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GENERALIZED INVERSES OF A SUM IN RINGS

N. CASTRO-GONZALEZ™ , C. MENDES-ARAUJO and PEDRO PATRICIO

Abstract

We study properties of the Drazin index of regular elements in a ring with a unity 1. We give expressions
for generalized inverses of 1 — ba in terms of generalized inverses of 1 —ab. In our development we prove
that the Drazin index of 1 — ba is equal to the Drazin index of 1 — ab.
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1. Introduction

Let R be a ring with a unity 1. An element a is said to be regular if there is an element
x such that axa = a. If it exists, then it is called an inner inverse of a (von Neumann
inverse). We will denote by a{l} = {x € R | axa = a} the set of all inner inverses of a
and we will write a~ to designate a member of a{1}. A reflexive inverse a* of a is an
inner and outer inverse of a, that is, a* € a{l} and a*aa* = a*.

An element a is said to be Drazin invertible provided there is a common solution
for the equations

xax =x, ax=xa, dxa=d forsome k>O0.
If a common solution exists, then it is unique and it will be denoted by a” (see [2]).
The smallest integer k for which the above equations hold is called the Drazin index
of a, denoted by ind(a).
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The Drazin index can be characterized in terms of right and left ideals generated
by a power of a as follows [7]: ind(a) = k if and only if k is the smallest non-negative
integer for which a*R = a**'R and Ra* = Ra**!, or equivalently, a* € a*'R N Ra**!.

If a is Drazin invertible with ind(a) = 1, then a is regular. In the former case
the Drazin inverse of a is known as the group inverse of a, denoted by af. It
is well known that the smallest £ for which (a")li exists equals ind(a) = k, and
aP = (ak)ﬁak—l — ak_l(ak)ﬂ.

If there exists an element a* € R such that ¢" is idempotent, aa™ = a”"a, ad” is
nilpotent, and a + 4" is nonsingular, then it is called a spectral idempotent of a; such
element is unique (if it exists). We know that a is Drazin invertible if and only the
spectral idempotent of a exists. In this case we have a® = (a + a") (1 - a") and
a” = 1 —aaP. Characterizations of ring elements with related spectral idempotents are
given in [4], [5].

Let R be a ring with an involution x — x* such that (x*)* = x, (x + y)* = x* + ",
(xy)* = y*x*, forall x,y € R. We say that a is Moore-Penrose invertible if the equations

bab=>b, aba=a, (ab)" =ab, (ba)" =ba

have a common solution; such solution is unique if it exists (see [2], [6]), and it will
be denoted by a'.

We say that an element a is EP if a is Moore-Penrose invertible and aa™ = a'a. An
element a is generalized EP if there exists k € N such that a* is EP.

Barnes [1] proved that the ascents (descents) of / — RS and I — SR are equal for
bounded operators on Banach spaces R € B(X, Y) and S € B(Y, X). Consequently, the
Drazin indices of I — RS and I — SR are equal. In this paper we deal with the Drazin
index of 1 —ab and 1 —ba in rings, and therefore neither functional calculi and operator
theory can be used. Moreover, we provide a formula for the reflexive inverse, the group
inverse and the Drazin inverse of 1 — ba in terms of the corresponding generalized
inverse of 1 — ab.

In our development, we extend the following characterization of the Drazin index
given by Puystjens and Hartwig [10]: Given a regular element a € R, then

ind(a) < 1 & ind(a + 1 — aa™) = 0, for one and hence all choices of a~ € a{l}.
2. Auxiliary results

In this section we give some auxiliary lemmas. We start with an elementary known
result.
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LemmA 2.1. Leta,b € R. Then 1 — ab is invertible if and only if 1 — ba is invertible.
Lemma 2.2. Let a be a regular element. Then, given a natural n,

(a+1-aa)'=(@a +1—aa )"+ Z a'(l—aa). 2.1
i=1

Proor. The proof is by induction on n. Denote z = a+1—aa™ and x = a*a” + 1 —aa".
It is clear that z = x + a(1 — aa™). Assuming (2.1) to hold for k, we will prove it for
k+1.

We note that zx = x> + a(1 — aa”~) and za = a*. Now, by the induction step
k .
1 = z[xk + Za’(l - aa‘)]
i=1
k
=" v a(l —aa) + Za’”(l —aa”)
i=1

k+1

=Xy Zai(l —aa).
i=1

O
Lemma 2.3. Let a,b € R. Then, given a natural n,
(1-ba)"=1-bra and (1 -ab)"=1-rab,
where r = ;?;é(l — ab)/.
Proor. It can be easily proved by induction on n. O

In [5] the authors give the following characterization of EP elements in a ring.

LemMmA 2.4. Let R be a ring with an involution x — x*. For a € R the following
conditions are equivalent:

(i) aisEP.
(ii) a is Drazin and Moore-Penrose invertible and a® = a'.
(iii) a is group invertible and a™ = (a*)".
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3. Main results

The following theorem is an answer to a question raised by Patricio and Veloso in
[8] about the equivalence between ind(a’a™ + 1 —aa™) = k and ind(a + 1 — aa™) = k,
and provides a new characterization of the Drazin index.

THeEOREM 3.1. Let a be a regular non-invertible element. The following conditions are
equivalent:

(i) ind(a) =k+1.
(i) ind(@’a” + 1 —aa™) = k, for one and hence all choices of a € a{l}.
(i) ind(a + 1 — aa™) = k, for one and hence all choices of a~ € a{l}.

Proor. The equivalence (i)<(ii) is proved in [8, Theorem 2.1]. We proceed to show
that (ii)=(iii). Denote x = a’a™ + 1 —aa” and z = a + | — aa”. Assume ind(x) = k, or
equivalently, ind(a) = k + 1. Then x* = X**'R and a"*! = a**?w for some w € R. By
2.1,

k
FR=|1+ Zai(l - aa‘)] ¥R
i=1
k
=1+ Za"(l —aa’)
i=1

k+1 k
=7 = Zai(l —aa’) + Zai(l - aa_)]R
=1

i=1

xk+lR

= (Zk+1 — a1 - aa‘))R = = d*?w( - aa )R

=1 —aw( — aa”))R € IR

This gives *R = Z*!'R. On the other hand, since ind(x) = k we also have
x* = ux**! for some u € R. By (2.1),

k
R =R + Zai(l - aa‘)]
i=1

k
= Rlux*" + Z al(l - aa_)J
i=1

k+1 k
=Rlu- uZai(l —aa”) + Z ai(l - aa)]zk” C R

i=1 i=1

From this we conclude that RzF = Rz**!. Consequently, ind(z) < k.
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By symmetrical arguments, we can show that ind(z) = k implies that ind(x) < k.
Further, suppose ind(z) < k, having ind(x) = k, then we would get that ind(x) < k — 1,
and we would arrive to a contradiction. Therefore ind(z) = k. O

We can state the symmetrical of Theorem 3.1.

CoroLLARY 3.2. Let a be a regular non-invertible element. The following conditions
are equivalent:

(i) ind(a) =k + 1.
(i) ind(a"a” + 1 —a a) = k, for one and hence all choices of a- € a{l}.
@iii) ind(a + 1 — a~a) = k, for one and hence all choices of a~ € a{l}.

The following corollary is an extension of the analogous result for the Drazin index
of a complex partitioned matrix over C [3, Theorem 7.7.5].

A B

CoroLLARY 3.3. Let R be any ring with unity. If M = (C CA-B

) € Ruxn, Where
A € R, is invertible, then ind(M) = ind(A + BCA™") + 1.

A—l

Proor. We have M~ = (—CA‘I I

) is an inner inverse of M and

A+ BCA™! 0
M+1-MM = .
" (C _ CA™\(I - BCA™) 1)

Using the following known result for block triangular matrices,
max{ind(/), ind(A + BCA™")} < ind(M + I - MM"™) < ind(A + BCA™") + ind(]),

we conclude that ind(M + I — MM~) = ind(A + BCA™'). Now, that ind(M) =
ind(A + BCA™") + 1 follows from Theorem 3.1. O

It is well known that 1 — ba is regular if and only if 1 — ab is regular. Moreover,
if (1 — ab)~ is an inner inverse of 1 — ab then (1 — ba)™ = 1 + b(1 — ab)~a is an inner
inverse of 1 —ba. In the sequel, we will extend the same reasoning to other generalized
inverses, namely reflexive, group and Drazin inverse.
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TueoreM 3.4. Let a,b € R. If (1 — ab)* is a reflexive inverse of 1 — ab, then a reflexive
inverse of 1 — ba is given by

(1-ba)* =1+b(( —ab)* - pg)a,

where p=1— (1 —ab)*(1 —ab)and g =1 - (1 — ab)(1 — ab)™.

Proor. Let x =1+ b((1 —ab)™ — pg) a. Then
(1 -ba)x =1 - bqa.
Further,
(1 = ba)x(1 —ba) =1 - ba — bga(l — ba)a =1 — ba
and
x(1 —ba)x = x — xbga
= x—bga—b((1 —ab)* — pq) abga
=X,

where we have simplified writing ab = 1 — (1 — ab) and using relations (1 — ab)(1 -
ab)*(1 —ab) = (1 —ab) and (1 — ab)*(1 — ab)(1 — ab)™ = (1 — ab)*. O

THeOREM 3.5. Let a,b € R. If 1 — ab is group invertible, then 1 — ba is group invertible
and

(1 -ba)f =1+ b((l —ab)* — (1 - ab)”) a,
where (1 —ab)" = 1 — (1 — ab)*(1 — ab).
Proor. Letx =1+b ((1 —ab)t - (1 - ab)”) a. First, we note that (1—ab)* is a reflexive

inverse that commutes with 1 — ab. In view of the preceding theorem we have that x is
reflexive inverse of 1 — ba. Next, we will prove that x commutes with 1 — ba. We have

x(1—=ba) =1 —ba+b(1 —ab)*(1 —ab)a =1 - b(1 — abYa

and, similarly, (1 —ba)x = 1 —b(1 —ab)"a which gives x(1 —ba) = (1 —ba)x. Therefore
x verifies the three equations involved in the definition of group inverse.
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THeOREM 3.6. Let a,b € R. If 1 — ab is Drazin invertible with ind(1 — ab) = k, then
1 — ba is Drazin invertible with ind(1 — ba) = k and

A -ba)’ =1+ b((l —ab)? — (1 - ab)”r) a,

where r = ZIJ‘-;(% 1 — ab)/.

Proor. Assume ind(1 — ab) = k > 2. Then (1 — ab)¥ is group invertible and Theorem
3.1 leads to ind(1 — (1 — (1 — ab))(1 — ab)*((1 — ab)*)*) = 0. By Lemma 2.3 we have

1-(1—=ab)=rab and 1-(1 - ba)* = bra, (3.1)

where r = ];;(1)(1 —ab)/. According to the above relations, 1 —rab(1 —ab)*((1 - aby*y#
is invertible and by Lemma 2.1 we have that 1 — b(1 — ab)(1 — ab)Pra is invertible.
Further,

(1 = b(1 = ab)(1 = ab)’ra)(1 = ba)* = (1 = ba)* — b(1 — ab)(1 — ab)’ra(1 - ba)*
= (1 - ba)* - b(1 - ab)ra
= (1 = bra)(1 - ba)* = (1 - ba)**.

From this it follows that (1-ba)f = (1-b(1—ab)(1—-ab)Pra)"'(1-ba)** € R(1-ba)**!.
On the other hand,

(1 = ba)*(1 = b(1 = ab)(1 — ab)Pra) = (1 — ba)* — (1 — ba)*b(1 — ab)(1 — ab)’ra
= (1 = ba)* = b(1 = ab)*ra = (1 — ba)**
and hence (1 — ba)* = (1 — ba)*(1 — b(1 — ab)(1 — ab)Pra)~" € (1 — ba)**'R.
Therefore (1 — ba)* € R(1 — ba)**' N (1 — ba)**'R, which implies ind(1 — ba) < k.

Further, analysis similar to that of the last part of the proof of Theorem 3.1 shows
that ind(1 — ab) = k. Now, (1 — ba)® = ((1 = ba)*)*(1 = ba)*~". In view of (3.1) and
applying Theorem 3, it follows

(A =-baY) =1 -bra) =1+b ((1 —rab) — (1 - rab)”) ra
“1+b (((1 (e ab)k)”) ra

—1+4b (((1 —ab)?) -1 - ab)”) ra.
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Hence,
(1 - ba)’ = (1 +b (((1 —ab)?) (1 - ab)”) ra) (1 - bay!
—(1-ba)" +b (((1 —ab)”)' - (1 - ab)”)(l —aby'ra
=1-bra+b((1-ab)’r- (1 -ab)y(1 - ab)')a
= 1+b((1 - ab)’ = (1 —ab)"r' = (1 - ab)"(1 - ab)*")a
= 1+b((1-ab)” - (1 - ab)'r)a,
where r/ = YX20(1 — ab)/, completing the proof. O

Let R, the ring of n X n matrices over R. Any matrix A € R, (B € R,x,) with
r < n may be enlarged to square n X n matrix A’ (B’) by adding zeros. Then we can
compute a generalized inverse of / — BA = I — B’A’ using preceding results in the ring
Ruxn- Finally, we can rewrite the corresponding expression for the generalized inverse
of I — B’A’ in terms of A and B, getting that formulas similar to that in the preceding
theorems hold for rectangular matrices A and B.

ExawmprE 3.7. We consider the following matrices with entries in the univariate poly-
nomial ring in x over Zg, the ring of integers modulo 8:

Tx
A=(x 2 1) and B=| 2
2 +3
Then
2 +1 2x X
I-BA = 6x 5 6 and 1-AB=2.

T3 +5x 6x2+2 T22+6

The zero degree polynomial equal to 2 is nilpotent of index 3 and, so, ind(1 —AB) =3
and (1 — AB)P = 0. Applying Theorem 3 we get

Tx
(I-BAP =I+| 2 |O0-10+2+2))(x 2 1)
2 +3
7x% + 1 6x Tx
=| 2x 5 2

X 4+3x 2x2+6 x*+4
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We know that in general 1 — ab is EP may not imply that 1 — ba is EP. In the
following result we give a necessary and sufficient condition for such implication to
hold.

CoroLLARY 3.8. Let R be a ring with an involution x — x*. If 1 —ab is EP, then 1 — ba
is EP if and only if a*(1 — ab)"b* = b(1 — ab)"a. In this case,

(1-ba)t =1+ b((l —ab)" —=(1 = (1 = ab)(1 - ab)T)) a.

Proor. Since 1 — ab is EP, by Lemma 2.4 we have that 1 — ab is group invertible and
Moore-Penrose invertible and (1 — ab)? = (1 — ab)’. Now, from Theorem 3 it follows
that 1 — ba is also group invertible and (1 — ba)* =1+ b((1 — ab)* — (1 — aby")a, and
consequently, (1 — ba)™ = b(1 — ab)*a. Thus, by Lemma 2.4, 1 — ba is EP if and only
if (1 = ba)*)" = (1 — ba)™, that is,

(b(1 —ab)"a)* = b(1 — ab)"a.
Hence, using that ((1 — ab)*)" = (1 — ab)”, the result follows. O

CoroLLARY 3.9. Let R be a ring with an involution x — x*. If 1 — ab is generalized
EP, then 1 — ba is generalized EP if and only if (ra)*(1 —ab)"b* = b(1 — ab)"ra, where
r= Y421 —ab)! and k = ind(1 - ab).

Proor. Since 1 — ab is generalized EP then there exists the smallest integer k € N
such that (1 — ab)* is EP. From Lemma 2.4 we can deduce that ind(1 — ab) = k. Now,
by Lemma 2.3 we have (1 — ab)* = 1 — rab, where r is defined as in the statement
of this corollary. By preceding corollary, (1 — ba)* = 1 — bra is EP if and only if
(b(1 — ab)'ra)* = b(1 — ab)"ra, completing the proof. O

In this example we show that the existence of the Moore-Penrose of 1 — ab does
not imply the existence of the Moore-Penrose of 1 — ba.

ExampLE 3.10. Consider the following matrices over the field C of complex numbers,
with the involution defined by A* = A”:

0 —i 1 0
A_(l 0)and B—(O i)'

Then
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and, further,

2 =2

(I-AB)*(I - AB) = (_2 5

), (I — BA)*(I — BA) = (8 8).

Since rank (I —AB) = 1 and rank (/ — AB)*(I — AB) = rank (I - AB)(I —AB)* = 1 we
conclude, applying [9, Theorem 1], that I — AB is Moore-Penrose invertible. On the
other hand, since rank (I — BA) = 1 and rank (I — BA)*(I — BA) = 0 we conclude that
I — BA is not Moore-Penrose invertible.
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