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Abstract

For a gas system of four constituents which experiences the bimolecular chemical reaction
A1+A2

⇀↽ A3+A4, and in a regime close to the chemical equilibrium, the BGK-type model
proposed by the authors in a previous paper is here considered with the aim of studying plane
harmonic wave solutions to the system of the reactive field equations. The Chapman-Enskog
method has been used to determine a first-order approximate solution to the BGK equations,
which includes the transport features of shear viscosity, diffusion and thermal conductivity. Such
approach leads to the constitutive equations and permits to close the reactive field equations
at the Navier-Stokes, Fourier and Fick level. The propagation of plane harmonic waves in
a reactive mixture where the transport effects are relevant can then be studied by a normal
mode analysis. Numerical results are provided for two different mixtures of the Hydrogen-
Chlorine system where the elementary reaction H2+Cl ⇀↽ HCl+H takes place. The behavior
of diffusion, shear viscosity and thermal conductivity coefficients, as well as the one of phase
velocity and attenuation coefficient, is described focusing the influence of the chemical reaction
on the transport properties and harmonic wave solutions.

1 Introduction and preliminaries

The relaxation kinetic model proposed by the authors in [1] extends the BGK-type model, derived
by Garzó, Santos & Brey for an inert gas mixture in [2], to a quaternary reacting gas mixture
undergoing a reversible reaction of type A1+A2⇀↽ A3+A4. The model equations are

∂fα
∂t

+ cαi
∂fα
∂xi

= −

4∑

β=1

ζEαβ(fα − fE
αβ)− ζRαγ(fα − fR

αγ), α=1, . . . , 4, (1)

where the repeated index i denotes a summation over i = 1, 2, 3 for the space components, and
(α, γ)= (1, 2), (2, 1), (3, 4), (4, 3). The gas constituents have molecular mass mα, molecular velocity
cα, and chemical binding energy εα. In the model Eqs. (1), fα denotes the one-particle distribution
function, ζEαβ , ζ

R
αγ are elastic and reactive collision frequencies which are expressed in terms of cross

sections of rigid spheres [3] for elastic collisions, and in terms of line-of-centers energy model [4]
for encounters with chemical reactions. Moreover fE

αβ, f
R
αγ are the elastic and reactive reference

distribution functions which have been determined in paper [1] so that the consistency with respect
to balance equations and mixture conservation laws is assured.
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More in detail, the reference distributions have been determined by imposing that the production
terms of mass, momentum and total energy are the same for the BGK-type model and for the exact
reactive Boltzmann equation (BE), that is

{
−
∫
ψαζ

E
αβ(fα − fE

αβ)dcα =
∫
ψαQ

E
αβdcα,

−
∫
ψαζ

R
αγ(fα − fR

αγ)dcα =
∫
ψαQ

R
αdcα,

for ψα =





mα,

mαc
α
i ,

1
2mαc

2
α + εα.

(2)

Here QE
αβ and QR

αβ are the elastic and reactive collision terms of the exact reactive BE, whose
explicit expressions are well known (see for instance reference[5]). The explicit computation of the
integrals is performed by assuming that all constituents have the same temperature T and by taking
an input function f̂α defined by

f̂α ≈ nα

( mα

2πkT

) 3
2

exp

(
−
mαξ

2
α

2kT

)[
1 +

mαξ
α
i

kT
uαi

]
, (3)

where ξαi = cαi − vi and uαi = vαi − vi are the peculiar velocity and the diffusion velocity of each
constituent, respectively. Detailed computations of the production terms (2) lead to the following
expressions for the elastic and reactive reference distributions,

fE
αβ = nα

( mα

2πkT

) 3
2

e−
mαξ2α
2kT

{
1 +

mαξ
α
i

kT

mαu
α
i +mβu

β
i

mα +mβ

}
, α, β = 1, . . . , 4, (4)

fR
αγ = nα

( mα

2πkT

) 3
2

e−
mαξ2α
2kT

{
1 + να

[
1−Mγ

(
ǫ⋆σ +

1

2

)(
1−

mαξ
2
α

3kT

)]
A

kT
(5)

+
mαξ

α
i

kT

[
uαi + σ

4∑

β=1

νβMβu
β
i −

2

3
(ǫ⋆σ + 2)Mγ(u

α
i − uγi )

]}
,

where Mα=mα/(mα+mγ) is a mass ratio, ǫ⋆σ=ǫσ/kT is the activation energy of the forward (σ=1)

and of the backward (σ=−1) reaction in units of kT , A=kT ln
(

n1n2n
eq

3
n
eq

4

n3n4n
eq

1
n
eq

2

)
is the affinity of the

forward reaction and να are the stoichiometric coefficients such that ν1 = ν2 = −ν3 = −ν4 = −1.
The kinetic Eqs. (1) with reference distributions (4) and (5) define the relaxation model and

constitute the basis of the present analysis. Observe that in Eqs. (1) the elastic and reactive collision
terms are approximated separately, so that both the inert mechanism and the chemical interaction
preserve their own role. The model is then appropriate to investigate the deviation of the mixture
from the equilibrium induced by the chemical reaction, in a hydrodynamic regime for which the
diffusion velocities are assumed to be small (|uαi | ≪ 1).

The work is organized as follows. The transport properties of diffusion, shear viscosity and
thermal conductivity are detailed in section 2. The plane harmonic wave propagation in the reacting
mixture is studied in section 3, starting from the system of the field equations closed at the Navier-
Stokes, Fourier and Fick level. At last, numerical results for transport coefficients and harmonic
wave solutions are provided in section 4 for the chemical reaction H2+Cl ⇀↽ HCl+H.

2 Transport properties

In a flow regime where the chemical reaction is in its final stage and the affinity is a small parameter,
|A| < 1, the elastic and reactive frequencies are of the same order of magnitude and the mixture is
near chemical equilibrium.
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The model Eqs. (1), adopting a first-order Chapman-Enskog expansion for the distribution

function of type fα = f
(0)
α + f

(1)
α , transform to

∂f
(0)
α

∂t
+ cαi

∂f
(0)
α

∂xi
= −

4∑

β=1

ζEαβ(f
(0)
α + f (1)

α − fE
αβ)− ζRαγ(f

(0)
α + f (1)

α − fR
αγ). (6)

Proceeding with the usual steps of the Chapman-Enskog method, one obtains

f (0)
α = nα

( mα

2πkT

) 3
2

exp

(
−
mαξ

2
α

2kT

)
, (7)

f (1)
α =

−f
(0)
α∑4

β=1 ζ
E
αβ + ζRαγ

{
mα

kT
ξαi ξ

α
j

(
∂vi
∂xj

−
1

3

∂vr
∂xr

δij

)
+
neq

neq
α
ξαi d

α
i (8)

+ξαi

(
mαξ

2
α

2kT
−

5

2

)
1

T

∂T

∂xi
−

4∑

β=1

ζEαβ
mαξ

α
i

kT

mαu
α
i +mβu

β
i

mα +mβ

+ζRαγ

[
neq
α

neq
E⋆ + ναMγ

(
ǫ⋆σ +

1

2

)](
1−

mαξ
2
α

3kT

)
A

kT

−ζRαγ
mαξ

α
i

kT

[
uαi + σ

4∑

β=1

νβMβu
β
i −

2

3
(ǫ⋆σ + 2)Mγ(u

α
i − uγi )

]}
,

where dαi denotes the generalized diffusion force defined by dαi = 1
p

[
∂pα

∂xi
− ̺α

̺
∂p
∂xi

]
with the condition

∑4
α=1 d

α
i = 0. The expansion of fα, together with expressions (7) and (8) for f

(0)
α and f

(1)
α , is then

introduced in the kinetic definitions of the constituent diffusion velocities uαi , mixture pressure tensor
pij and heat flux qi,

uαi =
1

̺α

∫
mαc

α
i fαdcα, pij =

4∑

α=1

∫
mαξ

α
i ξ

α
j fαdcα, (9)

qi =

4∑

α=1

(
1

2

∫
mαξ

2
αξ

α
i fαdcα + nαεαu

α
i

)
. (10)

Therefore the actual computation of the involved integrals permits to obtain

dαi = −

4∑

β=1

xeqα x
eq
β

Dαβ

(
uαi − uβi

)
, (11)

qi = −λ
∂T

∂xi
+

4∑

α=1

(
5

2
kT + εα

)
neq
α u

α
i , (12)

pij = pδij − µ

(
∂vi
∂xj

+
∂vj
∂xi

−
2

3

∂vr
∂xr

δij

)
. (13)

Equations (11) and (12) represent the generalized laws of Fick and Fourier, respectively, while Eq.
(13) expresses the constitutive law of a Newtonian fluid which, in kinetic theory, is also called Navier-
Stokes law. Furthermore, xeqα =neq

α /n
eq denotes the equilibrium concentration of the constituent α.

The above laws give the link between the transport fluxes uαi , pij , qi and the diffusion forces, mixture
velocity gradient, temperature gradient, respectively, through the transport coefficients of diffusion
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Dαβ (Dαβ = Dβα), shear viscosity µ and thermal conductivity λ. Such transport coefficients are
given by the expressions

1

D12
=

m12

kTxeq2

[
ζE12+

2

3
ζR12

(
ǫ⋆1+

1

2

)]
,

1

D13
=

m13

kTxeq3

[
ζE13 + ζR12

m1 +m3

m1 +m2

]
,

1

D14
=

m14

kTxeq4

[
ζE14 + ζR12

m1+m4

m1 +m2

]
,

1

D23
=

m23

kTxeq3

[
ζE23 + ζR21

m2 +m3

m1 +m2

]
,

1

D24
=

m24

kTxeq4

[
ζE24+ζ

R
21

m2+m4

m1+m2

]
,

1

D34
=

m34

kTxeq4

[
ζE34+

2

3
ζR34

(
ǫ⋆
−1+

1

2

)]
,

(14)

µ =
neq
1 kT∑4

β=1 ζ
E
1β + ζR12

+
neq
2 kT∑4

β=1 ζ
E
2β + ζR21

+
neq
3 kT∑4

β=1 ζ
E
3β + ζR34

+
neq
4 kT∑4

β=1 ζ
E
4β + ζR43

, (15)

λ=
5

2

[
neq
1 k

2T/m1∑4
β=1 ζ

E
1β + ζR12

+
neq
2 k

2T/m2∑4
β=1 ζ

E
2β + ζR21

+
neq
3 k

2T/m3∑4
β=1 ζ

E
3β + ζR34

+
neq
4 k

2T/m4∑4
β=1 ζ

E
4β + ζR43

]
. (16)

Equations (14-16) clearly show the dependence of transport coefficients on the chemical process
through the presence of the reactive collision frequencies ζRαγ and activation energies ǫ⋆1 and ǫ⋆

−1

related to the forward and backward reaction.

3 Plane harmonic waves

The model Eqs. (1) with reference distributions (4) and (5) lead to the following balance equations
for the number density of each constituent and to the conservation laws for momentum and total
energy of the mixture, namely

∂nα

∂t
+

∂

∂xi
(nαu

α
i + nαvi) = τα, τα =

∫ 


4∑

β=1

QE
αβ +QR

α


 dcα, (17)

∂̺vi
∂t

+
∂

∂xj
(pij + ̺vivj) = 0, (18)

∂

∂t

[
3

2
nkT+

4∑

α=1

nαεα+
1

2
̺v2

]
+

∂

∂xi

[
qi+pijvj+

(
3

2
nkT+

4∑

α=1

nαεα+
1

2
̺v2

)
vi

]
=0. (19)

The form of the system (17-19) is the same as in the case of the exact reactive BE, due to the
requirement (2) of equal production terms for both the BGK-type model and reactive BE. The
closure of the above system at the Navier-Stokes, Fourier and Fick level is assured by the constitutive
Eqs. (11-12), which guarantee that uαi , pij and qi are expressed in terms of the basic fields nα, vi
and T .

The closed system of the reactive field Eqs. (17-19) and constitutive Eqs. (11-12) will now be
solved by searching sound wave solutions through a normal mode analysis. At this end, a linearization
around an equilibrium state of the mixture, characterized by constant individual number densities
neq
α , mixture temperature T0 and vanishing mean velocity, is introduced in the closed system. The

basic fields are expanded in the form

nα = neq
α + ñα, vi = ṽi, T = T0 + T̃ , (20)
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where ñα, ṽi and T̃ represent small perturbations of the corresponding equilibrium state fields. By
introducing the expansions (20) into the field Eqs. (17-19) and referring them to one space dimension
(v1=v), one obtains the linearized one-dimensional equations in the form

∂ñα

∂t
+ neq

α

∂ũα
∂x

+ neq
α

∂ṽ

∂x
= ναn

eq
α n

eq
γ k

(0)
σ

A

kT0
, α = 1, . . . , 4, (21)

̺0
∂ ṽ

∂t
+
∂ p̃11
∂x

= 0, (22)

3

2
kn0

∂T̃

∂t
+p0

∂ṽ

∂x
+
∂q̃

∂x
−

4∑

α=1

neq
α

(
3

2
kT0+εα

)
∂ũα
∂x

=−

4∑

α=1

εαναn
eq
α n

eq
γ k

(0)
σ

A

kT0
, (23)

where k
(0)
σ is the first approximation to the forward (σ=1) and backward (σ=−1) rate constants

[1], and ũα, p̃11, q̃ are the first-order perturbations of uα, p11, q, respectively. The explicit form
of such perturbations states their dependence on the transport coefficients Dαβ, µ, λ, besides the

field perturbations ñα, ṽ, T̃ , since the closure of the reactive field equations has been performed
at the Navier-Sokes, Fourier and Fick level. Longitudinal harmonic waves propagating along the
x-axis are characterized by assuming that the perturbations ñα, ṽ, T̃ are given by small complex
amplitudes nα, v, T multiplied by exponential factors depending on the complex wave number κ
and real angular frequency ω of the wave, that is

ñα = nα exp[ı(κx− ωt)], ṽ = v exp[ı(κx− ωt)], T̃ = T exp[ı(κx− ωt)]. (24)

The phase velocity vph and the attenuation coefficient α of the wave are defined by vph = ω/Reκ,
α = Imκ, and the affinity A can be written in terms of the perturbation amplitudes of the particle
number densities in the form A = −kT0

∑4
α=1 ναn̄α/n

eq
α .

After inserting the constitutive Eqs. (11-12) together with the perturbations (24) and the ex-
pression for the affinity, the linearized field Eqs. (21-23) transform into the following linear algebraic
system for the amplitudes

Az = 0, zT = [n1 n2 n3 n4 v T ]
T, (25)

where A = [Aij ] is a six-order square matrix whose elements depend on the equilibrium state of the
reactive mixture, transport coefficients and wave parameters. The explicit expressions of the matrix
elements are here omitted for brevity.

The algebraic system (25) has a non-trivial solution if the determinant of the matrix A vanishes.

This condition leads to the dispersion relation for the normal modes (24), namely,
∑6

j=0 aj (κ/ω)
2j
=

0, where the coefficients aj depend on the equilibrium number densities neq
α , equilibrium mixture

temperature T0, molecular masses mα, transport coefficients µ, λ, Dαβ , rate constant k
(0)
1 , as well

as angular frequency ω and wave number κ.

4 Results

Two mixtures of the H2-Cl system undergoing the bimolecular chemical reaction H2+Cl ⇀↽ HCl+H
with different equilibrium constituent concentrations and at the same equilibrium temperature T0 =
1500K are considered in two cases, namely:

Case (a) xeq1 = 0.1, xeq2 = 0.618, xeq3 = 0.082, xeq4 = 0.2;

Case (b) xeq1 = 0.2, xeq2 = 0.424, xeq3 = 0.076, xeq4 = 0.3.
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In both cases the concentrations xeq1 and xeq4 of the constituents H2 and H were chosen, while the
concentrations xeq2 and xeq3 of Cl and HCl were obtained from the constraint xeq1 +xeq2 +xeq3 +xeq4 = 1
and from the mass action law,

E

kT0
=

3

2
ln

(
m3m4

m1m2

)
+ ln

xeq1 x
eq
2

xeq3 x
eq
4

,

where E = 3.98 kJ/mol represents the reaction heat of the reaction H2+Cl ⇀↽ HCl+H.

µ(10−5Pa s) λ(W/mK) D12(10
−4 m2/s) D13(10

−4 m2/s)
reacting 3.388 0.139 2.375 1.251

non-reacting 3.431 0.141 2.553 1.529

D14(10
−4 m2/s) D23(10

−4 m2/s) D24(10
−4 m2/s) D34(10

−4 m2/s)
reacting 5.081 0.548 6.880 3.035

non-reacting 5.124 0.709 7.108 3.565

Table 1: Case (a). Influence of chemical reaction on the transport coefficients.

The theoretical analysis of sections 2 and 3 is applied to the reacting mixtures of the above cases
(a) and (b), with the aim of studying the transport properties and characterizing the harmonic wave
solutions in the Hydrogen-Chlorine system. More in detail, the influence of the chemical reaction on
transport coefficients and wave solutions can be appreciated through the comparison of the reacting
mixtures of cases (a) and (b) with the non-reacting mixtures for which the same choice of constituent
concentrations is considered.

The transport coefficients µ, λ and Dαβ of the reacting mixture are shown in comparison with
the non-reacting mixture in table 1 with reference to case (a), and in table 2 with reference to case
(b). The results in tables 1 and 2 show that: (i) the chemical reaction contributes to decrease
the transport coefficients with respect to the non-reacting mixtures and (ii) the chemical influence
is more appreciable in the diffusion coefficients. Such conclusion is in agreement with the results
obtained in paper [6] for the transport coefficients of an analogous mixture of the Hydrogen-Chlorine
system, starting from the exact reactive BE.

µ(10−5Pa s) λ(W/mK) D12(10
−4 m2/s) D13(10

−4 m2/s)
reacting 1.965 0.182 2.375 1.313

non-reacting 2.000 0.185 2.553 1.529

D14(10
−4 m2/s) D23(10

−4 m2/s) D24(10
−4 m2/s) D34(10

−4 m2/s)
reacting 5.104 0.434 6.807 3.041

non-reacting 5.124 0.709 7.108 3.565

Table 2: Case (b). Influence of chemical reaction on the transport coefficients.

Moreover, figures 1 and 2 describe the behavior of the phase velocity and attenuation coefficient
as functions of the angular frequency of the wave, for a low frequency regime (ω ≤ 0.5). The two
cases (a) and (b) are considered in both figures and again, the comparison of the reacting mixtures
with the corresponding inert systems allows to appreciate the influence of the chemical reaction on
the harmonic solutions.
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Figure 1: Influence of the chemical reaction on phase velocity versus angular frequency.
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Figure 2: Influence of the chemical reaction on attenuation coefficient versus angular frequency.
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The figures illustrate that: (i) the phase velocities and the attenuation coefficients for reacting
mixtures are smaller than the corresponding ones for non-reactive mixtures, because the transport
coefficients show also the same behavior; (ii) the chemical influence on the phase velocities and
attenuation coefficients becomes negligible in the limit of low frequencies and (iii) by increasing the
concentrations of the lighter constituents (H2, H), the phase velocity decreases and the attenuation
coefficient increases.
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