
Assessment of a Enhanced ResultSet Component for Accessing Relational Databases

Oscar M Pereira, Rui L Aguiar
Instituto de Telecomunicações

University of Aveiro
Aveiro, Portugal

{omp1,ruilaa2}@ua.pt

Maribel Yasmina Santos
Algoritmi Research Center

University of Minho
Guimarães, Portugal

maribel@dsi.uminho.pt

Abstract—Call Level Interfaces (CLI) provide services aimed
at easing the integration of database components and
components from client applications. CLI support native SQL
statements keeping this way expressiveness and performance
of SQL. Thus, they cannot be discarded as a valid option
whenever SQL expressiveness and SQL performance are
considered key requirements. Despite the aforementioned
performance advantage, CLI do not comprise other important
performance features, as concurrency over the in-memory data.
In this paper we present and assess a component that is a
concurrent version of the ResultSet interface from the JDBC
API. Several threads may interact simultaneously in the same
instance of the ResultSet in a concurrent fashion and can be
simultaneously connected to the underlying database. The
main contributions of this paper are twofold: i) the design of
an Enhanced ResultSet Component to provide a concurrent
access to relational databases; ii) the evaluation of its
performance. The Enhaced ResultSet performance will be
assessed in a real scenario. The outcome shows that the gain in
performance may increase until 80%.

Keywords - performance; Call Level Interfaces, ResultSet,
concurrency.

I. INTRODUCTION
Performance is a non functional software requirement

that evaluates how well a system or a component copes with
its requirements namely for timeless [1]. There are two
dimensions: responsiveness and scalability. Responsiveness
evaluates the system conformance to response time
requirements. It may refer to the amount of time to
accomplished a task or the number of tasks that can be
accomplish in a given amount of time. Scalability evaluates
the capacity of a system to handle growing demand of power
computation while keeping its responsiveness. Performance
is a pervasive outcome of software systems [2]. Everything
affects it: software design, programming paradigms and
languages, compilers, communication networks, hardware
and third party software, among others. As a pervasiveness
quality, performance opens many opportunities to research
contributions.

Very often, performance is one of the most challenging
non functional software requirements in database
applications. System architects and system designers are
called to decide upon many and difficult options. Each
decision will have an impact on the overall performance.
There are many technological solutions for the connection

layer between client side applications and server side
databases each one with its own characteristics: ORM [3-5],
embedded SQL, CLI [6-9], persistent frameworks [10-11]. If
performance is considered a key requirement CLI have to be
considered as a promising alternative [12]. CLI are
programming API aimed at easing the integration of client
software components and database components. They rely on
SQL statements promoting this way SQL expressiveness and
SQL performance. CLI provide mechanisms to encode create,
read, update, and delete (CRUD) expressions inside strings,
easily incorporating the power and the expressiveness of
SQL. Nevertheless, CLI do not provide some of the most
well known and common features to improve system
performance being concurrency the most paradigmatic case.

This paper addresses concurrency of the most critical
component of CLI: the component that holds data from a
database and provides an interface to client applications:
ResultSet [13] in JDBC and RecordSet [14] in ADO.Net.
Through this interface applications may read, update, delete
and insert data into databases. We will present a solution for
a concurrent (thread safe) ResultSet, known as Enhanced
ResultSet Component (ERC) and we will also assess its
performance in a real scenario.

For conciseness, Figure 1 presents a partial view of a
database schema which will be used throughout this paper.
This database is associated with the academic life, and as
such we expect it to be easily understood.

Figure 1. Partial view of the database schema

Throughout this paper all examples are based on Java,
SQL Server 2008 and JDBC (CLI) for SQL Server

2010 2nd International Conference on Software Technology and Engineering(ICSTE)

V1-194C978-1-4244-8665-6/10/$26.00 2010 IEEE

(sqljdbc4). Code may not execute properly since we will
only show the relevant code for the points under discussion.

This paper is organized as follows. Section II presents the
motivation for this work; Section III presents related work;
Section IV presents the ERC; Section V presents the results
of the assessments and finally, Section VI presents some
final conclusions and remarks.

II. MOTIVATION
Database applications very often are very demanding

regarding the way client side applications deals with data.
Traditional approaches rely on a pattern where each client
side thread manages locally its own data in an exclusive
mode. Each thread retrieves what is needs. There is no
standard for sharing resources in a concurrent way. This may
lead to situations where different threads are asking for the
same data promoting performance decay in several ways: by
increasing the work load of the database server, by
increasing the traffic in all layers of the network, by
increasing the memory usage, etc. Database applications
performance should improve if different threads were able to
share common resources. The question is where should we
provide those services? Should they be provided at the
application layer? Or should they be provided at a lower
level? Any option may have its own pros and cons.

We claim that gains in performance is maximized when
concurrency is implemented at a lower level. At a lower
level, resources may be optimized avoiding additional copies
of data, avoiding additional code for data manipulation and
chiefly to take advantage of the interaction with low level
API as JDBC. Therefore, in this paper we will implement a
concurrent component relying on JDBC API. ResultSet [13]
interface is a key component in JDBC and also our target
component. Among the several important functionalities it
provides, we stress two of them:

• data returned from Select statements are made
available to applications through the ResultSet
interface;

• updatable ResultSets provide an additional
functionality which consists in the possibility of
executing the following actions: updating, deleting
and inserting rows in the current ResultSet. These
changes are also executed on the database server.

Despite being a key component it does not provide any
concurrent mechanism to deal with the in-memory data it
manages. It is our goal to foresee a thread safe
implementation for the standard ResultSet interface.

III. RELATED WORK
To the best of our knowledge, no similar work was found,

involving concurrency at the ResulSet/RecordSet level. Thus,
some research was done around tools aimed at integrating
client applications and databases. A survey was made for the
most popular tools, as Hibernate [4], Spring [15], TopLink
[5], JPA [11] and LINQ [16]. These tools may provide
concurrency but always at a very high level. Basically, they
provide some locking policies implemented in order to
synchronize read/write actions. But these read/write

synchronized actions are not executed over the same memory
location. They are executed over distinct objects, as sessions
in Hibernate. These objects (as sessions) are not thread-safe
and therefore do not provide any protocol to access
concurrently the in-memory data.

IV. ENHANCED RESULTSET COMPONENT
Before delving into the concurrent version of the

ResultSet interface we will emphasize some of the most
important features of the ResultSet interface namely the
services aimed at dealing with in-memory data.

A. ResultSet Interface
The Statement interface [17] is used for executing SQL

statements and returning the results it produces. The returned
results are managed by a ResultSet interface [13]. Loosely
speaking ResultSet interface provides two orthogonal
functionalities: scrollability and updatability. Scrollability
defines the ability to scroll over the in-memory rows
retrieved from a database. There are two options: forward
only – in this case cursors may only move forward one row
at a time; scrollable – cursors may move in any direction and
jump several rows at a time. Updatability defines the
capability to update the in-memory rows retrieved from a
database. There are two main possibilities: read only –
update, insert and delete actions cannot be performed over
the ResultSet; updatable – read, update, insert and delete
actions may be performed on the ResultSet. These
functionalities are defined at instantiation time of the parent
Statement.

These different types of ResultSets raise an important
question. Is it necessary to provide concurrency for all types
of ResultSets? Regarding scrollability, forward only
ResultSets are very restrict because all threads should always
and simultaneously point to the same row. Regarding
updatability, concurrency makes sense for both types: read
only and updatable. Read only ResultSets always provide a
subset of the updatable interface. In order to address the most
general situation we chose to implement a concurrent version
for a scrollable and updatable ResultSet interface.

Concurrency over ResultSets raise some difficulties
because some usage protocols of ResultSets are complex
comprising several instructions. Figure 2 depicts protocols
for read, update, insert and delete actions. While read and
delete protocols do not comprise a start and an end
instruction, update and insert protocols always have a start
(implicitly for update and explicitly for insert) and an end
instruction. Besides the starting and ending instruction, the
main issue is that for the update and insert protocols the
cursor cannot be moved from the current selected row while
the protocol is being executed. If any thread moves the
cursor from the current row the following situations will
occur: the insert protocol will be aborted; the update protocol
will discard all previous updates. For read and delete
protocols, as for update and insert, it is always necessary to
assure the correct cursor position. Thus, in a concurrent
environment, one must guarantee that:

2010 2nd International Conference on Software Technology and Engineering(ICSTE)

V1-195

• while some ongoing protocols are taking place
(update and insert) the cursor cannot be moved into
another position;

• whenever a thread becomes the running thread, its
cursor context must be restored regardless the
ongoing protocol.

Figure 2. Read, Update, Insert and Delete protocols

B. ERC Features
ERC implementation relies on the following features:
• ERC interface usage protocols and ResultSet usage

protocols are basically the same. Conceptually, the
main difference is the possibility of having several
cursors pointing simultaneously to different rows in
the same ResultSet instance. The main usage
differences are: the possibility of creating new
cursors, a group of two new methods and a new
exception that have been included (explained
below) .

• ERC interface is thread safe. Among others, it deals
with situations where atomic operations aggregate
complex protocols, as is the case of inserting a new
row.

• From users’ point of view, ERC concurrency is
provided in a transparent way by individual cursors.

• Each cursor is mainly characterized by a pointer to a
row in the underlying ResultSet.

• ERC have two main super-states: locked and
unlocked.

• Only one cursor at time may lock the ERC. Other
cursors have to wait until it becomes unlocked.

• Cursors are locked when: 1) explicitly ordered by
users; 2) when one of the following protocols is in
course: inserting a new row or updating a row; 3)

during the execution of individual operations, as
next(), getInt(…) and deleteRow().

• ERC goes to unlock state as sequence of: a)
explicitly ordered by users; b) invocation of any
method that ends or aborts the ongoing protocol.

• ERC promotes concurrency to the lowest possible
grain. The grain is determined by each individual
protocol to access the underlying ResultSet. In most
of the situations, concurrency grain is controlled in
an instruction by instruction basis, as next(),
getInt(…), isLast().

• Each user thread may create as many cursors as
necessary over the same ERC instance.

• One thread may only have one cursor locked at a
time. In order to avoid deadlock situations, an
exception is raised whenever a thread tries to have
two cursors simultaneously locked (this is the new
exception).

• In order to improve ERC performance, two
additional methods are provided to explicitly handle
lock states: lock() and unlock(). These methods
should be used carefully because the gain in
performance is paid with less concurrency (these are
the two new methods).

C. ERC Architecture
ERC comprises 2 classes and 2 interfaces as shown in

Figure 3 (EResultSet), Figure 4 (IEResultSet), Figure 6
(Cursor) and Figure 7 (ICursor). Figure 3 shows the class
diagram for EResultSet. Only some relevant information is
shown in order to avoid overcrowd the diagram (this policy
has been applied to all the presented class diagrams). This
class is responsible for implementing concurrency between
cursors. Figure 4 presents the interface through which users
should access EResultSet. This interface only provides one
method which is responsible for creating new cursors. The
remaining methods are only accessible through the interface
ICursor (Figure 7). Figure 5 shows the method next(…) of
the EResultSet class which is responsible for moving the
cursor down one row from its current position. This block of
code shows that cursor management always conveys some
additional processing. This issue is analyzed in some detail
in section V. In accordance with the requirements, the cursor
moves down one row conveying the same behavior and
feedback as if it was used in a standard ResultSet. Figure 6
presents the class diagram for the class Cursor. Users access
this class through the interface ICursor presented in Figure 7.
Each Cursor instance is characterized by a unique cursorId,
threadId (from Thread.currentThread().getId()) and the
instance of EResultSet that have created it. Each method of
Cursor has a correspondent method in EResulSet. Users do
not invoke directly EResultSet methods but always through
ICursor interface. Methods of class Cursor basically have a
call to the correspondent method in the associated
EResultSet instance as shown in Figure 8. From users’ point
of view, ICursor provides the same interface as the one of the
standard ResultSet (exception is the two additional methods
and also the additional exception).

2010 2nd International Conference on Software Technology and Engineering(ICSTE)

V1-196

Figure 3. EResultSet class diagram

Figure 4. IEResultSet class diagram

Figure 5. method next() from class EResultSet

Figure 6. Cursor class diagram

Figure 7. ICursor class diagram

Figure 8. method next() from class Cursor

D. Users’ Perspective
From a design perspective, Figure 9 presents a possible

implementation where Root is the main class which is
responsible for instantiating EResultSet. Then, the
IEResultSet interface may be shared by as many threads
(Student) as necessary. Then, each Student may create as
many cursors as necessary.

Figure 9. Design perspective for ERC

Figure 10 presents IEResultSet and ICursor from users’
perspective. IEResultSet only provides one single method
aimed at creating new cursors (line 31). From users’
perspective, as already mentioned, ICursor interface is
equivalent to the standard ResultSet interface (lines 34-36) in
agreement with the ERC features.

Figure 10. ICursor from users’ perspective

V. PERFORMANCE ASSESSMENT
Performance is an indicator of how well a software

system or component meets its requirements namely for
timeliness [1]. There are usually two dimensions considered:
responsiveness and scalability. This paper is devoted to
responsiveness. Scalability will be considered in a near
future. Hereafter, performance should be understood as the
responsiveness dimension.

The performance assessment here presented covers the
standard ResultSet and the ERC. Two computers were used
to accomplish the assessments: PC1 - Dell Latitude E5500,

2010 2nd International Conference on Software Technology and Engineering(ICSTE)

V1-197

Intel Duo Core P8600 @2.40GHz, 4.00 GB RAM, Windows
Vista Enterprise Service Pack 2 (32bits), Java SE 6,
JDBC(sqljdbc4), NetBeans 6.8; PC2 – Asus-P5K-VM, Intel
Duo Core E6550 @2,333GHz, 4.00 GB RAM, Windows
XP Professional Service Pack 3, SQL Server 2008. The
minimum used counting interval assumed in all assessments
is 0,1ms. In order to promote an ideal environment the
following actions were taken: the running threads were given
the highest priority and all non essential processes/services
were cancelled; a dedicated local network connecting PC1
and PC2 has been used in exclusive mode and performing
100MBits of bandwidth.

A new database was created in conformance with the
schema presented in Figure 1. In order to avoid some
overhead added by SQL Server, some default SQL Server
database properties were changed as, Auto Update Statistics
= false and Recovery Model = Simple.

A. Methods of EResultSet
All EResultSet methods have equivalent boilerplate code

conveying also an equivalent performance decay in each
method. Therefore, our attention may be focused on paths
inside the boilerplate code that may influence differentially
the performance decay. Figure 11 depicts the basic flowchart
diagram which comprise 3 distinct paths. The three main
paths are: P1) no change on cursor context – current cursor is
the same as the last cursor; P2) change on cursor context –
current cursor (cursorId) is not the same as the last one, and
finally P3) wait for unlocking – cursor has to wait because
EResultSet is locked.

In real situations, individual paths are combined in real
paths: P1, P2+P1 and P3+P2+P1. Path P2 has the most
relevant overhead. In highly stressed situations were path P2
may occur very frequently, its impact may not be negligible.
P2 comprises always two actions over the underlying
ResultSet: keep the current cursor context (belongs to the
previous cursorId) and restore the current context for the
current cursorId. The policy for swapping cursor context is
lazy swap. An effort has been made to minimize the
overhead.

Wait

Keep Previous Cursor Context

Set Current Cursor Context

Execute

Finallize

Change cursor
context?

no yes

Locked?

yes

no

P1
P2

P3

[while locked]

Figure 11. Basic flowchart diagram

As mentioned before, two new methods were added, lock
and unlock. These methods actively empower users giving
them control over the blocking process. After invoking lock,
ERC will remain locked until the same cursorId invokes
unlock. In the meanwhile no swap on cursor context is

allowed. This approach definitely improves ERC
performance whenever swaps in cursor context are not
welcome, as it will be shown. However, these methods
should be used discretionarily because concurrency is
suspended whenever an exclusive access is active.

B. Scenario
A scenario was set up to accomplish the performance

assessment. Two personal computers were used: PC1 as a
client running the assessment for ResultSet and also for ERC,
and PC2 as a database server. This scenario confines a client
server architecture. In order to have a more detailed
assessment of the ERC, for each statement type (Select,
Insert an Update), we have enforced some conditions to the
lock state of ERC, as always locked (AL), locked on row by
row basis (LR) or never locked (NL). AL locks explicitly
ERC before executing any action over the underlying
ResultSet and unlocks it after accomplishing all the schedule
actions over the same ResultSet. LR locks explicitly ERC
before executing the first action over a row and unlocks it
after accomplishing the last action over the same row. NL
never locks explicitly the ERC delegating this responsibility
to the underlying ERC. These conditions have impact on
changes of context of cursors and therefore on the overall
performance of ERC. Table 1shows the results for the
assessment. Each individual result is characterized by the
context in which it took place: the number of Running
Threads (1-500) and the Control (A-action, T-type, L-lock
policy). In order to get reliable results, each individual
assessment result was computed as the mean value of the 10
best times out of 100. Most of the assessments were executed
two or more times in order to avoid abnormal circumstances
and therefore check the validity of the results. One
significant difference exist between the assessment over the
standard ResultSet and the ERC: while the standard version
has to obtain a ResultSet for each running thread, the ERC
obtains one single ResultSet for all running threads. It means
that for the standard ResultSet it is necessary to execute one
query for each thread while for the ERC it is only necessary
to execute one single query. As an example, let’s focus on
the Select statement and define a context where there are 10
threads to be feed by the content of a table containing 100
rows. For the standard ResultSet it is necessary to execute 10
Select statements, one for each ResultSet and thread (every
ResultSet will the same content). For the ERC, it is necessary
to execute a single Select statement (the same as the one
executed for the standard ResultSet) and share the ResultSet
among all 10 threads. In order to avoid performance decay in
SQL Server, the table used for the assessment (Std_Student)
was always cleaned between individual assessments.

Table 1 presents the obtained results for the performance
assessment. Values are presented in units of 0.1ms. Figure 12
shows the main control cycle for all assessments. This cycle
assures that the obtained results always reflect the times for
setting up the require context to simulate real situations. We
will survey the assessment analyzing the results by the type
of each SQL statement: Read, Update and Insert. The Delete
statement has not been addressed because it would require a
very different context for its execution. While, for example,

2010 2nd International Conference on Software Technology and Engineering(ICSTE)

V1-198

it is possible to update a row as many times as necessary, a row may only be deleted once.

TABLE I. RESULTS OF ASSESSMENT

Control Running Threads
A T L 1 5 10 25 50 75 100 150 200 250 500

R
ea

d

ResultSet - 49 217 428 1,065 2,139 3,199 4,257 6,387 8,528 10,692 22,083

ERC
AL 250 330 431 736 1,250 1,787 2,348 3,426 4,535 5,682 12,307
NL 250 381 555 1,103 1,893 2,607 3,715 4,863 6,609 8,796 17,940
RL 251 362 483 844 1,532 2,018 2,798 4,202 5,960 7,465 15,546

U
pd

at
e ResultSet - 253 1,229 2,475 6,217 12,315 18,493 25,063 38,775 50,993 65,216 133,214

ERC
AL 471 1,398 2,572 6,076 11,936 17,823 23,773 35,823 48,435 61,945 128,668
NL 472 1,401 2,581 6,102 11,999 17,897 23,853 35,885 49,666 64,465 131,725

In
se

rt
 ResultSet - 507 1,179 2,370 5,896 11,860 17,818 23,830 36,105 48,976 61,473 128,738

ERC
AL 468 1,039 2,092 5,224 10,439 15,668 20,912 31,519 42,356 53,142 114,785
NL 497 1,038 2,091 5,224 10,435 15,669 20,934 31,476 42,082 53,001 111,648

Figure 12. Control cycle for all assessments

1) Assessment by SQL statements
a) Select

All assessments for the Select statement were
performed on the following context:

• Underlying statement: “select * from
Std_Student”;

• Table “Std_Student” pre-filled with 50 rows;
• Sequentially read all attributes of all rows;
• All attributes indexed by column index;
Figure 13 shows the main block of code for each

thread of the standard ResultSet. Figure 14 shows the main
block of code for each thread of the ERC (AL).

Four tests were carried out: one for the standard
ResultSet and three for the ERC (AL, NL, RL). Figure 15
shows graphically the obtained results and Figure 16
shows the ratios between the results of ResultSet and the
results of each ERC (AL, NL, RL).

Figure 13. Code for the standard ResultSet assessment

Figure 14. Code for the EResultSet assessment

From graphic in Figure 15, it is clear that ERC has
better scores than ResultSet only if the total number of
concurrent threads is greater than 10 for AL, greater than
15 for RL and greater than 25 for NL. From Figure 16, we
may say that ERC performance increases, when compared
to the standard ResultSet, permanently until reaching 75
threads. In the range of 75-500 simultaneous running
threads the ERC performance is about 1.8 (AL), 1.5 (RL)
and 1.2 (NL) times of the standard ResultSet. Another
important issue is related to the changes on contexts of
cursors as we have suggested previously in this section. As
expected, performance decays from AL, towards RL and
finally towards NL. This issue will be addressed in more
detail in 2) in this section.

Figure 15. Results of assessments for the Select statement

2010 2nd International Conference on Software Technology and Engineering(ICSTE)

V1-199

Figure 16. Ratios between ResultSet and EResultSet results for the

Select statement

b) Update
All tests for the Update statement were performed on

following context:
• Underlying statement: “select * from

Std_Student”;
• Table “Std_Student” pre-filled with 50 rows;
• Sequentially update all attributes of all rows;
• All attributes indexed by column index;
The code to perform the update tests is similar to the

code presented for the select assessment. The main
difference is the substitution of get methods by update
methods. Three tests were carried out: one for the standard
ResultSet and two for the ERC (AL, NL). No assessment
was carried out for RL because the first update action
(rs.update(...)) locks the underlying ResultSet conveying
this way a similar effect as an explicit lock on a row by
row basis. Figure 17 shows graphically the obtained results
and Figure 18 shows the ratios between the results of
ResultSet and the results of each of ERC (AL, NL). These
two figures, complemented with the information contained
in Table 1, shows that performance is only susceptible to
ResultSet vs ERC if the number of simultaneous threads is
under 25. In this range, ERC performance is about 55% to
100% of the standard ResultSet. For values above 25
threads, ERC performance is slightly better than the one of
standard ResultSet.

Figure 17. Results of assessments for the Update statement

Figure 18. Ratios between ResultSet and EResultSet results for the

Update statement

c) Insert
All tests for the Insert statement were performed on

following context:
• Underlying statement: “select * from

Std_Student”;
• Table “Std_Student” with no rows;
• Sequentially insert all attributes for 50 rows;
• All attributes indexed by column index;
The code to perform the Insert assessment is similar to

the code presented for the update test. Three tests were
carried out: one for the standard ResultSet and two for the
ERC (AL, NL). No test was carried out for RL based on
the same arguments presented for the Update statement.
Figure 19 shows graphically the obtained results and
Figure 20 shows the ratios between the results of ResultSet
and the results of each ERC (AL, NL).

Figure 19. Results of assessments for the Insert statement

Figure 20. Ratios between ResultSet and EResultSet results for the

Insert statement

2010 2nd International Conference on Software Technology and Engineering(ICSTE)

V1-200

Figure 19 and Figure 20 show us that, on the contrary
of the update statement, the standard ResultSet
performance and the ERC performance have some relevant
differences. ERC performance is always better than
standard ResultSet one. When more than 5 threads are
running simultaneously, ERC performance is about 110%
to 115% of the standard ResultSet.

2) Changes on context of cursors
Changes on context of cursors deserve a closer

attention. Figure 21 shows the ratios between AL and all
other used policies for each SQL statement. Figure 21
stresses the idea that changes on context of cursors may
have a huge impact on ERC performance. While
statements Update and Insert seem (effectively they are
not exempt) exempt from their impact, Select statement
may have a performance decay about 30-40%. This
realization confirms our concern that this is a key issue
needing an additional attention in order to reduce its
negative effect.

Figure 21. Ratios between AL, NL and LR policies

VI. CONCLUSION
ERC proved to be a promising solution for situations

were performance and concurrency are considered key
issues. Results show that ERC performance is better than
the standard ResultSet performance practically in all
situations. Exceptions exist only in cases where the
number of concurrent threads is very low. The most
outstanding results were achieved for the Select statement.
Here the gain in performance may achieve 1.8 times the
performance of the standard ResultSet.

The assessment took place under optimal conditions. In
real situations, networks are shared and very often
congested and database servers are overloaded. Therefore,
in real situations it is expected to obtain better results for
the ERC than the ones obtained in this one.

Regarding ERC usage, its interface is mostly based on
the ResultSet interface. Only, some additional protocols
are required to create cursors. An effort was done to ensure
to current ResultSet users a seamless transition to ERC.

Future work will address to main issues: ERC
performance and ERC usability. In order to improve ERC
performance we will optimize the boilerplate code by
providing typestate [18] oriented interfaces. These
interfaces provide state information which may be used to
optimize ERC performance, by avoiding the execution of
unnecessary code. Additionally, this typestate oriented

interfaces will promote ERC with an improved usability.
Some tests have been already done and the preliminary
results are very promising.

REFERENCES
[1] C. U. Smith and L. G. Williams, Performance Solutions: a

Practical Guide to Creating Responsive, Scalable Software, 1st ed.:
Addison Wesley, 2001.

[2] M. Woodside, et al., "The Future of Software Performance
Engineering," presented at the FOSE '07- Future of Software
Engineering, Minneapolis,MN,USA, 2007.

[3] A. Hejlsberg. (2010 Mar 15). The LINQ Project. Available:
http://msdn2.microsoft.com/en-us/netframework/aa904594.aspx

[4] Hibernate. (2010). Hibernate. Available: http://www.hibernate.org/
[5] Oracle. (2010). Oracle TopLink. Available:

http://www.oracle.com/technology/products/ias/toplink/index.html
[6] ISO. (2003, 2010) ISO/IEC 9075-3:2003. Available:

http://www.iso.org/iso/catalogue_detail.htm?csnumber=34134
[7] S. Microsystems. (2010). JDBC Overview. Available:

http://java.sun.com/products/jdbc/overview.html
[8] Microsoft. (2010 Mar 18). Microsoft Open Database Connectivity.

Available: http://msdn.microsoft.com/en-
us/library/ms710252(VS.85).aspx

[9] Microsoft. (2010). Overview of ADO.NET. Available:
http://msdn.microsoft.com/en-us/library/h43ks021(VS.71).aspx

[10] S. Microsystems. (2010 Mar 23). Java Data Objects (JDO).
Available: http://java.sun.com/jdo/

[11] Sun.Microsystems. (2010 Feb 25). JPA - Java Persistent API.
Available: http://java.sun.com/javaee/technologies/persistence.jsp

[12] W. Cook and A. Ibrahim. (2009). Integrating programming
languages and databases: what is the problem? Available:
http://www.odbms.org/experts.aspx#article10

[13] S. Microsystems. (Mar). Interface ResultSet. Available:
http://java.sun.com/javase/6/docs/api/java/sql/ResultSet.html

[14] Microsoft. (Mar). Recordset Object (ADO). Available:
http://msdn.microsoft.com/en-us/library/ms681510(VS.85).aspx

[15] Spring. (2010). Spring. Available: http://www.springsource.org/
[16] M. Erik, et al., "LINQ: reconciling object, relations and XML in

the .NET framework," in ACM SIGMOD International Conference
on Management of Data, Chicago,IL,USA, 2006, pp. 706-706.

[17] S. Microsystems. (Mar). Interface Statement. Available:
http://java.sun.com/javase/6/docs/api/java/sql/Statement.html

[18] R. E. Strom and S. Yemini, "Typestate: A programming language
concept for enhancing software reliability," IEEE Trans. Softw.
Eng., vol. 12, pp. 157-171, 1986.

2010 2nd International Conference on Software Technology and Engineering(ICSTE)

V1-201

