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Abstract  

Jet Grouting (JG) is a Geotechnical Engineering technique that 

is characterized by a great versatility, being the best solution 

for several soil treatment improvement problems. However, 

JG lacks design rules and quality control. As the result, the 

main JG works are planned from empirical rules that are often 

too conservative. The development of rational models to 

simulate the effect of the different parameters involved in the 

JG process is of primary importance in order to satisfy the 

binomial safety-economy that is required in any engineering 

project. In this work, three data mining models, i.e. Artificial 

Neural Networks (ANN), Support Vector Machines (SVM) and 

Functional Networks (FN), were adapted to predict the 

Uniaxial Compressive Strength (UCS) of JG laboratory 

formulations. A comparative study was held, by using a dataset 

used that was obtained from several studies previously 

accomplished in University of Minho. We show that the novel 

data-driven models are able to learn with high accuracy the 

complex relationships between the UCS of JG laboratory 

formulations and its contributing factors. 

Keywords: Ground improvement; Jet grouting; Uniaxial 

compressive strength; Artificial Neural Netwoks; Data Mining. 

1.  INTRODUCTION 

Currently, there are several techniques for soil 
improvement where the Jet Grouting (JG) technology is 
highlighted. This technology is sharply growing and it is 
characterized by a great versatility in a variety of application 
soil types and treatment geometries and it has been applied to 
several Geotechnical Engineering tasks [1][2][3]. The JG 
technology consists in injecting a high speed grouting of 
water-cement mixtures and/or other (e.g. air, water) into the 
subsoil. The fluids are injected through small-diameter 
nozzles placed on a rod, which is continually rotated to 
slowly remove soil. Currently adopted JG methods can be 
classified according to the number of fluids injected into the 
subsoil: water-cement grout – single-fluid system; air + grout 
– double-fluid system; and water + air + grout – triple-fluid 
system. 

This paper will focus the JG initial stage, where a set of 
laboratory formulations, which are function of the soil type 
to be treated and the design properties, are used to set the 

soil-cement mixture that will be used in the construction 
works. In particular, this study allows the definition of the 
grout water/cement ratio, the amount of cement for cubical 
meter of treated soil and the cement type, needed to satisfy 
the design and economical requirements. The remaining 
parameters that control the final characteristics of the JG 
elements (e.g. the speed of withdrawal and rotation of the 
rods), will be evaluated with the execution of test columns, 
given the difficulty to simulate such parameters in 
laboratory. After the establishment of all parameters, the 
construction works of the columns are initiated. Next, after a 
period of time, samples are extracted and tested to evaluate 
the treatment quality and eventually proceed to adjustments 
of those same parameters. This control procedure, together 
with the use of predictions of the mechanical behaviour of 
the materials, aims at the estimation of the physical and 
mechanical properties of the treated material over time. 
Hence, it aids to perform eventual adjustments in the works. 
However, at the design stage of JG, there are still 
uncertainties because there are no reliable methods that allow 
the prediction of the diameters and the mechanical properties 
of the soil-cement elements [4][5]. Thus, given the high 
potential that the JG technology presents, there is need to 
develop more rigorous and accurate models of design. This 
will allow a reduction of field tests, optimizing all the 
constructive process and obtaining a higher technical and 
economical efficiency. 

To achieve this goal, we propose the application of data 
mining techniques, namely Artificial Neural Networks 
(ANN), Support Vector Machines (SVM) and Functional 
Networks (FN). We also adapted the EC2 analytical model 
[6], often used to predict the Uniaxial Compressive Strength 
(UCS) of concrete, to JG material. ANN have become 
increasingly used since the introduction of the 
backpropagation algorithm [7]. More recently, SVM have 
also been proposed [8]. Due to their higher flexibility and 
nonlinear learning capabilities, these methods are gaining an 
attention within the data mining (DM) field, often attaining 
high predictive performances [9]. Indeed, SVM, ANN and 
FN have been successful used to solve a wide range of 
problems in statistics [10], science [11], pattern recognition 
[12], structural civil engineering [13], and another civil 
engineering domains [14][15][16]. Yet, within our 
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knowledge, these techniques have not been applied to JG 
data, namely to prediction of UCS, which is a complex 
geotechnical engineering problem due to the heterogeneous 
nature of the soil and the large number of the parameters 
involved. 

2. MATERIALS AND METHODS 

2.1 Jet Grouting Data 

The dataset includes 175 results of UCS tests, derived 
from 35 JG laboratory formulations and 9 input parameters, 
which are referred as the more influent parameters in UCS 
prediction [17][18]: 

• Water/Cement ratio - W/C; 

• Coefficient related to the cement type (0.25 for CEM 
IV 32.5R and 0.20 for CEM I 42.5R and CEM I 
42.5R) - s; 

• Age of the mixture - t; 

• The relation between the mixture porosity and 
volumetric content of cement - n/(Civ)

d
; 

• Percentage of cement of the mixture - %C; 

• Percentage of sand - %Sand; 

• Percentage of silt - %Silt; 

• Percentage of clay - %Clay; 

• Percentage of organic matter - %OM. 
The main statistics of the numerical parameters used are 
presented in Table I. The dataset compiled resulted of a 
study accomplishment in University of Minho with the goal 
of analyzing the influence of several parameters in UCS of 
JG materials. The soils used in the preparation of JG 
laboratory formulations come from seven field works. The 
geotechnical soil properties were evaluated using laboratory 
tests and the respective soil classifications are presented in 
Table II. While all of the soils were classified as inorganic 
fine soil, they have different percentages of sand, silt, clay 
and organic matter. The cement types used were CEM I 
42.5R, CEM II 42.5R and CEM IV/A 32.5R. Fig. 1 plots the 
histogram of the target variable, showing a log-normal 
distribution shape. 

TABLE I. SYNOPSIS OF THE NUMERICAL PARAMETERS (INPUTS) 

Soil Parameter Minimum Maximum Mean 
Standard 

deviation 

Clay 

W/C 0.68 1.12 0.88 0.16 

s 0.20 0.25 0.21 0.02 

t (days) 3.00 56.00 22.00 19.00 

n/(Civ)d 48.83 74.26 62.59 7.26 

% C 24.19 73.98 47.44 0.15 

% Sand 0.00 39.00 13.47 11.54 

% Silt 33.00 57.00 50.49 5.49 

% Clay 22.50 45.00 35.87 7.74 

% OM 0.40 8.30 2.71 1.81 

 
Nowadays, there are several models to estimate the UCS 

of concrete over time [6][19]. However the EC2 analytical is 
the most popular. Thus, despite this model is defined for 
concrete material, it was tested for the JG laboratory 
formulation, due to the similarity of the materials. According 

to this model, the evolution of the UCS over time is given by 
the following expression: 

���� � ��	
��
���� �
� �� �� 
 ��� (1) 

The adopted values for the coefficients in (1) were: q - 
strength at age t (MPa); fcm - 28 day strength for each studied 
formulation (MPa); s = 0.2 to cement CEM I 42.5R and 
CEM II 42,5R and s = 0.25 to cement CEM IV/A (V) 32.5R; 
and t - age of the respective formulation in days. 

TABLE II. SUMMARY OF THE SOIL CLASSIFICATIONS 

Soil Classification 
% 

Sand 

% 

Silt 

% 

Clay 

% 

OM

Nº of 

samples 

prepared

A Lean clay (CL) 39.0 33.0 27.0 8.3 10

B Organic lean clay (OL) 6.0 57.0 37.0 1.8 5

C Fat clay (CH) 7.0 53.0 40.0 3.2 85

D Silty clay (CL-ML) 25.0 52.5 22.5 0.4 20

E Lean clay (CL) 0.0 55.0 45.0 3.9 15

F Silty clay (CL-ML)  32.5 43.5 24.0 1.2 20

G Lean clay (CL) 10.5 48.5 41.0 1.0 20

 

 
Figure 1. The histogram for the UCS of the JG laboratory formulations 

2.2 Predictive Models 

We apply three different DM techniques to estimate the 
UCS of JG material over time, which is a regression task. 
We adapted ANN, SVM and FN. Despite of high complexity 
of first two models, it is still possible to extract knowledge in 
terms of input variable importance [20]. 

ANN mimics some basic aspects of brain functions [21], 
which processes information by means of interaction among 
several neurons [22]. We will adopt the most popular ANN 
model, the multilayer perceptron, which contains only 
feedfoward connections, with one hidden layer with H 
processing units. A network with H = 0 is equivalent to the 
multiple regression model. By increasing H, more complex 
mappings can be performed, yet an excess value of H will 
over�t the data, leading to a loss of generality. To overcome 
this difficult, a grid search ��� �� � � !" was used to choose 
best H value [9]. We adopted an internal 5-fold cross 
validation over the training set and then selected the network 
with the lowest validation error. Next, this ANN was 
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retrained with all training data. The general model of the 
ANN is: 

#$ � %&�' ( ) ��)*+ 
 %,�+
-

+.�
(%,�'� 
 %&�+

&
�
,.-/�

(2) 

where Wj,i represents the weight of the connection from 
neuron j to the unit i (if j=0, then it is a bias connection), o 

corresponds to an output unit, f is a logistic function � ��/012�, 

and I is the number of input neurons.  
The SVM was initially proposed for classification tasks 

(i.e., to model a discrete labeled output). After the 
introduction of the �-insensitive loss function, it was possible 
to apply SVM to regression tasks [23]. SVM has theoretical 
advantages over ANN, such as the absence of local minima 
in the learning phase, i.e., the model always converges to the 
optimal solution. The main idea of the SVM is to transform 
the input data into a high-dimensional feature space by using 
a nonlinear mapping �. Then, the SVM finds the best 
hyperplane within the feature space. The transformation 
depends on the kernel function adopted. The Gaussian kernel 
is the most popular one, presenting less parameters than 
other kernels, and will be adopted in this work: 3�4� 4 �� � ��
5678
8�7���999999:9 ; 9! (3) 

Under this setup, performance of the regression is 
affected by three parameters: � – the parameter of the kernel, 
C – a penalty parameter, and � – the width of a �-insensitive 
zone. To reduce the search space, the first two values will be 
set using the heuristics of [24]: C=3 (for a standardized 

output) and < � =$>?@, where =$ �  AB>@ 6 C �#+ D #EF��G+.�  
and #EF  is the value predicted by a 3-nearest neighbor 
algorithm. To optimize the Kernel parameter �, we adopted a 
grid search of ��
�H� �
�I� � � �I", which works as explained 
for ANN. 

 FN are a general framework useful for solving a wide 
range of problems (e.g. statistics and engineering 
applications) and it has been successfully used in solving 
both prediction and classification problems [25][26][27]. In 
these types of networks, the functions of the neurons can be 
multivariate, multi-argument and it is also possible to use 
different learnable functions, instead of fixed functions. 
Moreover, there is no need to associate weights to 
connections between nodes, since the learning is achieved by 
the neural functions. It should be noted that these functions 
are not arbitrary but subject to strong constraints to satisfy 
the compatibility conditions imposed by the existence of 
multiple links going from the last input layer to the same 
output units. When compared with ANNs, there are some 
advantages [28]. Unlike ANN, FN can reproduce certain 
physical characteristics that lead to the corresponding 
network in a natural way. However, such reproduction only 
takes place if we use an expression with a physical meaning 
inside the function database. Also, the estimation of the 
network parameters can be obtained by resolving a linear 
system of equations, which returns a fast and unique 
solution, i.e. the global minimum is always achieved. 

FN and ANN have a similar structure, but they also have 
important differences. While in the functional network the 

selection of the initial topology is normally based on the 
properties of the problem at hand, in ANN, several 
topologies are considered and one is chosen using an optimal 
criterion. The initial topology in functional networks can be 
further simplified using functional equations and its neural 
functions can be multidimensional and set during the 
learning phase. FN incorporates different neural functions, 
normally functions from a given family, such as polynomial 
or exponential, and they are not restricted to be a linear 
combination of inputs. Furthermore, neurons outputs can be 
connected, which is not the case of standard ANN. 

The structure of a FN consists in: a layer of input storing 
units; a layer of output storing units; one or several layers of 
processing units, which evaluate a set of input values, 
coming from the previous layer and delivers a set of output 
values to the next layer; none, one or several layers of 
intermediate storing units, and a set directed links, that 
connect units in the input or intermediate layers to neuron 
units, and neuron units to intermediate or output units. 

When working with FN, several steps are necessary to be 
set. The first step is to define the initial topology of the 
network, based on problem in hand. Next, the architecture 
using functional equations and the equivalence concept 
needs to be initialized, and then checked the uniqueness 
condition of the desired architecture. Third, using the 
available data, the learning procedure (i.e. training 
algorithm) is realized by considering the combinations of 

linear independent functions, J � KJ	�� � � J	�LM, for all s to 

approximate the neuron functions, that is: 

N	�4� �)O	+ 
 J	+�4�
�L

+.�
999999999�PQ9RSS T (4) 

where the coefficients �i are the parameters in functional 
networks. The most common linearly independent functions 
are: J � � � *� � � *�" ; J � � � �U� �
U� � � ��U� �
�U"  or J � � � VWX�9*� � � � YPTZ�*�� T[\Z�*�"�999] � �S , where m 
is the number of elements in the combination of sets of 
linearly independent function. 

To learn the parameters in (4), we can use one of the 
known optimizations techniques, such as last squares 
estimation, conjugate gradient, iterative last squares, 
minimax or maximum like likelihood estimation. The last 
step in implementation process is to select the best model 
and validate it. 

In this work we use the FN to solve the following generic 
expression: 

#$ � _̂ 
`4+abc
+.�

 (5) 

where, �4�� � � 4+"  are the input parameters, � _̂� O� � � O+" 
are the coefficients to be adjusted.  

To learn the coefficients in (5) the following 
minimization problem was used: 

d[\[][e� f � )gh�h
h.� � )�#	 D _̂ 
`4+ab-

+.� �h
h.�

�
 (6) 
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The ANN and SVM models were training using the R 
statistical tool [29] and the RMiner library [30], which 
facilitate the application of DM techniques in R and the 
formulation and resolution of the FN implemented in the free 
version of the GAMS [31]. 

2.3 Evaluation 

In order to evaluate the performance of the prediction 
models and choose the best model, we consider three 
commonly used evaluative measures: Mean Absolute Error 
(MAD), Root Mean Absolute Error (RMSE) and Coefficient 
of determination (R

2
): 

dij � C k# D #$kG+.�@  (7) 

 

ldmn � oC �# D #$��G+.� @  (8) 

 

l� �
p
q C �# D #r� 6 s#$ D #$rtG+.�
uC �# D #r��G+.� 6 C s#$ D #$rt�G+.� v

w
�
 (9) 

where # denotes the desired value, #$ the predicted value, #r 

and #$r represent the mean of these variables. Lower values of 
MAD and RMSE correspond to a higher predictive capacity, 
while the R

2
 should be close to the unit value. If it is 

acceptable to commit a few extreme errors, then the MAD is 
the most adequate measure; else the RMSE measure should 
be used. 

After fitting of a model, it becomes necessary to verify its 
future performance, i.e. to measure the generalization 
capability in unseen data. We adopted the Leave-One-Out 
scheme for such purpose. This method is especially suited 
when the dataset is small (e.g. lower than 100 examples). 
Under Leave-One-Out, sequentially one example is used to 
test the model and the remaining data is used for �tting the 
model. Under this scheme, all data is used for training and 
testing. Yet, this method requires around N (the number of 
data samples) times more computation, since N models are 
�tted. The final generalization estimate is evaluated by 
computing the MAD, RMSE and R

2
 metrics for all N test 

samples. 
To understand better the behaviour of the JG material, 

the influence of each parameter was quantified. To do this, 
we applied sensitivity analysis procedure [20][17]. This 
process determines the most important variables in a system 
by successively holding all but one input constant and 
varying the other over its range of values to observe its effect 
on the system. A high variance observed in the outputs 
denotes a high input relevance. 

3. RESULTS 

The quality of the predictions obtained by applying the 
EC2 analytical model confirms the good performance of the 
predictions, presenting small values of MAD = 0.60 and 

RMSE = 0.88 and a correlation closely to unit (R
2
 = 0.91, 

Fig. 3). However, despite its good accuracy, to apply 
successful EC2 analytical model it is necessary to know the 
UCS of each formulation over the 28 day time-frame of the 
cure, which implies waiting and carry out laboratory tests to 
determine the UCS at this age. Furthermore, an inadequate 
value of fcm leads to significant errors in the predictions. 

A high performance was obtained for both ANN and 
SVM. Despite ANN presented the best performance (Fig. 3), 
it was not considered further since the importance attributed 
by this model to each parameter is not in agreement with the 
empirical knowledge of JG technology (Fig. 4). According to 
SVM, we can say that the key parameters to predict the UCS 
of JG over time are: the time of cure, the percentage of 
cement of the mixture and the relation n/(CIV)

d
. It can also be 

verified that the properties of soil, rather the amount of 
organic matter and silt, are also relevant to evaluate the 
behavior of the soil cement mixtures over time. When 
comparing SVM and EC2, the former is better, as shown in 
Fig. 3. In contrast with EC2, the SVM allows prediction of 
the UCS in the initial stages of a project. However, despite 
this advantage and its high predictive accuracy, the SVM 
model is very complex and difficult to understand by 
humans.  

After we train the FN, from (5), using the Leave-On-Out 
estimation method and the minimization problem (6), we 
obtain the performance shown in Fig. 2, which represents the 
relation between the measures and predicted Jet Grouting 
UCS values, given by the expression: � �  �!�x �y 
 �% z� 
�A_H� 
 T
�A_{_ 
 �_A�I{� 
 


 �\ �z-|�_A_}� �
IA_~} 
 �z�A}�I 
 �mR\�_A_�� 
 
 �m[S�
�AH{} 
 �zSR#_AI{� 
 �d
_A�{H
(10) 

The high performance obtained is corroborated by the MAD, 
RMSE and R

2
 error metrics (see Fig. 3). The values of the 

two first are 0.58 MPa and 0,75MPa respectively, which are 
small values and the correlation presents a value of 0.92, 
which is very close to the unit value (the perfect prediction). 
Moreover, as can be seen in Fig. 2, the number of predictions 
above of ideal prediction (black line in Fig. 2) is 
approximately equal to number of all predictions below the 
same line, revealing that the model does not underestimate or 
overestimates the predictions. The importance of each FN 
parameter was also computed using a sensitivity analysis 
procedure [20]. Similar to the SVM model, the amount of 
cement and the relation n/(Civ)

d
 are the most important 

parameters in prediction of the UCS JG laboratory 
formulation. It is still possible observe that the properties of 
soil, rather the amount of organic matter and silt, are also 
relevant (as in SVM model). 

When compared to SVM, the FN model is more 
interesting since its mathematical expression is simple and 
understandable, while the obtained predictive accuracy is 
still high. In addition, we can yet apply FN model in the 
initial stage of a project, what is impossible with EC2 
analytical model. Table III summarizes the advantages and 
disadvantages of the proposed approach. 
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TABLE III. COMPARISSON OF THE PREDICTIVE MODELS 

Model R2 Applied in 

project stage

Easy to interpret 

by humans 

EC2 0.91   

ANN 0.94   

SVM 0.93   

FN 0.92   

4. CONCLUSIONS 

The Jet Grouting (JG) is one of the most popular ground 
improvement techniques. However, the main JG works are 
planned from empirical rules that are often too conservative. 
In this work, we propose a novel data-driven approach to 
predict the Uniaxial Compressive Strength (UCS) of JG 
laboratory formulations over time.  

A comparison among the four models tested reveals the 
Functional Networks (FN) has the best choice (Table III). 
This model presents a good performance and it is 
understandable by humans. Also, it can be applied during the 
initial stage of a project, in opposition to EC2. The key 
parameters that control the behaviour of JG laboratory 
formulations were also identified: the amount of cement and 
the relation n/(Civ)

d
 and the properties of soil. It should be 

stressed that tested models are only valid for the conditions 
found in the dataset used in this study (e.g., clay soil type). 

The best solution, the FN model, can give a valuable 
contribution in terms of improving the construction process 
of JG columns and reducing the costs of laboratory 
formulations. In face of the results obtained, we intent apply 
similar Data Mining (DM) techniques, to predict the Young 
modulus of JG laboratory formulations, as well as to 
estimate the final diameter of JG columns and its mechanical 
properties (UCS and Young modulus). 
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Figure 2. Predicted versus measured strength of JG laboratory 

formulations using the FN model   

 

 
Figure 3. Comparison of the performance between the four models: EC2, 

SVM, ANN and FN 

 

 
Figure 4. Comparison of the importance of each parameter in the four models: EC2 analytical model, SVM, ANN and FN models 
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