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GENERALIZED INVERSES OF A SUM IN RINGS

N. CASTRO-GONZÁLEZ�∨ , C. MENDES-ARAÚJO and PEDRO PATRICIO

Abstract

We study properties of the Drazin index of regular elements in a ring with a unity 1. We give expressions
for generalized inverses of 1−ba in terms of generalized inverses of 1−ab. In our development we prove
that the Drazin index of 1 − ba is equal to the Drazin index of 1 − ab.
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1. Introduction

Let R be a ring with a unity 1. An element a is said to be regular if there is an element
x such that axa = a. If it exists, then it is called an inner inverse of a (von Neumann
inverse). We will denote by a{1} = {x ∈ R | axa = a} the set of all inner inverses of a
and we will write a− to designate a member of a{1}. A reflexive inverse a+ of a is an
inner and outer inverse of a, that is, a+ ∈ a{1} and a+aa+ = a+.

An element a is said to be Drazin invertible provided there is a common solution
for the equations

xax = x, ax = xa, ak xa = ak for some k ≥ 0.

If a common solution exists, then it is unique and it will be denoted by aD (see [2]).
The smallest integer k for which the above equations hold is called the Drazin index
of a, denoted by ind(a).
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The Drazin index can be characterized in terms of right and left ideals generated
by a power of a as follows [7]: ind(a) = k if and only if k is the smallest non-negative
integer for which akR = ak+1R and Rak = Rak+1, or equivalently, ak ∈ ak+1R ∩ Rak+1.

If a is Drazin invertible with ind(a) = 1, then a is regular. In the former case
the Drazin inverse of a is known as the group inverse of a, denoted by a]. It
is well known that the smallest k for which (ak)] exists equals ind(a) = k, and
aD = (ak)]ak−1 = ak−1(ak)].

If there exists an element aπ ∈ R such that aπ is idempotent, aaπ = aπa, aaπ is
nilpotent, and a + aπ is nonsingular, then it is called a spectral idempotent of a; such
element is unique (if it exists). We know that a is Drazin invertible if and only the
spectral idempotent of a exists. In this case we have aD = (a + aπ)−1(1 − aπ) and
aπ = 1− aaD. Characterizations of ring elements with related spectral idempotents are
given in [4], [5].

Let R be a ring with an involution x → x∗ such that (x∗)∗ = x, (x + y)∗ = x∗ + y∗,
(xy)∗ = y∗x∗, for all x, y ∈ R. We say that a is Moore-Penrose invertible if the equations

bab = b, aba = a, (ab)∗ = ab, (ba)∗ = ba

have a common solution; such solution is unique if it exists (see [2], [6]), and it will
be denoted by a†.

We say that an element a is EP if a is Moore-Penrose invertible and aa† = a†a. An
element a is generalized EP if there exists k ∈ N such that ak is EP.

Barnes [1] proved that the ascents (descents) of I − RS and I − S R are equal for
bounded operators on Banach spaces R ∈ B(X,Y) and S ∈ B(Y, X). Consequently, the
Drazin indices of I − RS and I − S R are equal. In this paper we deal with the Drazin
index of 1−ab and 1−ba in rings, and therefore neither functional calculi and operator
theory can be used. Moreover, we provide a formula for the reflexive inverse, the group
inverse and the Drazin inverse of 1 − ba in terms of the corresponding generalized
inverse of 1 − ab.

In our development, we extend the following characterization of the Drazin index
given by Puystjens and Hartwig [10]: Given a regular element a ∈ R, then

ind(a) ≤ 1⇔ ind(a + 1 − aa−) = 0, for one and hence all choices of a− ∈ a{1}.

2. Auxiliary results

In this section we give some auxiliary lemmas. We start with an elementary known
result.
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L 2.1. Let a, b ∈ R. Then 1 − ab is invertible if and only if 1 − ba is invertible.

L 2.2. Let a be a regular element. Then, given a natural n,

(a + 1 − aa−)n = (a2a− + 1 − aa−)n +

n∑
i=1

ai(1 − aa−). (2.1)

P. The proof is by induction on n. Denote z = a + 1−aa− and x = a2a−+ 1−aa−.
It is clear that z = x + a(1 − aa−). Assuming (2.1) to hold for k, we will prove it for
k + 1.

We note that zx = x2 + a(1 − aa−) and za = a2. Now, by the induction step

zk+1 = z

xk +

k∑
i=1

ai(1 − aa−)


= xk+1 + a(1 − aa−) +

k∑
i=1

ai+1(1 − aa−)

= xk+1 +

k+1∑
i=1

ai(1 − aa−).

�

L 2.3. Let a, b ∈ R. Then, given a natural n,

(1 − ba)n = 1 − bra and (1 − ab)n = 1 − rab,

where r =
∑n−1

j=0(1 − ab) j.

P. It can be easily proved by induction on n. �

In [5] the authors give the following characterization of EP elements in a ring.

L 2.4. Let R be a ring with an involution x → x∗. For a ∈ R the following
conditions are equivalent:

(i) a is EP.
(ii) a is Drazin and Moore-Penrose invertible and aD = a†.
(iii) a is group invertible and aπ = (a∗)π.
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3. Main results

The following theorem is an answer to a question raised by Patricio and Veloso in
[8] about the equivalence between ind(a2a− + 1 − aa−) = k and ind(a + 1 − aa−) = k,
and provides a new characterization of the Drazin index.

T 3.1. Let a be a regular non-invertible element. The following conditions are
equivalent:

(i) ind(a) = k + 1.
(ii) ind(a2a− + 1 − aa−) = k, for one and hence all choices of a− ∈ a{1}.
(iii) ind(a + 1 − aa−) = k, for one and hence all choices of a− ∈ a{1}.

P. The equivalence (i)⇔(ii) is proved in [8, Theorem 2.1]. We proceed to show
that (ii)⇒(iii). Denote x = a2a− + 1 − aa− and z = a + 1 − aa−. Assume ind(x) = k, or
equivalently, ind(a) = k + 1. Then xk = xk+1R and ak+1 = ak+2w for some w ∈ R. By
(2.1),

zkR =

1 +

k∑
i=1

ai(1 − aa−)

 xkR

=

1 +

k∑
i=1

ai(1 − aa−)

 xk+1R

=

zk+1 −

k+1∑
i=1

ai(1 − aa−) +

k∑
i=1

ai(1 − aa−)

R
=

(
zk+1 − ak+1(1 − aa−)

)
R = (zk+1 − ak+2w(1 − aa−))R

= zk+1(1 − aw(1 − aa−))R ⊆ zk+1R.

This gives zkR = zk+1R. On the other hand, since ind(x) = k we also have
xk = uxk+1 for some u ∈ R. By (2.1),

Rzk = R

xk +

k∑
i=1

ai(1 − aa−)


= R

uxk+1 +

k∑
i=1

ai(1 − aa−)


= R

u − u
k+1∑
i=1

ai(1 − aa−) +

k∑
i=1

ai(1 − aa−)

 zk+1 ⊆ Rzk+1.

From this we conclude that Rzk = Rzk+1. Consequently, ind(z) ≤ k.
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By symmetrical arguments, we can show that ind(z) = k implies that ind(x) ≤ k.
Further, suppose ind(z) < k, having ind(x) = k, then we would get that ind(x) ≤ k − 1,
and we would arrive to a contradiction. Therefore ind(z) = k. �

We can state the symmetrical of Theorem 3.1.

C 3.2. Let a be a regular non-invertible element. The following conditions
are equivalent:

(i) ind(a) = k + 1.
(ii) ind(a−a2 + 1 − a−a) = k, for one and hence all choices of a− ∈ a{1}.
(iii) ind(a + 1 − a−a) = k, for one and hence all choices of a− ∈ a{1}.

The following corollary is an extension of the analogous result for the Drazin index
of a complex partitioned matrix over C [3, Theorem 7.7.5].

C 3.3. Let R be any ring with unity. If M =

(
A B
C CA−1B

)
∈ Rn×n, where

A ∈ Rr×r is invertible, then ind(M) = ind(A + BCA−1) + 1.

P. We have M− =

(
A−1 0
−CA−1 I

)
is an inner inverse of M and

M + I − MM− =

(
A + BCA−1 0

C −CA−1(I − BCA−1) I

)
.

Using the following known result for block triangular matrices,

max{ind(I), ind(A + BCA−1)} ≤ ind(M + I − MM−) ≤ ind(A + BCA−1) + ind(I),

we conclude that ind(M + I − MM−) = ind(A + BCA−1). Now, that ind(M) =

ind(A + BCA−1) + 1 follows from Theorem 3.1. �

It is well known that 1 − ba is regular if and only if 1 − ab is regular. Moreover,
if (1 − ab)− is an inner inverse of 1 − ab then (1 − ba)− = 1 + b(1 − ab)−a is an inner
inverse of 1−ba. In the sequel, we will extend the same reasoning to other generalized
inverses, namely reflexive, group and Drazin inverse.
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T 3.4. Let a, b ∈ R. If (1 − ab)+ is a reflexive inverse of 1 − ab, then a reflexive
inverse of 1 − ba is given by

(1 − ba)+ = 1 + b
(
(1 − ab)+ − pq

)
a,

where p = 1 − (1 − ab)+(1 − ab) and q = 1 − (1 − ab)(1 − ab)+.

P. Let x = 1 + b ((1 − ab)+ − pq) a. Then

(1 − ba)x = 1 − bqa.

Further,
(1 − ba)x(1 − ba) = 1 − ba − bqa(1 − ba)a = 1 − ba

and

x(1 − ba)x = x − xbqa

= x − bqa − b
(
(1 − ab)+ − pq

)
abqa

= x,

where we have simplified writing ab = 1 − (1 − ab) and using relations (1 − ab)(1 −
ab)+(1 − ab) = (1 − ab) and (1 − ab)+(1 − ab)(1 − ab)+ = (1 − ab)+. �

T 3.5. Let a, b ∈ R. If 1− ab is group invertible, then 1− ba is group invertible
and

(1 − ba)] = 1 + b
(
(1 − ab)] − (1 − ab)π

)
a,

where (1 − ab)π = 1 − (1 − ab)](1 − ab).

P. Let x = 1+b
(
(1 − ab)] − (1 − ab)π

)
a. First, we note that (1−ab)] is a reflexive

inverse that commutes with 1− ab. In view of the preceding theorem we have that x is
reflexive inverse of 1− ba. Next, we will prove that x commutes with 1− ba. We have

x(1 − ba) = 1 − ba + b(1 − ab)](1 − ab)a = 1 − b(1 − ab)πa

and, similarly, (1−ba)x = 1−b(1−ab)πa which gives x(1−ba) = (1−ba)x. Therefore
x verifies the three equations involved in the definition of group inverse.

�
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T 3.6. Let a, b ∈ R. If 1 − ab is Drazin invertible with ind(1 − ab) = k, then
1 − ba is Drazin invertible with ind(1 − ba) = k and

(1 − ba)D = 1 + b
(
(1 − ab)D − (1 − ab)πr

)
a,

where r =
∑k−1

j=0(1 − ab) j.

P. Assume ind(1 − ab) = k ≥ 2. Then (1 − ab)k is group invertible and Theorem
3.1 leads to ind(1 − (1 − (1 − ab)k)(1 − ab)k((1 − ab)k)]) = 0. By Lemma 2.3 we have

1 − (1 − ab)k = rab and 1 − (1 − ba)k = bra, (3.1)

where r =
∑k−1

j=0(1−ab) j. According to the above relations, 1− rab(1−ab)k((1−ab)k)]

is invertible and by Lemma 2.1 we have that 1 − b(1 − ab)(1 − ab)Dra is invertible.
Further,

(1 − b(1 − ab)(1 − ab)Dra)(1 − ba)k = (1 − ba)k − b(1 − ab)(1 − ab)Dra(1 − ba)k

= (1 − ba)k − b(1 − ab)kra

= (1 − bra)(1 − ba)k = (1 − ba)2k.

From this it follows that (1−ba)k = (1−b(1−ab)(1−ab)Dra)−1(1−ba)2k ∈ R(1−ba)k+1.
On the other hand,

(1 − ba)k(1 − b(1 − ab)(1 − ab)Dra) = (1 − ba)k − (1 − ba)kb(1 − ab)(1 − ab)Dra

= (1 − ba)k − b(1 − ab)kra = (1 − ba)2k

and hence (1 − ba)k = (1 − ba)2k(1 − b(1 − ab)(1 − ab)Dra)−1 ∈ (1 − ba)k+1R.

Therefore (1 − ba)k ∈ R(1 − ba)k+1 ∩ (1 − ba)k+1R, which implies ind(1 − ba) ≤ k.

Further, analysis similar to that of the last part of the proof of Theorem 3.1 shows
that ind(1 − ab) = k. Now, (1 − ba)D = ((1 − ba)k)](1 − ba)k−1. In view of (3.1) and
applying Theorem 3, it follows

((1 − ba)k)] = (1 − bra)] = 1 + b
(
(1 − rab)] − (1 − rab)π

)
ra

= 1 + b
((

(1 − ab)k
)]
−

(
(1 − ab)k

)π)
ra

= 1 + b
((

(1 − ab)D
)k
− (1 − ab)π

)
ra.
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Hence,

(1 − ba)D =

(
1 + b

((
(1 − ab)D

)k
− (1 − ab)π

)
ra

)
(1 − ba)k−1

= (1 − ba)k−1 + b
((

(1 − ab)D
)k
− (1 − ab)π

)
(1 − ab)k−1ra

= 1 − br′a + b
(
(1 − ab)Dr − (1 − ab)π(1 − ab)k−1

)
a

= 1 + b
(
(1 − ab)D − (1 − ab)πr′ − (1 − ab)π(1 − ab)k−1

)
a

= 1 + b
(
(1 − ab)D − (1 − ab)πr

)
a,

where r′ =
∑k−2

j=0(1 − ab) j, completing the proof. �

Let Rn×n the ring of n × n matrices over R. Any matrix A ∈ Rr×n (B ∈ Rn×r) with
r < n may be enlarged to square n × n matrix A′ (B′) by adding zeros. Then we can
compute a generalized inverse of I − BA = I − B′A′ using preceding results in the ring
Rn×n. Finally, we can rewrite the corresponding expression for the generalized inverse
of I − B′A′ in terms of A and B, getting that formulas similar to that in the preceding
theorems hold for rectangular matrices A and B.

E 3.7. We consider the following matrices with entries in the univariate poly-
nomial ring in x over Z8, the ring of integers modulo 8:

A =
(
x 2 1

)
and B =


7x
2

x2 + 3

 .
Then

I − BA =


x2 + 1 2x x

6x 5 6
7x3 + 5x 6x2 + 2 7x2 + 6

 and 1 − AB = 2.

The zero degree polynomial equal to 2 is nilpotent of index 3 and, so, ind(1− AB) = 3
and (1 − AB)D = 0. Applying Theorem 3 we get

(I − BA)D =I +


7x
2

x2 + 3

 (0 − 1(1 + 2 + 22))
(
x 2 1

)

=


7x2 + 1 6x 7x

2x 5 2
x3 + 3x 2x2 + 6 x2 + 4

 .
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We know that in general 1 − ab is EP may not imply that 1 − ba is EP. In the
following result we give a necessary and sufficient condition for such implication to
hold.

C 3.8. Let R be a ring with an involution x→ x∗. If 1− ab is EP, then 1− ba
is EP if and only if a∗(1 − ab)πb∗ = b(1 − ab)πa. In this case,

(1 − ba)† = 1 + b
(
(1 − ab)† − (1 − (1 − ab)(1 − ab)†)

)
a.

P. Since 1 − ab is EP, by Lemma 2.4 we have that 1 − ab is group invertible and
Moore-Penrose invertible and (1 − ab)] = (1 − ab)†. Now, from Theorem 3 it follows
that 1 − ba is also group invertible and (1 − ba)] = 1 + b((1 − ab)] − (1 − ab)π)a, and
consequently, (1 − ba)π = b(1 − ab)πa. Thus, by Lemma 2.4, 1 − ba is EP if and only
if ((1 − ba)∗)π = (1 − ba)π, that is,

(b(1 − ab)πa)∗ = b(1 − ab)πa.

Hence, using that ((1 − ab)∗)π = (1 − ab)π, the result follows. �

C 3.9. Let R be a ring with an involution x → x∗. If 1 − ab is generalized
EP, then 1− ba is generalized EP if and only if (ra)∗(1− ab)πb∗ = b(1− ab)πra, where
r =

∑k−1
j=0(1 − ab) j and k = ind(1 − ab).

P. Since 1 − ab is generalized EP then there exists the smallest integer k ∈ N
such that (1 − ab)k is EP. From Lemma 2.4 we can deduce that ind(1 − ab) = k. Now,
by Lemma 2.3 we have (1 − ab)k = 1 − rab, where r is defined as in the statement
of this corollary. By preceding corollary, (1 − ba)k = 1 − bra is EP if and only if
(b(1 − ab)πra)∗ = b(1 − ab)πra, completing the proof. �

In this example we show that the existence of the Moore-Penrose of 1 − ab does
not imply the existence of the Moore-Penrose of 1 − ba.

E 3.10. Consider the following matrices over the field C of complex numbers,
with the involution defined by A? = AT :

A =

(
0 −i
1 0

)
and B =

(
1 0
0 i

)
.

Then

I − AB =

(
1 −1
−1 1

)
, I − BA =

(
1 i
−i 1

)
,
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and, further,

(I − AB)?(I − AB) =

(
2 −2
−2 2

)
, (I − BA)?(I − BA) =

(
0 0
0 0

)
.

Since rank (I − AB) = 1 and rank (I − AB)?(I − AB) = rank (I − AB)(I − AB)? = 1 we
conclude, applying [9, Theorem 1], that I − AB is Moore-Penrose invertible. On the
other hand, since rank (I − BA) = 1 and rank (I − BA)?(I − BA) = 0 we conclude that
I − BA is not Moore-Penrose invertible.

References

[1] B.A. Barnes,Common operator properties of the linear operators RS and S R, Proc. Am. Math.
Soc. 126 (1998), 1055-1061.

[2] A. Ben-Israel and T. N. E. Greville, Generalized Inverses. Theory and Applications (Second
Edition), Springer-Verlag, New York, 2003.

[3] S. L. Campbell, C. D. Meyer Jr., Generalized Inverse of Linear Transformations, Pitman, London,
(1979); Dover, New York, (1991).

[4] N. Castro-González, J. Y. Vélez-Cerrada, Elements in rings and Banach algebras with related
spectral idempotents, J. Aust. Math. Soc., 80 (2006), 383–396.

[5] J. J. Koliha, P. Patricio, Elements of rings with equal spectral idempotents, J. Aust. Math. Soc., 72
(2002), 137–152.

[6] R. E. Hartwig, Block generalized inverses, Arch. Rational Mech. Anal., 61, (1976), 197–251.
[7] R. E. Hartwig, J. Shoaf, Group inverse of bidiagonal and triangular Toeplitz matrices, J. Austral.

Math. Soc. Ser. A, 24 (1977), 10–34.
[8] P. Patricio, A. Veloso da Costa, On the Drazin index of regular elements, Cent. Eur. J. Math. 7(2)

(2009), 200–208.
[9] M. H. Pearl, Generalized inverses of matrices with entries taken from an arbitrary field, Linear

Algebra and Its Applications, 1 (1968), 571–587.
[10] R. Puystjens, R. E. Hartwig, The group of a companion matrix, Linear and Multilinear Algebra,

43 (1997), 137–150.
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C. Mendes-Araújo, Centro de Matemática, Universidade do Minho, 4710-057 Braga,
Portugal
e-mail: clmendes@math.uminho.pt
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