the Ub of SBS improved with the presence of nanofiller particles 

(Figure IV.2). The VC fillers have affected negatively the SBS Ub, and it is thought to be associated 

to the formed microsized particles. 
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Figure IV.2 – Energy at break, Ub. 

 


