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Abstract

We consider physical and mathematical aspects of the model of simple reacting
spheres (SRS) in the kinetic theory of chemically reacting fluids. The SRS, being a
natural extension of the hard–sphere collisional model, reduces itself to the revised
Enskog theory when the chemical reactions are turned off. In the dilute–gas limit, it
provides an interesting kinetic model of chemical reactions that has not been considered
before. In contrast to other reactive kinetic theories (e.g., line-of-centers models),
the SRS has built-in detailed balance and microscopic reversibility conditions. The
mathematical analysis of the work consists of global existence result for the system of
partial differential equations for the model of SRS.

1 Simple Reacting Spheres

Simple reacting spheres (SRS) has been developed by N. Xystris, J. S. Dahler [1] and further
advanced by J. S. Dahler and L. Quin in [2], [3]. The present paper is the first in a series
of our articles on physical and mathematical properties of SRS. In the SRS model, the
molecules behave as if they were single mass points with two internal states of excitation.
Collisions may alter the internal states: this occurs when the kinetic energy associated
with the reactive motion exceeds the activation energy. Reactive and non-reactive collision
events are considered to be hard spheres-like. In a four component mixture A, B, A∗, B∗,
the chemical reactions are of the type: A + B 
 A∗ + B∗. Here, A∗ and B∗ are distinct
species from A and B. We use the indices 1, 2, 3, and 4 for the particles A, B, A∗, and
B∗ respectively. Furthermore, mi and di denote the mass and the diameter of the i-th
particle, i = 1, . . . , 4, and reactions take place when the reactive particles are separated by
a distance σ12 = 1

2(d1 + d2) or σ34 = 1
2(d3 + d4). The conservation of mass has the form

m1 +m2 = m3 +m4 = M . Reactions take place when the reactive particles are separated
by a distance σ12 = 1

2(d1 + d2), where di denotes the diameter of the i-th particle.

1.1 Elastic encounters

In the case of elastic collisions between a pair of particles from species i and s, the initial
velocities v, w take post–collisional values

v′ = v − 2
µis
mi

ε〈ε, v − w〉, w′ = w + 2
µis
ms

ε〈ε, v − w〉. (1)

Here, 〈· , ·〉 is the inner product in R3, ε is a vector along the line passing through the centers
of the spheres at the moment of impact, i.e., ε ∈ S2

+ = {ε ∈ R3 : |ε| = 1, 〈ε, v − w〉 ≥ 0}
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and µis = mims/(mi + ms) is the reduced mass of the colliding pair. mi and ms are the
masses of particles from i-th and s-th species, respectively (i, s = 1, 2, 3, 4).

1.2 Reactive encounters

For the reactive collision between particles from species i and s to occur (i, s = 1, . . . , 4),
the kinetic energy associated with the relative motion along the line of centers must exceed
the activation energy γi,

(1/2)µis
(
〈ε, v − w〉

)2 ≥ γi, (2)

In the case of the (endothermic) reaction A + B → A∗ + B∗ the velocities v, w take their
post–reactive values

v‡ =
1

M

[
m1v +m2w +m4

√
µ12

µ34

{
(v − w)− ε〈ε, v − w〉+ εα−

}]
, (3)

w‡ =
1

M

[
m1v +m2w −m3

√
µ12

µ34

{
(v − w)− ε〈ε, v − w〉+ εα−

}]
, (4)

with α− =
√(
〈ε, v − w〉

)2 − 2Eabs/µ12 , and Eabs the energy absorbed by the internal
degrees of freedom. The absorbed energy Eabs has the property Eabs = E3 +E4−E1−E2 >
0, where Ei > 0, i = 1, . . . 4, is the energy of i-th particle associated with its internal degrees
of freedom.
Now, in order to complete the definition of the model, the activation energies γ1, γ2 for A
and B are chosen to satisfy γ1 ≥ Eabs > 0, and by symmetry, γ2 = γ1.
For the inverse (exothermic) reaction, A∗ + B∗ → A + B, the post–reactive velocities are
given by

v† =
1

M

[
m3v +m4w +m2

√
µ34

µ12

{
(v − w)− ε〈ε, v − w〉+ εα+

}]
, (5)

w† =
1

M

[
m3v +m4w −m1

√
µ34

µ12

{
(v − w)− ε〈ε, v − w〉+ εα+

}]
, (6)

with α+ =
√(
〈ε, v − w〉

)2
+ 2Eabs/µ34, and the activation energies for A∗ and B∗ being

γ3 = γ1 − Eabs and γ4 = γ3.
Post- and pre-collisional velocities of the reactive pairs satisfy conservation of the momen-
tum

m1v +m2w = m3v
‡ +m4w

‡, m3v +m4w = m1v
† +m2w

†. (7)

A part of kinetic energy is exchanged with the energy absorbed by the internal states. The
following equalities hold:

m1v
2 +m2w

2 = m3v
‡2 +m4w

‡2 + 2Eabs, m3v
2 +m4w

2 = m1v
†2 +m2w

†2− 2Eabs. (8)

1.3 The system of equations

For i = 1, 2, 3, 4, fi(t, x, v) denotes the one-particle distribution function of the ith com-
ponent of the reactive mixture. The function fi(t, x, v), which changes in time due to free
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streaming and collisions (elastic and reactive), represents at time t the number density of
particles at point x with velocity v.
The SRS kinetic system has the form

∂fi
∂t

+ v
∂fi
∂x

= JE
i + JR

i , i = 1, 2, 3, 4, (9)

where JE
i is the non-reactive (hard-sphere) collision operator

JE
i =

4∑
s=1

{
σ2
is

∫∫
R3×S2+

[
f

(2)
is (t, x, v′, x− σisε, w′)− f (2)

is (t, x, v, x+ σisε, w)

]
〈ε, v − w〉 dεdw

}

− βijσ2
ij

∫∫
R3×S2+

[
f

(2)
ij (t, x, v′, x−σijε, w′)−f (2)

ij (t, x, v, x+σijε, w)

]

×Θ(〈ε, v−w〉−Γij)〈ε, v−w〉dεdw, (10)

and f
(2)
is approximates the density of pairs of particles in collisional configurations. The

second term in (10), with βij in front of it, singles out those pre-collisional states that
are energetic enough to result in the reaction, and thus preventing double counting of the
events in the collisional integrals. In the case when βij = 0, for i, j = 1, . . . , 4, the term JE

i ,
in (10), reduces to two-particle collisional operator for 4-species mixtures with hard-sphere
potential. For i = 1, 2, 3, 4, the reactive terms are

JR
i =βijσ

2
ij

∫∫
R3×S2+

[(
µij
µkl

)3/2

f
(2)
kl (t, x, v�ij , x−σijε, w

�
ij)−f

(2)
ij (t, x, v, x+σijε, w)

]
×Θ(〈ε, v−w〉−Γij)〈ε, v−w〉dεdw. (11)

Here, 0 ≤ βij ≤ 1 are the steric factors, Γij =
√

2γi/µij , and Θ is the Heaviside step
function. The pairs of post-reactive velocities are (v�ij , w

�
ij) = (v‡, w‡) for i, j = 1, 2, and

(v�ij , w
�
ij) = (v†, w†) for i, j = 3, 4. Pairs of indices (i, j) and (k, l) are from the set of

quadruples (i, j, k, l): {(1, 2, 3, 4), (2, 1, 4, 3), (3, 4, 1, 2), (4, 3, 2, 1)}.

Lemma 1.

(1) For i, s = 1, 2, 3, 4, the inverse velocities to v′, w′ are given by

v = v′ − 2
µis
mi

ε〈ε, v′ − w′〉, w = w′ + 2
µis
ms

ε〈ε, v′ − w′〉. (12)

For fixed ε, the Jacobian of the transformation (v, w) 7→ (v′, w′) is equal to −1. Further-
more, 〈ε, v′ − w′〉 = −〈ε, v − w〉,
(2) The inverse velocities to v‡, w‡ are given by

v =
1

M

[
m3v

‡ +m4w
‡ +m2

√
µ34

µ12

{
(v‡ − w‡)− ε〈ε, v‡ − w‡〉+ εα+

}]
, (13)

w =
1

M

[
m3v

‡ +m4w
‡ −m1

√
µ34

µ12

{
(v‡ − w‡)− ε〈ε, v‡ − w‡〉+ εα+

}]
, (14)
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and the inverse velocities to v†, w† are given by

v =
1

M

[
m1v

† +m2w
† +m4

√
µ12

µ34

{
(v† − w†)− ε〈ε, v† − w†〉+ εα−

}]
, (15)

w =
1

M

[
m1v

† +m2w
† −m3

√
µ12

µ34

{
(v† − w†)− ε〈ε, v† − w†〉+ εα−

}]
. (16)

(3) For fixed ε, the Jacobians of the transformations (v, w) 7→ (v†, w†) and (v, w) 7→ (v‡, w‡)
are given by (

µ34

µ12

)3/2 〈ε, v − w〉
α+

and

(
µ12

µ34

)3/2 〈ε, v − w〉
α−

, (17)

respectively.

(4) Furthermore, 〈ε, v† − w†〉 = α+, 〈ε, v‡ − w‡〉 = α−,
1

2
µ12

(
〈ε, v − w〉

)2 − γ1 =

1

2
µ34

(
〈ε, v‡ − w‡〉

)2 − γ3, and
1

2
µ34

(
〈ε, v − w〉

)2 − γ3 =
1

2
µ12

(
〈ε, v† − w†〉

)2 − γ1.

Due to space limitations, the proof of Lemma 1 will be provided in the forthcoming work.

2 The dilute SRS kinetic system

The system of equations (9)-(11) requires a closure relation for f
(2)
is . In the case of moder-

ately dense gases, the two-particle distribution function f
(2)
is is usually approximated by

f
(2)
is (t, x1, v1, x2, v2) = g

(2)
is (x1, x2 | {ni(t, ·)}) fi(t, x1, v1)fs(t, x2, v2), (18)

where ni(t, x) =
∫
R3 fi(t, x, v)dv is the local number density of the component i and g

(2)
ij is

the known pair correlation function for a non-uniform hard-sphere system at equilibrium

with the local densities ni(t, x). The notation g
(2)
ij (x1, x2 | {ni(t, ·)}) indicates that g

(2)
ij is

a functional of the local densities ni. The closure relation (18) is employed in [2] and [3].
Finally, in the case of non-reactive mixtures (βij = 0, for i, j = 1, . . . 4), the corresponding
system of equations (9)-(11) becomes the revised Enskog system for 4-species mixtures [4].
In this work, we will consider a dilute gas regime with the corresponding closure relation
given by:

f
(2)
is (t, x1, v1, x2, v2) = fi(t, x1, v1)fs(t, x2, v2). (19)

The system of equations (9)-(11) takes the form:

∂fi
∂t

+ v
∂fi
∂x

= JE
i + JR

i , fi(0, x, v) = fi0(x, v), i = 1, . . . , 4, (x, v) ∈ Ω× R3, (20)

with

JE
i =

4∑
s=1

{
σ2
is

∫∫
R3×S2+

[
fi(t, x, v

′)fs(t, x, w
′)− fi(t, x, v)fs(t, x, w)

]
〈ε, v − w〉 dεdw

}

− βijσ2
ij

∫∫
R3×S2+

[
fi(t, x, v

′)fj(t, x, w
′)− fi(t, x, v)fj(t, x, w)

]
(21)

×Θ(〈ε, v − w〉 − Γij) 〈ε, v−w〉dεdw,
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and

JR
i =βijσ

2
ij

∫∫
R3×S2+

[(
µij
µkl

)3/2

fk(t, x, v�ij)fl(t, x, w
�
ij)−fi(t, x, v), w)fj(t, x, w)

]
×Θ(〈ε, v − w〉−Γij) 〈ε, v − w〉dεdw, (22)

where fi0, i = 1, . . . , 4 are suitable nonnegative initial conditions that will be defined
later and Ω ⊆ R3 denotes the spatial domain of the gas mixture. We consider two
choices for the set Ω:, Ω = R3, or Ω being a 3-dimensional torus [0, L]3, L > 0. The
latter choice corresponds to case of the periodic boundary conditions on [0, L]3. Also,
Γij =

√
2γi/µij and Θ is the Heaviside step function. As before, the pairs of post-

reactive velocities are (v�ij , w
�
ij) = (v‡, w‡) for i, j = 1, 2, and (v�ij , w

�
ij) = (v†, w†) for

i, j = 3, 4. The pairs of indices (i, j) and (k, l) are from the set of quadruples (i.j, k, l):
{(1, 2, 3, 4), (2, 1, 4, 3), (3, 4, 1, 2), (4, 3, 2, 1)}.

Proposition 1. Assume that βij = βji for (i, j) ∈ {(1, 2), (2, 1), (3, 4), (4, 3)}. For φi
measurable on Ω× R3 and fi ∈ C0(Ω× R3), i = 1, . . . , 4, we have:

4∑
i=1

∫
R3

φiJ
E
i dv =

4∑
i=1

4∑
s=1

σ2
is

∫∫∫
R3×R3×S2+

[
φi(x, v) + φs(x,w)− φi(x, v′)− φs(x,w′)

]
×

[
fi(v

′)fs(w
′)− fi(v)fs(w)

]
〈ε, v − w〉Ξis dεdwdv,

(23)

4∑
i=1

∫
R3

φiJ
R
i dv =

∫∫∫
R3×R3×S2+

[
β12σ

2
12φ1(x, v)+β21σ

2
21φ2(x,w)−β34σ

2
34φ3(x, v‡)−β43σ

2
43φ4(x,w‡)

]
×

[(
µ12

µ34

)3/2

f3(x, v‡)f4(x,w‡)− f1(x, v)f2(x,w)

]
Θ(〈ε, v − w〉 − Γ12)〈ε, v − w〉 dεdwdv,

(24)
where Ξis, appearing in (23), is given by

Ξis =


1
2Θ(〈ε, v − w〉 − Γis) + 1

2(1− βis)Θ(Γis − 〈ε, v − w〉), if (i, s) ∈ I,
1
4Θ(〈ε, v − w〉), if i = s,
1
2Θ(〈ε, v − w〉), otherwise,

(25)

with I = {(1, 2), (2, 1), (3, 4), (4, 3)}.
The post-collisional velocities, v′ and w′, are given in (1), while the post-reactive velocities,
v‡ and w‡, are given in (3)-(4).

Due to space limitations, the proof of Proposition 1 will be provided in the forthcoming
work.
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3 Conservation laws

Under the additional assumption β12σ
2
12 = β34σ

2
34, Proposition 1 implies that for any

a, c ∈ R and b ∈ R3,

φi(x, v) = ami +mi〈b, v〉+ c

(
miv

2

2
+ Ei

)
, i = 1, . . . , 4, =⇒


4∑

i=1

∫
R3

φiJ
E
i dv = 0,

4∑
i=1

∫
R3

φiJ
R
i dv = 0.

(26)
Property (26) implies that if fi is a nonnegative smooth solution of (20) on [0, T ], T > 0,
then, at least formally, we have the following conservation laws for t ∈ [0, T ], relative to
mass, momentum and total energy:

4∑
i=1

∫∫
Ω×R3

mifi(t, x, v) dvdx =
4∑

i=1

∫∫
Ω×R3

mifi0(x, v) dvdx, (27)

4∑
i=1

∫∫
Ω×R3

mivfi(t, x, v) dvdx =
4∑

i=1

∫∫
Ω×R3

mivfi0(x, v) dvdx, (28)

4∑
i=1

∫∫
Ω×R3

(
miv

2

2
+ Ei

)
fi(t, x, v) dvdx =

4∑
i=1

∫∫
Ω×R3

(
miv

2

2
+ Ei

)
fi0(x, v) dvdx, (29)

where fi0(x, v), i = 1, . . . , 4, are nonnegative initial conditions of the dilute SRS kinetic
system (20). For fi, a smooth solution with compact support, the above conservation laws
follow easily from multiplying i-th equation of the dilute SRS system by φi, integrating
with respect to (t, x, v) ∈ [0, T ]× Ω× R3, and then applying (26).

4 Entropy identity, H-function, and equilibrium solutions

Proposition 1 also implies existence of a Liapunov functional (an H-function) for (20)-(22)
consistent with system’s physical equilibrium. Assume that for i, j = 1, . . . , 4, the condi-
tions βij = βji and β12σ

2
12 = β34σ

2
34 are satisfied. For fi, a smooth nonnegative solution,

we multiply (20) by 1 + log (fi/µij) with i = 1, . . . 4 and (i, j) ∈ {(1, 2), (2, 1), (3, 4), (4, 3)},
integrate over Ω × R3, and use (23)–(24) (with φi = log (fi/µij)) to obtain the following
entropy identity:

d

dt

4∑
i=1

∫∫
Ω×R3

fi log (fi/µij) dvdx+
4∑

i,s=1

σ2
is

∫
· · ·
∫

Ω×R3×R3×S2+

[
fi(v

′)fs(w
′)− fi(v)fs(w)

]

× log

(
fi(v

′)fs(w
′)

fi(v)fs(w)

)
〈ε, v − w〉Ξis dεdwdvdx
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+ β12σ
2
12

∫
· · ·
∫

Ω×R3×R3×S2+

{[(
µ12

µ34

)3/2

f3(v‡)f4(w‡)− f1(v)f2(w)

]
×

log

[(
µ12

µ34

)3/2 f3(v‡)f4(w‡)

f1(v)f2(w)

]
Θ(〈ε, v − w〉 − Γ12)〈ε, v − w〉

}
dεdwdvdx = 0. (30)

We observe that the second and the third terms in the left hand side of (30) are nonnegative
and thus, the convex function H(t), defined by

H(t) =
4∑

i=1

∫∫
Ω×R3

fi(t, x, v) log [fi(t, x, v)/µij ] dvdx, (31)

is non-increasing in t ≥ 0. Hence H(t) is an H-function (Liapunov functional) of the system
(20)-(22).
For the standard macroscopic quantities (moments of fi), namely the number densities
ni(t, x), the macroscopic velocity u(t, x), and the macroscopic temperature T (t, x), we
have the following characterization of equilibrium solutions for the system (20)-(22):

Proposition 2. Assume that for i, j = 1, . . . , 4, the coefficients 0 < βij ≤ 1 satisfy the
conditions βij = βji and β12σ

2
12 = β34σ

2
34. Let ni(t, x) ≥ 0, u(t, x), and T (t, x) ≥ 0 be

given measurable functions. Then for all 0 ≤ fi ∈ L1(Ω×R3), the following statements are
equivalent:

1. fi = ni

( mi

2πkT

)3/2
exp

(
−mi(v − u)2

2kT

)
, i = 1, . . . , 4,

and n1n2 =

(
µ12

µ34

)3/2

n3n4 exp

(
Eabs

kT

)
;

2. JE
i ({fi}) = 0 and JR

i ({fi}) = 0, i = 1, . . . , 4;

3.
4∑

i=1

∫
R3

[
JE
i ({fi}) + JR

i ({fi})
]

log (fi/µij) dv = 0.

The proof of Proposition 2 follows a similar line of arguments as the proof of Proposition
3.2 in [5].

5 Existence result

Definition 1. A nonnegative fi ∈ L1
loc((0, T )×Ω×R3), i = 1, 2, 3, 4, is a mild solution of

the system (20)-(22) if for each 0 < T <∞, the gain and loss terms of JE
i and JR

i are in
L1(0, T ), a.e. (almost everywhere) in (x, v) ∈ Ω× R3 and

f#
i (t, x, v)− f#

i (s, x, v)=

∫ t

s

[
JE
i ({fi})#(τ, x, v)+JR

i ({fi})#(τ, x, v)
]
dτ, 0 < s < t ≤ T,

(32)

where f#
i (t, x, v) = f(t, x+ tv, v) and with similar definitions for JE#

i and JR#
i .
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The following result generalizes Theorem 4.2 of [5] (see also Theorem 5.2 of [6]).

Theorem 1. Assume that for i, j = 1, . . . , 4, the coefficients 0 ≤ βij ≤ 1 satisfy the
conditions βij = βji and β12σ

2
12 = β34σ

2
34. If for each i = 1, . . . , 4, the initial conditions

fi0 ≥ 0, satisfy

sup
i

∫∫
Ω×R3

(
1 + x2 + v2 + log+ fi0

)
fi0 dvdx = C0 <∞, (33)

with log+(z) = max{log(z), 0}, then there exists a nonnegative mild solution {fi} of the
system (20)-(22), with fi ∈ C([0, T ];L1(Ω × R3)) and such that fi(t)

∣∣
t=0

= fi0, for i =
1, 2, 3, 4.

The proof of Theorem 1 is similar to Theorem 4.2 of [5] and will not be provided here.

Remark 1. In the case βij = 0, for i, j = 1, . . . , 4, Theorem 1 provides existence result for
chemically inert system (20)-(22).
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