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Abstract Toeplitz matrices have been found important applications in bioinformatics and compu-

tational biology [5-9, 11-12]. In this paper we concern the reconstruction of an hermitian Toeplitz

matrices with prescribed eigenpairs. Based on the fact that every centrohermitian matrix can be re-

duced to a real matrix by a simple similarity transformation, we first consider the eigenstructure of

hermitian Toeplitz matrices and then discuss a related reconstruction problem. We show that the di-

mension of the subspace of hermitian Toeplitz matrices with two given eigenvectors is at least two and

independent of the size of the matrix, and the solution of the reconstruction problem of an hermitian

Toeplitz matrix with two given eigenpairs is unique.

Key words Centrohermitian matrix, hermitian Toeplitz matrix, reconstruction, inverse eigenprob-

lems

1 Introduction

Hermitian Toeplitz matrices play an important role in the trigonometric moment problem,
the Szegö theory, the stochastic filtering, the signal processing, the biological information pro-
cessing and other engineering problems, see for example, [1, 3, 5, 6,7, 9, 11, 12], and references
therein. Many properties of hermitian Toeplitz matrices have been studied for decades, see for
example, [13-15].

Recall that a matrix A ∈ ICn×n is said to be centrohermitian [10], if JAJ = A, where A
denotes the element-wise conjugate of the matrix and J is the exchange matrix with ones on
the cross diagonal (lower left to upper right) and zeros elsewhere. Hermitian Toeplitz matrices
are an important subclass of centrohermitian matrices and have the following form

H =


h0 h1 · · · hn−1

h̄1 h0
. . .

...
...

. . . . . . h1

h̄n−1 · · · h̄1 h0

 . (1)
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A vector x ∈ ICn is said to be hermitian if Jx = x̄. Let A ∈ ICn×n be a hermitian centro-
hermitian matrix and x ∈ ICn be an eigenvector of A associated with the eigenvalue λ, then
Ax = λx implies AJ x̄ = λJ x̄, which means that x + J x̄ is also an eigenvector of A associated
with the eigenvalue λ, and x + J x̄ is hermitian. So we claim that an hermitian centrohermi-
tian matrix A has an orthonormal basis consisting of n hermitian eigenvectors. Naturally, an
hermitian Toeplitz matrix also has an orthonormal basis consisting of n hermitian eigenvectors.

In this paper we consider the following reconstruction problem:

Problem A Given a set of hermitian unitary vectors {x(j)}kj=1 ∈ ICn (k < n), and a set of
scalars {λj}kj=1 ∈ IR, find an n× n hermitian Toeplitz matrix H such that

Hx(j) = λjx(j), for j = 1, . . . , k,

where IR and IC denote the fields of real and complex numbers respectively.

Remark In fact, the Problem A is a so called inverse eigenvalue problem which concerns the
reconstruction of a structured matrix from prescribed spectral data. Such an inverse problem
arises in many applications where parameters of a certain physical system are to be determined
from the knowledge or expectation of its dynamical behaviour. Spectral information is entailed
because the dynamical behaviour is often governed by the underlying natural frequencies and
normal modes. Structural stipulation is designated because the physical system is often subject
to some feasibility constraints. The spectral data involved may consist of complete or only
partial information on eigenvalues or eigenvectors. The structure embodied by the matrices
can take many forms. The objective of an inverse eigenvalue problem is to construct a matrix
that maintains both the specific structure as well as the given spectral property. There exist
many researches in literature dealing with the structured inverse eigenvalue problems, see for
example [1, 3], and references therein.

Also, the Problem A is actually one of the partially described inverse eigenvalue problems
(PDIEPs) [1]. On this topic of PDIEPs, the earlier study can be found for real symmetric
Toeplitz matrices [1, 2] and Jacobi matrices in [1, 16], and some of the recent works can be
found for anti-symmetric matrices in [17], anti-persymmetric matrices in [18], centrosymmetric
matrices in [19], symmetric anti-bidiagonal matrices in [20], K-symmetric matrices in [21], and
K-centrohermitian matrices in [10]. This is by far not a complete list, see [3] for a recent review,
a number of applications and an extensive list of references.

Since H is required to be an hermitian Toeplitz matrix, thus the description of the given
eigenpairs cannot be totally arbitrary. The study of the distribution of eigenvalues of hermitian
Toeplitz matrix attracted many mathematicians [22, 23] etc, but it is not clear for us that if
the interlacing condition for the symmetric Toeplitz matrices is still hold for hermitian Toeplitz
matrices. Apparently, it is another interesting and difficult problem to identify an orthogonal
matrix (and each column is hermitian) so that its columns are eigenvectors of some hermitian
Toeplitz matrices.

2 Preliminaries

We begin with a brief overview on the reducibility of centrohermitian matrices. All the
formulae become slightly more complicated when n is odd. For simplicity, we restrict our
attention to the case of even n = 2m throughout this paper.



A centrohermitian matrix of order n can be partitioned as follows:

A =
[
B JCJ
C JBJ

]
, n = 2m. (2)

We define

Q =
√

2
2

[
I iI
J −iJ

]
, n = 2m. (3)

We then have the following well known theorems (see [10]).

Theorem 1 Let Q be defined as in (3). Then A ∈ ICn×n is centrohermitian if and only if
QHAQ ∈ IRn×n, that is QHAQ (denoted by RA) is real and has the following form

RA := QHAQ =
[
Re(B + JC) −Im(B + JC)
Im(B − JC) Re(B − JC)

]
, n = 2m.

Corollary 1 Let Q be defined as in (3). Then a vector x ∈ ICn is hermitian if and only if
QHx ∈ IRn.

We note that an n×n hermitian Toeplitz matrix H can be completely characterized by the
real and imaginary parts of its first row (or column).

Let
h = (h0, Re(h1), Im(h1), . . . , Re(hn−1), Im(hn−1))T ,

which is a (2n− 1)-dimensional vector; and let

Sj =
[

0n−j,j In−j

0j,n−j 0j,j

]
, j = 0, 1, · · · , n− 1,

which is an n × n matrix, where 0p,q denotes the p × q zero matrix. Then H in (1) can be
parameterized as follows:

H = φ0I +
2n−2∑
j=1

φjHj , (denoted by H(h)), (4)

where
φ0 = h0, φ2p−1 = Re(hp), φ2p = Im(hp)

and
H2p−1 = Sp + ST

p , H2p = i(Sp − ST
p ),

for p = 1, . . . , n− 1.
Eq. (4) gives an one-to-one correspondence between complex hermitian Toeplitz n × n

matrices and real (2n− 1)-vectors.
Applying Theorem 1 to (4) gives

RH(h) = φ0I +
2n−2∑
j=1

φjRHj (5)



where all RHj , for j = 1, . . . , 2n − 2, are real symmetric, and their matrix structures for the
case n = 2m are given as follows:

(i) For 1 ≤ j ≤ m− 1,

RH2j−1 =
[
T̂2j−1

T̃2j−1

]
, RH2j

=
[

Ť2j

ŤT
2j

]
, (6)

where

T̂2j−1 = T (ej+1) +
[

0 0
0 Jj

]
,

T̃2j−1 = T (ej+1) +
[

0 0
0 −Jj

]
,

and

Ť2j =
[

0 −Im−j

Im−j Jj

]
.

(ii) For m ≤ j ≤ n− 1,

RH2j−1 =


J2m−j 0

0 0
−J2m−j 0

0 0

 ,

RH2j
=


J2m−j 0

0 0
J2m−j 0

0 0

 .
(7)

Here T (ej+1) denotes the Toeplitz matrix generated by the m-dimensional unit vector ej+1;
Is and Js denote the identity matrix and exchange matrix of order s, respectively.

Based on the above analysis, Problem A can be restated as follows:

Problem B Given a set of orthonormal vectors {y(j)}kj=1 ∈ IRn (n > k) and a set of scalars
{λj}kj=1 ∈ IR, find a symmetric matrix RH(h) ∈ IRn×n in the form (5) such that

RH(h)y(j) = λjy(j), for j = 1, . . . , k.

In this paper, we mainly concentrate our study on the eigenpairs for the cases k = 1 and
k = 2.

3 Hermitian Toeplitz matrices with a given eigenvector

Suppose that x is an eigenvector of two matrices A and B, with associated eigenvalues λ and
µ, respectively, then x is also an eigenvector of matrix A+B with associated eigenvalue λ+ µ.
Hence, given any vector, the space of matrices with that vector as an eigenvector is a linear
subspace. Since there is an one-to-one correspondence between complex hermitian Toeplitz
n×n matrices H and real (2n− 1)-vectors h, then the collection of these (2n− 1)-vectors form
a linear subspace of IR(2n−1).



Assume that x ∈ ICn is an arbitrary hermitian vector. Let

S(x) = {h ∈ IR(2n−1) |H(h)x = λx, for some λ ∈ IR}

be this linear subspace. It is evident that S(x) is nonempty. In fact, the standard basis (2n−1)-
vector e1 = (1, 0, . . . , 0)T ∈ S(x) for all x. This means that the dimension of S(x) is at least 1.
Furthermore, let

S0(x) = {h ∈ IR(2n−1) |H(h)x = 0}

denote the linear subspace consisting of all hermitian Toeplitz matrices for which x is an eigen-
vector associated with eigenvalue 0.

Clearly, H(h)x = λx if and only if h− λe1 ∈ S0(x). So

S(x) =< e1 > ⊕S0(x).

The following result gives the precise dimension of S0(x) for general hermitian vector x.

Lemma 1 Let x ∈ ICn be hermitian. Then

dimension(S0(x)) = n− 1.

Proof From the hypothesis, we know that H(h) is centrohermitian and x is hermitian. By
Theorem 1 and Corollary 1, we have that

H(h)x = 0

is equivalent to
RH(h)z = 0,

where RH(h) ∈ IRn×n is defined as in (5) and z = QHx ∈ IRn.
Note that RH(h)z is a linear function of both entries of z and h. So we can write

RH(h)z = A(z)h, (8)

where A(z) is an n × (2n − 1) matrix whose entries depend linearly on the n-vector
z = (z1, z2, . . . , zn)T . Thus the dimension of S0(x) is the nullity of A(z).

Note that A(z)h = 0 is a homogeneous linear system of n equations in 2n− 1 unknowns, so
the nullity of A(z) is at least n− 1.

We now show that the nullity of A(z) is exactly n− 1. Note that

A(z) = [ z RH1z . . . RHjz . . . RH2n−2z ],

where RHj , j = 1, · · · , 2n − 2, are defined as in (6) and (7), respectively. Note also that the
RHj , j = 1, · · · , 2n− 2, are direct sum (j is odd) or anti-direct sum (j is even) of two matrices
with the same structure, so the first m rows and the last m rows of A(z) have also the same
structure. Now we exchange the order of rows, we put together the rows whose right side has
the same number of zeros, then we will get a block echelon matrix like,





z1 · · · · · · z2 zm+2 z1 zm+1

zm+1 · · · · · · −zm+2 z2 −zm+1 z1
· · · · · z2 zm+2 z1 zm+1 0 0
· · · · · −zm+2 z2 −zm+1 z1 0 0
...

... · · · · · · 0 0
...

... · · · · · ·
...

... zm+1 + zm+2 z1 zm+1 0 0

zn

... −z1 + z2 −zm+1 z1 0 0


By a simply observation of this matrix, we have that in case z2

1 + z2
m+1 6= 0, the rank of this

matrix is n. When both z1 and zm+1 are zero, we get another block echelon form on the left,
the block is [

z2 zm+2

−zm+2 z2

]
.

In case z2 and zm+2 are not both zero, then the rank of that matrix is n, when they are both
zero, we go on to another block on the left, go on with this process, since z is a nonzero vector,
so at least one of the block is nonsingular, which guarantees the rank of this matrix is n. So
the nullity of A(z) is n− 1, which means dimension(S0(x)) = n− 1. We complete the proof.

For the reader’s convenience, we illustrate our strategy with a 6× 6 example. Assume that

z = (z1, . . . , z6)T ∈ IR6

and
h = (φ0, φ1, . . . , φ10)T ∈ IR11

are nonzero real vectors. We now check the equality

RH(h)z = A(z)h.

A 6x6 hermitian Toeplitz matrix is like,

H =


ϕ0 ϕ1 + iϕ2 ϕ3 + iϕ4 ϕ5 + iϕ6 ϕ7 + iϕ8 ϕ9 + iϕ10

ϕ1 − iϕ2 ϕ0 ϕ1 + iϕ2 ϕ3 + iϕ4 ϕ5 + iϕ6 ϕ7 + iϕ8

ϕ3 − iϕ4 ϕ1 − iϕ2 ϕ0 ϕ1 + iϕ2 ϕ3 + iϕ4 ϕ5 + iϕ6

ϕ5 − iϕ6 ϕ3 − iϕ4 ϕ1 − iϕ2 ϕ0 ϕ1 + iϕ2 ϕ3 + iϕ4

ϕ7 − iϕ8 ϕ5 − iϕ6 ϕ3 − iϕ4 ϕ1 − iϕ2 ϕ0 ϕ1 + iϕ2

ϕ9 − iϕ10 ϕ7 − iϕ8 ϕ5 − iϕ6 ϕ3 − iϕ4 ϕ1 − iϕ2 ϕ0


= ϕ0I6 +

∑10
j=1 ϕjHj .

It can be reduced into a real matrix per QHHQ (we denote this real matrix by RH(h)),
where Q is defined in (3).

RH(h) =


ϕ0 + ϕ9 ϕ1 + ϕ7 ϕ3 + ϕ5 ϕ10 −ϕ2 + ϕ8 −ϕ4 + ϕ6

ϕ1 + ϕ7 ϕ0 + ϕ5 ϕ1 + ϕ3 ϕ2 + ϕ8 ϕ6 −ϕ2 + ϕ4

ϕ3 + ϕ5 ϕ1 + ϕ3 ϕ0 + ϕ1 ϕ4 + ϕ6 ϕ2 + ϕ4 ϕ2

ϕ10 ϕ2 + ϕ8 ϕ4 + ϕ6 ϕ0 − ϕ9 ϕ1 − ϕ7 ϕ3 − ϕ5

−ϕ2 + ϕ8 ϕ6 ϕ2 + ϕ4 ϕ1 − ϕ7 ϕ0 − ϕ5 ϕ1 − ϕ3

−ϕ4 + ϕ6 −ϕ2 + ϕ4 ϕ2 ϕ3 − ϕ5 ϕ1 − ϕ3 ϕ0 − ϕ1


= ϕ0I6 +

∑10
j=1 ϕjRHj



which is symmetric.
RH(h)z =
z1(ϕ0 + ϕ9) + z2(ϕ1 + ϕ7) + z3(ϕ3 + ϕ5) + z4ϕ10 + z5(−ϕ2 + ϕ8) + z6(−ϕ4 + ϕ6)
z1(ϕ1 + ϕ7) + z2(ϕ0 + ϕ5) + z3(ϕ1 + ϕ3) + z4(ϕ2 + ϕ8) + z5ϕ6 + z6(−ϕ2 + ϕ4)
z1(ϕ3 + ϕ5) + z2(ϕ1 + ϕ3) + z3(ϕ0 + ϕ1) + z4(ϕ4 + ϕ6) + z5(ϕ2 + ϕ4) + z6ϕ2

z1ϕ10 + z2(ϕ2 + ϕ8) + z3(ϕ4 + ϕ6) + z4(ϕ0 − ϕ9) + z5(ϕ1 − ϕ7t) + z6(ϕ3 − ϕ5)
z1(−ϕ2 + ϕ8) + z2ϕ6 + z3(ϕ2 + ϕ4) + z4(ϕ1 − ϕ7) + z5(ϕ0 − ϕ5) + z6(ϕ1 − ϕ3)
z1(−ϕ4 + ϕ6) + z2(−ϕ2 + ϕ4) + z3ϕ2 + z4(ϕ3 − ϕ5) + z5(ϕ1 − ϕ3) + z6(ϕ0 − ϕ1)

 ,

we can also view RH(h)z as a function of h, rewrite it in function of h, we got that A(z) take
the following form

A(z) =


z1 z2 −z5 z3 −z6 z3 z6 z2 −z5 z1 z4
z2 z1 + z3 z4 − z6 z3 z6 z2 z5 z1 −z4 0 0
z3 z2 + z3 z5 + z6 z1 + z2 z4 + z5 z1 z4 0 0 0 0
z4 z5 z2 z6 z3 −z6 z3 −z5 −z2 −z4 z1
z5 z4 + z6 z3 − z1 −z6 z3 −z5 z2 −z4 −z1 0 0
z6 z5 − z6 z3 − z2 z4 − z5 z2 − z1 −z4 z1 0 0 0 0

 .

After exchange of the rows, we can get a matrix like
z1 z2 −z5 z3 −z6 z3 z6 z2 z5 z1 z4
z4 z5 z2 z6 z3 −z6 z3 −z5 z2 −z4 z1
z2 z1 + z3 z4 − z6 z3 z6 z2 z5 z1 z4 0 0
z5 z4 + z6 −z1 + z3 −z6 z3 −z5 z2 −z4 z1 0 0
z3 z2 + z3 z5 + z6 z1 + z2 z4 + z5 z1 z4 0 0 0 0
z6 z5 − z6 −z2 + z3 z4 − z5 −z1 + z2 −z4 z1 0 0 0 0

 .

The elements z1, z4 form a block echelon form and the rank of this matrix is 6 if z1 and z4
are not both zeroes. If z1 and z4 are both zeroes, then the elements z2, z5 form another block
echelon form, if z2 and z5 are both zero, then the block echelon form go to elements z3, z6.
Because we assume that z is a nonzero vector, so at least one of zi cannot be zero, that is at
least one of the block is nonsingular, so rank(A(z)) = 6.

The following theorem gives the precise dimension of S(x) and shows that for any hermitian
vector x ∈ ICn, there is a large collection of Hermitian Toeplitz matrices with x as an eigenvector.

Theorem 2 Let x ∈ ICn be hermitian. Then

dimension(S(x)) = n.

4 Hermitian Toeplitz matrices with two given eigenvectors

In this section, we consider the case that two eigenvectors are given. Assume that x,y ∈ ICn

(xTy = 0) are arbitrary hermitian vectors. Let

S(x) = {h ∈ IR(2n−1) |H(h)x = λx, for some λ ∈ IR}

S(y) = {h ∈ IR(2n−1) |H(h)y = γy, for some γ ∈ IR}



Our objective is find the dimension of S(x)∩S(y). Since the standard basis (2n− 1)-vector
e1 = (1, 0, . . . , 0)T ∈ S(x)∩S(y), so S(x)∩S(y) is nonempty. That means that the dimension
of S(x) ∩ S(y) is at least 1.

As we did in previous section, we first transform our equations into real equations, that is
we rewrite them as

RH(h)z = λz,

RH(h)w = γw.
(9)

or
(RH(h) − λI)z = 0

(RH(h) − γI)w = 0.
(10)

where RH(h) ∈ IRn×n is defined as in (5) and z = QHx, w = QHy ∈ IRn.
Let

t = (φ0 − γ, φ0 − λ, φ1, . . . , φ2n−2)T ,

we then have that the system (10) is equivalent to

Mt = 0 (11)

where M is the 2n× 2n matrix defined by

M =
[

0 z RH1z · · · RHj z · · · RH2n−2z
w 0 RH1w · · · RHj

w · · · RH2n−2w

]
.

Suppose that s = (s′0, s0, s1, s2, ..., s2n−2)T is a solution of (11). For arbitrary λ and α,
define

φ0 := αs0 + λ,

φi := αsi, i = 1, ..., 2n− 2.
(12)

and
γ := α(s0 − s′0) + λ. (13)

Then z,w are eigenvectors of RH(h), or we say that S(x) ∩ S(y) is the direct sum of
the subspace spanned by e1 = (1, 0, ..., 0)T and the subspace obtained by deleting the first
component from ker(M) ( see h = αs̄ + λe1, s̄ = (s0, s1, s2, ..., s2n−2)T ). On the other hand,
suppose that the two eigenvalues λ, γ are given, then by (13), the α in (12) must be

α =
λ− γ
s′0 − s0

provided s′0 6= s0. This gives us the following lemma

Lemma 2 Suppose that s = (s′0, s0, s1, s2, ..., s2n−2) is a solution of (11) with s′0 6= s0.
Then corresponding to the direction of s, there is only one solution to (9).

Now we determine the null space of M. We multiply on the left of M a nonsingular matrix
T defined by

T = [T1, T2, ..., T2n]T ,



where
T1 = (−w1, −w2, ...,−wn, z1, z2, ..., zn) = (−wT, zT),

Ti = eT
i , i = 2, ..., 2n.

We can see that the first row of the matrix TM is

[zTw,−wT z,−wTRH1z + zTRH1w, ...,−wTRHjz + zTRHjw, ...,−wTRH2n−2z + zTRH2n−2w],

which is identically zero because of the orthogonality condition zTw = 0,wTz = 0 and the
symmetries of RHi

′s, i = 1, 2, ..., 2n− 2. So the rank of M is at most 2n− 1. On the other side,
by the proof of lemma 1, we know that the last n row of TM can form an echelon block with
rank n, so the rank of M is at least n.

In conclusion, we give the following theorem

Theorem 3 Suppose that n is even, and x and y are two hermitian orthogonal vectors.
Then

2 ≤ dim(S(x) ∩ S(y)) ≤ n+ 1.

5 Conclusions

In this paper we have exploited the facts that every centrohermitian matrix can be reduced
to be a real matrix by a simple similarity transformation and that every n × n hermitian
Toeplitz matrix H can be completely characterized by the real and imaginary parts of its first
row (or column) (viz. there exists a one-to-one correspondence between complex hermitian
Toeplitz n× n matrices and real (2n− 1)-vectors) to show some theoretical results, which can
be thought of extensions of the works in [4] and [2], from real symmetric Toeplitz matrices to
complex hermitian Toeplitz matrices.

The main results are listed as follows.

• For an arbitrarily given hermitian vector x, the set

S(x) = {h ∈ IR(2n−1)|H(h)x = λx, for some λ ∈ IR}

is a nonempty linear subspace of IR(2n−1) with dim(S(x)) ≥ 1 (Note that the standard
basis (2n− 1)-vector e1 = (1, 0, . . . , 0)T ∈ S(x) for all x), which can be written as

S(x) =< e1 > ⊕S0(x),

where
S0(x) = {h ∈ IR(2n−1)|H(h)x = 0}

denotes the linear subspace consisting of all hermitian Toeplitz matrices for which x is an
eigenvector corresponding to eigenvalue 0. Furthermore,

dim(S0(x)) = n− 1.

• For two arbitrarily given hermitian vectors x and y satisfying xHy = 0, the dimension of
S(x)

⋂
S(y) is at least 2.



• For almost all hermitian vectors x and y satisfying xHy = 0 and for any real scalars λ and
µ, there exists a unique hermitian Toeplitz matrix H such that Hx = λx and Hy = µy.

For Problem A (or equivalently Problem B) in the cases k = 1, 2, we can therefore come
to the following conclusions.

I Being hermitian is sufficient for a single vector to be an eigenvector of a hermitian Toeplitz
matrix, and the collection of hermitian Toeplitz matrices with one given eigenvector is
quite large.

II The set S(x) ∩ S(y) contains all the hermitian Toeplitz matrices with two prescribed
eigenvectors and its dimension is at least 2 in despite of the size of the problem.

III For each direction of kerM, there is only one hermitian Toeplitz matrix with two pre-
scribed eigenpairs.

In general case, suppose that {x(1), x(2), ..., x(k)}, k ≥ 3, is a set of hermitian orthonormal

vectors for some eigenvalues. Then
k⋂

i=1

S(x(i)) contains all hermitian Toeplitz matrices for which

each x(i) is an eigenvector. Evidently, (2n− 1)-vector e1 = (1, 0, . . . , 0)T ∈
k⋂

i=1

S(x(i)) for all i.

So
k⋂

i=1

S(x(i)) is at least of dimension 1. We have attempted to work with the upper bound of

dim

k⋂
i=1

S(x(i)), but it is not trivial, we expect to study the upper bound of dim
k⋂

i=1

S(x(i)) in

the near future.
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