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ABSTRACT 

Bacterial Cellulose: studies on biocompatibility, surface modification and 
interaction with cells 

 
A wide variety of biomaterials and bioactive molecules have been applied in tissue 

engineering as scaffolds in order to provide an appropriate environment to the growth and 

differentiation of cells. However, creating devices for biological substitutes that enhance 

the regeneration of neural tissues is still a challenge, because of the difficulty in providing 

an active stimulation of nerve regeneration. Biological scaffolds can be composed of 

natural polymers combined with extracellular matrix molecules and have been shown to 

facilitate the constructive remodeling of many tissues by the establishment of an 

environment necessary for the regulation of cell processes. In this context, different 

biomaterials have been used as scaffolds to improve interactions between material/cells 

and repair neurological damages. In recent years, bacterial cellulose (BC) emerged as a 

promising biomaterial in tissue engineering due its properties: high crystalinity, wettability, 

high tensile strength, pure nanofibers network, moldability in situ and simple production. 

BC has been modified to further enhance cell adhesion and biocompatibility; as an 

alternative to peptide chemical grafts, BC allow the use of recombinant proteins containing 

carbohydrates binding domains (CBMs), such as the CBM3, which has affinity by 

cellulose, representig a attractive way to specifically adsorb bioactive peptides on 

cellulose surface. The goal of this work was to modify the bacterial cellulose improving the 

neuronal cell affinity and producing a scaffold with potential to be used in neural tissue 

engineering. For this purpose, two strategies were used: 1) adhesive peptides fused to a 

carbohydrate binding domain with affinity to cellulose and; 2) surface modification by 

nitrogen plasma treatment. Also, in this work, we analized the biocompatibility in a long-

term approach of two different types of BC grafts and the effect of BC nanofibers 

subcutaneously implanted in mice. 

The recombinant proteins IKVAV-CBM3, exIKVAV-CBM3 and KHIFSDDSSE-

CBM3, were successfully expressed in E. coli, purified and stably adsorbed to the BC 

membranes. The in vitro results showed that the exIKVAV-CBM3 was able to improve the 

adhesion of both neuronal and mesenchymal cells (MSC), while IKVAV-CBM3 and 

KHIFSDDSSE-CBM3 presented only a slight effect on mesenchymal cell adhesion, and 

no effect on the other cells. The MSCs neurotrophin expression by cells grown on BC 

membranes modified with the recombinant proteins was also verified. NGF was 
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expressed and released by cells adhered on the BC membranes, creating a 

microenvironment that promotes neuronal regeneration. 

The nitrogen plasma treatment did not increase the wettability of the material, but 

increased the porosity and changed the surface chemistry, as noticed by the presence of 

nitrogen. XPS analysis revealed the stability of the modified material along time and 

autoclave sterilization. The cell adhesion and proliferation of HMEC-1 and N1E-115 cells 

was significantly improved in the plasma treated BC, in contrast with the 3T3 cells, 

revealing a cell-specific effect.  

Regarding in vivo studies, the BC implants caused a low inflammatory reaction that 

decreased along time and did not elicit a foreign body reaction. A tendency for 

calcification, which may be related to the porosity of the BC implants, was observed. 

However, this tendency was different depending on the BC tested. Regarding nanofibers 

implants, after 2 and 4 months post implantation, mostly of injected nanofibers remained 

in aggregates in the subcutaneous tissue. There was infiltration of cells in these 

aggregates of nanofibers, mostly macrophages, and there is evidence of phagocytosis of 

the material by these cells. Moreover, no differences were observed between the controls 

and implanted animals in thymocyte populations, B lymphocyte precursors and myeloid 

cells in the bone marrow. 

BC is a good material to be used as scaffold in tissue engineering applications. 

However, is still necessary to improve the interaction of cells with the material to obtain a 

matrix that supports the growth, differentiation and selectivity of cells. In our attempt to 

enhance and select neuronal attachment to BC, the recombinant proteins produced were 

able to improve cell adhesion and viability on BC membranes. Also, nitrogen plasma 

treatment proved to be an effective and economical surface treatment technique, which 

was also capable to improve the adhesion of endothelial and neuroblast cells to the 

material. Therefore, the surface modification leads to a better cell affinity with BC, 

probably contributing for a better biocompatibility in vivo. In the in vivo results, our work 

points to the necessity to further investigation to verify the tendency to BC to calcify in 

long-term circumstances. Meanwhile, the BC nanofibers seem to be an innocuous 

material in mice subcutaneous tissue, and proved to be an eligible material to production 

of ECM-mimetic grafts. 
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RESUMO 

Celulose Bacteriana: estudos de biocompatibilidade, modificação de 
surperfície e interação com células 

 
Actualmente, um grande número de materiais poliméricos com diferentes 

propriedades estão disponíveis para aplicações biomédicas. Têm sido exploradas várias 

abordagens com o objetivo de melhorar a interação entre os polímeros e as células, que 

por ser geralmente inadequada, provoca reações in vivo como inflamações, perdas de 

tecido local e encapsulamento dos implantes. Entre estas abordagens, a modificação das 

superfícies, como por exemplo a funcionalização dos materiais com peptídeos 

imobilizados ou grupos químicos incorporados, mostra vantagens na obtenção de 

interações específicas das células com os materiais resultando em uma melhoria na sua 

biocompatibilidade. A celulose bacteriana (CB) tornou-se um biomaterial em foco para 

aplicações biomédicas devido a sua alta resistência mecânica, hidrofilicidade, alta 

cristalinidade e pureza, baixo custo de produção e sua característica rede de nanofibras. 

Além disso, o uso de domínios de ligação à celulose é uma alternativa simples e 

específica de enxertar peptídeos bioativos à estrutura da celulose possibilitando uma 

maior afinidade celular. O objectivo deste trabalho foi modificar a CB para aumentar a 

afinidade de células neuronais, produzindo um scaffold com potencial para ser utilizado 

em engenharia de tecidos neuronal. Com este propósito, duas estratégias foram 

utilizadas: 1) o uso de peptídeos de adesão conjugados a um domínio de ligação a 

carbohidratos (CBM), com afinidade para a celulose e, 2) modificação da CB através do 

tratamento com plasma de nitrogênio. Também, dentro do âmbito deste trabalho, avaliou-

se a biocompatibilidade a longo prazo da CB, tanto de implantes como de nanofibras 

implantados subcutaneamente em camundongos. 

As proteínas recombinantes IKVAV-CBM3, exIKVAV-CBM3 and KHIFSDDSSE-

CBM3 foram expressas em E.coli, purificadas e adsorvidas de maneira estável nas 

membranes de CB. Os resultados in vitro mostraram que o exIKVAV-CBM3 aumentou a 

adesão de células neuronais e mesenquimais, enquanto que o IKVAV-CBM3 e 

KHIFSDDSSE-CBM3 apresentaram apenas um pequeno efeito na adesão das células 

mesenquimais, e nenhum efeito nas outras células testadas. Também, a expressão de 

neurotrofinas pelas células mesenquimais nas membranas de CB modificadas com as 

proteínas recombinantes foi verificada, e verificou-se que o NGF é expresso e libertado 
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por estas células aderidas na CB, criando um ambiente promotor da regeneração 

neuronal. 

O tratamento com o plasma de nitrogênio não aumentou a molhabilidade da CB, 

mas foi capaz de aumentar a porosidade e a química de superfície, evidenciado pela 

presença do grupo nitrogênio. As análises de XPS mostraram a estabilidade do material 

modificado 180 dias após o tratamento, e após a esterilização por autoclave. A adesão e 

a proliferação celular das linhagens endotelial (HMEC-1) e neuronal (N1E-115) foi 

aumentada significativamente na celulose tratada com plasma, em contraste com os 

fibroblastos 3T3, o que revelou um efeito célula-específico.  

Quanto aos estudos in vivo, os implantes de CB causaram apenas uma reação 

inflamatória de baixa intensidade, que decresceu ao longo do tempo, e não estimulou 

reação de corpo estranho. Foi observada uma tendência para calcificar nas membranas 

de CB menos porosas, indicando uma relação com a porosidade dos implantes. Quanto 

aos implantes de nanofibras, após 2 e 4 meses de implantação, verificou-se que a maior 

parte das nanofibras permaneceram em agregados no tecido subcutâneo. Houve 

infiltração de células nesses agregados de nanofibras, sendo a maioria macrófagos, e 

evidências de fagocitose do material por estas células. Também, não foram encontradas 

diferenças entre os controles e os animais implantados nas populações de timócitos, 

precursores de linfócitos B e células mielóides na medula óssea. 

A CB é um bom material para ser utilizado em aplicações de engenharia de tecidos. 

Entretanto, ainda é necessário a modificação deste material para aumentar sua interação 

com as células, obtendo assim uma matriz capaz de manter o crescimento, a 

diferenciação e a seletividade de células. Na nossa tentativa de aumentar e selecionar a 

adesão de células neuronais à CB, as proteínas recombinantes produzidas foram 

capazes de aumentar a adesão e a viabilidade celular neste material. Também, o 

tratamento por plasma de nitrogênio provou ser um tratamento de superfície econômico e 

efetivo, sendo capaz de aumentar a afinidade das células com a CB, o que poderá 

contribuir para um melhoramento da sua biocompatibilidade in vivo. Quanto aos testes in 

vivo, este trabalho aponta para a necessidade de investigação futura para verificar a 

tendência da CB em calcificar em circunstâncias a longo prazo. Entretanto, as nanofibras 

de CB parecem ser inócuas quando implantadas no tecido subcutâneo, sendo um 

material elegível para a produção de enxertos que mimetizem a matriz extracelular. 
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GDNF Glial-derived  

GRGDY Gly-Arg-Gly-Asp-Tys (signaling domain) 

HEL Human erythroleukemia cell line 

HEMA 2-hydroxyethyl methacrylate 

HMEC-1 Human Microvascular Endothelial cell line 

HSC Hematopoietic stem cells 

IGF-1 Insulin-Like Growth Factor 1 

IKVAV Ile-Lys-Val-Ala-Val (signaling domain) 

IMAC Metal ion affinity chromatography 

IPTG Isopropyl-D-thiogalactopyranoside 

J-111 Human histiocytic cell line 

KHIFSDDSSE Lys-His-Ile-Phe-Ser-Asp-Asp-Ser-Ser-Glu (signaling domain) 

L929 Mouse Fibroblast Cells 

MSC Mesenchymal stem cell 

MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium] 

MW Molecular weight 

N1E-115 Mouse Neuroblastoma cell line 

NaOH Sodium Hydroxyde 

NCAM Neural cell adhesion molecule 
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NFs Nanofibers 

NGF Nerve growth factor 

NT-3 Neurotrophin 3 

NT-4 Neurotrophin 4 

PBS Phosphate Buffered Saline 

PC12 Rat Pheochromocytoma cell line 

PCR Polymerase chain reaction 

PEG Poly(ethylene glycol) 

PGA Poly(glycolic acid) 

PHB Poly(3-hydroxybutyrate) 

PHBV Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) 

PHEMA-co-MMA Poly(2-hydroxyethylmethacrylate-co-methylmethacrylate) 

PHPMA poly[N-(2-hydroxypropyl)methacrylamide]  

PLA Poly(D,L lactic acid) 

PLGA Poly(D,L-lactic-co-glycolic acid) 

PLL Poly-L-lysine 

PNS Peripheral Nervous System 

RGD Arg-Gly-Asp (signaling domain) 

RPMI-1640 Cell culture medium 

SBB starch-based biomaterials 

SDS Sodium Dodecyl Sulfate 

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SEM Scanning Electron Microscopy 

SH-SY5Y Human neuroblastoma cell line 

SV40/Balb 3T3 BALB/3T3 cells transformed with simian virus 40 (SV40) 

UPP Unoriented polypropylene films 

VEGFR-2 Vascular endothelial growth factor receptor 2 

 WR Water retention values 
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XPS X-Ray photoelectron spectra 

YIGSR Tyr-Ile-Gly-Ser-Arg (signaling domain)  
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SCOPE AND AIMS 

Creating devices for biological substitutes that enhance the regeneration of 

neural tissues is still a challenge, because of the difficulty in providing an active 

stimulation of nerve regeneration. Tissue engineering uses diverse approaches to 

construct scaffolds that allow a good adhesion and viability of cells, and an 

environment which provides a regulation of cell processes. BC is a material with 

promising properties to be used in tissue engineering devices, and has been modified 

to further enhance cell adhesion and biocompatibility.  

The aim of this work was to modify the BC using two different strategies: 1) the 

use of adhesive peptides fused to a carbohydrate binding domain with affinity to 

cellulose and; 2) surface modification by nitrogen plasma treatment. Also, in this work, 

we analized the biocompatibility in a long-term approach of two different types of BC 

grafts and the effect of BC nanofibers subcutaneously implanted in mice. 

Chapter 1 presents a general literature review of the main subjects of this work. 

Chater 2 presents the modification of BC through adsorption of recombinant proteins 

produced with a bioactive peptide conjugated to a carbohydrate binding domain, which 

has affinity by cellulose. The biological effect of the produced proteins was tested in 

neuronal, astrocytic and mesenchymal stem cells. 

Chapter 3 presents the modification of BC membranes by nitrogen plasma treatment, 

their characterization, and evaluation of the biological effects of the modified BC in in 

vitro studies with endothelial, neuronal and fibroblast cells. 

Chapter 4 corresponds to a long-term approach of in vivo studies of BC 

biocompatibility. In this chapter, the biocompatibility of BC implants and nanofibers 

implanted subcutaneously in mice are shown. This work was performed in collaboration 

with Immuno-Phisiology and Pharmacology Department of Instituto de Ciências 

Biomédicas Abel Salazar da Universidade do Porto. 

Chapter 5 summarizes the main conclusions and some future perspectives of this 
work. 
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1. General Introduction 
Adapted from Nova Publishers (2010)  

 

1.1 Tissue Engineering and Biomaterials 

Tissue engineering is “an interdisciplinary field in which the principles of 

engineering and life sciences are applied toward the generation of biological 

substitutes aiming the creation, preservation or restoration of lost organ functions” 

(Langer and Vacanti 1993). For each particular clinical problem, the optimal 

combination of a biomaterial scaffold, cells, culture conditions and soluble 

regulators must be identified,  allowing the  regeneration of lost tissue or tissue 

function (Eisenbarth, Velten et al. 2007). Fig. 1.1 summarizes the tissue 

engineering approach for tissue regeneration.  

 

Figure 1.1 Tissue engineering approach. Cells are extracted and isolated from the donor, 
and expanded in culture. The scaffold is chosen depending on the tissue to be 

regenerated. The cells are seeded on the scaffold and implanted to regenerate the 
injured tissue. Adapted from: http://archive.student.bmj.com/issues/08/05/education/210.php 
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The challenge before tissue engineers is to provide alternatives to the 

dramatic lack of tissues and organs for transplantation (Mooney and Mikos 1999). 

Transplantation of tissues from autogeneic (from the host), allogeneic (from the 

same species), and xenogeneic (from a different species) sources has been a 

major strategy in tissue repair, but the limited availability of tissue and the issues 

associated with immunogenicity and disease transmission have fueled the search 

for a better source for tissue replacement (Chen and Mooney 2003). In this 

context, tissue engineering arises as a promising therapeutic solution, based on 

the combination of cells, biomaterials and differentiation signals (Malafaya, Silva 

et al. 2007).  

It should be remarked that, according to some authors, the tissue 

engineering approach has severe limitations, namely associated to the expensive 

and lengthy cell growth in vitro. According to some authors, the regeneration of 

tissues and organs may be achieved alternatively, through the control of the 

natural regeneration mechanisms based on the recruitment of stem cells. 

Nevertheless, the tissue engineering tools are expected to find a growing 

application in the coming years, and several successful products are being 

developed (Okano 2004; Yang, Yamato et al. 2005). 

Traditional tissue engineering methods have generally focused on one of 

two strategies: 1) the injection of isolated cell suspensions and 2) the use of 

biodegradable scaffolds supporting tissue formation (Yang, Yamato et al. 2005). 

However, over the years, other strategies emerged.  The cell sheet engineering 

uses temperature-responsive culture dishes to cultivate cells that can be 

harvested as intact sheets simply by temperature switch. Cell sheets can be 

directly transplanted to host tissues or can be used to create three-dimensional 

structures via the layering of individual cell sheets, without the use of carrier 

substrates or scaffolds (Yang, Yamato et al. 2005). Another strategy consists on 

the use of bioactive peptides, derived from the extracellular matrix, on the site of 

injury. These peptides have been shown to exhibit potent chemoattrative and 

mitogenic activity upon endogenous progenitors and stem cells. These bioactive 

peptides have been used to recruit multipotential cells to the site of the injury 
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through in vivo administration. Indeed, these products seem to play a key role in 

the cell recruitment and constructive remodelling effect in tissue regeneration 

(Agrawal, Johnson et al. 2009; Reing, Zhang et al. 2009). 

Thus, tissue engineering includes nowadays a variety of approaches and 

has driven the development of a vast variety of biomaterials with suitable 

properties for each envisaged application (Drury and Mooney 2003). Many of 

these biomaterials mimetize the composition and/or structure of the native tissues 

(Spector 2006), the so-called biomimetic approach, enabled by means of nano-

biotechnological methods (Eisenbarth, Velten et al. 2007). According to Spector 

(2006), biomaterials for tissue engineering purposes should serve as a structural 

reinforcement of the defect, performing as a matrix for cell adhesion that facilitates 

or regulates cell processes such as proliferation, migration and matrix synthesis. 

Additionally, the biomaterial prevents infiltration of the tissue in contact with the 

defect, thus avoiding processes such as scarring that may impair the tissue 

regeneration processes (Spector 2006). Another function, also associated with the 

scaffolds, is to serve as carriers and delivery systems for growth factors and other 

biomolecular signals (Agrawal and Ray 2001). These agents stimulate 

biosynthetic activity and play an important role in tissue formation in vitro and 

regeneration in vivo (Spector 2006). 

The performance and suitability of a biomaterial for a biotechnological or 

biomedical application is a complex function of several properties. These include 

the interaction with proteins and cells at the site of use; the in vivo degradability; 

the micro- and macromechanical properties; finally, the stability under sterilization 

conditions (Elbert and Hubbell 1996). Furthermore, specific applications imposes 

other specific requirements (Ratner 1996). Table 1.1 summarizes relevant 

characteristics of materials for specific biomedical applications. 
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Table 1.1 Materials properties and biomedical devices 

Application Special Property 

Vascular prosthesis Burst strength, porosity 

Heart valve Durability, hydrodynamics 

Artificial heart Flex-fatigue, resistance 

Intraocular lens Clarity, refractive index 

Hip prosthesis Lubricity 

Bone cement Quick setting, strength 

Hydrocephalus shunt Flexibility 

Tendon prosthesis Strength, flexibility 

Adapted from: (Ratner 1996) 

 

Synthetic and natural polymers have been developed as materials for the 

engineering of soft and hard tissues. A number of materials and scaffolds have 

been experimentally and/or clinically studied (Hutmacher 2001; Spector 2006). 

Natural hydrogel forming polymers have frequently been used in tissue 

engineering applications, because they are either components of or have 

macromolecular properties similar to the natural extracellular matrix (ECM) (Drury 

and Mooney 2003). In general, the scaffold should be fabricated from a highly 

biocompatible material, which does not have the potential to elicit an 

immunological, nor clinically detectable foreign body reaction (Hutmacher 2001). 

The criteria for material selection include the toxicology, biocompatibility, 

biostability or biodegradability, surface properties, scale-up, costs and other 

physical or chemical properties (Grosskinsky 2006). Also, control of the pore 

characteristics including pore volume fraction, pore diameter and orientation, 

which vary with host tissue type, as well as the chemical composition of the 

matrix, has played a critical role in the advance of the scaffolds in tissue 

engineering (Spector, 2006). 
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1.1.1 Nerve tissue engineering 

The nervous system consists of two parts, the peripheral (PNS) and the 

central nervous systems (CNS), differing both in physiology and function (Huang 

and Huang 2006). Neurons and neuroglia are the cells that compose the nervous 

system. Neurons are the basic structural and functional elements of the nervous 

system and consist of a cell body (soma) and its extensions (axons and 

dendrites). Dendrites transmit electrical signals to the neuron cell body and the 

axon conducts impulses away. Glial cells, or neuroglia, are support cells that aid 

the function of neurons and include Schwann cells in the PNS and astrocytes and 

oligodendrocytes in the CNS (Schmidt and Leach 2003).  

 The PNS consists of the cranial nerves arising from the brain, the spinal 

nerves arising from the spinal cord, and sensory nerve cell bodies (dorsal root 

ganglia) and their processes. Peripheral nerves innervate muscle tissue, 

transmitting sensory input to and from the spinal column. The sensory neurons of 

PNS runs from stimulus receptors that inform the CNS (Fig 1.2) of the stimuli and 

motor neurons running from the CNS to the muscles and glands, called effectors, 

which take action. The CNS conducts and interprets signals as well as provides 

excitatory stimuli to the PNS, and is made up of spinal cord and brain, surrounded 

respectively by bone-skull and vertebra. Fluid and tissue also insulate the brain 

and spinal cord (Schmidt and Leach 2003; Huang and Huang 2006). 

 

 

Figure 1.2 The nervous system scheme. The sensory neurons of PNS runs from stimulus 
receptors that inform the CNS of the stimuli and motor neurons running from the CNS to 
the muscles and glands. The CNS conducts and interprets signals as well as provides 

excitatory stimuli to the PNS. Figure adapted from Huang and Huang (2006). 
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In the PNS, each Schwann cell envelops a single axon and the action 

potentials are conducted between the myelin sheaths along the peripheral nerve 

fiber (Gordon and Gordon 2010). On the outer surface of this Schwann cell layer 

is a basement membrane similar to that found in epithelial layers. In contrast to 

axons in the PNS, CNS axons do not possess this continuous basement 

membrane and sheath of Schwann cells. Many axons are instead surrounded by 

an insulating myelin sheath, which is formed from dense layers of successive 

wrappings of the cell membrane of Schwann cells (PNS) or oligodendrocytes 

(CNS). Myelin serves to increase the propagation velocity of the nerve impulse, 

which is particularly important for those axons that extend long distances (Schmidt 

and Leach 2003). 

The peripheral and central axonal branches of adult primary sensory 

neurons differ fundamentally in their response to injury: the peripheral branch 

regenerates after injury, but the central branch, the spinal cord, does not  

(Neumann, Bradke et al. 2002). The failure of the injured central branch to 

regenerate has multiple causes, including the presence of glial barriers and 

inhibitory molecules (Benfey, Bunger et al. 1985; Fawcett and Asher 1999) and 

the lack of some growth-promoting molecules at the injury site, which can alter the 

growth capacity of these neurons (Jakeman and Reier 1991; Neumann, Bradke et 

al. 2002). Fig 1.3 represents the CNS and PNS neurons in a situation of injury. 
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Figure 1.3 PNS axons can regenerate after an injury; CNS axons do not. Figure adapted 
from Bahr and Bonhoeffer (1994). 

 

The neurodegenerative disorders of the spinal cord and brain after injury, 

stroke or multiple sclerosis are increasing over the years (Prabhakaran, 

Venugopal et al. 2008). Spinal cord injury is one of the major causes of 

irreversible nerve injury. A critical feature of traumatic central nervous system 

(CNS) damage is a cascade of secondary events that occurs after the initial injury. 

After a traumatic injury, there is a production of a complex inhibitory environment 

that poses many challenges when trying to promote regeneration (Willerth and 

Sakiyama-Elbert 2007). A fluid filled cavity forms at the site of injury, which 

becomes surrounded by a dense glial scar. Reactive astrocytes, 

glycosaminoglycans and other inhibitory molecules prevent neurons and other 
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cells from infiltrating the injury site, forming a mechanical and chemical barrier, 

resulting in a loss of axonal connections and a loss of motor function (Willerth and 

Sakiyama-Elbert 2007). These secondary events cause further tissue damage, 

resulting in permanent loss of function, but it can be retarded by creating a 

favorable microenvironment for nerve regeneration (Park, Lim et al. 2009). 

The peripheral nerve lesions are common and serious injuries which 

generally lead to lifelong disability (Ciardelli and Chiono 2006). If there is no 

intervention to repair the damaged nerves, loss of function, impaired sensation 

and painful neuropathies will usually occur and most likely affect the patients 

adversely (Koh, Yong et al. 2010). The repair of peripheral nerve lesions has been 

attempted in many different ways, which all have in common the goal of directing 

the regenerating nerve fibres into the proper distal endoneurial tubes (Ciardelli 

and Chiono 2006). Compared to the central nervous system, peripheral axons can 

regenerate resulting in functional recovery, but this regenerative capacity is often 

incomplete and functional recovery with proximal lesions is limited. Furthermore, 

regeneration of axons to the appropriate targets remains a challenge with 

inappropriate reinnervation being an impediment to full recovery (Hoke and 

Brushart 2010).  

Among the numerous attempts to integrate tissue-engineering concepts into 

strategies to repair nearly all parts of the body, neuronal repair is not satisfactory. 

This is partially due to the complexity of the nervous system anatomy, functioning 

and the inefficiency of conventional repair approaches, which were based upon 

single components of either biomaterials, or cells alone (Ghasemi-Mobarakeh, 

Prabhakaran et al. 2008). However, nerve tissue engineering is a rapidly 

expanding area of research providing a new and promising approach to nerve 

repair and regeneration (Prabhakaran, Venugopal et al. 2008). Over the recent 

years, knowledge of the factors influencing nerve reconstruction has increased, 

but still, functional outcome of peripheral nerve trauma and spinal cord injuries are 

often disappointing, which highlight the need to optimize therapeutical 

intervention. Though, the most important challenges to bioengineering research 

addressing nerve injuries are the physiology of the nervous system (Huang and 
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Huang 2006). Therefore, the challenge in nerve regeneration is to construct 

biological substitutes that when implanted at the lesion are capable to maintain a 

continuous path for regeneration, promoting the infiltration of cells to secrete 

inductive factors for axonal elongation, reducing scar formation (Prabhakaran, 

Venugopal et al. 2008). Moreover, the interaction between cells and biomaterial 

substrates plays an important role, especially in regulating the differentiation of 

cells. Despite the advances in the differentiation of stem cells to several tissue 

phenotypes, a biocompatible scaffold that mimics the biological and physical 

environment of native ECM with optimized biochemical properties, supporting the 

differentiation of stem cells to neuronal cells, is yet to be identified (Prabhakaran, 

Venugopal et al. 2008). Fig 1.4 presents the properties of an ideal neural scaffold. 

 

 

Figure 1.4 The ideal neural scaffold. Adapted from (Subramanian, Krishnan et al. 2009). 

 

Thus, bio-engineered grafts are a promising alternative, as they can 

incorporate all the new developing strategies for nerve regeneration which 
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continually develop with the knowledge of the mechanism of regeneration 

(Ciardelli and Chiono 2006). A wide variety of materials have been suggested for 

the production of artificial devices for nerve repair, including biocompatible non-

degradable and degradable materials as can be seen in table 1.2. 

 

Table 1.2 Most studied materials for nerve regeneration and selected studies where they 
were used. 

Material References 

Synthetic materials 
 

Silicon (Smahel, Meyer et al. 1993; Zhao, Dahlin et 
al. 1993; Johansson, Wallman et al. 2009; He, 
Wang et al. 2010) 

PGA: poly(glycolide) (Nakamura, Inada et al. 2004; Fan, Gu et al. 
2008; Seo, Inada et al. 2008; Huang, Cullen 
et al. 2009) 

PLA: poly(L-lactide) (Dendunnen, Schakenraad et al. 1993; 
Luciano, Zavaglia et al. 2000; Yang, Murugan 
et al. 2004; Sun, Kingham et al. 2010) 

PHEMA-co-MMA: poly 

(2-hydroxyethylmethacrylate-co- 

methylmethacrylate) 

(Dalton, Flynn et al. 2002; Midha, Munro et al. 
2003; Belkas, Munro et al. 2005; Belkas, 
Munro et al. 2005; Katayama, Montenegro et 
al. 2006; Tsai, Dalton et al. 2006) 

Natural materials 
 

Chitosan (Wang, Ao et al. 2006; Patel, Mao et al. 2007; 
Fan, Gu et al. 2008; Patel, VandeVord et al. 
2008; Zhang, Wang et al. 2010) 

Hyaluronic acid (Hou, Xu et al. 2005; Tian, Hou et al. 2005; 
Cui, Tian et al. 2006; Hou, Tian et al. 2006; 
Wei, Tian et al. 2007) 

Collagen (Midha, Shoichet et al. 2001; Itoh, Takakuda 
et al. 2002; Ahmed, Venkateshwarlu et al. 
2004; Bruns, Stark et al. 2007; Bushnell, 
McWilliams et al. 2008; Patel, VandeVord et 
al. 2008; Koopmans, Hasse et al. 2009; 
Mollers, Heschel et al. 2009; Whitlock, 
Tuffaha et al. 2009) 
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Fibronectin (King, Henseler et al. 2003; Phillips, King et 
al. 2004) 

Bacterial cellulose (Klemm, Schumann et al. 2001; Mello, Feltrin 
et al. 2001; Brancher and Torres 2005) 

PHB: poly(3-hydroxybutyrate) (Mohanna, Young et al. 2003; Mohanna, 
Terenghi et al. 2005; Bian, Wang et al. 2009) 

Adapted from: (Pfister, Papaloizos et al. 2007) 

 

Current treatment options for spinal cord injury are still limited due to the 

inhibitory environment created in these injuries (Willerth and Sakiyama-Elbert 

2007).  Several attempts for the treatment of these injuries have been described 

in the literature; some examples are described ahead. Novikova and colleagues, 

in 2008, evaluated a biodegradable tubular conduit made of poly-β-

hydroxybutyrate (PHB) scaffold, predominantly with unidirectional fiber orientation, 

supplemented with cultured adult Schwann cells, for the axonal regeneration after 

cervical spinal cord injury in adult rats. After transplantation into the injured spinal 

cord, plain PHB conduit was well-integrated into posttraumatic cavity and 

regenerating axons were found mainly outside the PHB. Also, when suspension of 

adult Schwann cells was added to the PHB during transplantation, neurofilament-

positive axons filled the conduit and became associated with the implanted cells. 

The results demonstrate that a PHB scaffold promotes attachment, proliferation 

and survival of adult Schwann cells and supports marked axonal regeneration 

within the graft (Novikova, Pettersson et al. 2008). Nomura and co-workers (2008) 

examined the implantation of extramedullary chitosan channels seeded with 

neural stem cells derived from rats after spinal cord transection. The survival, 

maturation, and functional results using neural stem cells seeded into chitosan 

channels, implanted between the cord stumps after complete spinal cord 

transection, were evaluated after 14 weeks. Channels seeded with neural stem 

cells showed a tissue bridge and the cells showed long-term survival. Many host 

axons were present in the center of the bridge in association with the transplanted 

cells. The channels caused minimal tissue reaction in the adjacent spinal cord. 

Thus, implantation of chitosan channels seeded with neural stem cells after spinal 
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cord transection created a tissue bridge containing many surviving transplanted 

cells and host axons, although there was no functional improvement (Nomura, 

Zahir et al. 2008). Macroporous hydrogels based on 2-hydroxyethyl methacrylate 

(HEMA) were used by Hejcl and colleagues (2008) to bridge a spinal cord 

transection in rats. Positively charged HEMA hydrogels were implanted either 

immediately or 1 week after spinal cord transection; control animals were left 

untreated. The hydrogel implants adhered well to the spinal cord tissue. After 3 

months, the results showed ingrowth of connective tissue elements, blood 

vessels, neurofilaments, and Schwann cells into the hydrogels. The authors 

showed that positively charged HEMA hydrogels can bridge a posttraumatic 

spinal cord cavity and provide a scaffold for the ingrowth of regenerating axons. 

Also, the results indicate that delayed implantation can be more effective than 

immediate reconstructive surgery (Hejcl, Urdzikova et al. 2008). Nanofibers 

scaffolds for nerve guidance and drug delivery in the spinal cord were produced 

by Zhu and colleagues (2010). Blended polymers including poly(l-lactide acid) 

(PLA) and poly(lactide-co-glycotide) (PLGA) are used to electrospin nanofibrous 

scaffolds with a two-layer structure: aligned nanofibers in the inner layer and 

random nanofibers in the outer layer. Rolipram, a small molecule that can 

enhance cAMP (cyclic adenosine monophosphate) activity in neurons and 

suppress inflammatory responses, was immobilized onto the nanofibers. The 

nanofibrous scaffolds loaded with rolipram were used to bridge the hemisection 

lesion in 8-week old athymic rats. The scaffolds with rolipram increased axon 

growth through the scaffolds and in the lesion, promoted angiogenesis through 

the scaffold, and decreased the population of astrocytes and chondroitin sulfate 

proteoglycans in the lesion. Locomotor scale rating analysis showed that the 

scaffolds with rolipram significantly improved hindlimb function after 3 weeks (Zhu, 

Wang et al. 2010).  

The current clinical gold standard for repairing peripheral nerve injuries 

includes end-to-end anastomosis for transected nerve that are directly adjacent, 

but the use of autologous nerve grafts would be required if the nerve gaps are too 

large and cannot be easily reconstructed by end-to-end anastomosis (Koh, Yong 

et al. 2010). However, because autografts result in donor-site defects and are a 
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limited resource, an effective substitute would be valuable (Whitlock, Tuffaha et al. 

2009). The repair of the peripheral nerve gaps through tissue engineering 

scaffolds arises as an alternative to the use of autologous grafts to nerve 

regeneration. Several researchers are studying variable combinations of materials 

and bioactive molecules (Nisbet, Pattanawong et al. 2007; Liu 2008; Nisbet, Yu et 

al. 2008; Cao, Liu et al. 2009; Subramanian, Krishnan et al. 2009; Tan, Du et al. 

2009; Johnson, Parker et al. 2010; Scanga, Goraltchouk et al. 2010; Suri and 

Schmidt 2010; Xie, MacEwan et al. 2010). In 2004, Rochkind and colleagues 

evaluated the efficacy of biodegradable co-polymer neurotubes containing a 

viscous gel with growth factors, neuroprotective agents and Schwann cells for the 

treatment of complete peripheral nerve injury. In 4 months, rats implanted with the 

composite co-polymer neurotube showed beginning of re-establishment of active 

foot movements. The tube was dissolved and nerve showed complete 

reconnection. Histological observation of the nerve showed growth of myelinated 

axons into the site where a nerve defect was replaced by the neurotube and into 

the distal part of the nerve (Rochkind, Astachov et al. 2004). In 2005, Wang and 

collaborators composed a scaffold with chitosan, agarose hydrogel and nerve 

growth factor (NGF), which was transplanted to bridge a gap of injured sciatic 

nerve in rat. Chitosan was used as negative control and autograft nerve as the 

positive one. The number and diameter of regenerating nerve fibers bridged by 

the scaffold performed better than the negative control and reached the level of 

autograft nerve group, providing a good microenvironment for nerve regeneration 

(Wang, Fan et al. 2005). Chen and collaborators (2006) covalently immobilized 

NGF, Brain derived neurotrophic factor (BDNF) and Insulin-Like Growth Factor 1 

(IGF-1) on gelatin-tricalcium phosphate membrane using carbodiimide. In the in 

vivo study in rats, the membranes conduits modified with various growth factors 

were well tolerated by the host tissue. In the regenerated nerves, the number of 

axons per unit area was significantly higher in the presence of growth factors. 

However, the average axon size was the largest in the NGF group. In the 

assessment of motor and sensory recovery after nerve repair, conduits modified 

with various neurotrophic factors showed a more favorable outcome in compound 

muscle action potential (Chen, Chen et al. 2006). Wang and collaborators (2008) 
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developed a bilayered chitosan tube that comprises an outer layer of chitosan film 

and an inner layer of chitosan nonwoven nano/microfiber mesh. Also, the authors 

introduced glycine spacers into the CYIGSR sequence, a domain of laminin-1 that 

enhances Schwann cells migration and attachment, as well as neural outgrowth. 

The peptides were covalently bound to the nano/microfiber mesh surface of the 

chitosan tube so that the effects of peptide mobility on nerve regeneration could 

be examined. The constructed scaffolds were grafted to bridge injured sciatic 

nerve. These scaffolds were removed 5 and 10 weeks after implantation and 

results showed that the nerve regeneration into chitosan tubes, on which the 

CGGGGGGYIGSR peptide was immobilized, exhibited efficacy similar to that of 

the isograft (control), thus representing a promising candidate for promoting 

peripheral nerve repair (Wang, Itoh et al. 2008). Wood et al. (2010) analysed 

whether an affinity-based delivery system, which binds to heparin with moderate 

affinity and delivery NGF, affected the nerve regeneration in a rat sciatic nerve 

defect. After 6 weeks, histomorphometry analysis showed a higher frequency of 

nerve regeneration in NGF group compared to control and were similar to the 

nerve isograft group in measures of nerve fiber density and percent neural tissue, 

and larger diameter nerve fibers, suggesting more mature regenerating nerve 

content (Wood, Hunter et al. 2010). 

Extensive attention has been devoted to develop scaffolds with inner 

structures mimicking the nerve-guiding basal lamina micro-channels (Hu, Huang 

et al. 2009). In order to maximize cell alignment and obtain a better nerve 

regeneration, Lietz et al. (2006) developed a resorbable, semipermeable nerve 

guide conduits with microstructured internal polymer filaments. To maximize 

Schwann cells alignment, different microtopographies were investigated. Special 

longitudinal microgrooves directed this cell orientation and growing axons of 

dorsal root ganglia. Highly oriented axon growth was observed inside nerve guide 

conduits of microgrooved polymer filaments. Since scar-forming fibroblasts could 

potentially interfere with axonal regrowth, cultures with fibroblasts, Schwann cells 

and dorsal root ganglia were conducted. Fibroblasts positioned on the outer 

nanopore containing conduit wall did not hamper neuronal and glial differentiation 

inside the tube (Lietz, Dreesmann et al. 2006). Valmikinathan et al. (2008) 
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developed a novel PLGA microsphere-based spiral scaffold designed with a 

nanofibrous surface to provide a good surface area, adequate mechanical 

properties and porosity for neuronal cell attachment and nerve regeneration. 

These scaffolds have an open architecture, which leaves enough volume for 

media influx and deeper cell penetration into the scaffolds. The in vitro tests 

conducted using Schwann cells showed that the nanofibrous spiral scaffolds 

promoted higher cell attachment and proliferation when compared to tubular 

scaffolds or nanofiber-based tubular scaffolds. Also, the surface nanofiber coating 

enhances the surface area, mimics the extracellular matrix and provides 

unidirectional alignment of cells along its direction, being a potentially scaffold to 

be used in nerve regeneration (Valmikinathan, Tian et al. 2008). In 2009, Hu and 

colleagues described a nerve-guiding scaffold composed of collagen-chitosan 

with inner dimensions resembling the basal lamina micro-channels of normal 

nerves. The scaffold has longitudinally orientated micro-channels and extensive 

interconnected pores between the parallel micro-channels. The efficacy of the this 

scaffold to bridge a long sciatic nerve defect in rats was evaluated. The results 

showed that the collagen-chitosan scaffold achieved in vivo nerve regeneration 

and functional recovery equivalent to an autograft, without the exogenous delivery 

of regenerative agents or cell transplantation (Hu, Huang et al. 2009). Also, 

nanofibrous conduits were used by Koh et al. (2010) in a rat sciatic nerve defect 

model. The conduit is made out of bilayered nanofibrous membranes with the 

nanofibers longitudinally aligned in the lumen and randomly oriented on the outer 

surface. The intra-luminal guidance channel is made out of aligned nanofibrous 

yarns. In addition, biomolecules such as laminin and nerve growth factor were 

incorporated in the nanofibrous nerve construct to determine their efficacy in in 

vivo nerve regeneration. Functional recovery was improved with use of the nerve 

construct (Koh, Yong et al. 2010). These findings demonstrate that scaffolds with 

microstructure similar to that of the nerves basal lamina has the potential for 

clinical usage in reconstructing peripheral nerve defects, being used as 

alternatives to nerve autografts for peripheral nerve regeneration.  

It is a challenge to obtain successful and complete rehabilitation for 

peripheral nerve injuries that involve nerve transections. However, axonal 
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outgrowth of the peripheral nerve can be promoted if appropriate nerve repair 

techniques and/or nerve implant devices are used, thus reconnecting the proximal 

and the distal stumps for functional recovery (Koh, Yong et al. 2010). 

Furthermore, the existent therapies have limited capacity to reduce disease 

progression or damage of the CNS of adult mammals, and successful 

regeneration following injury or disease does not occur. However, neural tissue 

engineering strategies focus on developing scaffolds that artificially generate 

favourable cellular microenvironments to promote regeneration within the CNS, 

particularly in conjunction with stem cells, has generated promising results 

(Nisbet, Crompton et al. 2008). Table 1.3 summarizes the obstacles present in 

tissue regeneration of neuronal tissues, and the strategies that may be able to 

solve these problems.  

 

Table 1.3 Regeneration obstacles and strategies used for neuronal tissue engineering 

Peripheral nervous system Central nervous system 

Regeneration obstacles 

 

Cell body response  

Some retrograde cell death  Retrograde cell death 

Ample expression of regeneration associated 
genes 

Low expression of regeneration associated 
genes  

Degeneration of the distal stump Glial scar formation 

Swelling of the proximal stump Inhibitory molecules 

Possible gap between nerve stumps Myelin-associated glycoprotein  

 Chondroitin sulfate proteoglycans 

Strategies for repair 

 

Guidance therapies   

Autologous tissue grafts  Peripheral nerve and embryonic spinal cord 
grafts  
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Acellular tissue grafts  

Nerve conduits  

Support matrices 

  

Biomolecular therapies  

Neurotrophic factors  Neurotrophic factors  

Regeneration-associated genes  Regeneration-associated genes  

Antiapoptosis genes  Antiapoptosis genes 

 Blocking inhibitory biomolecules  

 

Cellular therapies   

Schwann cells Schwann cells 

Macrophages  Macrophages  

Stem cells Stem cells 

Genetically modified cells  Genetically modified cells  

Adapted from: (Schmidt and Leach 2003) 

 

1.2 Stem cells and Tissue Engineering 

Controlling microenvironments in damaged tissues is a challenging problem 

in regenerative medicine and tissue engineering, where the modulation of the 

microenvironment may allow the control over the regenerative processes. 

Depending upon the type of tissue injured, various bioactive molecules, specific 

cells, peptides, and scaffolds have been used for this purpose (Park, Lim et al. 

2009). The use of stem cells in tissue engineering constructs is a promising 

strategy, because these cells can express a variety of growth factors important for 

tissue regeneration and cell differentiation. 

The stem cells can be defined by two distinct traits: self-renewal, which is 

the process where a single cell gives rise to two cells, and differentiation ability 

where a progenitor cell differentiate to a mature cell type upon specific cues and 

signals (Barzilay, Levy et al. 2006). There are different sources of stem cells in 



General Introduction   CHAPTER 1 

Pértile, R. A. N. | 2010  18 
 

different tissues. The stem cell population is comprised of two main cell types: 

embryonic stem cells and adult stem cells. The adult stem cells have the capacity 

to differentiate along their lineage of origin, but also, there have been reports of 

the ability of these cells to differentiate along different lineages than its original 

organ, showing multipotency (Barzilay, Levy et al. 2006). Bone marrow provides 

continuous source of stem cells: the hematopoietic stem cells (HSCs) and 

nonhematopoietic or mesenchymal stem cells. The stem-like cells from 

nonhematopoietic tissues are currently referred as mesenchymal stem cells 

(MSCs), because of their ability to differentiate into cells that can roughly be 

defined as mesenchymal or marrow stromal cells, and they appear to arise from 

the complex array of supporting structures found in marrow (Prockop 1997). 

MSCs adhere strongly to tissue culture plastic and are capable of multipotent 

differentiation into osteoblasts, chondroblasts, adipocytes and myoblasts. Some 

studies also indicate that bone marrow MSCs can be induced to differentiate to 

neuron-like cells (Sanchez-Ramos, Song et al. 2000; Woodbury, Schwarz et al. 

2000; Black and Woodbury 2001). Moreover, there is evidence for MSC 

differentiation into functional glial cells, mainly to astrocyte and oligodendrocyte 

phenotypes (Suzuki, Taguchi et al. 2004; Blondheim, Levy et al. 2006). 

Expanded, plastic adherent MSCs often are positive for the surface markers 

CD73, CD90 and CD105, but negative for CD11b, CD19, CD34 and CD45 

(Montzka, Lassonczyk et al. 2009) and represent a minor fraction of the total 

nucleated cell population in marrow, having a fibroblastic morphology in culture 

(Barry and Murphy 2004).  

Although the mechanism underlying the stem cells beneficial effect in the 

treatment of diseases is not elucidated, its potential has been demonstrated using 

different approaches. Cell replacement is one of those, consisting in the direct 

replacement of the degenerated cells by functional cells. Also, the transplantation 

of stem cells can provide support to affected cells by secreting cytokines and 

neurotrophic factors, which means the creation of a neuroprotective environment. 

Another approach is the gene delivery, using stem cells as vehicles to deliver 

specific supportive genes to the affected area (Barzilay, Levy et al. 2006). MSCs 

have been exploited in the treatment of neurological diseases. Since the survival 
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and migration of human MSCs grafted into rat brains was demonstrated, the 

possibility that such cells might act as suitable tools for promoting CNS repair has 

been raised (Montzka, Lassonczyk et al. 2009). MSC administration has been 

shown to promote neuronal survival and limit the severity of neurological 

impairment in animal models of induced stroke and traumatic brain injury, as well 

as promote recovery of motor function in mice (Chen, Chai et al. 2001; Li, Chen et 

al. 2001; Lu, Mahmood et al. 2001; Zhao, Duan et al. 2002). Direct implantation of 

MSCs into the spinal column has also been shown to promote functional recovery 

following a standardized contusion injury (Chopp, Zhang et al. 2000; Hofstetter, 

Schwarz et al. 2002; Crigler, Robey et al. 2006). Although the neuroprotective 

effects of MSCs may result from their ability to replace the diseased or damaged 

neurons via cellular differentiation, it has been suggested that the effects could 

also be credited to MSCs’ ability to produce important factors (neurotrophic 

factors) that support neuronal cell survival and promote nerve fiber regeneration 

at the sites of injury (Abe 2000; Li, Chen et al. 2002; Mahmood, Lu et al. 2004; 

Jiang, Lv et al. 2010).  

Some of the most common growth factors used to promote neural tissue 

engineering are neurotrophins (Willerth and Sakiyama-Elbert 2007). 

Neurotrophins are a family of proteins that induce the survival, development and 

function of neurons (Coumans, Lin et al. 2001). The family includes nerve growth 

factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) 

and neurotrophin-4/5 (NT-4/5) also known as just NT-4 and NT-5, and are derived 

from a common ancestral gene, are similar in sequence and structure, and are 

therefore collectively named neurotrophins (Hallbook 1999). Outside of the 

neurotrophin family, other factors of importance are ciliary neurotrophic factor 

(CNTF), glial cell line-derived growth factor (GDNF), and acidic and basic 

fibroblast growth factor (FGFs) (Schmidt and Leach 2003). Table 1.4 summarizes 

the type of neuronal response related to neurotrophins.  
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Table 1.4 Neuron response to neurotrophins 

Neural response promoted Neurotrophic factors 

Motor neuron survival and outgrowth BDNF, NT-3, NT-4/5, CNTF, GDNF 

Sensory neuron survival / outgrowth NGF, NT-4/5, GDNF / NGF, BDNF, NT-3 

Spinal cord regeneration NGF, NT-3, CNTF, FGFs 

Peripheral nerve regeneration NGF, NT-3, NT-4/5, CNTF, GDNF, FGFs 

Sensory nerve growth across the PNS-CNS 
transition zone 

NGF, NT-3, GDNF, FGFs 

Adapted from: (Huang and Huang 2006) 

 

The administration of neurotrophins is a potential approach to the therapy of 

neurodegenerative disorders or injuries, spinal cord and brain trauma, but 

limitations regarding its effective delivery and potential side effects have limited 

the clinical application of this strategy (Jiang, Lv et al. 2010). The influence of the 

neurotrophins in nerve regeneration has been the focus of extensive research 

(Anand, Birch et al. 1994; Houweling, Bar et al. 1998; Houweling, Lankhorst et al. 

1998; Terenghi 1999; Blesch 2000; Jones, Oudega et al. 2001; Yin, Kemp et al. 

2001; Blesch, Lu et al. 2002; Sahenk, Nagaraja et al. 2003; Tuszynski, Blesch et 

al. 2003; Serpe, Byram et al. 2005; Vogelin, Baker et al. 2006; Kwon, Liu et al. 

2007; Li, Li et al. 2008; Chu, Li et al. 2009; Guzen, Leme et al. 2009; Xu, Chen et 

al. 2009). The administration of BDNF or NT-3 in hemisection and spinal cord 

transplant in the adult rat was showed to increase the axonal growth within the 

transplant and prevent the atrophy of axotomized supraspinal neurons (Bregman, 

McAtee et al. 1997; Bregman, Broude et al. 1998). In addition, neurotrophins can 

increase the expression of regeneration-associated genes within the cell bodies of 

the injured axons (Broude, McAtee et al. 1999; Coumans, Lin et al. 2001). The 

effect of intramedullary infusion of BDNF, NGF, or NT-3 on the regeneration after 

spinal cord injury in adult rats was tested by Namiki and colleagues (2000). 

Invasion and proliferation of Schwann cells and formation of peripheral myelin 

were more prominent at the injury site in the BDNF-treated animals indicating that 
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continuous intramedullary infusion of BDNF provides neuroprotection and 

enhances some regenerative activity after spinal cord injury (Namiki, Kojima et al. 

2000). Bloch and colleagues (2001) studied the continuously release of 

neurotrophins by synthetic nerve guidance channels in the transected rat dorsal 

root. Four weeks after the induced lesion, the BDNF showed a limited effect on 

axonal regeneration, but NGF and NT-3 powerfully promoted regeneration of 

myelinated axons. NGF had a potent effect on the regeneration of unmyelinated 

axons. This study suggests that the slowly and continuously releasing of the 

neurotrophins NGF and NT-3 can overcome the limited regeneration of transected 

dorsal root (Bloch, Fine et al. 2001). Yu and colleagues produced NGF-containing 

polymeric microspheres (PLGA-PLA) and mixed with fibrin glue to develop nerve 

grafts for prolonged, site-specific delivery of NGF. To assess nerve regeneration 

the authors used a model of sciatic nerve gaps in rats. Sixteen weeks after nerve 

repair, the ratio of conserved muscle-mass was lower in the NGF-treated group 

than in the autograft group. Image analysis revealed that axonal diameter, axon 

number, and myelin thickness was similar to NGF-treated acellular grafting and 

autografting, showing that this method of sustained site-specific delivery of NGF 

can enhance peripheral nerve regeneration across short nerve gaps repaired with 

acellular nerve grafts (Yu, Peng et al. 2009). 

It has recently been demonstrated that MSCs, even without any induction, 

are able to secret neurotrophins such as NGF, BDNF, GDNF, CNTF and NT3, 

thus providing a natural source for neurotrophins (Jiang, Lv et al. 2010) that can 

be used  in tissue engineering constructs. Tohill and colleagues (2004) exposed 

bone marrow mesenchymal stem cells (BMSCs) to glial growth factor and 

transplanted into nerve conduits in the rat sciatic nerve. MSCs maintained glial 

markers expression and enhanced nerve regeneration, with significant Schwan 

cell regeneration (Tohill, Mantovani et al. 2004). Rat amniotic fluid MSCs were 

used by Pan and colleagues (2007), embedded in fibrin glue, to be delivered to 

the injured nerve. High levels of expression of BDNF, GDNF, CNTF, NGF and 

NT-3 were demonstrated in these MSCs. Also, motor function recovery, the 

compound muscle action potential, and nerve conduction latency showed 

significant improvement in rats treated with these cells. The results revealed less 
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fibrosis and a high level of expression glial markers at the injury site. The authors 

hypothesize that the increased nerve regeneration verified is due to the 

neurotrophic factors secreted by the MSCs (Pan, Cheng et al. 2007). Chen and 

collaborators (2007) also tested the beneficial effects of implanted BMSCs on 

sciatic nerve regeneration; when compared to silicon tubes control, animals 

subjected to this treatment improved walking behaviour, reduced loss of muscle 

weight and greater number of regenerating axons within the tube was verified. 

The authors associated the regenerative potential of BMSCs with the neurotrophic 

factors produced by these cells, leading to a promoting effect on nerve 

regeneration (Chen, Ou et al. 2007). Wang and colleagues used MSCs to 

promote peripheral nerve regeneration in a rat sciatic nerve gap model. The 

influence of MSCs on the proliferation of Schwann cells and on the neurotrophic 

factor expression in nerve regeneration was evaluated. The results confirmed that 

administration of MSCs into nerve conduits stimulated Schwann cells proliferation 

and axonal outgrowth, and also up-regulated expression of nerve skeleton 

molecules, neurotrophic factors and their receptors within the rat regenerating 

nerves (Wang, Ding et al. 2009). Zheng and Cui (2010) developed and tested 

chitosan conduit to use in peripheral nerve reconstruction combined with BMSCs. 

The BMSCs transplanted can differentiate into neural stem cells in vivo, and the 

chitosan combined with BMSCs showed to bridge neural gap better resulting from 

the differentiation effects of the BMSCs (Zheng and Cui 2010). More examples of 

the use of stem cells for neuronal tissue engineering are reported in several 

studies (Cuevas, Carceller et al. 2002; Lu, Jones et al. 2003; Cuevas, Carceller et 

al. 2004; Caddick, Wiberg et al. 2005; Crigler, Robey et al. 2006; Keilhoff, Stang 

et al. 2006; Pan, Yang et al. 2006; Kwon, Song et al. 2009; Makar, Bever et al. 

2009; Pan, Chen et al. 2009; Rooney, McMahon et al. 2009; Sadan, Shemesh et 

al. 2009; Shi, Zhou et al. 2009; Wilkins, Kemp et al. 2009; Yagihashi, Mizukami et 

al. 2009). Furthermore, MSCs produce other neuroregulatory molecules in 

addition to neurotrophins that play a role in neuronal cell survival and 

neuritogenesis, and accounts for the ability of these cells to engraft, migrate and 

affect repair within nervous system (Crigler, Robey et al. 2006). These cells are 
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an important tool to neuronal tissue engineering and seem to be a promising 

treatment for neurological diseases and injuries. 

 

1.3 Bacterial Cellulose as a biomaterial for tissue engineering 

Bacterial cellulose (BC) is a biomaterial produced by bacterial strains from 

the genera Acetobacter, Agrobacterium, Pseudomonas, Rhizobium and Sarcina, 

the last one being the only genus of Gram-positive bacteria in this field (Jonas and 

Farah 1998). Interestingly, only a few bacterial species, taxonomically related to 

this genus, extracellularly secrete the synthesized cellulose as fibers. Figure 1.5 

shows an image of bacterial cellulose network and the bacterial cells published by 

Klemm et al. (2001). 

 

 

Figure 1.5 Bacterial cellulose and bacterial cells. Image from Klemm, et al. (2001). 

 

Special attention was given to strains from Gluconacetobacter xylinus 

(=Acetobacter xylinum), first described by Brown in 1886 (Brown 1886). While the 

secreted cellulose is identical to the one produced by plants, regarding the 

molecular structure, it is chemically pure, i.e. not mixed with non-cellulosic 

polysaccharides (Jonas and Farah 1998; Vandamme, De Baets et al. 1998; 

Klemm, Schumann et al. 2001; Amano, Ito et al. 2005; Helenius, Backdahl et al. 
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2006). Its unique properties account for its extraordinary physico-chemical and 

mechanical behaviour, resulting in characteristics that are quite promising for 

modern medicine and biomedical research (Watanabe, Eto et al. 1993; Iguchi, 

Yamanaka et al. 2000; Klemm, Schumann et al. 2001; Svensson, Harrah et al. 

2004; Czaja, Krystynowicz et al. 2006; Czaja, Young et al. 2007). 

 

1.3.1 Biosynthesis, Structure and Properties 

The classical medium to culture G. xylinus and maximize the growth and 

cellulose production was described by Hestrin and Schramm. The pH of the 

medium is 6 and the optimum growth temperature is 30 ºC, though the bacteria 

grow well over a temperature range of 25 to 30 ºC. The static culture leads to the 

production of a cellulose pellicle holding bacterial cells floating on the surface 

medium. In a culture medium aerated by shaking, bacteria grow faster, but less 

cellulose, presented as ball-shaped particles, is produced. When G. xylinus is 

cultured on solid medium, the colonies have a dry, wrinkled appearance (Hestrin 

and Schramm 1954; Cannon and Anderson 1991). 

The ultrastructure of the cellulose synthesis apparatus is best understood in 

G. xylinus. The cellulose synthase is considered the most important enzyme in the 

bacterial cellulose biosynthesis. The cellulose synthase operon codes protein 

complexes aligned along the long axis of the cell. Cellulose synthesizing 

complexes are present in the surface of the bacteria, next to the cell membrane 

pores where the cellulose fibrils are extruded through, associating with other fibrils 

and making up the ribbon of crystalline cellulose (Jonas and Farah 1998; Amano, 

Ito et al. 2005). Each bacterium synthesizes a cellulosic ribbon with a width 

ranging from 40 to 60 nm, parallel to the longitudinal axis of the bacterial cell. 

The ribbon of cellulose is composed of microfibrils with around 1.5 nm thickness, 

secreted through extrusion sites in the outer membrane of the bacterium. Then, 

the microfibrils aggregate into 3 to 4 nm microfibrils via crystallization of adjacent 

glucan chains and finally, together, form the larger cellulosic ribbon (Cannon and 

Anderson 1991). 
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Several studies were developed to clarify the physiologic role of cellulose. 

As the cellulose matrix is less dense than water, it has been proposed to allow 

maintaining the bacterial cells in an oxygen-rich environment. Additionally, it 

allows protecting the bacteria from ultraviolet light, competing microorganisms and 

heavy-metal ions, while retaining the moisture and allowing nutrient supply by 

diffusion (Hestrin and Schramm 1954; Ross, Mayer et al. 1991; Iguchi, Yamanaka 

et al. 2000; Klemm, Schumann et al. 2001). 

As Gluconacetobacter microorganisms are mandatory aerobes, under static 

conditions, BC is synthesized at the air/liquid interface of the culture medium 

(Jonas and Farah 1998; Klemm, Schumann et al. 2001). Other relevant aspects 

for the BC production are the carbon and nitrogen sources and concentration, the 

pH and temperature, and the surface area of the fermentation system. All these 

aspects affect the cellulose production as well as the membrane properties, in 

static or agitated cell culture. Also, differences in the bacterial strains play an 

important role in the microstructure and production rate. Figure 1.6 shows a 

membrane produced by ATCC 10245 G. xylinus strain (Kouda, Yano et al. 1997; 

Jonas and Farah 1998; Hwang, Yang et al. 1999; Ramana, Tomar et al. 2000; 

Klemm, Schumann et al. 2001; Krystynowicz, Czaja et al. 2002; Bodin, Backdahl 

et al. 2007). 

 

Figure 1.6 Bacterial cellulose pellicle produced by G. xylinus in static culture (ATCC 
10245). 
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Besides macroscopic morphological differences, BC produced in static and 

agitated cultures differs also at various structural levels. While the fibril network 

remains the same, there are some differences in the structure of crystals and 

molecular chains. The crystallinity and cellulose I alpha content, as well as the 

degree of polymerization, is lower in agitated than in static culture (Valla, Ertesvåg 

et al. 2009). 

As referred above, the bacterial and vegetable celluloses have the same 

molecular structure, both being built up of β(1→4)–linked D-glucose units. The 

degree of polymerization is however rather different, about 13000-14000 for 

plants and 2000-6000 for bacterial cellulose. Both celluloses are highly crystalline; 

differing in the arrangement of glucosyl units within the unit cells of the crystallites, 

and several studies suggests that these celluloses are synthesized by enzymatic 

complexes that differ at the molecular level. Also, this bacterial polysaccharide is 

secreted free of lignin, pectin, hemicelluloses and other biogenic compounds, 

which are associated with plant cellulose (Jonas and Farah 1998; Brown and 

Saxena 2000; Klemm, Schumann et al. 2001).  

Morphology - The gelatinous BC membrane formed in static culture is 

characterized by a 3D ultrafine fibrous network structure, containing about 99% 

water. The randomly assembled ribbon-shaped fibrils are less than 100 nm wide 

and composed of elementary nanofibrils, aggregated in bundles with lateral size 

of 7-8 nm. The crystallinity degree of BC is in the range of 60-90% (Yamanaka, 

Watanabe et al. 1989; Klemm, Heublein et al. 2005; Nakagaito, Iwamoto et al. 

2005; Backdahl, Helenius et al. 2006; Bodin, Ahrenstedt et al. 2007).  

Crystallographically, BC is a Cellulose I, with 60% Iα /40% Iβ (Iguchi, Yamanaka 

et al. 2000; Bodin, Ahrenstedt et al. 2007). The crystallographic molecular 

arrangement may influence the physical properties, as the allomorphs have 

different crystal packing, molecular conformation, and hydrogen bonding (Klemm, 

Heublein et al. 2005; Bodin, Ahrenstedt et al. 2007). In 2006, Sanchavanakit 

characterized BC pellicles obtained after 48 hours culture: the surface area of the 

air-dried BC films was 12.6 m2/g, with a pore size distribution ranging from 45 to 

600 Å. The pore diameter of the air-dried film was inferior to 0,1 µm; however, 
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when the air-dried pellicle was swollen with water, at 30 oC, the apparent pore 

diameter raised to 0.2-1.0 µm  (Sanchavanakit, Sangrungraungroj et al. 2006). 

Due to its high crystallinity and small fiber diameter, BC possess excellent 

mechanical strength and high surface area when compared to plant derived 

cellulose (Sokolnicki, Fisher et al. 2006) and the application and biological 

function of celluloses are based on its distinct fiber morphology (Klemm, Heublein 

et al. 2005). Figure 1.7 show a BC membrane with mammalian cells adhered on 

the surface, and a detail of BC membrane surface. 

 

Figure 1.7 Scanning eletron microscopy of bacterial cellulose. (A) Fibroblasts adhered on 
bacterial cellulose membranes after 24h in culture; (B) detail of BC membranes surface. 

 

Mechanical properties – Both the micro and macrostructure of BC are 

influenced by the growing culture environment and the treatment after synthesis. 

According to Iguchi, a BC pellicle obtained after 7 days of culture and air-dried at 

20 oC and low pressure, presents a Young’s modulus of 16,9 GPa, tensile 

strength of 256 MPa and elongation of 1,7% (Iguchi, Yamanaka et al. 2000). 

However, when a pellicle was dried through the heat-press method described by 

Iguchi (Iguchi, Mitsuhashi et al. 1988) and an excess of pressure (490 – 1960 

kPa) was applied, the tensile strength as well as elongation tend to decrease, 

while the Young modulus remains constant. According to Sanchavanakit (2006), a 

BC dried film (from a 48h grown culture) with a thickness of 0.12 mm presents a 

tensile strength and break strain of 5.21 MPa and 3.75%, whereas for the wet 

films the values are 1.56 MPa and 8.00%, respectively (Sanchavanakit, 

Sangrungraungroj et al. 2006). The high Young’s modulus and tensile strength of 
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BC films seems to result from its high crystallinity, high planar orientation of 

ribbons pressed into a sheet, ultrafine structure, and the complex network of the 

ribbons (Nishi, Uryu et al. 1990). 

Water holding capacity - BC is highly hydrophilic, holding over 100 times 

its weight in water.  Klemm and colleagues showed that the “never dried” BC has 

water retention values (WR) in the range of 1000%, drastically decreasing after 

air-drying to values that can be compared with those of plant cellulose, 106% and 

60%, respectively. The method of drying has been shown to affect the BC 

porosity, freeze-drying (WR of 629%) being reported as the most effective method 

to preserve the porous structure (Klemm, Schumann et al. 2001).  

Permeability – Sokolnicki et al. carried out mass transfer experiments to 

characterize the transport of biomolecules (namely vitamin B12, lysozyme and 

bovine serum albumin, with molecular weight of 1355 Da, 14.3 kDa and 66.3 kDa, 

respectively) through hydrated BC membranes. The results indicated a dual 

transport mechanism of the solute through the continuous water phase and 

cellulose matrix, with some hindrance of molecular diffusion via fiber obstruction. 

Also, the 94% membrane porosity and its morphology indicated the existence of 

micro-channels of varying size, through which solute diffusion occurs. The 

diffusivities of all tested solutes could be attributed primarily to hydrodynamic and 

entropic exclusion and only slightly to partitioning and adsorption in the case of 

low molecular weight molecules (Sokolnicki, Fisher et al. 2006). 

 

1.3.2 Medical Applications 

The biocompatible nature of cellulose-based materials, such as oxidized 

cellulose, regenerated cellulose hydrogels, sponge cellulose and bacterial 

cellulose, has allowed comprehensive research targeted at medical applications 

(Martson, Viljanto et al. 1998; Fricain, Granja et al. 2002; Entcheva, Bien et al. 

2004; Muller, Muller et al. 2006; Shi, Chen et al. 2009). Representative examples 

BC-based scaffolds for tissue engineering include vascular grafts, cartilage, 

neural regeneration and wound dressings. 
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The interaction between cells and BC has been investigated by several 

research groups. In 1993, BC was described as a substrate for mammalian cell 

culture by Watanabe and colleagues (Watanabe, Eto et al. 1993). Adhesion to BC 

was observed using anchorage-dependent cell lines (L929 mouse fibroblasts, 

Detroit 551, HEL, mouse 3T3 Swiss, SV40/Balb 3T3, CHO, Human J-111 and 

Human epidermal Keratinocytes). Modification of the BC surface, to improve the 

interaction with cells, involved the introduction of electrical charge and adhesive 

proteins, such as collagen type I, collagen type IV, fibrin, fibronectin or laminin 

(Watanabe, Eto et al. 1993). Andrade et al. improved the adhesion of fibroblasts 

on BC pellicles modified using four recombinant proteins containing cellulose-

binding module and an adhesion peptide (Andrade, Moreira et al. 2008). 

The interaction of BC films with human transformed skin keratinocytes and 

human normal skin fibroblasts was evaluated (Sanchavanakit, Sangrungraungroj 

et al. 2006). The results demonstrated that BC supports the proliferation of both 

cell types, with no signs of toxicity; the keratinocytes exhibited normal 

cell proliferation, spreading and also maintained the normal phenotype, while for 

the fibroblast culture the pattern of cell distribution and stability on BC film was 

poorer. Moreover, the migration of keratinocytes on a BC film was comparable to 

that of a polystyrene plate. Pértile and colleagues, in 2007, found a similar 

behavior when studying the interaction between BC pellicles and skin fibroblasts 

(Pértile, Siqueira et al. 2007). 

In an in vivo biocompatibility study, BC was subcutaneously implanted in 

mice, for a period of up to 12 weeks (Helenius, Backdahl et al. 2006). BC was 

shown to integrate well into the host tissue, with cells infiltrating the BC network 

and no signs of chronic inflammatory reaction or capsule formation. The formation 

of new blood vessels around and inside the implants was also observed, 

evidencing the good biocompatibility of the biomaterial.  
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1.3.3 BC in tissue regeneration 

The BC is used in wound dressing for a long time. Since 1990, BC has been 

tested as a temporary dressing and skin healing. The advantage of BC in wound 

healing is that these membranes do not require daily exchange, normally 

mandatory with other wound dressings and create a protective, hypoxic, moist 

environment optimizing the skin healing (Wouk, Diniz et al. 1998; Osman, Souza 

et al. 2007). BC also was tested as dural substitute (Mello, Feltrin et al. 1997), 

chronic venous insufficiency and lower-leg ulceration (Alvarez, Patel et al. 2004), 

and repair of chronic lower extremity ulcers (Portal, Clark et al. 2009). BC 

membranes are already used in dental implants, periondontal disease treatment 

and guided bone regeneration - alone or in association with osteointegrated 

implants - proving a good alternative for guided tissue regeneration (Novaes and 

Novaes 1993; Novaes, Novaes et al. 1993; Novaes and Novaes 1995; Novaes 

and Novaes 1997; dos Anjos, Novaes et al. 1998).  

The mechanical properties closely related to native cartilage and superior to 

other materials makes the BC a good material for cartilage tissue repair 

(Svensson, Harrah et al. 2004). BC scaffolds showed to support growth of 

chondrocytes, allowing cell migration and ingrowth in vitro, and good integration 

with the host tissue when implanted (Bodin, Concaro et al. 2007; Oliveira, Souza 

et al. 2007). 

In 2006, BC was considered as a novel biomaterial for tissue engineered 

blood vessels (Backdahl, Helenius et al. 2006), with its good mechanical 

properties, interaction with smooth muscle cells and good in situ tissue 

regeneration. Furthermore, stents coated with BC had an accelerated re-

endotelialization of the area covered by the stent, acting as a barrier to the 

migration of muscle cells, thus representing a promising strategy for the 

prevention and treatment of restenosis in endovascular procedures (Negrão, 

Bueno et al. 2006). Other authors also tested BC in vascular grafts, with 

promising results (Klemm, Schumann et al. 2001; Putra, Kakugo et al. 2008; 

Wippermann, Schumann et al. 2009). 
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1.3.1.1 BC in nerve regeneration 

Klemm and colleagues tested the micronerve reconstruction of rat sciatic 

nerve using bacterial cellulose tubes (BASYC®) (Klemm, Schumann et al. 2001). 

The regeneration of the functional nerve, following 10 weeks of surgery, was 

improved as compared to the uncovered anastomosed nerve. The reappearance 

of acetylcholine as the transmitter of nerve impulses to the executive organ was 

observed. In the same animal model, the BASYC® was used as a drug depot of 

neuroregenerative substances, allowing an earlier return of innervation and the 

functional recreation of the paralyzed legs, as evaluated by the walking behaviour 

scores. Mello and co-workers, in 2001, used bacterial cellulose sheets to envelop 

peripheral nerve lesions with loss of neural substance, in dogs, and analyzed the 

degree of inflammatory reaction and axon realignment in the sciatic nerve (Mello, 

Feltrin et al. 2001). A moderate fibrous reaction caused by the BC sheets 

implanted in the peripheral nerve, and also realignment and axonal growth 

through the injury were observed. Brancher and Torres observed rats’ facial 

nerves repair following trans-section (Brancher and Torres 2005). The extremities 

were approximated with a plain epineural suture stitch and surrounded with 

BioFill® sheets. The researchers found that the BC sheets improved guidance of 

the nerve fibers, allowing the concentration of neurotrophic factors, which 

consequently promoted the nerve regeneration. 

 

1.4 Bacterial cellulose modification: Improving the BC 
Properties for Biomedical Applications 

Biocompatibility is one of the main requirements for any biomedical material. 

It can be defined as the ability to remain in contact with living tissue without 

causing any toxic or allergic side effects, simultaneously performing its function 

(Czaja, Young et al. 2007). Almost all biological interactions are mediated by 

specific biorecognition, like the high-affinity binding of receptors on cell surfaces to 
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ligands on biomaterial surfaces (Elbert and Hubbell 1996). Based on the 

understanding of the dominance of the biorecognition process on cell behaviors, 

two main strategies in surface engineering of biomaterials are often employed. 

Firstly, the material surface properties are modulated to a state that the adsorbed 

proteins can maintain their normal bioactivities. This method, however, cannot 

induce specific cell behaviors due to the nonspecific protein absorption. The 

second strategy is to directly immobilize certain biomolecules on the biomaterial 

surfaces to induce specific cellular responding (Ma, Mao et al. 2007). Also, 

chemical functionalities like amino, hydroxyl, carboxyl, and epoxy groups are 

known to be effective in covalent coupling of proteins and signal molecules. 

Alternatively, biomolecules may be adsorbed at the surface due to Van-der-Waals 

dispersion forces, hydrogen bonding, or acid–base interactions (Meyer-Plath, 

Schroder et al. 2003).  

To be used in biomedical applications, improved cellulose integration with 

the host tissue, to mimic the tissue to be replaced, is required. Chemical surface 

modifications and incorporation of bioactive molecules are examples of what can 

be done to make BC an ideal material for reparative tissue engineering. In this 

context, BC has been modified to further enhance biocompatibility.  

 

1.4.1 Incorporation of bioactive molecules - Recombinant proteins 

In order to develop biomaterials that promote specific cellular fates, it is 

essential to assert control over both the structural properties and biochemical 

characteristics of these materials, where the use of protein-based biomaterials 

provides a uniquely powerful approach to the control of macromolecular structure 

and function (Maskarinec and Tirrell 2005). The expression of recombinant protein 

polymers promises to expand the use of protein-based materials, both in the 

investigation of basic cellular processes and in therapeutic applications 

(Maskarinec and Tirrell 2005). The development of genetic engineering has 

allowed the design and bioproduction of various protein polymers, which are 

mainly made from repeating sequences found in natural polymers, such as 
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elastin, collagen, silks, etc., and selected modifications (Girotti, Reguera et al. 

2004). 

The combination of polymers with recombinant fusion proteins in tissue 

engineering constructs can provide a predictable and chemically defined source of 

ECMs (Nagaoka, Jiang et al. 2010). Although, a prerequisite for the growth of 

applications based on recombinant fusion proteins is the improvement of the 

production of larger amounts of functional recombinant proteins. 

 

1.4.1.1 Bioactive molecules for BC modification  

Tissue engineering approaches typically employ three-dimensional ECM to 

engineer new natural tissues from cells. The design of bioactive molecules for 

tissue engineering intend to mimic the functions of the natural ECM molecules 

found in tissues, which act as a scaffold to bring cells together to form a tissue 

and control its structure, and to regulate cell phenotype (Nagaoka, Jiang et al. 

2010). To obtain specific cell recognition and adhesion, the bioactive sites from 

these ECM proteins are often used for the modification of biomaterials.  

Indeed, the incorporation of soluble bioactive molecules, such as growth 

factors and cell-binding peptides into biomaterial carriers, is an important strategy 

used to achieve biomolecular recognition of materials by cells and allow specific 

cellular responses (Imen, Nakamura et al. 2009). ECM  composition include 

collagens, laminins, fibronectin, vitronectin, elastin, and integrin binding proteins 

(Agrawal and Ray 2001). Cell adhesion to ECM is mediated by cell-surface 

receptors, one important class being the integrins, which bind to short amino acid 

sequences (RGD sequences) on integrin binding proteins. The amino acid 

sequence Arg-Gly-Asp (RGD) is recognized for its cellular adhesion function. For 

this reason, the RGD sequences have gained much attention, and several studies 

have attempted to isolate specific sequences that promote increased cell 

adhesion (Agrawal and Ray 2001). 
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Laminin is a family of large (Mw 900,000Da) trimeric basement membrane 

glycoproteins, which has a structural role in organizing the basement membrane 

matrix. Several active sites responsible for multiple biological activities such as 

neurite outgrowth, tumor metastasis, cell attachment and spreading, and 

angiogenesis were identified in laminin (Kleinman, Klebe et al. 1981; Kanemoto, 

Reich et al. 1990). The IKVAV (Ile-Lys-Val-Ala-Va) sequence from the α1 chain, is 

one of the most studied among those active sites, because it can promote neurite 

outgrowth, tumor metastasis and growth, protease activity, cell adhesion, and 

angiogenesis (Tashiro, Sephel et al. 1989; Kanemoto, Reich et al. 1990; Malinda, 

Nomizu et al. 1999). Other sequences, such as YIGSR (Tyr-Ile-Gly-Ser-Arg) on 

the β1 chain, have different biological activities, including inhibiting angiogenesis, 

tumor growth and metastasis. Furthermore, sequential screening of peptides has 

identified several sequences that promote adhesion to a variety of tumor cells. 

Also, experimental data suggest that a number of additional active sites exist on 

laminin that could be cell type-specific (Tashiro, Sephel et al. 1989; Malinda, 

Nomizu et al. 1999). Another bioactive molecule which presents cell type 

specificity is a peptide that mimics a bioactive domain of neural cell adhesion 

molecule (NCAM, a cell–cell adhesion molecule of the immunoglobulin 

superfamily of proteins). The KHIFSDDSSE, the active site of the NCAM, can 

modulate the astrocyte adhesion, and can be used in improved prostheses for the 

CNS (Kam, Shain et al. 2002). 

Examples of the use of bioactive peptides in the development of biomaterials 

are described ahead. The RGD sequence within a biocompatible hydrogel of 

poly[N-(2-hydroxypropyl)methacrylamide] (PHPMA) was synthesized by Woerly 

and colleagues (2001) and used to promote tissue regeneration of injured adult 

and developing rat spinal cord. The hydrogel provided a structural, three-

dimensional continuity across the defect, facilitating the migration and 

reorganization of local wound-repair cells, as well as tissue development within 

the lesion. Angiogenesis and axonal growth also occurred within the 

microstructure of the tissue network, and supraspinal axons migrated into the 

reconstructed cord segment (Woerly, Pinet et al. 2001). Rafiuddin and Jakakumar 

(2003) studied the regeneration of injured sciatic nerve with collagen tubes 
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incorporated with RGD cell-adhesive peptide. Collagen implants were grafted to 

bridge a gap nerve defect in a rat model. The number of myelinated axons in the 

regenerated mid-graft of the RGD peptide incorporated groups was higher than on 

the control. After 90 days of implantation, the mean counts were still higher in the 

case of RGD peptide group, as compared to controls collagen and autograft 

groups (Rafiuddin and Jakakumar 2003). 

The potential benefits of active peptides in synthesizing materials for the 

treatment of both peripheral and CNS disorders are tremendous (Zou, Zheng et 

al. 2009). A biocompatible hydrogel of hyaluronic acid with IKVAV peptide was 

synthesized by Wei and co-workers (2007). After implantation, the hydrogel 

formed a permissive interface with the host tissue, with potential to repair tissue 

defects in the central nervous system by promoting the formation of a tissue 

matrix and axonal growth, replacing the lost tissue (Wei, Tian et al. 2007). Neural 

stem cells were seeded in three-dimensional hydrogels coated with IKVAV. The 

cells began to proliferate after 24 h of incubation, and formed bigger 

neurospheres at 48 h in experimental group than in control group. The self-

assembled hydrogel had good cytocompatibility and promoted the proliferation of 

neural stem cells (Song, Zheng et al. 2009). Zou and colleagues (2009) 

synthesized peptide-amphiphile (PA) molecules containing the IKVAV sequence. 

The results indicated that the self-assembling scaffold containing IKVAV 

sequence had excellent biocompatibility with adult sensory neurons, promoting 

neurons adhesion and neurite sprouting and could be useful in nerve tissue 

engineering  (Zou, Zheng et al. 2009). 

 

1.4.1.2 Carbohydrate Binding Modules – CBM3 

The use of recombinant proteins containing carbohydrates binding domains 

(CBMs) fused to the bioactive peptides represents a simple way to make specific 

adsorption of this peptides on polymer surfaces (Wang, Wu et al. 2006). A CBM is 

defined as a contiguous amino acid sequence within a carbohydrate-active 

enzyme with a discrete fold having carbohydrate binding activity (Shoseyov, Shani 
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et al. 2006). The binding domains have been classified into 43 different families 

based on amino acid sequence, binding specificity, and structure. The CBMs 

contain from 30 to about 200 amino acids and exist as a single, double, or triple 

domain in one protein. Their location within the parental protein can be both C- or 

N-terminal and is occasionally centrally positioned within the polypeptide chain 

(Shoseyov, Shani et al. 2006). 

Family-Ill CBM comprises approximately 150 amino acid residues (Tormo, 

Lamed et al. 1996). They have been identified in many different bacterial 

enzymes, and in some non-hydrolytic proteins (Poole, Morag et al. 1992; 

Shoseyov, Takagi et al. 1992; Gerngross, Romaniec et al. 1993; Pages, Belaich 

et al. 1996) which are responsible for the structural organization of the 

cellulosomes present in Clostridium cellulovorans (CbpA), Clostridium 

thermocellum (CipA and CipB from strains ATCC 27405 and YS, respectively), 

and Clostridium cellulolyticum (CipC) (Tormo, Lamed et al. 1996). 

Cellobiohydrolase CbhA is a component of the cellulolytic/hemicellulolytic 

complex termed the ‘cellulosome’ of the anaerobic thermophilic bacterium 

Clostridium thermocellum and is a typical representative of thermostable multi-

modular Ca2+-containing enzymes (Kataeva, Uversky et al. 2003). It is composed 

of various domains, inclusive a family 3 CBM (CBM3). The most probable role of 

Ca2+ in CBMs is to stabilize the native protein structure (Kataeva, Uversky et al. 

2003). 

Many CBMs are strictly substrate specific, making them useful as 

molecular building blocks as well as tools (Hilden and Johansson 2004). The 

small size also makes CBMs attractive for genetic constructs (Hilden and 

Johansson 2004). The use of CBMs to deliver peptide signaling molecules such 

as growth factors, to be used as targeted therapeutics with improved half-life, is 

relevant for clinical applications (Nishi, Matsushita et al. 1998). Recombinant 

proteins consisting of growth factor moieties and collagen or fibronectin binding 

domains were described by various authors, envisaging vascular regeneration. 

Nishi and colleagues (1998) produced fusion proteins with endothelial growth 

factor (EGF) and fibroblast growth factor (bFGF) (Nishi, Matsushita et al. 1998). 
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Ishikawa and co-workers (2006) produced a recombinant protein consisting of the 

fibronectin collagen-binding domain and the vascular endothelial growth factor 

121, which promoted the growth of endothelial cells and induced the expression of 

Vascular endothelial growth factor receptor 2 (VEGFR-2) on hematopoietic stem 

cells from bone marrow (Ishikawa, Eguchi et al. 2006). Kitajima et al. described a 

fusion protein consisting of hepatocyte growth factor (HGF, an angiogenic factor) 

and a CBM, which promoted the endothelial cells growth and improved the blood 

vessel formation on collagen sponges in vivo (Kitajima, Terai et al. 2007). Pang 

and colleagues produced a recombinant protein composed of a CBM and a 

fibroblast growth factor-1 with a type I collagen scaffold as a targeted delivery 

vehicle for smooth muscle cells and vascular tissue engineering. The fusion 

protein increased the proliferation of SMCs in the collagen matrix to significantly 

greater levels and duration than the alone counterparts, suggesting that this 

protein is an effective strategy for growth factor delivery for vascular tissue 

engineering (Pang, Wang et al. 2010). 

In an attempt to delivery growth factors in nerve repair, Sun and colleagues 

(2009) demonstrated that the native human NGF-β fused with a collagen binding 

domain specifically bind to endogenous collagen of the rat sciatic nerves and 

maintain NGF activity both in vitro and in vivo. The authors found that, in the rat 

sciatic nerve crush injury model, the collagen-binding NGF could be retained and 

concentrated at the nerve injured site, promoting nerve repair and enhanced 

function recovery following nerve damage (Sun, Kingham et al. 2010). Han and 

colleagues (2009) also used the collagen binding domain to delivery BDNF for 

nerve repair and showed that the fusion protein had similar activity in neurite 

outgrowth in dorsal root ganglia and in PC12 cell survival. The authors used the 

rat hemisection of spinal cord  model, and found that this protein significantly 

improved the spinal cord injury recovery (Han, Sun et al. 2009). 

The CBM3 from C. thermocellum, has been shown to bind cellulose, 

particularly crystalline cellulose (Lehtio, Sugiyama et al. 2003). Genetic constructs 

involving CBM3 are described in literature in the production of recombinant 

proteins with specificity to cellulose substrates. The CBM was used by Wierzba et 
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al. (1995) who described a recombinant protein CBM-RGD which promotes cell 

adhesion to cellulose (Wierzba, Reichl et al. 1995; Wierzba, Reichl et al. 1995). 

Andrade et al. also produced recombinant proteins containing adhesion peptides 

(RGD or GRGDY) fused to a CBM with affinity by cellulose (CBM3) and the 

results showed that the RGD sequence improved the fibroblasts adhesion on BC 

surfaces  (Andrade, Moreira et al. 2008). Fig 1.8 show a scheme of a recombinant 

protein containing a CBM3 adsorbed to a cellulose membrane. 

 

 

Figure 1.8 Scheme of a cellulose membrane modified trough a carbohydrate binding 
module conjugated to a bioactive molecule 1) Cellulose; 2) CBM; 3) Linker; 4) Bioactive 

molecule. 

 

1.4.2 Plasma Technique 

In tissue engineering, the bio-integration is the ideal outcome of an artificial 

implant. This implies that the interaction between the interface of the implant and 

host tissues do not induce any deleterious effects such as chronic inflammatory 

response or formation of unusual tissues. Hence, the surface properties are very 

important regarding the success of the implant. Surface modification of 

biomaterials is becoming an increasingly relevant method to improve the 

multifunctionality of biomedical devices, as well its biocompatibility, while obviating 

the cost and long time required to develop brand new materials. Plasma-surface 

modification is an effective and economical surface treatment technique for many 

materials and of growing interests in biomedical engineering (Chu, Chen et al. 

2002). Plasma modified materials are well-suited for the control of specific biologic 
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reactions, and can be engineered as to have appropriate functional groups useful 

for the immobilization of bioactive molecules (Ratner 1996). 

Plasma, often designated the fourth state of matter, consist of a mixture of 

electrons, ions and neutral particles, although overall it is electrically neutral. The 

degree of ionisation of plasma is the proportion of atoms that have lost (or gained) 

electrons. Plasma technology involves the creation of a sustained electrical arc by 

the passage of electric current through a gas in a process referred to as electrical 

breakdown (Gomez, Rani et al. 2009). Plasma treatment can easily introduce 

polarized groups such as hydroxyl, carboxyl, amino and sulfate groups on 

polymer surfaces using different reaction gases such as air, NH3, SO2, CO2 or 

other organic compounds (Ma, Mao et al. 2007). 

One relevant advantage in the use of plasma treatment is the preservation of 

the bulk material’s chemical and mechanical properties during the process, being 

this a major concern since many artificial implant and cell culture materials are 

heat-sensitive polymers (Schroder, Meyer-Plath et al. 2001). If they are processed 

in the afterglow regime, thermal load on the substrate can be held at a negligible 

level and bulk material changes can be avoided. Further, plasma activation, as 

being a gas phase process, reduces the risk of leaving leachable substances on 

the surfaces (Schroder, Meyer-Plath et al. 2001). 

Some examples of successful modification of material by plasma treatment 

and improved cell-biomaterial interactions can be found in literature. The adhesion 

of human endothelial cells to polytetrafluoroethylene surfaces, used in vascular 

prostheses, was improved when the material was treated with nitrogen and 

oxygen plasma (Dekker, Reitsma et al. 1991). Various polymer surfaces - 

polyethylene, polypropylene, polystyrene, polyethylene terephthalate and 

poly(methyl methacrylate) were modified by water vapour plasma discharge 

treatment, and the high hydroxyl group density produced on the polymers surface 

had a positive effect on Chinese hamster ovary cell adherence (Lee, Park et al. 

1991). The effect of oxygen plasma on the surface modification of different starch-

based biomaterials (SBB) and on modulating bone–cells behaviour was described 

by Alves and colleagues (2006). The authors observed that the adhesion and 
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proliferation of osteoblast-like cells were enhanced by the plasma treatment on 

ethylene vinyl alcohol and polycaprolactone materials (Alves, Yang et al. 2007).  

Zhao et al. (2006) used NH3 plasma treatment to incorporate collagen on 

PDLLA (poly-D,L-lactide) films, and showed that this treatment improved films 

hidrophillicity and more efficiently enhanced fibroblast cell attachment and 

proliferation than those films modified by collagen anchorage or only NH3 plasma 

treatment (Zhao, Wang et al. 2006). Following this approach, Huang and 

collaborators used oxygen plasma to incorporate laminin onto the surface of 

PGLA poly(lactide-co-glycolide) and chitosan films. The authors showed that 

laminin-modified chitosan membranes significantly increased Schwann cells 

attachment and affinity for directing peripheral nerve regeneration (Huang, Huang 

et al. 2007). With the aim to study a polymer treatment for surface engineering for 

vascular repair, Tajima and colleagues (2007) examined the behavior of 

endothelial cells seeded on polyethylene surfaces modified by Ar plasma. The 

authors verified an increased cell adhesion and spreading (Tajima, Chu et al. 

2008). Khorasani and colleagues used oxygen plasma treatment to modify the 

surface of PLA and PLGA films. The results showed that the hydrophilicity 

increased greatly after O2 plasma treatment. Cell culture results showed that B65 

nervous cell attachment and growth on the plasma treated PLA was much higher 

than an unmodified sample and PLGA. The surface hydrophilicity and chemical 

functional groups with high polar component seems to be responsible in the 

enhanced cell attachment and growth (Khorasani, Mirzadeh et al. 2008).  

These are just a few examples of the enhancement of cell-material 

interaction produced by the plasma treatment of materials, selected among a 

large number of published works (Dekker, Reitsma et al. 1991; Hsu and Chen 

2000; Gupta, Plummer et al. 2002; Hamerli, Weigel et al. 2003; Wan, Yang et al. 

2003; Nakagawa, Teraoka et al. 2006; Beaulleu, Geissler et al. 2009; Hauser, 

Zietlow et al. 2009). However, this is a wide field of research, and each year, more 

and more materials are processed by plasma and characterized, giving rise to 

great advances in the development of new biomedical devices and tissue 

engineering. 
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2. Bacterial cellulose modified 
through recombinant proteins for 
neuronal cell culture  

 

 

2.1 Abstract 

A wide variety of biomaterials and bioactive molecules has been applied 

as scaffolds in neuronal tissue engineering. However, creating devices that 

enhance the regeneration of neural tissues is still a challenge, due the difficulty 

in providing an appropriate environment for cell growth and differentiation, and 

active stimulation of nerve regeneration. In recent years, bacterial cellulose 

(BC) emerged as a promising biomaterial for biomedical applications due its 

properties, such as high crystallinity, an ultrafine fiber network, high tensile 

strength and biocompatibility. The small signaling peptides found in the proteins 

of extracellular matrix are described in the literature as promoters of adhesion 

and proliferation of several cell lineages on different surfaces. In this work, the 

peptides IKVAV and KHIFSDDSSE were fused to a carbohydrate-binding 

module (CBM3) and were used to modify BC surfaces aiming the promotion of 

neuronal cell adhesion. The recombinant proteins IKVAV-CBM3, exIKVAV-

CBM3 and KHIFSDDSSE-CBM3, were successfully expressed in E. coli, 

purified through affinity chromatography, and stably adsorbed to the cellulose 

membranes. The effect of these recombinant proteins on the adhesion of 

neuronal and mesenchymal cells was evaluated by MTS colorimetric assay. 

The results showed that the exIKVAV-CBM3 was able to improve the adhesion 

of both neuronal and mesenchymal cells, while IKVAV-CBM3 and 
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KHIFSDDSSE-CBM3 presented only a slight effect on mesenchymal cells, and 

no effect on the other cells. The MSCs neurotrophin expression by cells growth 

on BC membranes modified with the recombinant proteins was also verified, in 

order to search for a microenvironment that promotes neuronal regeneration. 

 

2.2 Introduction 

Nerve tissue engineering is a rapidly expanding area of research 

providing a new and promising approach to nerve repair and regeneration 

(Prabhakaran, Venugopal et al. 2008). Therefore, the challenge in nerve 

regeneration is to construct biological substitutes that are capable to maintain a 

continuous path for regeneration and promoting the infiltration of cells to secrete 

inductive factors for axonal elongation (Prabhakaran, Venugopal et al. 2008). 

Besides, the comprehension of neuronal mechanisms and cells behavior in 

contact with different biomaterials is essential for implementation of advanced 

prosthesis and complex neural networks (Cecchini, Bumma et al. 2007). 

A wide variety of biomaterials and bioactive molecules have been applied 

in tissue engineering (Huber, Heiduschka et al. 1998; Tong and Shoichet 2001), 

(Ranieri, Bellamkonda et al. 1994; Bellamkonda, Ranieri et al. 1995; Woerly, 

Plant et al. 1996; Turner, Kam et al. 1997; Patel, Padera et al. 1998). Among 

them, biological scaffolds, composed of natural polymers combined with 

extracellular matrix molecules, have been shown to facilitate the constructive 

remodeling of several tissues by the establishment of an appropriated 

environment essential for the regulation of cell processes (Adams and Watt 

1993; Badylak, Freytes et al. 2009). In recent years, bacterial cellulose (BC) 

emerged as a promising biomaterial in tissue engineering due its properties. BC 

is a glucose linear polymer secreted by Gluconacetobacter xylinus composed of 

a nanofibers network, with appealing properties including high crystalinity, 

wettability, high tensile strength, moldability in situ and simple production 

(Svensson, Harrah et al. 2004). Despite having identical chemical properties of 

plant cellulose, BC is produced in a pure form, free of other polymers and its 
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macromolecular properties and structure are also different (Jonas and Farah 

1998; Vandamme, De Baets et al. 1998). These characteristics, beyond its 

biocompatibility, make the BC an ideal material for tissue engineering 

constructs.  

Previous studies reported the modification of biomaterials surface by 

immobilization of proteins as a strategy to control and guide, with high 

selectivity, the interactions between cells and materials (Massia, Stark et al. 

2000; Kam, Shain et al. 2002; Hersel, Dahmen et al. 2003). One approach to 

achieve this goal involves the incorporation of small cell-binding peptides into 

biomaterials via chemical or physical modification (Shin, Jo et al. 2003). As an 

alternative to peptide chemical grafts, the use of recombinant proteins 

containing carbohydrates binding domains (CBMs) fused to the bioactive 

peptides represents an attractive way to specifically adsorb these peptides on 

cellulose surface (Wang, Wu et al. 2006; Andrade, Moreira et al. 2008). The 

CBM3 from the cellulosomal-scaffolding protein A of the Clostridium 

thermocellum, has high affinity to  cellulose, particularly to crystalline cellulose 

(Lehtio, Sugiyama et al. 2003). 

A great number of cell adhesion motifs have been identified and used in 

biopolymer structures to mediate cell attachment. RGD (Arg-Gly-Asp), IKVAV 

(Ile-Lys-Val-Ala-Val) and KHIFSDDSSE (Lys-His-Ile-Phe-Ser-Asp-Asp-Ser-Ser-

Glu) are bioactive cell adhesion motifs found in ECM proteins such as 

fibronectin, laminin and neural cell adhesion molecule (N-CAM) and are 

described as promoters of cell adhesion and proliferation in several materials 

(Massia and Hubbell 1991; Dai, Belt et al. 1994; Woerly, Laroche et al. 1994; 

Cook, Hrkach et al. 1997; Yamaoka, Hotta et al. 1999; Kam, Shain et al. 2002; 

Lin, Takahashi et al. 2006; Andrade, Moreira et al. 2008). The IKVAV sequence, 

located on the C-terminal of the long arm of the laminin α1 chain, was identified 

as an active site of this protein. This peptide was found to be active in 

promoting cell adhesion, neurite outgrowth, angiogenesis, collagenase IV 

production, and tumor growth (Tashiro, Sephel et al. 1989; Nomizu, Weeks et 

al. 1995). IKVAV peptide has been used in the construction of experimental 
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nerve guides, since it can mediate cell attachment and neurite outgrowth (Lin, 

Takahashi et al. 2006).  Kam et al. in 2002 presented the KHIFSDDSSE as a 

novel adhesive peptide that mimics the bioactive domain of N-CAM molecule 

and specifically binds to astrocyte cells (Kam, Shain et al. 2002). The neural cell 

adhesion molecule is expressed by astrocytes and mesenchymal cells and has 

an important regulatory role in the developing nervous system, being present in 

adult nervous tissue (Cunningham, Hemperly et al. 1987; Sporns, Edelman et 

al. 1995; Crigler, Robey et al. 2006). The RGD is described as the most 

effective bioactive peptide and it is often employed to stimulate cell adhesion on 

various surfaces, due its ability to address more than one cell adhesion receptor 

and its biological impact on cell anchoring, behavior and survival (Hersel, 

Dahmen et al. 2003) 

Besides increasing the cell-material interaction, an ideal scaffold should 

maintain the cells viable and functional; in addition cells should be able of 

secreting growth factors that enhance tissue regeneration. Neural tissue 

engineering strategies focus on developing scaffolds that artificially generate 

favorable cellular microenvironments, to promote regeneration, particularly in 

conjunction with stem cells, has generated promising results (Nisbet, Crompton 

et al. 2008). The use of stem cells in tissue engineering constructs is a 

promising strategy, because these cells can express a variety of growth factors 

important for tissue regeneration and cell differentiation. The transplantation of 

stem cells can provide support to affected cells by secreting cytokines and 

neurotrophic factors, which means the creation of a neuroprotective 

environment (Barzilay, Levy et al. 2006). Neurotrophins such as the nerve 

growth factor (NGF) are a family of proteins that induce the survival, 

development and function of neurons (Coumans, Lin et al. 2001) and are 

common growth factors used to promote neural tissue engineering (Willerth and 

Sakiyama-Elbert 2007).  

The main purpose of this work was to produce recombinant proteins 

containing a bioactive peptide fused to the CBM3 to functionalize BC surface in 

order to optimize material biocompatibility. Neuronal and mesenchymal stem 
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cell (MSCs) adhesion and viability were evaluated on these modified surfaces. 

The MSCs neurotrophin expression by cells growth on BC membranes modified 

with the recombinant proteins was also verified, in order to search for a 

microenvironment that promotes neuronal regeneration. 

 

2.3 Materials and Methods 

2.3.1 Production of bacterial cellulose 

The pellicles of bacterial cellulose were produced by the 

Gluconacetobacter xylinus (ATCC 53582) cultured in Hestrin & Schramm 

medium, into 24-wells polystyrene plates (800 µl per well), for 4 days at 30 oC, 

in static culture. The membranes were purified with 2% Sodium dodecyl sulfate 

(SDS) overnight, then washed with distilled water until the complete removal of 

SDS and immersed in a 4% NaOH solution, shaking for 90 min at 60 oC. After 

neutralized, the pellicles were autoclaved in Phosphate buffered saline (PBS) 

and stored at 4 oC. 

 

2.3.2 Cloning, expression and purification of recombinant proteins 

The In this work, we produced 3 recombinant proteins: IKVAV-Linker-

CBM3, KHIFSDDSSE-Linker-CBM3 and exIKVAV-linker-CBM3 

(CSRARKQAASIKVAVSADR-CBM3) corresponding to the extended amino acid 

sequence based on the proteolytic laminin fragment PA-22 containing the 

sequence IKVAV (Sephel, Tashiro et al. 1989; Tashiro, Sephel et al. 1989; 

Mackay, Gomez et al. 1994; Nomizu, Weeks et al. 1995; Adams, Kao et al. 

2005). The linker sequence contains 40 aminoacids. The cloning, expression 

and purification of recombinant proteins were developed following protocol 

described by Andrade and colleagues (Andrade, Moreira et al. 2008). Briefly, 

coding sequences were obtained by PCR using the pET21a-CBM3 vector and 

the primers shown in Table 2.1, including NheI and XhoI restriction sites (in 

bold). The PCRs condition used were: preheating at 95 oC for 2 min, 40 cycles 
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at 95 oC for 45 s, 56 oC for 45 s and 72 oC for 45s, followed by an elongation 

cycle at 72 oC for 10 min. The PCR products were analyzed by agarose gel, 

purified (Quiagen), digested with NheI and XhoI restriction enzymes, and cloned 

into the expression vector pET21a (Novagen), previously digested with the 

same restriction enzymes. This vector includes a C-terminal His6-tag in the 

recombinant proteins to allow the purification by immobilized metal ion affinity 

chromatography (IMAC) using a 5 ml nickel His-Trap column (GE Healthcare). 

The E. coli XL1 Blue (Stratagene) was used as cloning strain and the integrity of 

cloned PCR products was verified by DNA sequencing (Sanger, Nicklen et al. 

1977).  

 

Table 2.1 Primers used for cloning the DNA sequences encoding the peptides in fusion 
with CBM3 

Construct  Primers 

exIKVAV-LK-CBM3 

 

Forward   5’ CTA GCT AGC TGT TCA AGG GCT AGG AAG CAG GCT 
GCT TCA ATA AAG GTA GCT GTA TCA GCT GAT AGG ACA CCG 
ACC AAG GGA G 3’ 

IKVAV-LK-CBM3 

 

Forward   5’ CTA GCT AGC ATA AAG GTA GCT GTA ACA CCG ACC 
AAG GGA G 3’ 

KHIFSDDSSE-LK-
CBM3 

Forward    5’ CTA GCT AGC AAA CAT ATA TTT TCA GAT GAT TCA 
TCA GAA      ACA CCG ACC AAG GGA G 3’ 

 

 Reverse      5’ CAC CTC GAG TTC TTT ACC CCA TAC AAG AAC 3’ 

 

2.3.3 Production and purification of recombinant proteins 

Recombinant proteins were produced using the E. coli BL21 (DE3) cells 

transformed with the expression vectors containing the different coding 

sequences, pET21a-CSRARKQAASIKVAVSADR-LK-CBM3, pET21a-IKVAV-

LK-CBM3 and pET21a-KHIFSDDSSE-LK-CBM3, were grown at 37°C, in LB 

medium supplemented with ampicillin (100 μg/ml). Cultures were induced with 

IsoPropyl β-D-1-ThioGalactopyranoside (IPTG, Invitrogen) at 1 mM. Five hours 
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after induction, the cells were separated from the culture medium by 

centrifugation (13 000 g, 10 min) and resuspended in buffer A (20 mM Tris, 20 

mM NaCl, 5 mM CaCl2, pH 7.4) and then lysed by sonication. The soluble and 

insoluble fractions were separated by centrifugation (15 000 g, 4 °C, 30 min). 

The purification was made by affinity chromatography, using a HisTrapTM HP 

(GE health care). For that, imidazole was added to the cell lysated (40 mM final 

concentration) and the pH was adjusted to 7.4 before its application on the 

nickel column. After purification, proteins were dialyzed against the buffer A, 

sterilized by filtration (0.22 μm) and stored at -20 °C, prior to use. Recombinant 

proteins were analyzed by 12% SDS-PAGE (SDS – polyacrylamide gel 

electrophoresis) stained with Coomassie blue.  

 

2.3.4 Adsorption assay 

The wells of a 24-well polystyrene plate were covered with BC pellicles, 

the recombinant proteins were added to the wells (0.25 mg protein per well) and 

left adsorbing at 4 oC, overnight. The non-adsorbed proteins were collected and 

the membranes were washed three times with Buffer A to remove the non-

adorbed protein. Then, the membranes were washed three times with Buffer A 

containing 1% SDS to remove the adsorbed protein, and collected. The initial 

protein solution, the non-adsorbed proteins (supernatant fraction) and the 

adsorbed protein fraction were analyzed by SDS-PAGE. 

 

2.3.5 Cell culture 

SH-SY5Y human neuroblasts, N1E-115 rat neuroblasts, Human 

Microvascular endothelial cells (HMEC-1), rat Pheochromocytoma (PC12), rat 

Mesenchymal stem cells (MSCs), and mice astrocytes were maintained under 

standard tissue culture condition (37 oC, 5% CO2, 95% humidified air). SH-

SY5Y cells were cultured in a complete medium containing 1:1 Dulbecco’s 

Modified Eagle Medium (DMEM; Gibco) and Ham Nutrient Mixture (Ham F-12; 
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Sigma) supplemented with 10% fetal bovine serum (FBS; Gibco) and 1% 

Penicillin/Streptomicin; N1E-115 were cultured in DMEM supplemented with 

10% FBS and 1% Penicillin/Streptomicin. HMEC-1 and PC12 were cultured in 

RPMI with 10% and 15% of FBS (inactivated), respectively, and 1% 

Penicillin/Streptomicin. Rat MSCs (rMSCs) were isolated from femur and tibias 

of adult Winstar rats as previously described (Jiang, Lv et al. 2010) and cultured 

in DMEM supplemented with 20% FBS and 1% Penicillin/Streptomicin. 

Astrocytes were isolated according to (Blondeau, Beslin et al. 1993) and 

cultured in DMEM with 10% of FBS and 1% Penicillin/Streptomicin. 

 

2.3.6 Cell adhesion and viability on recombinant proteins coated 
surfaces  

Cell adhesion was determined by mitochondrial activity through a MTS 

[3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium] colorimetric assay, performed as follows: the proteins were added 

to a 24-well polystyrene plate (0.25 mg protein per well) covered with the BC 

pellicles. Plates were incubated overnight at 4 oC. The unbound proteins were 

removed and the BC pellicles washed with PBS. Cells were then seeded in 

serum-free medium (excepted SH-SY5Y cells) at a density of 6 ×104 cells/well 

on BC pellicles. After 2 h, the wells were washed with PBS and transferred to 

new wells where complete medium was added, and the MTS was performed. 

The control used was the BC membranes treated only with buffer A. The cell 

adhesion experiments were run in triplicate at two separated times.  

 

2.3.7 Live and Dead assay 

The viability of the cells cultured on BC membranes coated with the 

recombinant proteins for 10 days was determined through the live/dead assay. 

The LIVE/DEAD® Viability/Cytotoxicity Kit for mammalian cells (Invitrogen) 

provides two-color fluorescence cell viability assay based on the determination 
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of live and dead cells with two probes that measure intracellular esterase 

activity and plasma membrane integrity. 100 µL of a solution of calcein and 

ethidium homodimer-1 in sterile PBS were added to the wells, incubated for 30 

to 45 minutes at 37ºC, 5% CO2, 95% humidified air and visualized in a 

fluorescence microscope on the BC membranes. 

 

2.3.8 Enzyme-linked immunosorbant assay (ELISA) 

To determine the levels of expressed neurotrophins by rMSCs, the 

concentration of NGF was measured, using a commercial ELISA kit (Promega) 

according to the manufacturer’s instructions. The cells were cultured in DMEM 

2% FBS on BC membranes treated with recombinant proteins. BC without 

recombinant proteins and polystyrene plate were used as assays controls. The 

supernatant of the cells was removed at 3, 6 and 13 days and kept under -80 

ºC, and fresh medium was added to the wells. The levels of neurotrophins were 

calculated using the standard curve. Samples and standards were run in 

duplicate. 

 

2.3.9 Statistical analysis 

All results are presented as mean ± standard deviation. Multiple 

comparisons were performed by ANOVA followed by Bonferronis secondary 

test for significance between experimental conditions and control conditions (p 

< 0.05).  

 

2.4 Results 

 In this study recombinant proteins were expressed using an E. coli 

expression system and purified in order to functionalize BC membranes, 

improving the adhesion of neuronal cells and biological response of neural 

implants. The peptides used are described in literature as promoters of 
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adhesion and proliferation of different cell lineages, and they were fused to a 

carbohydrate-binding module, the CBM3, to adsorb easily these peptides to the 

BC.  

The exIKVAV-CBM3, IKVAV-CBM3 and KHIFSDSSE-CBM3 proteins 

were successfully expressed in the soluble fraction of E. coli and purified 

through affinity chromatography. Figure 2.1 shows the analysis of purification 

process of the recombinant proteins, by 12% SDS-PAGE stained with 

Coomassie blue.  

 

Figure 2.1 SDS-PAGE analysis of expressed and purified recombinant proteins. 1-
Molecular weight marker (Biorad); a) exIKVAV-CBM3; b) IKVAV-CBM3; c) 

KHIFSDDSSE-CBM3.1- Pellet; 2- Supernatant; 3- Flow fraction; 4-Purified protein 
fraction 1; 5- Purified protein fraction 2; 6- Cleaning solution. 

 

2.4.1 Adsorption assay 

The modification of BC surface was achieved through adsorption of the 

CBM3 to cellulose. This interaction is stable and desorption occurred only in the 

presence of buffer containing 1% SDS, as shown in figure 2.2. 
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Figure 2.2 SDS-PAGE analysis of recombinant protein adsorption on BC membranes. 
MW - Molecular weight marker (Biorad); I – Initial recombinant protein (0.5 mg/ml); S – 
Supernatant containing the non-adsorbed protein; E – Elution fraction of recombinant 

proteins in buffer containing SDS; W – washing fraction without SDS. 

 

2.4.2 Cell adhesion and viability 

Figure 2.3 shows the MTS results. The recombinant protein exIKVAV-

CBM3 increased significantly the adhesion of all cells lineages tested, but the 

effect depended on the cell type. This protein improved almost 100% of cell 

adhesion of PC12 cells. The RGD-CBM3 protein also improved the adhesion of 

N1E-115 and mesenchymal cells, revealing a cell specific behavior. On the 

other hand, the IKVAV-CBM3 and KHIFSDDSSE-CBM3 only presented a slight 

effect on mesenchymal cell adhesion. The KHIFSSDSSE also presented a 

slight effect (5%) on astrocyte cell adhesion compared to control. 
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Figure 2.3 MTS assays of PC12, SH-SY5Y, N1E-115, astrocytes and mesenchymal 
cells seeded on BC pellicles coated with recombinant proteins. Cells were able to 

adhere in BC surfaces for 2h. The control was BC pellicle treated with Buffer A without 
recombinant proteins. 

 

The presence of serum in the culture medium represented a relevant 

factor in cell attachment. The SH-SY5Y cell adhesion only occurred in medium-

containing serum, while the adhesion of the other cell types was significantly 

increased in serum-free medium.  

Figure 2.4 shows fluorescence images of PC12 and mesenchymal cells 

on BC membranes coated with the recombinant protein exIKVAV-CBM3, after 2 

weeks in culture. The results show that both cell types remained adhered and 

alive (stained in green) on the BC, with practically no dead cells (stained in red), 

but cells showed a rounded morphology. It can be seen that, in control wells, 

there are fewer cells attached, mainly in PC12 culture. These results are in 

agreement with adhesion results, where exIKVAV-CBM3 improved strongly the 

adhesion of PC12 cells, and improved mesenchymal adhesion too, compared to 

control. 
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Figure 2.4 Images showing the live/dead assay of PC12 (a,b,c) and mesenchymal (d, 
e, f) cells cultured for 2 weeks on BC coated with exIKVAV-CBM3 (a and d); CBM3( b 

and e);  Buffer (c and f). 

 

2.4.3 Neurotrophin expression 

To investigate the neurotrophin expression of rMSCs on BC coated with 

the recombinant proteins, we used ELISA kits to quantify the neurotrophins 

released to the culture medium. The results showed that NGF is produced by 

the rMSCS and is released to the rMSCs culture medium after 3 and 6 days. 

Figure 2.5 shows the NGF expression.  In agreement with the higher cell 

adhesion observed on BC coated with the recombinant proteins, the RGD-

CBM3 and exIKVAV-CBM3 allowed a higher amount of NGF in the supernatant, 

as compared to CBM3 and buffer. As expected, cells on polystyrene showed a 

higher amount of NGF in supernatant, also caused by the number of adhered 

and proliferating cells on this material (data not shown). Moreover, the 

expression of NGF was higher at the 13th day rather than at the 3rd and 6th 

days. At day 6, a slightly decrease of the NGF in supernatant compared to day 

3 was observed. 
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Figure 2.5 ELISA results of NGF expression by rMSCs on BC coated with recombinant 
proteins and polystyrene. 

 

2.5 Discussion 

One of the main challenges of tissue engineering technologies is the 

production of materials designed to act as adequate scaffold for the growing of 

cells and tissues (Girotti, Reguera et al. 2004). Improvement of cell adhesion 

may be achieved by the immobilization of ECM adhesion proteins, or of its 

signaling motifs, onto the biomaterials surface (Hersel, Dahmen et al. 2003). 

Attempting to select cell attachment and elicit specific cell responses, we 

produced different recombinant proteins with the bioactive peptides IKVAV and 

KHIFSSDSSE. Different cell lineages were used to evaluate the efficacy of 

these bioactive peptides conjugated with CBM3 on the functionalization of BC 

membranes for its application as scaffolds in neuronal tissue engineering. 

It is know that the use of short peptides containing the signaling motifs 

instead of the whole adhesive proteins (laminin, fibronectin), have advantages 

including the ease and reproducibility of synthesizing peptides, as compared 

with isolating ECM molecules from a natural source (Hubbell 1999). However, 
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this approach have limitations, such as the biological activity of short peptide 

sequences is often substantially lower than that of the complete protein, owing 

at least partially to the absence of complementary domains that are involved in 

cell receptor binding (Yang, Roach et al. 2001; Boontheekul and Mooney 2003). 

In fact, in this work, the recombinant protein exIKVAV-CBM3 increased 

significantly the adhesion of all cells lineages tested, but the effect was 

dependent on the cell type. The MTS results showed an improvement of almost 

100% in cell adhesion for PC12 cells and 30% of mesenchymal stem cells. The 

RGD-CBM3 protein also improved the adhesion of N1E-115 and mesenchymal, 

revealing a cell specific behavior. On the other hand, the IKVAV-CBM3 and 

KHIFSDDSSE-CBM3 only presented a slight effect on mesenchymal cell 

adhesion. Maybe, the use of the smallest recognition sequence (IKVAV or 

KHIFSDDSSE) on the protein construction led to a weak interaction between 

the active peptides and the receptors on the cell surface. In this context, some 

studies showed that using an extended peptide containing the IKVAV 

sequence, such as CSRARKQAASIKVAVSADR, it is possible to increase the 

cell-protein interaction (Klein, Scholl et al. 1999; Tong and Shoichet 2001; Shaw 

and Shoichet 2003; Massia, Holecko et al. 2004; Lin, Takahashi et al. 2006; Lu, 

Bansal et al. 2006; Moreira, Andrade et al. 2008). Shaw and Soichet (2003) 

compared the cell adhesion on modified surfaces with the laminin-derived cell 

adhesive peptides CIKVAV and CQAASIKVAV. The surfaces modified with 

extended peptide sequences CQAASIKVAV demonstrated a greater number of 

cells attached compared to that modified with the shorter peptide sequences, 

indicating that the extended peptides mimic more closely the three-dimensional 

conformation that this peptides maintain in laminin (Shaw and Shoichet 2003). 

Andrade et al. (2008) also described differences on cell adhesion dependent of 

amino acids flanking the RGD sequence in recombinant proteins, where RGD-

CBM and GRGDY-CBM had different efficacy on fibroblast cell adhesion. 

Moreover, the surface where the proteins are adsorbed can influence in the 

exposition of the bioactive site, leading to different patterns of cell attachment 

(Wierzba, Reichl et al. 1995; Andrade, Moreira et al. 2008). For example, the 

effect of exIKVAV-CBM3 protein was also assessed on polystyrene (data not 
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shown), however no effect on the cell adhesion was observed, while the RGD-

CBM3 had a higher cell adhesion on polystyrene. 

The KHIFSSDSSE presented only a slight effect (5%) on astrocyte cell 

adhesion compared to control (Buffer A), which was not expected, considering 

that  KHIFSDDSSE sequence is related to specific binding to astrocytes (Kam, 

Shain et al. 2002; Lu, Bansal et al. 2006). However, it is described that the 

topology and roughness of the surface and the conformation of the cell-

adhesion molecules can reduce the effective density of exposed adhesive 

biomolecules accessible to the cell receptors and can reduce significantly the 

affinity of the receptor-ligand binding.  

It is known that in physiological settings, cells interpret signals from the 

ECM and different cell types interact with different matrix proteins (Orner, Derda 

et al. 2004).   Therefore, it is not surprising that the intrinsic conditions of the 

used in vitro system, among them cell line, culture medium, presence of serum, 

roughness and topography of material, structure and conformation of peptide 

have a strong influence on the pattern of cellular behavior, as observed in this 

work. 

The survival of anchorage dependent cells, such as MSCs requires a 

support matrix, because in the absence of cell-matrix interactions, these types 

of cells undergo apoptosis (Frisch and Ruoslahti 1997; Ishaug-Riley, Crane-

Kruger et al. 1998; Nuttelman, Tripodi et al. 2005). Thus, when designing 

hydrogel niches to serve as synthetic extracellular matrix environments, 

preservation of matrix–cells receptors interactions is critical to promote long-

term cell survival and function (Nuttelman, Tripodi et al. 2005). In order to verify 

the survival of cells on BC modified with the recombinant protein exIKVAV-

CBM3 the live and dead assay was performed. The results showed that PC12 

and mesenchymal cells remained adhered and viable after 2 weeks on BC 

coated with exIKVAV-CBM3 protein. However cells maintained a rounded 

morphology, without signals of cell spreading, proliferation or differentiation, in 

accordance with results previously described with other materials, such 

hydrogels and nanofibers gel (Wu, Zheng et al. 2006; Wu, Zheng et al. 2010). 
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Wu and collaborators (2010) showed that the self-assembly peptide IKVAV 

promoted the cell adhesion and viability of bone MSCs, but exerted no influence 

on the proliferation of the MSCs. Also, IKVAV ligand on poly(ethylene glycol) 

(PEG) hydrogels showed to increased hMSC viability on nondegradable 

hydrogel, but not in degradable hydrogel, and alone was not capable to 

influence cell spreading (Jongpaiboonkit, King et al. 2009).  

It has recently been demonstrated that MSCs, even without any 

induction, are able to secret neurotrophins, providing a natural source of these 

molecules, which can be used in tissue engineering (Jiang, Lv et al. 2010). Our 

results showed that NGF is produced by the rMSCS seeded on BC membranes 

and released to the culture medium after 3, 6 and 13 days. RGD-CBM3 and 

exIKVAV-CBM3 proteins secreted a higher amount of NGF to the supernatant, 

probably due to the higher initial number of cells adhered to BC treated with 

those proteins. Cells on polystyrene had a higher amount of NGF in supernatant 

not only caused by the initial adhered cells, but also because of cell proliferation 

on this material (data not shown). The neurotrophin release is important in the 

survival or function of damaged cells within the local tissue, providing a signal 

that elicits cell proliferation or migration within the tissue region (Saltzman and 

Olbricht 2002). Therefore, our results indicate that BC modified functionalized 

with recombinant proteins represent a good scaffold to tissue engineering 

because, besides increasing cell adhesion, cell viability is mantained and allows 

the rMSCs to express neurotrophic factors necessary to create a suitable 

environment to tissue regeneration.   

 

2.6 Conclusion 

BC is a promising biomaterial to be used as scaffold in tissue engineering 

applications but, as in most scaffolds, it is still necessary to increase the 

interaction of cells with the material to obtain a matrix that maintains the growth, 

differentiation and selectivity of different cell types. The recombinant peptides 

were successfully expressed in E. coli and adsorbed in a stable way to the 
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cellulose membranes. The recombinant protein exIKVAV-CBM3 strongly 

improved PC12 and mesenchymal cell adhesion, indicating that this 

recombinant protein can be used in BC scaffolds for neural tissue engineering 

applications.  
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3. Surface modification of bacterial 
cellulose by nitrogen-containing 
plasma for improved interaction 
with cells 

Adapted from (2010) Carbohydrate Polymers, 82(3): 692-698  

 

3.1 Abstract 

Bacterial cellulose (BC) membranes were modified with nitrogen plasma in 

order to enhance cell affinity. The surface properties of the untreated and 

plasma modified BC (BCP) were analyzed through contact angle 

measurements, X-ray photoelectron spectroscopy (XPS) and scanning electron 

microscopy (SEM). The effect of the plasma treatment on the adhesion of 

microvascular (HMEC-1), neuroblast (N1E-115) and fibroblast (3T3) cell lines 

was analyzed. The nitrogen plasma treatment did not increase the wettability of 

the material, but increased the porosity and surface chemistry, as noticed by the 

presence of nitrogen. XPS analysis revealed the stability of the modified 

material along time and autoclave sterilization. The cell adhesion and 

proliferation of HMEC-1 and N1E-115 cells was significantly improved in the 

BCP, in contrast with the 3T3 cells, revealing a cell-specific effect. This work 

highlights the potential of plasma treatment for the modification of the BC 

surface properties, enhancing its potential for biomedical applications.
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3.2 Introduction 

The surface characteristics play a vital role in the in vivo performance of 

biomaterials. The fate of implants is determined by the interactions - to a large 

extent cell specific (Chu, Chen et al. 2002) - between the biomaterial and 

tissues. Polymeric materials do not always possess the specific bioactivity 

required to promote suitable interaction with cells, thus methods to enhance 

biocompatibility are required (Wang, Robertson et al. 2004; Ma, Mao et al. 

2007). The surface properties of a scaffold, such as wettability, topography, 

chemistry, surface charge, the presence of hydrophobic and 

hydrophilic domains, density and conformation of functional groups, all play a 

crucial role in the cell-material interaction (Vesel, Junkar et al. 2008). 

The control of cell adhesion on the polymer substrate, and therefore the ability 

to guide proliferation, migration and differentiation, is highly desirable and a 

central issue in the development of scaffolds for tissue engineering (Lucchesi, 

Ferreira et al. 2008).  

Surface properties may be altered by plasma-treatment techniques. The 

modulation of the effects obtained is possible through control of operational 

parameters, including the gas used, reaction conditions (power, pressure and 

exposure time) and the reactor geometry (Wang, Lu et al. 2006). Plasma 

technique is a convenient method to modify the surface properties of polymeric 

materials, keeping intact their bulk properties. Furthermore, it is an easy way to 

introduce the desired groups or chains onto the surface of materials with 

complex shape; being conducted in vacuum, the treatment is pervasive, which 

is an advantage in the case of scaffolds with interpenetrating porous structures 

often used for tissue engineering purposes (Yang, Bei et al. 2002).  

Bacterial cellulose (BC) is a glucose linear polymer secreted by 

Gluconacetobacter xylinus in the form of nanofibers network, with appealing 

properties for tissue engineering, including high crystallinity, wettability, high 

tensile strength, moldability in situ and simple production (Svensson, Harrah et 

al. 2004). Although chemically identical to plant cellulose, BC is obtained free of 

other polymers and its macromolecular properties and structure are different 
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(Vandamme, De Baets et al. 1998). Beyond these characteristics, the BC is 

biocompatible, which makes it ideal for the construction of biomedical devices 

(Helenius, Backdahl et al. 2006).  

In this work, we aimed at modifying BC surfaces with plasma, in order to 

enhance its cell affinity. Cell adhesion and viability of different cell lineages were 

evaluated on BC surfaces before and after modification with nitrogen-containing 

plasma. The effect of plasma treatment, reported in this work for the first time 

with BC, was accessed through contact angle measurements, scanning 

electron microscopy (SEM) and X-ray photoelectron spectra (XPS). 

 

3.3 Material and Methods 

3.3.1 Bacterial cellulose production 

The BC membranes were produced by growing the Gluconacetobacter 

xylinus purchased from the American Type Culture Collection (ATCC 53582) in 

Hestrin-Schramm medium, pH 5.0. The medium was inoculated and added to 

polystyrene petri dishes (20 ml per plate), for 4 days at 30 oC, in static culture. 

The membranes were purified with 2% Sodium Dodecyl Sulfate (SDS) for 12 h 

at 60 oC, washed with distilled water until complete removal of SDS and 

immersed in a 4% NaOH solution - gently shaken - for 90 min at 60 oC. After 

neutralization, the pellicles were autoclaved in distilled water and lyophilized. 

 

3.3.2 Cell culture 

Human Microvascular Endothelial Cells (HMEC-1) were cultured in RPMI 

1640 medium (Invitrogen Life Technologies, UK), supplemented with 10% FBS 

(Invitrogen Life Technologies, UK), 1% penicillin/streptomycin (Sigma), 1.176 

g/L of sodium bicarbonate, 4.76 g/L of Hepes, 1 mL/L of EGF and 1 mg/L of 

hydrocortisone > 98% (Sigma). 3T3 mouse embryo fibroblasts were cultured in 

Dulbecco’s Modified Eagle Medium (DMEM; Sigma) supplemented with 10% 
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CBS (Invitrogen Life Technologies, UK), 1% penicillin/streptomycin (Sigma). 

N1E-115 (rat neuroblasts) were cultured in DMEM (Sigma) supplemented with 

10% fetal bovine serum (FBS; Gibco), 1% penicillin/streptomycin (Sigma). All 

cultures were maintained at 37 °C, in atmosphere of 5% CO2 and 95% 

humidified air. 

 

3.3.3 BC Surface Modification by Plasma Treatment 

The lyophilized bacterial cellulose sheets were treated in a plasma reactor, 

fed with N2 (100%). The plasma reactor used consists of a reaction chamber, a 

vacuum system, a system of power and data acquisition. In addition to two 

electrodes and an adjusting ring, the plasma chamber also included a glass 

cylinder 400 mm in length and 320 mm in diameter, generating a total volume of 

0.32 m3. The ends of the tube are sealed by two stainless steel flanges. The 

connection of bottom flange held vacuum, pressure sensors and 

thermocouples. The power supply has an output continuously adjustable up to 

1500 V DC and current of 2 A. The samples were fixed on the inside camera, 

using an adjustment ring, and placed between the two electrodes, at a distance 

of 4 cm from the cathode, as described previously (Costa, Feitor et al. 2006). 

This distance was necessary to avoid thermal alterations on the surface during 

processing, once the cathode reached temperatures above 150 oC during 

previous experiments. All treatments were performed under the same 

conditions: time (30 min); voltage (425 V), current (0.20 A), N2 Flow (10 sccm), 

pressure (4 mbar). The cathode temperature was measured and controlled in 

the control panel.  

 

3.3.4 Determination of contact angles - wettability 

Water contact angles were measured using a face contact angle meter 

(OCA 20, Dataphysics, Germany). The contact angle of the untreated and 

treated bacterial cellulose surfaces was measured by the sessile drop method 
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(Kwok and Neumann 1999), in which a 2 μl droplet of ultra pure water (Milli Q) 

was placed on a horizontal BC surface and observed with a face contact angle 

meter. The angle formed by the tangent of the droplet with the surface was 

measured by image analysis. 

 

3.3.5 Scanning electron microscopy 

The BC samples were sputter-coated with gold and examined by scanning 

electron microscopy (SEM). The analyses were performed on a scanning 

electron microscope (Nova NanoSEM 200, The Netherlands) using an 

accelerating voltage of 5 kV. 

 

3.3.6 Analysis of X-ray photoelectron spectra (XPS) 

The XPS analysis was performed using an ESCALAB 200A, VG Scientific 

(UK) with PISCES software for data acquisition and analysis. For analysis, an 

achromatic Al (Kα) X-ray source operating at 15 kV (300 W) was used, and the 

spectrometer, calibrated with reference to Ag 3d5/2 (368.27 eV), was operated 

in CAE mode with 20 eV pass energy. Data acquisition was performed at a 

pressure below 1.E-6 Pa. Survey scan spectra were obtained at a pass energy 

of 50 eV, while for C 1s, O 1s and N 1s individual high-resolution spectra were 

taken at a pass energy of 20 eV and a 0,1 eV energy step. Spectra analysis 

was performed using peak fitting with Gaussian-Lorentzian peak shape and 

Shirley type background subtraction (or linear, taking in account the data). The 

binding energy (eV) scales were referenced to the hydrocarbon component (C-

C) in the C 1s spectra at 285 eV. Ageing of the plasma-treated samples was 

also observed by XPS analysis. In this case, the characterization was carried at 

different time intervals after plasma treatment; the samples were stored at room 

temperature. 
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3.3.7 Cell adhesion and proliferation assay  

The mitochondrial activity of the cultured cells was determined using a 

colorimetric assay, which is related to cell viability. The MTS [3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium] assay was performed as follows: the bacterial cellulose sheets 

were cut into circular discs (15mm diameter), sterilized by autoclaving and 

placed in 24-well tissue culture polystyrene plates; the BC sheets were kept at 

the bottom of the plate using homemade Teflon hollow cylinders, designed as to 

fit the wells of the polystyrene plate. Afterwards, 500µl of cell solution in culture 

medium was added to the wells (6x104 cells/well). Two hours after the addition 

of cells, the wells were washed with PBS and complete medium was added. 

Then, the MTS method was applied to quantify viable cells adsorbed on the BC 

membrane. The experimental time periods analyzed were 2 h, 24 h and 48 h. 

The cell adhesion experiments were run in two independent assays, each one 

performed in triplicate. The plates were incubated for 2 h with MTS reagent, and 

then 100 µl of each well were transferred to a new plate and read on a Micro 

Elisa reader (Biotech Synergy HT), with a wavelength of 490 nm. 

 

3.3.8 Statistical Analysis 

Experimental data were analysed statistically using one way Analysis of 

Variance (ANOVA) followed by Tukey test with p < 0.05 (*) considered as 

statistically significant. All statistical analyses were performed with the software 

program SigmaStat (SigmaStat 3.1, 2004, Excel, 2007, USA). 

 

3.4 Results and Discussion 

The modification of surfaces using plasma techniques are becoming 

increasingly common in biomaterials engineering. The most important 

advantage of plasma surface modifications is the ability to selectively change 

the surface properties, improving biocompatibility and mimicking the local tissue 
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environment without altering the bulk attributes. Plasma thus provides a 

versatile and effective means to modify surfaces, enhancing the 

physicochemical properties and optimizing the biofunctionality (Chu, Chen et al. 

2002). The nitrogen plasma is often used to modify metals, polymers and 

polymeric membranes, aiming the introduction of amino groups in the polymer 

surface and therefore, changing its polarity, reactivity and wettability (Kull, 

Steen et al. 2005; Charpentier, Maguire et al. 2006). 

The bacterial cellulose membranes were submitted to nitrogen plasma 

treatment with the purpose of enhancing the cell-material interactions. 

Wettability, evaluated through the measurement of the contact angle of a liquid 

on a surface, is a sensitive way to detect surface modifications (Charpentier, 

Maguire et al. 2006). Furthermore, it is a measure of the hydrophilic/hydrofobic 

character of a material, a relevant property regarding biocompatibility, since it 

has a major influence on protein adsorption and interaction with cells. In this 

work, the wettability of the plasma-treated (BCP) and untreated bacterial 

cellulose (BC) was evaluated by water contact angle measurements. The 

results showed a slight increase in contact angles in the BCP membranes, the 

effect of sterilization – also analysed in this study - being not significant. Overall, 

a slight reduction in the wettability (lower hydrophilicity) follows from the plasma 

treatment (Fig 3.1). According to Deslandes (1998), this behaviour is not directly 

related with the plasma treatment. In the work performed by this author, the 

contact angle of pure cellulose paper sheets increases (as in this work), in 

control experiments were the material is processed without ignition of the 

plasma; indeed, these samples were significantly more hydrophobic than the 

untreated cellulose. The reduction in hydrophilicity of the cellulose samples 

processed in the plasma chamber - without plasma – was assigned to the 

removal of physisorbed water and other volatile molecules, which tend to render 

the surface hydrophilic (Deslandes, Pleizier et al. 1998).   
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Figure 3.1 Effect of nitrogen plasma treatment on the water contact angle on BC 
membranes. * p < 0.05 considered as statistically significant. 

 

The pressure applied in the plasma treatment may influence the final 

surface hydrophilicity of the material. Wang (2006) studied the effect of oxygen 

and nitrogen plasma treatment on Poly(3-hydroxybutyrate-co-3-

hydroxyvalerate) (PHBV) films. The authors observed that the contact angles 

decrease slightly with the exposure time, for both oxygen and nitrogen plasma 

treatments. However, when the pressure of the chamber increases, the contact 

angle decrease for the oxygen-plasma treatment and increase for the nitrogen-

plasma (Wang, Lu et al. 2006). The pressure used in our work (4mBar) was 

higher than the ones used by Wang et al. (0.08 mbar – 0.4 mbar). Another 

parameter with influence on the BC contact angle is the time of operation, 30 

min in the current work. According to previous works (Chan, Ko et al. 1996; 

Bhat and Upadhyay 2002) a short time (1–3 min) treatment in a nitrogen 

atmosphere result in more hydrophilic surfaces. In contrast, longer treatments 
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(i.e. > 3 min) decrease the surface hydrophilicity. Thus, the effect of plasma on 

the surface hydrophilicity is not straightforward; composition, pressure and time 

influences in a complex way the final effect. It is not in the scope of this study to 

analyse this complex function, which demonstrates the versatility of the 

technique. 

In the modification of polymer materials with low-pressure plasmas, 

various components such as electrons, ions, radicals, as well as UV radiation 

are involved and interact with the exposed surfaces (Oehr 2003). When high 

energetic particles of the plasma impact the material surface, chemical bonds 

are broken while new ones form, thus the chemical environment may change. 

XPS analysis was employed to analyse the modifications taking place during 

the plasma treatment. The relative atomic concentration of O, C and N on the 

BC and BCP surface is shown in table 3.1.  

 

Table 3.1 BC and BCP elemental composition analysed by XPS 

Surface 
Modification 

Autoclaved 

(Y/N) 
Oxygen 

(%) Carbon (%) Nitrogen (%) O/C N/C 

BC N 45.20 54.79 0.01 0.82 0.0001 

N 38.31 55.79 5.90 0.69 0.1057 

BCP 
Y 36.66 59.75 3.59 0.61 0.0600 

 

An increase in the concentration of surface nitrogen was provided by 

plasma environment, as expected. Figure 3.2 shows the XPS survey spectra, 

highlighting the N 1s peak on BCP. Sterilization at 121 ºC removes nitrogen to 

some extent; on the other hand, the surface composition of BCP is stable at 

room temperature. Indeed, after 180 days, the concentration of nitrogen, carbon 

and oxygen did not show any significant modification (Table 3.2).  
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Figure 3.2 XPS survey spectra of: (a) BC; (b) autoclaved BCP and (c) BCP. 

 

Table 3.2 BCP ageing 

Surface 
Modification 

Days after 
treatment Oxygen (%) Carbon (%) Nitrogen (%) O/C 

15 38.31 55.79 5.90 0.68 

50 38.88 55.83 5.29 0.69 BCP 

180 37.81 56.52 5.67 0.66 

 

Additional insight into the surface chemistry can be obtained through 

deconvolution of the XPS spectra. The C 1s, O 1s and N 1s peaks of BC and 

BCP are shown in figure 3.3 and table 3.3. The binding energy of C 1s and its 

spectra deconvolution are well documented. There is a general agreement on 

the assignment of components C1, C2, C3 and C4 of C 1s peak in wood-

derived material (Gray 1978; Dorris and Gray 1978a; Dorris and Gray 1978b; 



Surface modification of BC by nitrogen-containg plasma for improved interaction with cells   CHAPTER 3 
 

Pértile, R. A. N. | 2010  87 
 

Mjoberg 1981; Takeyama and Gray 1982; Hon 1984). C1 corresponds to 

carbon only linked to hydrogen or carbon (-C-H, -C-C); C2 is assigned to carbon 

linked to a single oxygen (-C-O), whereas C3 binds two non-carbonyl oxygen O-

C-O, or a single carbonyl oxygen (-C=0) and finally C4 represents carbon atoms 

linked to a carbonyl and a non-carbonyl oxygen (O–C=O) (Hua, Kaliaguine et 

al. 1993). 

 

Figure 3.3 Deconvolution of the carbon peak for (a) BC and (b) BCP, and oxygen peak 
for (c) BC and (d) BCP (e) nitrogen peak for BCP. 

 

Pure cellulose is a homopolysaccharide composed of β-D-

glucopyranose units. Each monosaccharide unit contains five carbon atoms 

linked to one of oxygen and another carbon linked to two oxygen atoms. Thus, 

one expects a curve-resolved XPS C 1s signal to consist of only two peaks (C2 
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and C3). The carbon composition, C1/C2/C3/C4 for the pure cellulose is 

expected to be [0:83:17:0] (Carlsson and Strom 1991). However, the 

carbon composition determined using filter paper, as given by 

XPS measurements in a work developed by Carlsson and Strom (1991), was 

found to be [8:72:17:3]. According to these authors, the appearance of the two 

peaks C1 and C4 may be due to either a contamination of the filter paper and/or 

to a chemical change in the cellulose structure. Likewise, the XPS 

characterization of bacterial cellulose, by Li et al. (2009), showed that the C (1s) 

spectra presented three peaks, at 285 eV (C-C), 286.6 eV (C-O, C-OH) and 

288.3 eV (O-C-O, C=O). In the present work, BC presented 4 carbon peaks 

corresponding to C1, C2, C3 and C4. The C1 (C-C) peak should be 

representative of ubiquitous contamination of cellulose by carbon and oxygen in 

air-exposed surfaces (Johansson and Campbell 2004). The C4 peak could be 

attributed to C1 core level of carbon atoms in carboxyl groups (O-C=O) 

(Sapieha, Verreault et al. 1990; Belgacem, Czeremuszkin et al. 1995). 

The O 1s peak in the BC and BCP samples corresponds mainly to two 

forms of oxygen: O2 oxygen in OH groups of cellulose, O3 oxygen in C-O-C 

and O-C-O groups; the O1 is the most intense component peak, representing 

73.45% and 82.17% of the O 1s total areas in the untreated and treated 

celluloses, respectively. The O1 peak is related to amide groups –CONH2 

(Cagniant, Magri et al. 2002). 

Nitrogen plasma induces the incorporation of various chemical 

functionalities onto the polymer surface. On exposure to this kind of 

treatment, the incorporation of N-containing functional groups - such as amine, 

imine, amide, nitrile - on different materials has been described, whose 

distribution and density can be tuned with the plasma parameters, and depend 

also on ageing processes (Gancarz, Pozniak et al. 2000; Salerno, Piscioneri et 

al. 2009). Through nitrogen plasma treatment N-groups were incorporated at 

the BC surface. The component N 1s was decomposed in only one peak at a 

binding energy of 400.39 eV. According to the literature (Jansen and van 

Bekkum 1994; Cagniant, Magri et al. 2002), this binding energy (400.2 ± 0.10 
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eV) is assigned to amides, lactams and nitriles. 

 

Table 3.3 Concentration of different functional groups on BC and BCP 

Bacterial 
Cellulose 

 Peaks (%) Binding Energy 
(eV) 

Assignment 

BC C1s (1) 7.22 285.0 Non-functionalised carbon (C-C; 
C-H) 

 C1s (2) 64.56 286.67 Carbon linked to oxygen by a 
simple bound 

 C1s (3) 23.15 287.96 Carbon linked to two oxygen 
atoms by simple bounds (O-C-
O); carbon linked to one oxygen 
atom by double bound (-C=O); 
amide (CO-NH2) 

 C1s (4) 5.05 289.04 Carbon in –COOR (carboxylic 
acids, esters, lactones, 
anhydrides) 

 O1s (1) 2.96 531.12 Amide groups –CONH2 

 O1s (2) 73.45 533.12 -OH groups of cellulose 

 O1s (3) 23.58 533.79 -COOH 

BCP C1s (1) 12.79 285.0 Non-functionalised carbon (C-C; 
C-H) 

 C1s (2) 57.75 286.56 Carbon linked to oxygen by a 
simple bound and carbon linked 
to nitrogen in nitrile 

(C-N) 

 C1s (3) 23.66 288.17 Carbon linked to two oxygen 
atoms by simple bounds (O-C-
O); carbon linked to one oxygen 
atom by double bound (-C=O); 
amide (CO-NH2) 

 C1s (4) 5.78 289.52 Carbon in –COOR (carboxylic 
acids, esters, lactones, 
anhydrides) 

 O1s (1) 9.82 531.21 Amide groups –CONH2 

 O1s (2) 82.17 532.93 -OH groups of cellulose 
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 O1s (3) 8.01 534.46 -COOH 

 

 

The O/C atomic ratio of BC was found to be 0.82 (table 3.1), a value in 

agreement with the theoretical one in pure cellulose (0.83) (Topalovic, 

Nierstrasz et al. 2007). After the plasma treatment, the O/C atomic ratio 

changed to 0.69 and 0.61, for the non-sterilized and sterilized BCP, 

respectively. These values are close to those - 0.55 and 0.62 - reported by 

Topalovic (2007) and Li (2009) (Topalovic, Nierstrasz et al. 2007; Li, Wan et al. 

2009). 

Changes in hydrophilicity induced by the implantation of polar functional 

groups can be time-dependent, an effect often called “ageing”, reported by 

many researchers on modified polymer surfaces. The nitrogen plasma 

modification of BCP membranes was examined along time by XPS, in order to 

access the stability of the nitrogen groups incorporated on the surface. Chain 

migration in the surface region can result in gradual deterioration of the surface 

properties. Our results showed that the functional groups present on BCP 

surface are stable at room temperature, up to 180 days. The long-term stability 

of a modified polymer surface is important whenever the material is not stored 

in a controlled environment or coated immediately after treatment. Several 

factors have been reported to influence the stability of modified surfaces, 

including contamination, the chemical structure of the original polymer, electrical 

properties, the degree of plasma modification (operational conditions), the 

plasma gas, the storage environment, all may contribute to the overall decay 

phenomenon (Gerenser 1993; Bhat and Upadhyay 2002).  

In the work developed by Bhat and Upadhyay (2002), the effect of storage 

time on the surface energy of unoriented polypropylene films (UPP) treated with 

nitrogen plasma was analysed over a period of 2 months. UPP films treated in 

nitrogen plasma for 3 min showed a gradual reduction of the surface energy 

along with the storage time, whereas films treated for 10 min were stable. 
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According to the authors, the re-orientation of mobile groups is responsible for 

the observed change in surface energy. For the shorter treatment time, 

hydrophilic groups are incorporated on the polymer surface, and as a result, 

surface energy is improved only for freshly treated samples. However, for the 

samples stored for 2 months, hydrophilic groups reorients toward each other 

and also toward the interior. Because of this, hydrophilic groups do not face the 

air–liquid interface and therefore the contact angle increases and surface 

energy decreases. For a longer treatment time (10 min), the crosslinking 

reactions avoid the mobile group to reorient easily, such that the surface energy 

remains constant (Bhat and Upadhyay 2002). In the current case, since BC was 

treated for 30 min with nitrogen plasma, a crosslinked surface, leading to a 

permanent binding of N atom to the polymer chain, may thus be responsible for 

the observed stability. 

Sterilizability is a mandatory requirement for biomedical materials, which 

must contact cells or tissues. Among the various methods of sterilization, the 

most frequently applied is hot vapor sterilization (121 oC, 21 min). This method 

is preferred as long as the materials are stable (Oehr 2003). Once bacterial 

cellulose is a thermally stable material, we evaluated whether the functional 

groups formed by plasma treatment remains stable after autoclaving. Our 

results showed a decrease in N2 content (5.90% to 3.59%) after the process. 

However, even with the decrease of nitrogen after the sterilization, the 

functional groups present on the surface were able to enhance the cell affinity 

for BC. 

It has been demonstrated, using several materials (Vidaurre, Achete et al. 

2001; Yang, Bei et al. 2002; Lucchesi, Ferreira et al. 2008), that plasma may 

increase the surface roughness. The SEM observations reveal that plasma 

produces morphological changes on BC. Figure 3.4 shows SEM images of BC 

and BCP, autoclaved and non-autoclaved. While BC presents relatively low 

porosity and a tight interfibre contact, the plasma treatment seems to disrupt the 

fibres to some extent, leading to a more porous and rough material. These 

changes in the surface topography are mostly caused by chemical erosion and 
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physical erosion by atoms and ions in the plasma (Vesel, Junkar et al. 2008). 

However, unlike reported by Yang et al. (2002), the increased roughness does 

not lead in this case to the enhancement of the hydrophilicity of the plasma 

treated samples, as discussed previously. Furthermore, the SEM images show 

the typical micro-channels pattern of BC, which maintained the 3D network 

structure after plasma treatment. Apparently, autoclaving increases even more 

the porosity of the scaffold (Fig 3.4). The plasma treatment and autoclaving 

resulted in BC membranes with larger inter-fiber porosity, which is likely to 

favour the permeability of nutrients and cell communication and thus 

representing a promising method for the development of BC scaffolds for tissue 

engineering. Actually, the change in roughness and porosity has been shown to 

play a significant effect on the protein and cell attachment, while oxygen as well 

as nitrogen containing plasma has been shown to increase endothelia cell 

attachment (Vesel, Junkar et al. 2008). 

 

 

Figure 3.4 SEM micrographs of bacterial cellulose. BC (a, b); BCP (c, d) and 
autoclaved BCP (e, f). 
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Biocompatibility is not an inherent property of a material, but results from 

complex interactions between an implant and the surrounding tissues. Any 

polymer used in biomedical application should be biocompatible, which 

requires, among other properties, a low friction coefficient, appropriate surface 

topography, chemistry and hydrophilicity (Wei, Yoshinari et al. 2007; Gomathi, 

Sureshkumar et al. 2008). It is known that BC is a very hydrophilic polymer; 

however, cell-material interactions are not only influenced by a defined balance 

of hydrophilicity/hydrophobicity, but also by the presence of special functional 

groups (Klee, Villari et al. 1994). In tissue engineering, cell adsorption is critical, 

because adhesion occurs before other events like cell spreading, migration and 

differentiation (Wan, Yang et al. 2003). In this context, BC may be improved as 

to induce a better cell adhesion and even better biocompatibility. The nitrogen-

plasma treatment was chosen and proved to effectively enhance cell affinity 

through functional nitrogen groups grafted on the surface material. The MTS 

results (Fig 3.5) showed that the modification by nitrogen plasma efficiently 

improve the adhesion of N1E-115 and HMEC-1 cells, by 2 fold in the case of 

HMEC and by 25% in the case of neuroblasts (according to the viable cells 

detected 2h after cell seeding). Not only the cells adhere in higher number, 

proliferation is also more exuberant on BCP. However, in the case of the 3T3 

fibroblasts, the treatment showed no effect in the timeframe analyzed (2-48 h). 

Thus, different cell display a different behaviour in contact with modified 

biopolymers. 



Surface modification of BC by nitrogen-containg plasma for improved interaction with cells   CHAPTER 3 
 

Pértile, R. A. N. | 2010  94 
 

 

Figure 3.5 MTS assays of HMEC-1, N1E-115 and 3T3 fibroblast cultured on BC and 
BCP. The MTS assay was developed at 2, 24 and 48 hours after cells addition. Results 

are expressed in terms of absorbance. 

 

3.5 Conclusions 

Plasma surface modification is an effective and economical surface 

treatment technique, drawing great interest in biomedical engineering. The 

nitrogen plasma treatment used in this work was able to increase the 

concentration of functional groups on BC surface in a very stable way along 

time, and was also capable to improve the adhesion of endothelial and 

neuroblast cells to the material. Therefore, the surface modification leads to a 

better cell affinity with BC, probably contributing for a better biocompatibility in 

vivo. It must be remarked that the plasma treatment improves significantly the 

porosity of the material. This is a very important result, since the relatively low 

porosity of BC is a main drawback in the development of tissue engineering 

applications, because it is the reason for the poor cell penetration. Thus, 

forthcoming work will address the characterization of the mechanical properties 



Surface modification of BC by nitrogen-containg plasma for improved interaction with cells   CHAPTER 3 
 

Pértile, R. A. N. | 2010  95 
 

of the treated BC as well as the analysis of the cell migration through the 

material, and viability of the cells inside the plasma treated BC. 
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4. Bacterial cellulose: long-term 
biocompatibility studies  

 

 

4.1 Abstract 

The bacterial cellulose (BC) secreted by Gluconacetobacter xylinus is a 

network of pure cellulose nanofibers, which has high crystallinity, wettability and 

mechanical strength. These characteristics make BC an excellent material for 

tissue engineering constructs, noteworthy for artificial vascular grafts.In this 

work, the in vivo biocompatibility of BC membranes produced by two G. xylinus 

strains was analyzed through histological analysis of long-term sub-cutaneous 

implants in the mice. The BC implants caused a mild and benign inflammatory 

reaction that decreased along time and did not elicit a foreign body reaction. A 

tendency to calcify over time, which may be related to the porosity of the BC 

implants, was observed, especially among the less porous BC-1 implants. In 

addition, the potential toxicity of BC nanofibers – obtained by chemical-

mechanical treatment of BC membranes - subcutaneously implanted in mice 

was analysed through bone marrow flow cytometry, blood and histological 

analyses. After 2 and 4 months post implantation, the nanofibers implants were 

found to accumulate cytoplasmically, in subcutaneous foamy macrophages 

aggregates. Moreover, no differences were observed between the controls and 

implanted animals in thymocyte populations and in B lymphocyte precursors 

and myeloid cells in the bone marrow. 
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4.2 Introduction 

Natural and synthetic polymers are used in the field of biomedical materials 

and tissue engineering in a variety of applications, including among others drug 

delivery, novel vascular grafts or scaffolds for in vitro and in vivo tissue 

engineering (Czaja, Young et al. 2007). These polymers are available in a variety 

of configurations, including fibers, porous sponges and tubular structures (Kim 

and Mooney 1998). Tissue engineering approaches typically employ scaffolds 

made of three-dimensional mimetics of the extracellular matrix (ECMs) to 

engineer new natural tissues from isolated cells. The scaffolds can be design as 

macroporous synthetic ECMs, which can regulate the organization of cells seeded 

into the matrix and its subsequent proliferation to form new tissues. Also, 

polymeric nanofiber matrices are one of the most promising ECM-mimetic 

biomaterials because their physical structure is similar to the fibrous proteins in 

native ECM. However, nanomaterials have unusual properties not found in the 

bulk material, and this is an important issue because nano-scale and high aspect 

ratio gives rise to different biological effects compared to micro- and macro-

materials (Ma, Kotaki et al. 2005; Koyama, Endo et al. 2006; Barnes, Elsaesser et 

al. 2008; Moreira, Silva et al. 2009). 

Cellulose is a naturally occurring linear homopolymer of glucose, the most 

widespread polymer in nature (Muller, Muller et al. 2006). Cellulose-based 

materials, such as oxidized cellulose and regenerated cellulose hydrogels are 

mainly used in wound healing, as hemostatic agents, hemodialysis membranes 

and drug-releasing scaffolds (Doheny, Jervis et al. 1999; Helenius, Backdahl et al. 

2006; Czaja, Young et al. 2007). Furthermore, several studies reported the 

applicability of cellulose for culturing cells (hepatocyte, chondrocyte, stem cells) 

and implantation (bone and cartilage development)(LaIuppa, McAdams et al. 

1997; Martson, Viljanto et al. 1998; Entcheva, Bien et al. 2004; Muller, Muller et 

al. 2006; Pulkkinen, Tiitu et al. 2006).  

The bacterial cellulose (BC) secreted by Gluconacetobacter xylinus is 

chemically identical to plant cellulose but different regarding the macromolecular 

properties and structure (Jonas and Farah 1998; Brown and Saxena 2000; 
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Klemm, Schumann et al. 2001; Klemm, Heublein et al. 2005). The cellulose 

secreted by these bacteria is a pure nanofiber network, which has high 

crystalinity, wettability, mechanical strength, in situ moldability, permeability for 

liquids and gases. Furthermore, it is simple to produce (Vandamme, De Baets et 

al. 1998; Nakagaito, Iwamoto et al. 2005). These characteristics make BC an 

excellent material for tissue engineering constructs. Indeed, its potential 

application as skin substitute for temporary covering of wounds and ulcers, dental 

implants, scaffold for tissue engineering of cartilage, nerves and blood vessels 

has been investigated (Fontana, Desouza et al. 1990; Jonas and Farah 1998; 

Klemm, Schumann et al. 2001; Backdahl, Helenius et al. 2006). Furthermore, BC 

nanofibers seem to be a good material for biomedical applications since its toxicity 

has already been evaluated in our previous work, using in vitro assays (Moreira, 

Silva et al. 2009), showing good biocompatibility and no evidence of genotoxicity.  

In spite of cellulose-based materials being generally considered 

biocompatible, showing only a negligible foreign body and inflammatory response 

in vivo (Entcheva, Bien et al. 2004), several parameters must be evaluated as to 

assess the biocompatibility of an implanted material. Among them, the type and 

degree of inflammatory and immune response, disintegration, resistance and 

longevity of the implants in the host tissue have to be taken in consideration 

(Linde, Alberius et al. 1993; Mendes, Rahal et al. 2009). In this work, the 

biocompatibility of two different types of BC grafts was analyzed in a long-term 

approach. Moreover, the biocompatibility of BC nanofibers subcutaneously 

implanted in mice was also evaluated, including possible effects in lymphopoiesis.  

 

4.3 Material and Methods 

4.3.1 Production of bacterial cellulose 

The pellicles of BC were produced by the Gluconacetobacter xylinus ATCC 

53582 (BC-1) and ATCC 10245 (BC-2) strains, cultured in Hestrin-Schramm 

medium (Hestrin and Schramm 1954), into 96-wells polystyrene plates (250µl per 

well), for 4 and 7 days, respectively, at 30 ºC in static culture. The membranes 
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were purified using 2% sodium dodecyl sulfate (SDS) overnight, washed with 

distilled water until the complete removal of SDS and immersed in a 4% NaOH 

solution, shaking for 90 min at 60 oC. After being neutralized, the pellicles were 

autoclaved in Phosphate Buffered Saline (PBS) and stored at 4 ºC. The BC 

nanofibers were produced according to Moreira et al. (2009).  

 

4.3.2 Scanning electron microscopy 

The BC samples were sputter-coated with gold and examined by scanning 

electron microscopy (SEM). The analyses were performed on a scanning electron 

microscope (LEICA S 360). CryoSEM was performed using a microscopy Model 

Gatan Alto 2500. Samples were fronzen in liquid nitrogen, cut to expose the BC-

cells interface, and observed at -150 ºC. 

 

4.3.3 Animals 

The in vivo biocompatibility studies were performed using male BALB/c 

mice (8 weeks old) purchased from Charles River (Barcelona, Spain). The 

animals were kept at the Abel Salazar Institute for Biomedical Sciences of the 

University of Porto (ICBAS-UP) animal facilities during the experiments. All 

procedures involving the mice were performed according to the European 

Convention for the Protection of Vertebrate Animals used for Experimental and 

Scientific Purposes (ETS 123) and 86/609/EEC Directive and Portuguese Rules 

(DL 129/92). 

  

4.3.4 Subcutaneous Implantation 

The BC implants were surgically implanted subcutaneously, without 

fixation, in the back of the mice with each mouse receiving two implants (BC-1 

n=48; BC-2 n=80). The mice were anesthetized by an intramuscular injection of a 

ketamine (Imalgene 1000, Material) and xylazine (Rompun 2%, Bayer Healthcare) 
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mixture, at a 50 and 10 mg/kg dose, respectively. The hair was removed and two 

small incisions were made in the skin as bilateral subcutaneous pockets along the 

backbone where the BC discs were implanted. Finally, the incision pockets were 

closed with stitches. The control animals received no implants. At least two 

animals were used for each post-implantation period analyzed (1 week, 1, 3, 5, 7 

and 12 months). The aspect of the wound and the presence of edema were 

evaluated before removing the implants. The implants were removed with the 

surrounding tissue to prevent damage to the tissue-implant interface, and 

immersed in formaldehyde for later histological evaluation. 

The BC nanofibers were injected in eighteen animals, allocated to in two 

groups (2 and 4 months post-implantation). Each animal received a 300 μl 

injection of nanofibers solution (1 mg/ml) on each side of the back, and for the 

control 300 μl of physiological saline was used. After 2 and 4 months post-

implantation, the animals were sacrificed. Blood was sampled by cardiac puncture 

for blood analysis. Skin surrounding the injection sites and internal organs (liver, 

spleen, small intestine and mesenteric lymph nodes) were collected for 

histological analysis. 

For flow cytometry analyses, bone marrow cells from femurs and the thymus 

were collected, washed and ressuspended in PBS, supplemented with 1% BSA 

and 10 mM of sodium azide. Flow cytometric analysis was performed in a 

FACScan with the CellQuest software (BD Biosciences), using the following 

antibodies: FITC-conjugated rat anti-mouse IgM (Pharmingen), FITC-conjugated 

rat anti-mouse Ly-6E and Ly-6C (Pharmingen), FITC-conjugated rat anti-mouse 

CD4 (Pharmingen), PE-conjugated rat anti-mouse CD8a (Pharmingen), PE-

conjugated anti-mouse CD45R/B220 (Pharmingen), PE-conjugated anti-mouse 

CD11b (eBioscience). Dead cells were gated out through propidium iodide 

incorporation. 
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4.3.5 Histological Analysis 

All samples were fixed in 10% neutral buffered formalin for 24 h and paraffin 

embedded. 4-μm thick sections were used for hematoxylin and eosin (H&E) 

staining. Slides were examined under a light microscope (Nikon E600); 

measurements and photographs were obtained with a digital camera (Nikon DS-

5M).  

 

4.4 Results 

4.4.1 BC morphology 

The SEM images of the BC membranes produced by the two strains used in 

this work (Fig 4.1) exhibit structural differences. BC-1 has a more compact 

network while BC-2 has a highly porous structure. In addition, the BC-1 

membranes obtained in the static culture present, as previously described 

(Helenius, Backdahl et al. 2006), a more compact surface on the BC-air interface. 

The BC structure seemed to influence cell invasion and the implant’s behavior 

along time. The Cryosem results shows the compact a porous side of BC-1 

membranes, and as can be seen in Fig 4.1 e) and f) the compact side presents 

aggregated fibrilar structure, while in the porous side, fibers are more dispersed, 

and the structure have a higher porosity.  
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Figure 4.1 SEM micrographs of BC-1 and BC-2. a) BC-2 porous side; b) BC-2 compact 
side; c) BC-1 porous side; d) BC-1 compact side; and CryoSEM of BC-1 e) porous side 

and f) compact side. 

 

4.4.2 Bacterial cellulose biocompatibility 

On gross examination, the BC implants maintained their shape, but internal 

fissures lined with migrating mesenchymal cells were evident histologically. No 

clinical signs of inflammation were present at the incision sites. Cell ingrowth was 

consistently more extensive on the BC-1 porous side (Fig. 4.2), where cells 
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presented a spindle-shaped form. Integration with the host tissue was 

occasionally observed over time, with both materials evaluated; the tissue-implant 

interface being multifocally obscured by incoming cells (Fig. 4.2). While with BC-1 

cellular penetration was more intense through the porous side of the implants, in 

the case of the BC-2 cells penetrated deeply through both sides of the implants. 

 

 

Figure 4.2 Histological images of BC-1, 1 week post-implantation, showing: a) BC-1 
compact side; b) BC-1 porous side; and the different pattern of cell infiltration (×100). 
Arrow head shows the approximate surface between the implant and the connective 

tissue. 

 

BC did not elicit a foreign body reaction, and only a thin fibrous layer formed. 

The membrane thickness showed differences between the two materials, ranging 

from 4 µm to 10 µm to BC-2 and 5 µm to 60 µm to BC-1. A mild, acute 

inflammation characterized by moderate edema and increased numbers of 

neutrophils and less macrophages inside and around the implants was observed 

initially. From 4 weeks onwards, the cell response progressively evolved towards 

chronicity, with reduced inflammatory cells in and around the implants and a 

predominance of macrophages over neutrophils. Fibroblasts, endothelial cells and 

rare adipocytes (collectively referred to as mesenchymal cells on Table 4.1) 

invaded the implants. After 3 months, the macrophages, fibroblasts and 

endothelial cells were predominantly found in the implants. Table 4.1 summarizes 

the qualitative scores regarding different aspects of the biological reaction to the 
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implants, along time, including calcification, inflammation, presence of blood 

vessels, and kind of cells observed. Newly formed blood vessels were observed 

next to the implants. In a few cases (mostly with BC-2 implants) blood vessels 

were also present inside the implants, although they didn’t reach the middle of the 

implant. 

 

Table 4.1 Qualitative scores of the biological reaction to the BC sub-cutaneous implants 

Cell type 

  Calcification Inflamation 

Blood 

vessels M/N Ms 

BC-1           

1 week - ++++ - ++++ + 

1 month ++ +++ - ++++ +++ 

3 months +++ +++ + ++++ ++++ 

5 months +++ ++ + ++++ ++++ 

7 months ++ - ++ ++++ ++++ 

12 months +++ + ++ +++ +++ 

            

BC-2           

1 week - ++++ ++ ++++ ++ 

1 month - ++++ ++ ++++ ++++ 

3 months + ++ ++ ++++ ++++ 

5 months + +++ + +++ ++++ 

7 months ++ + + +++ +++ 

12 months ++ - - ++++ ++++ 

(++++) all the implants present the condition 

(-) none of the implants present the condition 

M/N: Macrophages/Neutrophils 

Ms: Mesenchymal cells 
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Calcification inside BC was observed in many cases (Table 4.1), as shown 

in Fig. 4.3 and 4.4. In the case of BC-2 calcification occurred, sporadically, 3 

months post-implantation and earlier and consistently 1 month post-implantation 

in the case of BC-1. The calcification localization differed between the two types 

of implants: BC-1 implants calcified more heavily in the periphery, whereas the 

calcification of BC-2 spread through the middle of the implant.  

 

Figure 4.3 BC-1 implants a) 1 week, b) 1 month, c) 3 months, d) 5 months and e) 7 
months, f) 12 months post implantation (×100). 
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Figure 4.4 BC-2 implants a) 1 week, b) 1 month, c) 3 months, d) 5 months and e) 7 
months, f) 12 months post implantation (×100). 
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4.4.3 Nanofibers 

All animals implanted with cellulose nanofibers survived and showed a 

normal development within the time course of the experiment. There were no 

significant changes in body weight between the implanted animals and control, 

nor did any animal show clinical signs of inflammation at the injection sites (data 

not shown). Histological examination showed a mild, chronic inflammatory 

process associated with injection sites on nanofibers-exposed mice. At 2 and 4 

months post-implantation, nanofibers were present in subcutaneous foamy 

macrophages aggregates (Fig. 4.5a and 4.5c) as an abundant, lightly basophylic, 

intracytoplasmic, amorphous material (Fig. 4.5b and 4.5d). In some instances, 

nanofibers were still present as extracellular deposits surrounded by numerous 

foamy macrophages engaged in phagocytosis. Small, multifocal, peripheral, 

lymphoid aggregates and occasional mast cells were also present. Histological 

analysis of internal organs (small intestine, liver, spleen) showed no differences 

between implanted and control animals.  
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Figure 4.5 Nanofibers implants a) 2 months (×40), b) 2 months (×400), c) 4 months (×40) 
and d) 4 months (×400), post implantation. a) and c) shows the nanofibers aggregates in 

the subcutaneous tissue. b) and d) shows the macrophages with intracytoplasmic BC 
material. 

 

To assess the effect of BC nanofibers in leukocyte hemopoiesis, the 

proportion of different leukocyte cell populations was analyzed by flow cytometry 

in the thymus and bone marrow. As shown in Table 4.2, no significant alterations 

in the proportions of thymic double positive (CD4+CD8+), or single positive (CD4+ 

and CD8+) cells were observed in the implanted animals, comparatively to 

controls, at the time-points analyzed. As also shown in Table 4.2, no significant 

effect of nanofibers implants was observed in B-cell lineage populations in the 

bone marrow, as assessed in both pre/pro B (B220+IgM-), and B immature/mature 

(B220+/IgM+) cells. Furthermore, the proportion of bone marrow 

myeloid/granulocytes cell population (CD11b+/GR1+) was also not different from 

that of controls 2 and 4 months upon nanofibers implant. Altogether, these results 
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indicate that no significant effect in leukocyte hematopoiesis was caused by the 

implanted BC nanofibers (NFs). 

 

Table 4.2 Cell populations in implanted and control animals 

Data represent cell percentages (mean ± s.d.). n = number of mice 

 

 

4.5 Discussion 

Biocompatibility is one of the main requirements of any biomedical material 

and can be defined as the ability to remain in contact with living tissue without 

causing any toxic or allergic side effects (Czaja, Young et al. 2007). BC is 

generally considered a biocompatible material, although, to our knowledge, only 

two papers reported the study of the fate of sub-cutaneous BC implants in vivo; in 

these cases, the studies were conducted for relatively short periods (up to 12 

weeks). In this work, the fate of implanted BC along much longer periods of time 

    2 months 4 months 

Cell type Marker Control (n=2)

BC-NFs 

(n=6) Control (n=3) 

BC-NFs 

(n=5) 

Bone Marrow      

Pre and Pro B cells B220+IgM- 25,84 ± 2,57 27,76 ± 1,09 24,75 ± 2,88 30,64 ± 2,49 

Immature/mature B 

cells B220+IgM+ 17,96 ± 1,25 18,82 ± 0,21 13,37 ± 1,32 14,01 ± 0,60  

Granulocyte/myeloid 

cells CD11b+GR-1+ 52,89 ± 2,67  50,22 ± 1,57 46,88 ± 2,84 45,10 ± 3,24 

 CD11b+GR-1- 5,48 ± 0,01   6,67 ± 1,04 3,43 ± 0,52 3,35 ± 0,35 

      

Thymus      

CD4+CD8+ double 

positive thymocytes CD4+CD8+ 84,47 ± 1,32 85,24 ± 1,13 82,87 ± 0,39 84,77 ± 1,06 

Single positive CD4 

T cells CD4+CD8- 6,94 ± 0,15 6,60 ± 0,65 7,84 ± 0,25 6,66 ± 0,78 

Single positive CD8 

T cells CD4-CD8+ 1,74 ± 0,22 1,67 ± 0,10 1,69 ± 0,23 1,77 ± 0,20 



Bacterial cellulose: long-term biocompatibility studies   CHAPTER 4 
 

 

Pértile, R. A. N. | 2010  113 
 

(up to one year), possible differences associated to the structure (namely 

porosity) of the material and possible toxicity effects related to BC nanofibres 

were analyzed. 

  As expected, the BC implants in the present experiment did not elicit a 

foreign body reaction. Only a thin capsule was formed over time, its thickness 

depending on the kind of implant (BC-1 implants elicited a stronger encapsulation 

than BC-2). The inflammatory reaction caused by the implants was mild and didn’t 

cause any complications. In the first weeks, the cells colonizing the implants were 

mostly neutrophils and macrophages. However, over time, macrophages became 

predominant over neutrophils, and fibroblasts and endothelial cells were the main 

cell types within the implants, although blood vessels were restricted to the 

implant’s periphery. Integration with the host tissue was multifocally present, in 

areas where incoming cells obscured.  

These results are in agreement with Helenius et al. (2002) who implanted 

BC subcutaneously in mice, for a period of up to 12 weeks. No signs of chronic 

inflammatory reaction or capsule formation were verified in that case, and the 

formation of new blood vessels around and inside the implants was observed 

(Helenius, Backdahl et al. 2006). In another work, Mendes et al. (2009) 

subcutaneously implanted BC was shown to be nonresorbable and capable of 

inducing a mild inflammatory response. The authors observed at 60 and 90 days 

post-surgery no inflammatory infiltrate. The angiogenesis was markedly reduced 

and the connective tissue surrounding the membrane was mature (Mendes, Rahal 

et al. 2009). 

In this work, the structural differences between BC produced by the different 

G. xylinus strains determined the cell behavior in the implants. In the case of BC-2 

membranes, cells were able to migrate into the inner membranes and colonize 

their full extent. In the case of BC-1, cell migration was conditioned by the tight 

pores, and by the compact and soft sides, cells being unable to reach the inner 

portion of the implants. As described by Helenius et al. (2005), our results indicate 

that the magnitude of cell ingrowth seems to be dependent on the porosity of BC, 
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cell migration declining where the material is denser (Helenius, Backdahl et al. 

2006).  

In this study, in contrast to earlier reports referred, BC calcification was, for 

the first time, observed. This type of calcification may be due to the occurrence of 

cell death inside the BC structure. Cell death results in an acid environment in the 

implant, conducive for the mobilization and concentration of calcium. The tentative 

explanations of biomaterials calcification assign the main cause to dead cells. 

According to this hypothesis, the accumulation of calcium deposits originates from 

the cells or tissues that have degenerated or become necrotic (Nomizu, Weeks et 

al. 1995; Zainuddin, Chirila et al. 2005). However, some authors showed that, 

even without direct contact with cells, calcification of biomaterials occurs through 

the formation of a protein–calcium complex layer on the surface of biomaterials, 

this being the key event in biomaterial calcification (Rosanova, Mischenko et al. 

1991; Vasin, Rosanova et al. 1998). Furthermore, Rosanova et al. (1991) 

suggested that the formation of calcium deposits occurs by the adsorbed protein 

molecules, which bind Ca2+ ions from surrounding media; alternatively, Ca-protein 

complexes forms at the biomaterial/blood interface and adsorbs onto the surface.  

This work provides clues regarding the factors influencing BC calcification. 

The porosity and time of implantation are factors that seem to influence 

calcification, considering that the two BCs used presented different calcification 

patterns (peripheral versus diffuse). Calcification only occurred in the implants 

where cells were present, preferentially in the interior of the implant, and at 

different times according to the type of cellulose. The findings suggest that the 

differences in membrane size and the longer observation period compared with 

previous studies (ref) may have led to different observations in our study. 

 

4.5.1 Nanofibers 

Nanofiber matrices are well suited to tissue engineering: 1) as scaffold that 

can be fabricated and shaped to fill anatomical defects; 2) its architecture can be 

designed to provide the mechanical properties necessary to support cell growth, 
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proliferation, differentiation, and motility; 3) and it can be engineered to provide 

growth factors, drugs, therapeutics, and genes to stimulate tissue regeneration. 

An inherent property of nanofibers is that they mimic the extracellular matrices 

(ECM) of tissues (Ramakrishna, Fujihara et al. 2006)  and the different 

biomacromolecules, which compose the native ECM and their organization. 

Furthermore, its nanoscale dimension can provide tensile strength and elasticity 

for the tissues (Ma, Kotaki et al. 2005). Although BC is not expected to be 

resorbable, some authors show evidence that amorphous may undergo 

degradation in vivo. Thus, the possibility that nanofibers may be released from 

implanted BC made materials cannot be ruled out, hence the need to study the 

toxicity of BC nanofibers. Indeed, since the nanomaterials have unusual 

properties, not found in the bulk material, such as high surface reactivity and 

ability to cross cell membranes, concerns about their safety and toxicology 

emerged (Moreira, Silva et al. 2009). The impact of nanostructural features in the 

interaction of a material with cells and tissues is dependent on the size, chemical 

composition, surface structure, solubility, shape, and on the supramolecular 

structural organization (Barnes, Elsaesser et al. 2008; Moreira, Silva et al. 2009). 

In this context, the toxicity of nanoscale substances has been studied and it is 

known that carbon nanotubes and asbestos are nanoscaled materials with 

carcinogenic potential (Speit 2002; Donaldson, Aitken et al. 2006; Poland, Duffin 

et al. 2008) 

Moreira and co-workers in 2009 presented the first evaluation of the 

potential genotoxicity of BC nanofibers and showed that BC NFs did not present 

genotoxicity in vitro. However, an in vivo study is still missing and it is well known 

that with the in vitro systems there is no possibility to evaluate secondary 

inflammatory effects (Moreira, Silva et al. 2009). Some studies with cellulose 

fibers described the biological effects of this type of material in animal studies. 

Cellulose fibers tested in vivo showed no adverse health effects when chronically 

ingested, but when present in the intraperitoneal region can cause mesothelioma 

in rats, and when inhaled, have the potential to accumulate and induce 

pathological changes in the lung (Anderson, Owens et al. 1992; Adamis, Tatrai et 

al. 1997; Cullen, Miller et al. 2002). In this work, most injected nanofibers 
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remained in macrophage aggregates in the subcutaneous tissue and did not 

cause any visible abnormalities neither in the host adjacent tissue nor in the 

abdominal organs. These results are in agreement to studies conducted with 

carbon nanotubes and carbon nanotubes/polycarbosilane composites, which were 

implanted in the subcutaneous tissue of rats and showed no acute inflammatory 

response, such as necrosis. In addition, the carbon nanofibers were internalized 

by the macrophages and foreign body giant cells, which were found in the 

implants local (Yokoyama, Sato et al. 2005; Wang, Watari et al. 2007). 

Systematic analyses of nanomaterials biocompatibility are essential to the 

use of these structures in tissue engineering applications. The in vivo systemic 

effects of nanomaterials were studied by some authors, for instance, activated 

carbon fibers and asbestos implanted subcutaneously in mice were analyzed by 

Koyama and co-workers (2002) and asbestos-implanted tissue showed a severe 

inflammatory reaction and formation of abscess-like mass in the implanted tissue 

along with low values of peripheral blood CD4+ and CD8+ T cells (Koyama, 

Tanaka et al. 2002). Koyama also showed the relative low toxicity of different 

types of carbon nanotubes, subcutaneously implanted in mice. The carbon 

nanotubes gave rise to several characteristic time-dependent changes in CD4+ 

and CD8+ T-cells values (Koyama, Endo et al. 2006). Furthermore, it was shown 

that the inhalation of asbestos has adverse effects in leukopoiesis in mice, leading 

to a depression of the number of bone marrow pluripotent stem cells and marrow 

granulocyte macrophage progenitors (Boorman, Dean et al. 1984). In our work, 

the absence of BC nanofibers toxicity in vivo was further evidenced by the 

absence of observed disease features in mice. Flow cytometry analyses did not 

show any significant effect in leukocyte hematopoiesis caused by the implanted 

BC nanofibers. No significant alterations in the proportions of thymic double 

positive (CD4+CD8+), single positive (CD4+ and CD8+) cells, B-cell lineage 

populations, and myeloid/granulocytes cell population (CD11b+/GR1+) were 

observed in the bone marrow, in the implanted animals comparatively to controls. 

Therefore, these results indicate that BC nanofibers did not cause a significant 

inflammatory response and can be considered an innocuous material in vivo, 

suitable for tissue engineering applications. 
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4.6 Conclusion 

The BC is considered a great material to implants with good 

biocompatibility characteristics. However, our work points to the necessity to 

further investigation to verify the tendency to BC to calcify in long-term in vivo 

circumstances. Porosity is likely to be the main limitation for a widespread 

colonization of the material, allowing for proper tissue integration and the 

production of neo-tissues with excellent mechanical properties. The calcification 

detected in this work seems to be mainly dependent on the material’s porosity and 

on the exposure period. Although calcification is an undesirable fate for such a 

biomaterial, it should be remarked that such events may be dependent on the 

tissue where the biomaterial is to be placed. On the other hand, a proper porosity 

allowing angiogenesis and adequate nutrients supply to the cells may avoid the 

calcification processes. The BC nanofibers seem to be an innocuous material in 

mice subcutaneous tissue, and proved to be an eligible material to production of 

ECM-mimetic grafts. 
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5. Conclusions and perspectives 
 

This work presented two strategies to modify the BC to enhance its 

biocompatibily: the surface modification with the incorporation of amino groups 

through nitrogen-plasma treatment, and BC modification through the adsorption 

of recombinant proteins with different bioactive peptides. Our experimental 

results indicate that these techniques are efficient in the modification of BC, 

producing scaffolds capable to select and promote cell adhesion and viability. 

The modified BC has the potential to be used in neural tissue engineering. The 

treatment with other gases and the use of different bioactive molecules on the 

production of recombinant proteins are alternatives to further modify BC and 

other biomaterials to be use in tissue engineering.   

Also, our study provides a long-term approach of BC implants and 

nanofibers biocompatibility in vivo, an important issue to consider when we 

envisage the use of a nondegradable material for the construct of tissue 

engineering devices. This work aims to complement the lack of information 

about the effects of BC implanted for a long time in vivo, and also the effect of 

BC nanofibers implanted in mice. From the BC implants we conclude that 

porosity is likely to be the main limitation for calcification tendency and a 

widespread colonization of the material, allowing for proper tissue integration. 

The BC nanofibers seem to be an innocuous material in mice subcutaneous 

tissue, and proved to be an eligible material to production of ECM-mimetic 

grafts. 

Our future work in this area will include: 
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• Mesenchymal stem cells encapsulation and analysis of cell viability, 

spreading, neurotrophin expression and release in different scaffolds 

produced with the modified BC combined with other materials.  

• Evaluate the effects of the neurotrophins released by the MSCs on the 

survival and differentiation of other cell types in vitro. 

• In vivo biocompatibility of acellular scaffolds composed of BC modified 

with nitrogen plasma or with the recombinant proteins on a sciatic nerve 

injury model in rats. 

• In vivo biocompatibility of cellular scaffolds using the modified BC with 

MSCs adhered and releasing neurotrophins on a sciatic nerve injury 

model in rats. 

• Functionalization of BC nanofibers to more closely mimic the ECM and to 

be used in tissue engineering applications. 
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