
Towards a canonical classical natural deduction
system

José Esṕırito Santo

Centro de Matemática
Universidade do Minho

Portugal
jes@math.uminho.pt

Abstract. This paper studies a new classical natural deduction system,
presented as a typed calculus named λµlet. It is designed to be iso-
morphic to Curien-Herbelin’s λµµ̃-calculus, both at the level of proofs
and reduction, and the isomorphism is based on the correct correspon-
dence between cut (resp. left-introduction) in sequent calculus, and sub-
stitution (resp. elimination) in natural deduction. It is a combination
of Parigot’s λµ-calculus with the idea of “coercion calculus” due to
Cervesato-Pfenning, accommodating let-expressions in a surprising way:
they expand Parigot’s syntactic class of named terms.

This calculus aims to be the simultaneous answer to three problems.
The first problem is the lack of a canonical natural deduction system
for classical logic. λµlet is not yet another classical calculus, but rather
a canonical reflection in natural deduction of the impeccable treatment
of classical logic by sequent calculus. The second problem is the lack
of a formalization of the usual semantics of λµµ̃-calculus, that explains
co-terms and cuts as, respectively, contexts and hole-filling instructions.
The mentioned isomorphism is the required formalization, based on the
precise notions of context and hole-expression offered by λµlet. The third
problem is the lack of a robust process of “read-back” into natural deduc-
tion syntax of calculi in the sequent calculus format, that affects mainly
the recent proof-theoretic efforts of derivation of λ-calculi for call-by-
value. An isomorphic counterpart to the Q-subsystem of λµµ̃-calculus is
derived, obtaining a new λ-calculus for call-by-value, combining control
and let-expressions.

1 Introduction

In the early days of proof theory, Gentzen [9] refined the de Morgan duality
between conjuntion and disjunction by defining the sequent calculus LK, a sym-
metric proof system for classical logic exhibiting a duality, at the level of proofs,
between hypothesis and conclusion. Recently Curien and Herbelin [3] extended
the Curry-Howard correspondence to LK and showed, by means of the λµµ̃-
calculus, that classical logic also contains a duality, at the level of cut elimination,
between call-by-name (CBN) and call-by-value (CBV) computation.

λµµ̃ is remarkably elegant and simple, but not self-sufficient. For several
reasons, it would be desirable to have a complementary systems for natural
deduction. First, because the computational intuitions about λµµ̃ are expressed
in terms of a never-formalized natural deduction notation. Co-terms and cuts
(=“commands”) of λµµ̃ are interpreted, respectively, as “contexts” and (the
instruction of? the result of?) “hole filling”, where “contexts” are expressions
with a hole from a never-specified language. Second, because λµµ̃ dispenses with
functional application, but it is rather natural and useful to “read back” to a
notation where such construction is available [3, 12].

However, classical natural deduction suffers from several problems of de-
sign and dimension. First, classical natural deduction is often defined as an
intuitionistic natural deduction system supplemented with some classical infer-
ence principle. Prawitz [20] admits that “this is perhaps not the most natural
procedure from the classical logic point of view”, as it does not reflect the de
Morgan symmetry at the level of proofs; and already Gentzen observed that
there is no canonical choice as to what inference principle to add. Computation-
ally, and speaking now about the implicational fragment, this means that the
λ-calculus may be extended with a variety of control operators: for instance C,
∆, or call− cc, corresponding to the principles double-negation elimination,
reductio ad absurdum, and Peirce’s law, respectively [8, 10, 21].

Second, the problem of dimension is that, in retrospect, the standard natural
deduction systems are CBN, and all attempts to define classical CBV systems in
natural deduction style [16, 3, 22, 11, 12] do not show an explanation of the proof-
theoretical issues involved, and a rationale for the hidden CBV side of natural
deduction. For instance, let-expressions are unavoidable in CBV λ-calculi, but no
proof-theoretical understanding of them is offered. Naively, it is often thought
that let-expressions form terms and are typed with the cut rule (of sequent
calculus).

In this paper we introduce a new natural deduction system λµlet for classical
logic, presented as an extension of Parigot’s λµ-calculus [17], and equipped with
let-expressions. Like λµ, λµlet does not depart from some intuitionistic system,
but instead manipulates multiple conclusions. But the main design principle, of
course not shared by λµ, is to obtain a system isomorphic to λµµ̃, in order to
have, in the natural deduction side, a system as faithful as LK to the dualities
of classical logic. So, λµlet comes with a sound bijection Θ : λµµ̃→ λµlet at the
level of the sets of proofs, that is also an isomorphism at the level of normalisation
relations; and this isomorphism ensures that λµlet is not yet another calculus,
but rather a canonical classical natural deduction system.

As a proof system, λµlet has an inference rule named primitive substitution,
which is the typing rule for let-expressions. Primitive substitution is different
from cut because its left premiss can be the conclusion of an elimination. When
this is not the case, the primitive substitution is a mere explicit substitution[1]1.

1 At the level of expressions, the corresponding particular case of let-expressions
is called explicit substitution too. So we have the Curry-Howard pair (primitive
substitution/let-expression), with particular case (explicit substitution/explicit sub-

This is the proof-theoretical understanding of let-expressions put forward by this
paper.

λµlet is a “coercion calculus” [2, 6, 7], with its syntax carefully organized into
syntactic classes. It has a class of statements, extending Parigot’s named terms.
Surprisingly, this is where let-expressions live. λµlet also has a class of hole
expression, where applications live, suitable to be filled in the hole of contexts.
These are a derived syntactic class, as usual in natural deduction, and consist
of statements with a hole in the left end.

Such ingredients allow us to give a formalization, via Θ, of the usual semantics
of λµµ̃. We derive yet another syntactic notion in λµlet, that of contextual.
Contextuals stand to contexts as numerals 0, s(0), s(s(0)), etc. stand to numbers,
and are therefore instructions for building contexts; and they are manipulated
formally in λµµ̃ as co-terms. Similarly, “commands” of λµµ̃ are instructions of
hole-filling, but the result of those instructions are the statements of λµlet. The
isomorphism Θ : λµµ̃→ λµlet boils down to the execution of such instructions.

Θ is also the tool for doing “read-back” into natural deduction systemati-
cally. We use it to reflect in natural deduction the simple and elegant treatment
of CBN and CBV computation offered by λµµ̃ [3]. That is, we find in λµlet the
right definitions of CBN and CBV reductions or subsystems when the appropri-
ate restrictions of Θ from the known counterparts in λµµ̃ can be established. In
particular, we find new CBV λ-calculi in natural deduction syntax by reflect-
ing, through Θ, the known CBV fragments of λµµ̃. Surprisingly, the resulting
calculi have escaped the recent efforts in the literature [3, 22, 11, 12] for obtain-
ing through similar proof-theoretical means λ-calculi for CBV combining control
operators and let-expressions in a logically founded way.

Structure of the paper. The paper is organized as follows. Section 2 recalls
λµµ̃. Section 3 presents λµlet. Section 4 proves the isomorphism λµµ̃ ∼= λµlet
and explains the semantics of λµµ̃ and the proof-theoretical foundation of let-
expressions, explicit substitutions, and named expressions. Section 5 investigates
CBN and CBV in λµlet, as well as “read-back” into natural deduction. Section
6 summarizes the paper, reviews the literature, and suggests future work.

2 Background

In this section we fix notation and recall Curien-Herbelin’s λµµ̃ [3].
Notations. In λ-calculi for classical logic, like λµ or λµµ̃, there are variables

and co-variables. Variables (resp. co-variables) are always ranged by x, y, z (resp.
a, b, c). Meta-substitution is denoted with square brackets [/x] . Similarly for
other forms of meta-substitution used in λ-calculi for classical logic, like “struc-
tural” substitution. Explicit substitution is denoted with angle brackets 〈 /x〉 .
All calculi in this paper assume Barendregt’s variable convention (in particular
we take renaming of bound variables or co-variables and avoidance of capture
for granted).

stitution). To avoid confusion, we refer to any meta-operation of substitution as
“meta-substitution”.

Fig. 1. Typing rules for λµµ̃

Γ |a : A ` a : A,∆
LAx

Γ, x : A ` x : A|∆ RAx

Γ ` u : A|∆ Γ |e : B ` ∆
Γ |u :: e : A ⊃ B ` ∆ LIntro

Γ, x : A ` t : B|∆
Γ ` λx.t : A ⊃ B|∆ RIntro

c : (Γ, x : A ` ∆)

Γ |µ̃x.c : A ` ∆ LSel
c : (Γ ` a : A,∆)

Γ ` µa.c : A|∆ RSel

Γ ` t : A|∆ Γ |e : A ` ∆
〈t|e〉 : (Γ ` ∆)

Cut

A value is a variable or λ-abstraction, and usually is denoted V or W . If N =
N1, · · · , Nm (m ≥ 0), thenMN denotesMN1 · · ·Nm, that is, (· · · (MN1) · · ·Nm)),
and N :: e denotes N1 :: · · · :: Nm :: e, that is, (N1 :: · · · :: (Nm :: e) · · ·)).

Types (=formulas) are ranged over by A,B,C and generated from type vari-
ables using the “arrow” (=implication), written A ⊃ B.

λµµ̃-calculus. Expressions are either terms, co-terms or commands, and are
defined by the following grammar:

t, u ::= x |λx.t |µa.c e ::= a |u :: e | µ̃x.c c ::= 〈t|e〉

There is one kind of sequent per each syntactic class Γ ` t : A|∆, Γ |e : A ` ∆,
and c : (Γ ` ∆). In the first two kinds, the displayed formula A is selected. Typing
rules are given in Figure 1. A typable term is a term t such that Γ ` t : A|∆ is
derivable, for some Γ,∆,A. Similarly for co-terms e and commands c.

In addition to three ordinary substitution operators, there are three co-
substitution operators [e/a]c, [e/a]u, and [e/a]e′. We use the abbreviations

〈t/x〉c := 〈t|µ̃x.c〉 〈e/a〉c := 〈µa.c|e〉 (1)

called explicit substitution and explicit co-substitution, respectively.2

We consider 5 reduction rules:

(β) 〈λx.t|u :: e〉 → 〈u/x〉〈t|e〉
(σ) 〈t/x〉c→ [t/x]c (ηµ̃) µ̃x.〈x|e〉 → e, if x /∈ e
(π) 〈e/a〉c→ [e/a]c (ηµ) µa.〈t|a〉 → t, if a /∈ t

The reduction rules usually named µ̃ and µ are here renamed σ and π, respec-
tively, and written with the (co)substitution abbreviations. The rules ηµ and
ηµ̃ are considered e.g. in [19]3. There is a critical pair, called the CBN-CBV
dilemma:
2 It is useful to recall that Parigot’s named terms are derived in λµµ̃ as a(t) := 〈t|a〉.
3 Curiously, if we omit the η-like rules, we do not see any of µ or µ̃ in the reduction rules,

when the (co-)substitution abbreviations (1) are used. The notation (1) emphasizes

[µa.c/x]c′ �
σ

〈µa.c|µ̃x.c′〉
π

- [µ̃x.c′/a]c

According to [3], avoiding this dilemma is the principle for the definition of the
CBN and CBV fragments of λµµ̃. See section 5 for more on this.

3 The natural deduction system λµlet

As we present λµlet, we compare informally with Parigot’s λµ [17].
Primitive syntax. Expressions of λµlet are defined by the following gram-

mar:

(Terms) M,N,P ::= x |λx.M |µa.S
(Hole Expressions) H ::= h(M) |HN
(Statements) S ::= a(H) | letx = H inS

Terms are either variables, λ-abstractions λx.M , or µ-abstractions µa.S whose
body is a statement S. Statements are either named expressions of the form
a(H), or let-expressions letx = H inS. Hole expressions H are either coercions
h(M), or applications HN4. Informally, every statement has one of two forms
a((h(M)N1 · · ·Nm)) or letx = (h(M)N1 · · ·Nm) inS, with m ≥ 0. So, not only
h(M) means M coerced to a hole expression, but it also signals the head term
of a statement. In λµ there are neither hole expressions, nor let-expressions.
Applications are terms and statements are just named terms a(M).

Typing system The typing system of λµlet, given in Fig. 2, derives three
kinds of sequents, one for each syntactic class:

Γ `M : A|∆ Γ BH : A|∆ S : (Γ ` ∆) .

The first and third kinds (term sequents and statement sequents, resp.) are fa-
miliar from λµ. If we disregard the distinction between the first two kinds of
sequents, then the first five typing rules in Fig. 2 are exactly those of λµ, and
the coercion rule is a trivial repetition rule. So, up to the substitution rule, we
have a refinement of the typing system of λµ, that is, a classical natural de-
duction system where sequents have to be chosen of the appropriate kind, and
containing an extra-rule for coercing between two different kinds of sequents.

The final rule, called primitive substitution, or just substitution, is also stan-
dard, apart from the fact that sequents have to be chosen of the appropriate
kind. The connection and the difference relatively to sequent calculus’ cut rule
will become clear after the proof of λµµ̃ ∼= λµlet.

that β, σ, and π are about generation and execution of explicit (co-)substitution.
The execution itself, by σ or π, is in one go, by calling meta-operations.

4 Hole expressions are indeed expressions that go into the hole of contexts: see below.
Ordinary application between two terms is derivable: MN := µa.a(h(M)N); so are
Parigot’s named terms: a(M) := a(h(M))

Fig. 2. Typing rules for λµlet

Γ, x : A ` x : A|∆
Assumption

Γ `M : A|∆
Γ B h(M) : A|∆ Coercion

Γ BH : A ⊃ B|∆ Γ ` N : A|∆
Γ BHN : B|∆ Elim

Γ, x : A `M : B|∆
Γ ` λx.M : A ⊃ B|∆ Intro

Γ BH : A|∆, a : A

a(H) : (Γ ` ∆, a : A)
Pass

S : (Γ ` ∆, a : A)

Γ ` µa.S : A|∆ Act

Γ BH : A|∆ S : (Γ, x : A ` ∆)

letx = H inS : (Γ ` ∆)
Subst

A typable term is a term M such that Γ ` M : A|∆ is derivable, for some
Γ,∆,A. Similarly for hole expressions H and statements S.

Derived syntax. Explicit substitution in λµlet is the following abbreviation:

〈N/x〉S := letx = h(N) inS

Another derived syntactical concept of λµlet, crucial for the definition of reduc-
tion rules and for the comparison with λµµ̃, is that of context5. A context is an
expression of the two possible forms (m ≥ 0):

a(([]N1 · · ·Nm)) letx = ([]N1 · · ·Nm) inS (2)

So, a context is a statement with a “hole” [] in a position where a hole expression
H is expected. Let E [] range over contexts, and E [H] denote the statement
obtained by filling the hole of E [] with H. Such expressions are generated by the
following algebra E: two constants a([]) and letx = [] inS and an operation that
sends E [] to E [[]N]. We introduce the signature of this algebra:

a([]) a
letx = [] inS µ̃x.S
E [] 7→ E [[]N] N ::

The closed terms of the free algebra with the same signature are called contex-
tuals and defined by the following grammar6:

5 Rocheteau [22] extends λµ with certain contexts. We follow the style of the natural
deduction systems of [7], where contexts are not primitive.

6 The notation is of course chosen to match that of λµµ̃, but while in λµµ̃ “contexts”
(that is, co-terms) belong to the primitive syntax, context(ual)s in λµlet are a derived
concept. The exact connection between contexts in λµµ̃ and λµlet, which justifies
the choice of notation, will be established later, after the isomorphism between the
two systems is proved.

(Contextuals) E ::= a | µ̃x.S |N :: E

In the same way as the numeral s(s(0)) denotes the number 2, the contextual N ::
N ′ :: a (resp. N :: µ̃x.S) denotes the context a(([]NN ′)) (resp. letx = []N inS).
Since there is an intended interpretation of the signature (the algebra E), each
E is associated with a unique context. Since E generates the set of contexts, any
context is denoted by some E . So, we can identify contextuals with contexts (as
we can identify numbers with numerals once the usual interpretation of 0 and s
is fixed). For instance, hole filling E [H] can now be defined by recursion:

a[H] = a(H)
(µ̃x.S)[H] = letx = H inS

(N :: E)[H] = E [HN]
(3)

In addition to meta-substitution for variables, there are three operations of
meta-substitution for co-variables [E/a]M , [E/a]H, and [E/a]S, defined by a
simultaneous recursion, all of whose clauses are homomorphic, but the crucial
one:

[E/a](a(H)) = E [H ′] where H ′ = [E/a]H.

For instance: (i) [N :: E/a](a(h(M))) = E [h(M ′)N], with M ′ = [N :: E/a]M ; so,
[N :: E/a] is a form of “structural substitution” as found in λµ. (ii) [b/a](a(H)) =
b([b/a]H); [b/a] is a renaming operation, also found in λµ. 7

Reduction rules. Some of the reduction rules of λµlet will act on the head
of statements. We use contexts as a device for bringing to surface such heads,
which normally are buried under a sequence of arguments. For instance, if S is
letx = h(M)N1 · · ·Nm inS′, then S = E [h(M)], where E = N1 :: · · ·Nm :: µ̃x.S′.

The reduction rules of λµlet are as follows:

(β) E [h(λx.M)N]→ 〈N/x〉E [h(M)]
(σ) 〈N/x〉S → [N/x]S (ηµ) µa.a(h(M))→M, a /∈M
(π) E [h(µa.S)]→ [E/a]S (ηlet) letx = H in E [h(x)]→ E [H], x /∈ E

By normalisation we mean βπσ-reduction.
Rule β generates a substitution, which is executed implicitly by a separate

rule (σ). So, it would be perhaps more appropriate to call 〈N/x〉S a “delayed”
substitution. Rule π plays in λµlet a role similar to the role played by rules µ
and ρ in λµ, being the union of two rules:

7 Informally, the connection with “structural substitution” is as follows (N of length
m ≥ 0):

[N :: b/a] = [b(•N)/a•]
[N :: µ̃x.S/a] = [letx = •N inS/a•]

Fig. 3. CBN/CBV dilemma in λµlet

[µa.S/x]S′ �
σ

letx = h(µa.S) inS′
π

- [µ̃x.S′/a]S

b((h(µa.s)N))→ [N :: b/a]S (4)
letx = h(µa.S)N inS′ → [N :: µ̃x.S′/a]S , (5)

with N of length m ≥ 0. If m = 0 in (4), then we have a version of the
“renaming” rule ρ. If m > 0 in (5), then a subexpression of the form h(µa.S)N
exists, but, in contrast to rule µ of λµ, the whole statement of which h(µa.S)
is the head is transformed in a single π-step. Rule ηµ is similar to the rule with
same name in λµ. Rule ηlet has no counterpart in λµ because the latter has no
let-expressions.

Properties. Strong normalisation of typable expressions of λµlet will be a
consequence of isomorphism with λµµ̃, to be proved in the next section.

If we take N of length 0 in (5), the redex is also a σ-redex. Hence, like λµµ̃,
λµlet has a critical pair between π and σ that breaks confluence: see Fig. 3.
Later (see Section 5) we will discuss fragments of λµlet that are isomorphic to
confluent fragments of λµµ̃, and therefore confluent themselves.

The βπσ-normal forms are given by:

Mnf , Nnf ::= x |λx.Mnf |µa.Snf
Hnf ::= h(x) |HnfNnf
Snf ::= a(h(λx.Mnf))

| a(Hnf) | letx = HnfNnf inSnf

At the level of derivations, the normality criterion is:

– The left premiss of every substitution is the conclusion of an elimination;
– The premiss of a coercion is never the conclusion of an activation; moreover

if a coercion is the main premiss of an elimination, then its premiss is an
assumption.

Theorem 1 (Subformula property). In a derivation of Γ ` Mnf : A|∆, all
formulas are subformulas of Γ , A, or ∆. 8

Proof: Similar claims for Snf and Hnf are proved by simultaneous induction;
but, crucially, the claim for Hnf is stronger: the type A is a subformula of Γ . ut

Discussion. At first sight, λµlet is a complex system. For instance, contexts
are derived syntax, but the expressions that are filled in the hole of contexts
8 We say that A is a subformula of Γ (resp. ∆) if A is subformula of some formula in
Γ (resp. ∆).

are primitive. However, we seek, not what we would like natural deduction to
be, but what natural deduction is, if it is to be isomorphic to λµµ̃. Consider
another example: reduction rules of λµlet. We might regret their complex for-
mulation, with manipulation of contexts E . But isn’t λµlet supposed to be a
control calculus? The rule π is particularly revealing: it should express the fea-
tures of µ-abstraction as a control operator; but, in λµµ̃, π is prima facie a
substitution execution rule; only its isomorphic counterpart in λµlet reveals the
control operation.

λµlet is a “coercion calculus”. Simplifying matters, there is a coercion calculus
in [2, 6], whose syntax has the typical separation into several classes

M,N,P ::= x |λx.M | {H} H ::= h(M) |HN ,

reflecting in natural deduction a fragment of intuitionistic sequent calculus. In
addition to h(M), there is a backward coercion {H}, which had to be developed
in [7] to a substitution construction {H/x}P , in order to reflect full intuitionistic
sequent calculus. λµlet represents a further elaboration of the same construction,
capable of capturing full classical sequent calculus.9

Regarding the the proof of the subformula property, in λµlet inspection of in-
ference rules falls short10, but nevertheless a proof by induction on normal forms
is possible and straightforward. Prawitz [20] proves only a “slightly weakened
subformula property” [25], that requires a preliminary analysis of the structure
of normal derivations, by which “branches” are shown to have elimination and
introduction parts. A similar structure is built in every derivation of λµlet, as a
consequence of its organization as a coercion calculus.

4 Isomorphism

In this section mappings Θ : λµµ̃ → λµlet and Ψ : λµlet → λµµ̃ are defined
and analised. In particular, they establish λµµ̃ ∼= λµlet. As a corollary, strong
normalisation for λµlet follows. Next we show why Θ is a semantics of λµµ̃, and
explain the proof-theory of let-expressions and named expressions.

Mappings Ψ and Θ. Let Ψ(M) = t, Ψ(Ni) = ui and Ψ(S) = c. The idea
behind Ψ : λµlet −→ λµµ̃ is to map statements as follows:

letx = h(M)N1 · · ·Nm inS 7→ 〈t|u1 :: · · · :: um :: µ̃x.c〉 (6)
a((h(M)N1 · · ·Nm)) 7→ 〈t|u1 :: · · · :: um :: a〉 (7)

The idea behind Θ : λµµ̃ −→ λµlet is the translation of commands obtained by
reverting these mappings, with Θ(t) = M , Θ(ui) = Ni and Θ(c) = S. See Fig. 4.
Observe that, in (6) and (7), each occurrence of application HiNi is replaced by
an occurrence of left introduction ui :: ei. Conversely for Θ. Soundness of Θ and
Ψ is routine. As a consequence, Θ and Ψ preserve typability.
9 Observe the progression: {H} := {H/x}x and {H/x}P := µa.letx = H in a(h(P)).

10 Inspection of inference rules is also insufficient for establishing the subformula prop-
erty for λµµ̃, because some instances of Cut are not eliminable.

Fig. 4. Mappings Ψ : λµlet→ λµµ̃ and Θ : λµµ̃→ λµlet

Ψ(x) = x
Ψ(λx.M) = λx.ΨM
Ψ(µa.S) = µa.ΨS

Ψ(a(H)) = Ψ(H, a)
Ψ(letx = H inS) = Ψ(H, µ̃x.ΨS)

Ψ(h(M), e) = 〈ΨM |e〉
Ψ(HN, e) = Ψ(H,ΨN :: e)

Θ(x) = x
Θ(λx.t) = λx.Θt
Θ(µa.c) = µa.Θc

Θ〈t|e〉 = Θ(h(Θt), e)

Θ(H, a) = a(H)
Θ(H, µ̃x.c) = letx = H inΘc
Θ(H,u :: e) = Θ(HΘu, e)

Theorem 2 (Isomorphism). Mappings Ψ and Θ are mutually inverse bijec-
tions between the set of λµµ̃-terms and the set of λµlet-terms. Moreover, for
R = β (resp. R = σ, π, ηµ, ηµ̃), and R′ = β (resp. R′ = σ, π, ηµ, ηlet):

1. t→R t
′ in λµµ̃ iff Θt→R′ Θt′ in λµlet.

2. M →R′ M ′ in λµlet iff ΨM →R ΨM
′ in λµµ̃.

Corollary 1 (SN). Every typable expression of λµlet is βσπηµηlet-SN.

Proof: SN holds of λµµ̃ [19], Θ and Ψ preserve typability, and λµµ̃ ∼= λµlet. ut
Semantics of λµµ̃. The choice of notation for contexts in λµlet imposes the

following trivial extensions of Ψ and Θ to contexts and co-terms:

Ψa = a Θa = a
Ψ(µ̃x.S) = µ̃x.ΨS Θ(µ̃x.c) = µ̃x.Θc
Ψ(N :: E) = ΨN :: ΨE Θ(u :: e) = Θu :: Θe

(8)

We can identify each context E of λµlet with a function of type λµlet −
HoleExpressions → λµlet − Statements; it is the function that sends H to
E [H] (hence E(H) = E [H]). Now let e be a co-term of λµµ̃ and consider Θ(, e) :
λµlet−HoleExpressions→ λµlet− Statements. By induction on e one proves
(simply by unfolding the definitions of Θ(H, e) in Fig. 4 and E [H] in (3)) that

Θ(e)[H] = Θ(H, e) . (9)

Hence, Θ(, e) and Θe are the same function.
So, Θ(, a) and the λµlet-context denoted a are the same function; if S = Θc,

thenΘ(, µ̃x.c) and the λµlet-context denoted µ̃x.S are the same function; finally,
if Θu = N and Θe = E , then Θ(, u :: e) and the λµlet-context denoted N :: E
are the same function. This justifies the choice of notation for contexts in λµlet.

The formalization of the intuitive semantics of λµµ̃, offered by λµlet, is
the mapping θ : λµµ̃ → λµlet defined homomorphically on terms, like Θ;
that sends co-terms to contexts homomorphically, as in (8); and defined by
θ〈t|e〉 = θ(e)[h(θt)] on commands. The whole action of θ is concentrated on
the translation of 〈t|e〉, that reads “fill h(θt) in the hole of the context θe”.

Corollary 2 (Semantics of λµµ̃). θt = Θt and θe = Θe and θc = Θc.

Proof: Trivial induction on t, e, and c. The case c = 〈t|e〉 follows from (9). ut
So, the proof-theoretical mapping Θ, that replaces left-introductions by elimi-

nations, is the semantics θ; and the latter is an isomorphism by Theorem 2.
Proof-theory of let-expressions and named expressions. Recall the

typing systems of λµµ̃ and λµlet (Figs. 1 and 2). We explain the difference
between cut in λµµ̃ and primitive substitution in λµlet, thereby clarifying the
proof-theoretical status of let-expressions. We also argue that explicit substitu-
tions and Parigot’s named terms are, in some sense, neutral w.r.t. the sequent
calculus/natural deduction difference. 11

We say, for the sake of this discussion, that a cut 〈t|e〉 is of type I (resp.
II) if it has the shape of the r.h.s. of (6) (resp. (7)). Through Θ, cuts of type
I correspond to let-expressions/primitive substitutions letx = H inS, whereas
cuts of type II correspond to the naming construction a(H). 12

In contrast to the right premiss e of the cut of type I 〈t|e〉, the right premiss
S of the primitive substitution letx = H inS can never be the conclusion of left-
introduction (similar remark already made by Negri and von Plato [15], page
172). But, as a compensation, the left premiss H is not limited to be morally a
term h(M) (as is the left premiss t in 〈t|e〉), it can be a sequence of eliminations
(as already remarked in [7] for the intuitionistic case). So, cuts of type I (in
sequent calculus) are more general on the right premiss, while substitutions (in
natural deduction) are more general on the left premiss. But there is a kind of
common case, when e = µ̃x.c (so e is not a left introduction), and H = h(M) (so
H is not an elimination). Then the cut of type I has the form 〈t/x〉c = 〈t|µ̃x.c〉
and the primitive substitution has the form 〈N/x〉S = letx = N inS, the form
of an explicit substitution.

Similarly, Parigot’s named terms can be seen as the common case of cuts of
type II and the construction a(H): such case reads a(t) = 〈t|a〉 (e = a is not a
left introduction) and a(M) = a(h(M)) (H = h(M) is not an elimination).

5 Call-by-name and call-by-value

In this section we analyse CBN and CBV in λµlet. We do “read-back” [3, 12]
in a systematic fashion, reflecting into λµlet, through Θ, the definitions of CBN
and CBV reductions and fragments of λµµ̃. Finally, we analyse the largest CBV
fragment of λµlet obtained.

CBN and CBV reduction. In λµµ̃, CBN and CBV reduction is defined by
giving priority to either σ or π, respectively, in the CBN/CBV dilemma. Recall
the CBN-CBV dilemma of λµlet (Fig. 3). In λµlet we define:

CBV reduction: σ is restricted to the case letx = h(V) inS′ → [V/x]S′.
CBN reduction: π is restricted to the case En[h(µa.S)] → [En/a]S, where

CBN contexts are given by: En ::= a |N :: En.
With the first restriction, the σ-reduction in Fig. 3 becomes forbidden; with

the second, it is the π-reduction in Fig. 3 which becomes blocked.
11 Recall the particular cases 〈M/x〉S 7→ 〈t/x〉c and a(M) 7→ a(t) of (6) and (7), resp.
12 In intuitionistic logic [7], cuts correspond only to primitive substitution.

Fig. 5. CBN and CBV fragments

λµµ̃ �
Θ,Ψ - λµlet

λµµ̃T
� Θ,Ψ - λµletT

λµ �
Θ,Ψ - λµ

λµµ̃ �
Θ,Ψ - λµlet

λµµ̃Q
� Θ,Ψ - λµletQ

λµ̃ �
Θ,Ψ - λlet

CBN and CBV fragments. λµµ̃ contains a CBN fragment λµµ̃T and
a CBV fragment λµµ̃Q, closed for CBN and CBV reduction, respectively. In
addition, λµµ̃T contains itself a fragment λµ close to λµ, whereas λµµ̃Q contains
itself a fragment λµ̃ which can be “read-back” as a CBV λ-calculus. All this
comes from [3].

The following result can only be given here through a diagramatic summary.
The proof is by suitable adaptations of Theorem 2.

Theorem 3 (Read-back). There are CBN fragments λµletT, λµ, and CBV
fragments λµletQ, λlet of λµlet such that appropriate restrictions of Θ, Ψ estab-
lish the isomorphisms illustrated in Fig. 5. 13

In λµµ̃ the T (resp. Q) subsystem is defined by requiring the right (resp.
left) premiss of the left-introduction rule to be a co-value (resp.value). This is
remarkably elegant. In λµlet we have:

T subsystem: obtained by restricting let-expressions to explicit substitutions.
Q subsystem: obtained by restricting HN to HV .

These characterisations of the largest CBN and CBV fragments do not exhibit so
clearly the duality of CBN/CBV [3], but nevertheless are either familiar (CBV
case [18, 24]) or insightful (CBN case). In fact, the collapse of let-expressions
into explicit substitutions becomes an explanation for the fact that traditional
natural deduction is CBN.14

CBV λ-calculus. The read-back results depicted in Fig. 5 cannot be found
in [3, 11]: in op. cit they were either not attempted, or not formalized, or not suc-
cessful. The case of CBV is surprising. There were a number of recent attempts
to obtain a CBV λ-calculus (in natural deduction syntax) with a formulation
validated by a good correspondence with λµµ̃ [22, 11, 12].15 And yet, nothing like
13 The naming of systems is as follows. Symbols µ, T, and Q are invariant, when moving

between sequent calculus and natural deduction. The remaining symbols obey the
correspondence λ/λ and µ̃/let.

14 Traditional natural deduction goes even further, by allowing only implicit (i.e. meta)
substitution.

15 Such proof-theoretical approach contrasts with the development from [14] to [24],
that put forward the computational λ-calculus as the paradigmatic CBV λ-calculus.

Fig. 6. λµletQ: a CBV fragment of λµlet

V ::= x |λx.M
M,N ::= V |µa.S

H ::= h(M) |HV
S ::= a(H) | letx = H inS

(β) Ev[h(λx.M)V] → 〈V/x〉Ev[h(M)]
(σ) 〈V/x〉S → [V/x]S
(π) Ev[h(µa.S)] → [Ev/a]S

(ηµ) µa.a(h(M)) → M, a /∈M
(ηlet) letx = H in Ev[h(x)] → Ev[H], x /∈ Ev

the natural deduction fragment λµletQ that corresponds to λµµ̃Q was obtained.
λµletQ is given in Fig. 6, where CBV contexts are: Ev ::= a | µ̃x.S |V :: Ev.

Rocheteau’s definition of CBV [22] does not agree with Ong-Stewart’s [16]16.
The attempt to obtain the counterpart of λµµ̃Q in [11] admittedly failed 17. Fi-
nally, the system in [12] places applications and let-expressions in the class of
terms. As a result, there is a set of “structural” reduction rules in this system
devoted to eliminate expressions which in λµlet (and therefore in λµµ̃) are al-
ready ruled out by the organization of the syntactic classes. For instance, one
such rule is the “associativity” of let-expressions, that reduces a let whose actual
parameter is another let. Such expression does not exist in λµlet.

6 Final remarks

Summary. The system λµlet is not claimed to be as elegant as λµµ̃, but its
study is rich and fruitful, summarized in the following high-level lessons:

1. The syntax of natural deduction is non-trivial. Issues: the correct separation
between what is primitive and what is derived; the correct organization into
syntactic categories of the primitive syntax; only then let-expressions can be
added.

2. There is a correspondence between cut in sequent calculus and primitive
substitution in natural deduction; let-expressions and primitive substitution
are in Curry-Howard correspondence; let-expressions generalize explicit sub-
stitutions, and are not exclusive of CBV.

3. It is the amalgamation of let-expressions and explicit substitutions that
makes a natural deduction system CBN.

4. The isomorphism Θ : λµµ̃→ λµlet is a semantics that makes precise why co-
terms and commands of λµµ̃ are “contexts” and “hole-filling” instructions.

5. The isomorphism Θ : λµµ̃→ λµlet is a formal recipe for the “read-back” into
natural deduction; in particular, is a recipe for the systematic generation of
CBV λ-calculi in natural deduction style.

16 Let M = (µb.S′)(µa.S) and N be the CBV reduct of M . According to Rocheteau,
N is µa.[a((µb.S′)•)/a(•)]S, whereas, according to Ong-Stewart, N (as well as the
CBN reduct of M) is µb.[b(•(µa.S))/b(•)]S′.

17 It is the calculus called ληµlet
− ηlet−appµ in [11].

Related work. In the body of the paper detailed comparison was made
between the proposed system λµlet and both λµ and λµµ̃ [17, 3], as well as
between the CBV fragments of λµlet and other proposals for CBV λ-calculi
recently appeared in the literature [22, 11, 12].

In the recent studies about the correspondence between sequent calculus and
natural deduction, one approach is to identify fragments of sequent calculus
isomorphic to natural deduction. The initial result is λH ∼= λ of [5]. Other
contributions of this kind are in [3, 13], although no isomorphism is claimed.
The present paper belongs to another approach [26, 7], which pursues extensions
of natural deduction isomorphic to full sequent calculus. The isomorphism λµµ̃ ∼=
λµlet extends to classical logic the intuitionistic λGtz ∼= λNat of [7].

Dyckhoff and Lengrand [4] prove an equational correspondence [23] between
LJQ (the Q subsystem of intuitionistic sequent calculus) and Moggi’s computa-
tional λ-calculus [14]. An isomorphism is to be expected between LJQ and the
intuitionistic, Q subsystem of λµlet.

Moggi [14] explained the difference between substitution and let-expressions
as the difference between the composition principles of two different but related
categories: some category with a monad and the corresponding Kleisli category.
In the present paper we explain that cut and let are composition principles of
two different but related proof-systems: sequent calculus and natural deduction.

Future work. This paper did not aim to contribute to the theory of CBV,
but instead to produce, through a proof-theoretical analysis, new calculi for the
future investigation of that theory. In spite of differing from other CBV λ-calculi
in the literature, the new calculus λµletQ, being isomorphic to λµµ̃Q, validates
the usual cps semantics [3]. The difference may be telling, however, if we consider
reductions instead of equations, and operational aspects like standardization and
abstract machines.

Acknowledgments: The author is supported by FCT, through Centro de
Matemática, Universidade do Minho. Paul Taylor’s macros were used for type-
setting diagrams.

References

1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Journal
of Functional Programming, 1(4):375–416, 1991.

2. I. Cervesato and F. Pfenning. A linear spine calculus. Journal of Logic and Com-
putation, 13(5):639–688, 2003.

3. P.-L. Curien and H. Herbelin. The duality of computation. In Proceedings of
the Fifth ACM SIGPLAN International Conference on Functional Programming
(ICFP ’00), Montreal, Canada, September 18-21, 2000, SIGPLAN Notices 35(9),
pages 233–243. ACM, 2000.

4. R. Dyckhoff and S. Lengrand. Call-by-value lambda calculus and LJQ. Journal of
Logic and Computation, 17:1109–1134, 2007.

5. J. Esṕırito Santo. Revisiting the correspondence between cut-elimination and nor-
malisation. In Proceedings of ICALP’2000, volume 1853 of Lecture Notes in Com-
puter Science, pages 600–611. Springer-Verlag, 2000.

6. J. Esṕırito Santo. An isomorphism between a fragment of sequent calculus and an
extension of natural deduction. In M. Baaz and A. Voronkov, editors, Proceedings
of LPAR’02, volume 2514 of Lecture Notes in Artificial Intelligence, pages 354–366.
Springer-Verlag, 2002.

7. J. Esṕırito Santo. The λ-calculus and the unity of structural proof theory. Theory
of Computing Systems, 45:963–994, 2009.

8. M. Felleisen, D. Friedman, E. Kohlbecker, and B. Duba. Reasoning with continu-
ations. In 1st Symposium on Logic and Computer Science. IEEE, 1986.

9. G. Gentzen. Investigations into logical deduction. In M. E. Szabo, editor, The
collected papers of Gerhard Gentzen, pages 68–131. North Holland, 1969.

10. T. Griffin. A formulae-as-types notion of control. In ACM Conf. Principles of
Programming Languages. ACM Press, 1990.

11. H. Herbelin. C’est maintenant qu’on calcule, 2005. Habilitation Thesis.
12. H. Herbelin and S. Zimmermann. An operational account of call-by-value minimal

and classical lambda-calculus in “natural deduction” form. In Proceedings of Typed
Lambda Calculi and Applications’09, volume 5608 of Lecture Notes in Computer
Science, pages 142–156. Springer-Verlag, 2009.

13. K. Kikuchi. Call-by-name reduction and cut-elimination in classical logic. Annals
of Pure and Applied Logic, 153:38–65, 2008.

14. E. Moggi. Computational lambda-calculus and monads. Technical Report ECS-
LFCS-88-86, University of Edinburgh, 1988.

15. S. Negri and J. von Plato. Structural Proof Theory. Cambridge, 2001.
16. C-H.L. Ong and C.A. Stewart. A curry-howard foundation for functional computa-

tion with control. In Proc. of Symposium on Principles of Programming Languages
(POPL’97), pages 215–217. ACM Press, 1997.

17. M. Parigot. λµ-calculus: an algorithmic interpretation of classic natural deduction.
In Int. Conf. Logic Prog. Automated Reasoning, volume 624 of Lecture Notes in
Computer Science, pages 190–201. Springer Verlag, 1992.

18. G. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer
Science, 1:125–159, 1975.

19. E. Polonovski. Strong normalization of lambda-mu-mu-tilde with explicit substitu-
tions. In Igor (Ed.) Walukiewicz, editor, Proc. of 7th Int. Conference on Founda-
tions of Software Sciences and Computation Structures (FoSSaCS 2004), volume
2987 of Lecture Notes in Computer Science, pages 423–437. Springer-Verlag, 2004.

20. D. Prawitz. Natural Deduction. A Proof-Theoretical Study. Almquist and Wiksell,
Stockholm, 1965.

21. N. Rehof and M. Sorensen. The λ∆-calculus. In TACS’94, volume 789 of Lecture
Notes in Computer Science. Springer Verlag, 1994.

22. J. Rocheteau. λµ-calculus and duality: call-by-name and call-by-value. In J. Giesl
(Ed.), editor, Proc. of RTA 2005, volume 3467 of Lecture Notes in Computer Sci-
ence, pages 204–218. Springer-Verlag, 2005.

23. A. Sabry and M. Felleisen. Reasoning about programms in continuation-passing-
style. LISP and Symbolic Computation, 6(3/4):289–360, 1993.

24. A. Sabry and P. Wadler. A reflection on call-by-value. ACM Transactions on
Programming Languages and Systems, 19(6):916–941, 1997.

25. A. Troelstra and H. Schwitchtenberg. Basic Proof Theory. Cambridge University
Press, second edition, 2000.

26. J. von Plato. Natural deduction with general elimination rules. Annals of Mathe-
matical Logic, 40(7):541–567, 2001.

