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Ângela Lopes, M. Elfrida Ralha and Carlos Vilar

Time and Pedro Nunes’ pursuit

of mathematical certainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185



Preface

Maria Fernanda Estrada was born on a Spring day, May the 20th, the
eldest child of a large family of two sisters and four brothers at Escariz
(S. Martinho) a small rural village in Minho, near Braga.

She started her school education in Freiriz because the primary school
in her own village was closed for rebuilding after a fire. There, in a dif-
ferent village, she proved, from the very beginning, to be a diligent pupil
who became so attached to her teacher that, when the village school
building was completed, she decided to keep on walking for four kilome-
ters each day, from home to school and back, just to be taught by that
schoolteacher.

Later on, in Liceu Nacional Sá de Miranda, Braga - where she con-
cluded her secondary education, in 1949, with the classification of 19
(out of 20) - she probably developed her interest in mathematics but she
was also very much interested in history and literature and read widely.
Maria Fernanda won a school prize for her translation, from French to Por-
tuguese, of Ivanhoe, after having been asked, as well as all her colleagues
in the class, by her French teacher to translate just a few paragraphs of a
page in the book.

She entered University and, in 1953, Maria Fernanda finished her first
degree in Mathematical Sciences, at the University of Porto, where she
acknowledges having been led by some of her Professors (whom she often
recalls with much appreciation) to enjoy the beauty of mathematics. She
was certainly due to achieve a brilliant academic career. However, having
finished her degree with a classification of 18 (certainly very rare in those
days standards and for which she was to be awarded a prize from the
Rotary Club) did not guarantee her admission, by the Faculty, as an
assistant-lecturer, “simply” because she was a woman.

In 1958, Maria Fernanda finished her degree in Pedagogical Sciences,
at the University of Coimbra, and in 1959 she completed the in-service
teaching practice.

Twenty years after and having already influenced, as an excellent
maths teacher, a large community of Secondary School pupils, both in
Portugal and in Africa (Mozambique), Maria Fernanda was finally hired,
in 1979, as an invited assistant-lecturer, to the University of Minho.

Several events may have influenced Maria Fernanda decision to pursue
an academic career in the Department of Mathematics at our University:
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- the justification given to the Rectory for obtaining permission to
invite her to come from the Secondary School to the University:
to lecture History, as well as Didactics, of Mathematics, (...) fun-
damental courses in the Teaching of Mathematics degree.

- Prof. Maria Raquel Valença, who became a dear friend and an
important advisor on the process of her working towards a PhD
degree.

At the University of Birmingham, Maria Fernanda’s Master as well as
Doctoral supervisor was Stella Mills. By 1987, Maria Fernanda required
continuing her postgraduate studies on History of Mathematics; justifica-
tions included sentences such as there is no PhD specialist on the History
of Mathematics in Portugal as well as it is a domain of great interest
not only for the university of Minho but also for all the other Portuguese
universities.

Maria Fernanda was awarded a PhD degree with a thesis entitled “A
Study of the discovery and early representations of the 27 lines of a cu-
bic surface”. She became the first Portuguese mathematician, together
with Carlos Correia de Sá (from the University of Porto, with a thesis on
“Projective Geometry”), to qualify with a doctorate in History of Math-
ematics.

Known, by her students, to be a lecturer who could drop some real
tears just for teaching Euclid, Arquimedes or, and above all, José Anastácio
da Cunha, Maria Fernanda progressed to become an associated professor
with recognised scientific skills, as well as rare human qualities. Sym-
pathy, honor, patience, rigor, real pedagogical concerns or, simply, true
friendship are just a few of the countless attributes which, in our modest
opinion, fit Maria Fernanda’s attitude towards life.

During all this time Maria Fernanda was always seen as someone with
a wonderful character who was simultaneously easily accepted by her stu-
dents as well as by her colleagues. In particular, during her time at the
University of Minho, Maria Fernanda touched deeply numerous students
not only because of her scientific knowledge but also because of her hu-
manity towards her students and their own careers.

She started being interested on the post-graduation of school teach-
ers back in 1991, when she became director of the first Master degree on
Teaching of Mathematics to exist in Portugal. From this experience she
often reports having been able to introduce three courses on History of
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Mathematics: one on the “History of Analysis”, taught by Stella Mills,
one on the “History of Geometry”, taught by herself, and one on the
“History of Mathematics in Portugal”, for which she invited many col-
leagues from various Portuguese universities to present course modules.
Many of them, both students and lecturers, still refer to this wonderful
opportunity and experience. It was by then that she supervised her first
MSc thesis on the Almagest of Ptolemy and, from then on, she super-
vised and/or co-supervised almost fifteen MSc theses and one PhD thesis
on the life and work of the Portuguese mathematician Francisco Gomes
Teixeira. Her retirement in 1997 did not slow down her supervision of
post-graduate students; occasionally, she returned to the university to
lecture some courses on the History of Mathematics to those students.

Maria Fernanda’s passion for the Portuguese History of Mathematics
(and/or Portuguese Mathematicians) has grown over the years: Pedro
Nunes or Álvaro Tomás, Gaspar Nicolás or Bento Fernandes and Gomes
Teixeira have been the object of her attention and profound study on
different occasions and/or for different reasons. However, José Anastácio
da Cunha is, perhaps and on this domain, one of her favorite personalities;
in 1994 she annotated and published an inedit manuscript found in the
Archives of the University of Minho, Ensaio sobre as Minas and, a few
years later (2005), she collaborated very actively in the study of another
set of inedit manuscripts of the same author found in the same Archive.

Maria Fernanda is still an active collaborator and researcher of Centro
de Matemática of the Universidade do Minho (CMAT).

For all of these factors we congratulate and thank you, Maria
Fernanda, on your 80th birthday, hoping that you may allow us to be
around you for many years and also hoping to be able to keep in pace
with your inexhaustible energy.
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Prefácio

Maria Fernanda Estrada, a filha mais velha de uma famı́lia numerosa, de
duas irmãs e quatro irmãos, nasceu, num dia de primavera, a 20 de Maio,
em Escariz (S. Martinho), uma aldeia rural perto de Braga.

Iniciou a sua instrução primária em Freiriz porque a escola da sua
aldeia estava a ser reconstrúıda, após um incêndio. Aı́, numa aldeia difer-
ente, provou, desde o ińıcio, ser uma aluna diligente, que rapidamente
se afeiçoou à sua professora. Quando se completaram as obras de recon-
strução da escola, preferiu continuar a percorrer os quatro quilómetros
diários, para poder continuar a ser ensinada por ela.

Mais tarde frequentou o Liceu Nacional de Sá de Miranda, em Braga,
que terminou em 1949 com a classificação de 19 valores - durante este
peŕıodo desenvolveu, provavelmente, o seu gosto pela matemática mas
apreciava também, com entusiasmo, a aprendizagem da história e da lit-
eratura, lendo bastante. Obteve, nos seus primeiros anos do ensino liceal,
um prémio atribúıdo pela tradução, do francês para português, do clássico
Ivanhoe, após uma sugestão da professora de francês à sua turma para que
traduzissem apenas alguns parágrafos do livro.

Frequentou o Curso de Ciências Matemáticas, na Universidade do
Porto, que terminou, em 1953, aprendendo, também, com alguns dos
seus professores (que recorda frequentemente, com muito apreço) a apre-
ciar a beleza da matemática. Era previśıvel que prosseguisse para uma
brilhante carreira académica mas, apesar de ter terminado o curso com
a classificação final de 18 valores (certamente rara para a época e pela
qual veio a receber um prémio, atribúıdo pelo Rotary Club de Portugal),
não foi admitida a um lugar na universidade, simplesmente porque era
“mulher”.

Em 1958, Maria Fernanda obteve o grau em Ciências Pedagógicas, na
Universidade de Coimbra e, um ano mais tarde, completou o seu estágio
profissional.

Vinte anos depois, tendo já influenciado, como uma excelente profes-
sora de Matemática, uma extensa comunidade de alunos do ensino liceal,
quer em Portugal Continental quer em Moçambique, a Maria Fernanda
foi finalmente contratada, em 1979, como assistente da Universidade do
Minho, requisitada ao Ensino Secundário.

Vários acontecimentos influenciaram a Maria Fernanda a prosseguir
uma carreira académica no Departamento de Matemática da nossa Uni-
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versidade:

- a justificação enviada à Reitoria solicitando permissão para proceder
à sua requisição do Ensino Secundário para o Ensino Superior: ensi-
nar História, bem como Didáctica, da Matemática, (...) disciplinas
fundamentais na Licenciatura de Matemática e Desenho.

- a Prof. Maria Raquel Valença, que se tornou uma grande amiga e
importante conselheira no seu percurso para a obtenção do grau de
doutora.

Na Universidade de Birmingham, a Maria Fernanda teve como ori-
entadora Stella Mills, para a obtenção do grau de Mestre e, em 1990,
do de Doutoramento. Em 1987, Maria Fernanda requereu prosseguir
os seus estudos pós-graduados em História da Matemática; como jus-
tificação escreveu-se: não havendo em Portugal especialistas doutorados
em História da Matemática e ainda trata-se de uma área de grande in-
teresse não só para a Universidade do Minho (...) mas para as outras
universidades portuguesas.

A Maria Fernanda doutorou-se com uma tese intitulada “A Study of
the discovery and early representations of the 27 lines of a cubic surface”
tendo sido, simultaneamente com Carlos Correia de Sá (da Universidade
do Porto, com uma tese sobre “Geometria Projectiva”), os primeiros por-
tugueses a obter o grau de doutor na área de História da Matemática.

Conhecida pelos seus alunos como alguém que se emocionava ao ponto
de verter verdadeiras lágrimas quando falava de Euclides, de Arquimedes
ou, muito especialmente, de José Anastácio da Cunha, a Maria Fernanda
passou a professora associada, vendo reconhecidos os seus conhecimen-
tos cient́ıficos, mas também qualidades humanas raras. Simpatia, honra,
paciência, rigor, preocupações pedagógicas ou, simplesmente, verdadeira
amizade, ajudam a descrever a atitude da Maria Fernanda perante a vida.

A Maria Fernanda foi sempre vista como alguém com um excelente
carácter, simultaneamente bem aceite pelos seus alunos e pelos seus cole-
gas. Em particular, no peŕıodo em que leccionou na Universidade do
Minho, ela influenciou profundamente numerosos estudantes e os seus per-
cursos ficaram claramente marcados, não apenas pelos conteúdos cient́ıficos
que ensinava, mas também pelas suas qualidades humanas.

O seu interesse pela pós-graduação de estudantes recua ao ano de
1991, quando se tornou directora do primeiro Mestrado português em
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Matemática - Área de Especialização em Ensino. Desta experiência a
Maria Fernanda relata a introdução das disciplinas “História da Análise”,
leccionada por Stella Mills, “História da Geometria”, leccionada por ela
própria e, ainda, “História da Matemática em Portugal”, uma disciplina
por módulos, para cuja leccionação a Maria Fernanda convidou vários
colegas portugueses. Muitos, tanto professores como alunos, classificam,
ainda hoje, esta experiência como excelente. Por essa altura, a Maria
Fernanda orientou a sua primeira tese de mestrado, sobre o Almagesto de
Ptolomeu e, desde então, orientou ou co-orientou perto de quinze teses
de mestrado e ainda uma tese de doutoramento, sobre a vida e a obra do
matemático português Francisco Gomes Teixeira. A sua aposentação em
1997 não esmoreceu a sua orientação de teses; inclusivamente, em certas
situações, regressou à universidade para leccionar disciplinas de História
da Matemática.

A paixão da Maria Fernanda pela História da Matemática Portuguesa
(e/ou de matemáticos portugueses) cresceu com os anos: Pedro Nunes ou
Álvaro Tomás, Gaspar Nicolás ou Bento Fernandes e Gomes Teixeira têm
sido o fulcro da sua atenção e de estudos profundos em diferentes ocasiões
e por diferentes razões. Contudo, José Anastácio da Cunha é, porventura,
uma das suas personalidades preferidas; em 1994 a Maria Fernanda anotou
e publicou um manuscrito inédito encontrado no Arquivo da Universidade
do Minho, “Ensaios sobre as Minas” e, alguns anos mais tarde (2005),
colaborou activamente no estudo de um outro conjunto de manuscritos
inéditos do mesmo autor, encontrados no mesmo Arquivo.

A Maria Fernanda mantém-se actualmente uma investigadora activa
do Centro de Matemática da Universidade do Minho (CMAT).

Por todas estas razões congratulamo-nos e agradecemos do fundo
do coração, à Maria Fernanda, no ano do seu 80o aniversário, esperando
que nos permita permanecer perto de si por muitos anos e que sejamos
capazes de a acompanhar com a sua energia inesgotável.
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Abstract

The memoir “On the development of functions in series”, by Fran-
cisco Gomes Teixeira (1851-1933), is a remarkable study that al-
lows the reader acquiring knowledge, at the same time global and
detailed, because it gives an historical perspective of the theories
development and presents detailed bibliographical references. In
this issue Gomes Teixeira shows knowledge of the fundamental
classical texts of contemporary authors of his time and also for-
mer ones, related to the development of functions in series, which
reveals a profound scientific and historical knowledge on the sub-
ject.
The memoir was rewarded by the Royal Academy of Exact Phys-
ical and Natural Sciences of Madrid, published, in Portuguese,
in the Colección de Memorias de la Academia, and later it was
inserted in volume I of Obras sobre Mathematica (1904).

Keywords: Francisco Gomes Teixeira, Portuguese Mathematics, Royal

Academy of Exact Physical and Natural Sciences of Madrid Prize, Tei-

xeira’s series.
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1 Introduction

Within the framework of my doctorate, I studied, even though in a brief
way, the memoir of Francisco Gomes Teixeira, entitled “On the develop-
ment of functions in series”. The content of the analysis to this work is
inserted in the thesis1.

When I was asked to make a brief communication at the “History of
Mathematics Meeting”, in homage to Professor Maria Fernanda Estrada, I
thought over the subject to discuss. It was obvious that it had to be a con-
tent related to my research work, since I had the happiness of having my
thesis guidance magisterially conducted by Professor Fernanda Estrada,
with competence, serenity and a lot of abnegation. From that work re-
lationship a big friendship has emerged, which prevails until present and
will continue in the future.

The selection of the subject had an aim to propose to Professor Fer-
nanda Estrada to make, together with me, a more in depth study on the
referred memoir, since the one that already existed was a more generic
one. Such a challenge was publicly accepted by my great Friend, to my
own satisfaction and that of all the others present. The study to be pro-
duced will complete, not only the already existing one, but also some
other research that meanwhile had been done.

Consequently, what I propose to present is a text, on the referred
memoir, based on the thesis, which doesn’t add anything else to the re-
search already done, but that may be useful to those who had not read
the thesis.

Even though Francisco Gomes Teixeira (1851-1933) is well-known, it
seems to me opportune to make a brief reference to this imminent math-
ematician and master.

In the second half of the 19th century, Portugal was scientifically iso-
lated from the rest of Europe and world, which was extremely harmful to
the scientific development of our country. That fact didn’t leave Gomes
Teixeira indifferent and, therefore, he undertook the opening of Portugal
to the international scientific community, reflected in the numerous pa-
pers that he published in the most prestigious scientific journals at the
time, and in the vast correspondence exchanged with other scholars from
several areas of knowledge.

1Alves, Maria Graça, Francisco Gomes Teixeira - The man, the scientist, the peda-
gogue, Doctorate Thesis, Minho University, 2004.
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In his research, Gomes Teixeira, in fact, didn’t develop new mathema-
tical theories, but gave a major contribute to their development, present-
ing generalizations, clarifying and increasing research works published by
other authors, covering in the pedagogical perspective of the presentation
of mathematical texts, among others.

Besides dozens of articles on analysis and geometry, Gomes Teixeira
published two books: Curso de Analyse Infinitesimal - Calculo Differen-
cial and Curso de Analyse Infinitesimal - Calculo Integral. The fist one
had its first edition in 1887, and the last one, its fourth, in 1906; the
second treatise was published, for the first time, in 1889, with the third
and last edition being from 1910. Gomes Teixeira also dedicated himself
to the History of Mathematics. In those books, he introduced numerous
historical notes, which were increased from one edition to the other; he
wrote the book História das Matemáticas em Portugal ; he inserted hun-
dreds of bibliographic references and the history of curves in his treatise,
entitled Tratado de las curvas especiales notables and Traité drs Courbes
Spéciales Remarquables planes et gauches. The first was rewarded by the
Real Academia de Ciencias Exactas Fisicas y Naturales, de Madrid and
the second awarded a prize from the Académie de Sciences de Paris, with
the Binoux prize, precisely due to the historical component inserted in
the study of curves.

Besides being a mathematician, Gomes Teixeira was the director of the
Porto Polytechnical School and the first rector of the University of Porto,
performing management activities with competence and dedication. He
was also an excellent professor, respected and considered by his students.

He participated in international congresses that took place in Euro-
pean countries and also beyond Europe. He was also honoured with the
title of “Doutor honoris causa” by the Central University of Madrid and
by the Toulouse University.

Among the papers he published, we can find the memoir “On the
development of functions in series”, which we are going to talk about, in
a brief way, as referred.

Throughout his study life, Gomes Teixeira kept investigating, exam-
ining thoroughly and updating his knowledge on series. A good example
of this are the more than thirty papers on series that were published in
international magazines, the different approaches on this subject, in the
several editions of Curso de Analyse Infinitesimal - Calculo Differencial,
and even the bibliographic and historical references, each time more com-
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plete, that he kept introducing in those publications.
The memoir “On the development of functions in series” is a remark-

able study that allows the reader to acquire knowledge, at the same time
global and detailed, because it gives an historical perspective of the theo-
ries development and presents detailed bibliographical references. In this
issue Gomes Teixeira shows knowledge of the fundamental classical texts
of contemporary authors of his time and also former ones, related to the
development of functions in series, which reveals a profound scientific and
historical knowledge on the subject.

Even though the research fundamental aim that I carried out until
then had been the analysis of some subjects of Curso de Analyse- Calculo
Differencial, and the approached subjects in the memoir were not related,
I decided, nevertheless, to make a sketch about the memoir to make it
known and present a subject that deserved to be more deeply studied.

2 Memoir “On the development of functions
in series”

The memoir was rewarded by the Royal Academy of Exact Physical and
Natural Sciences of Madrid. Next, a brief analysis of the process of the
given prize attribution is made.

Figure 1: Cover of volume XVIII from Memorias de la Academia de Ciencias
Exactas F́ısicas y Naturales, 1897, where the paper “On the development of
functions in series”, by Gomes Teixeira, was published.
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2.1 The prize of Madrid

The Exact Sciences section in the Royal Academy of Sciences of Madrid,
in a contest opened from January the 1st, 1892 till December the 31st,
1893, proposed as a prize subject:

Appropriate and methodical exposition of the series developments
of mathematical functions. Their general theory. Meaning of the
so called divergent series. Research of a typical series, from which,
if possible, might be derivated, as particular cases, the theories of
main importance and use in the analysis, such as those of Taylor,
Lagrange and any other similar2.

Two anonymous memoirs where in competition; one, written in Castil-
ian, as asked in the competition announcement, and other, in Portuguese.
This circumstance would exclude this text3, immediately and without
any exam, but the Academy decided, even though, to examine the paper,
which was explained in the following way:

[. . .] The Academy, agreeing without difficulties to the manifested
author’s desires of this second memoir, in a different paper, annexed
to that, and being inspired by the justified reasons of prudence and
scientific convenience, decided that, out of the competition and
after appreciating the Castilian memoir, as if conveniently deter-
mined, proceeded the mentioned Section to the exam of the Por-
tuguese to emit, on its content, the judgment, that also considered
consequent4.

2Exposición razonada y metódica de los desarrollos en serie de las funciones
matemáticas. Teoŕıa general de los mismos. Significación de las llamadas series di-
vergentes. Investigación de una serie t́ıpica, de la cual, á ser posible, se deriven como
casos particulares las series de mayor importancia y uso en la análisis, como las de
Taylor, Lagrange, y cualquiera otra análoga. Anuario de la Real Academia de Ciencias
Exactas Fisicas y Naturales de Madrid, 1893, p. 312.

3Anuario de la Real Academia de Ciencias Exactas Fisicas y Naturales de Madrid,
1893, p. 261.

4[. . .] a Academia, accediendo sin dificulta á los deseos manifestados por el autor
de esta segunda memoria, en papel independiente, á la misma adjunto, é inspirando-se
además en justificadas razones de prudencia y de conveniencia cient́ıfica, dispuso que,
fuera de concurso, y después de apreciada la memoria en castellano como se estimase
conveniente, procediese la mencionada Sección al examen de la portuguesa, y á emitir
sobre su contenido el dictamen que también juzgare procedente. Anuario de la Real
Academia de Ciencias Exactas Fisicas y Naturales de Madrid, 1893, p. 261.
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The report on the memoir was at the expense of the academic Becerra,
who made a report on it. This report was presented to the Academy by
the Exact Sciences Section5, in which he declared:

From this succinct text and very short analysis on the work that we
are concerned with, we concluded, without effort, that the author,
a remarkable mathematician, without any doubts, gathers the two
conditions of didactic relater of the most abstruse scientific truths
that rarely are found together: copious abundant knowledge; and
prudence, to give up all those subordinate questions, that are not
absolutely necessary to the achievement of the aims that he pro-
posed to reach. [. . .] it would be difficult would be to point out in
the memoir only one paragraph whose suppression wouldn’t seri-
ously harm the integrity and good harmony of the whole text6.

At the end of that report we can read:

[. . .] the Section proposes to the Academy, even though leaving
complete freedom, as usual, to determine whatever thinks to be
most adequate:

1st To agree with the printing of this interesting scientific work in
the Collection of Its Memoirs;

2nd That as a token of honoured and deserved esteem, should be
given the author two hundred copies of his work, so that he can use
them as he finds convenient7.

5Anuario de la Real Academia de Ciencias Exactas Fisicas y Naturales de Madrid,
1896, p. 262-294.

6De esta sucinta noticia y muy somero análisis del trabajo que nos ocupa, conclúyese
sin esfuerzo que el autor, eximio matemático, sin duda, reúne dos condiciones de ex-
positor didáctico de las más abstrusas verdades cient́ıficas, que rara vez se encuentran
juntas: copioso caudal de conocimientos; y prudencia, para prescindir de todas aquellas
cuestiones subalternas, que non le son absolutamente necesarias para la consecución de
los fines que se ha propuesto alcanzar. [. . .] dif́ıcil seŕıa señalar en la memoria un solo
párrafo cuya supresión no perjudicase gravemente á la integridad y buena armońıa del
conjunto. Anuario de la Real Academia de Ciencias Exactas Fisicas y Naturales de
Madrid, 1896, p. 288-289.

7[. . .] la Sección propone á la Academia, aunque dejando á ésta en completa libertad,
como siempre, de resolver lo que más acertado juzgue: 1o Que acuerde la impresión
de esta interesante producción cient́ıfica en la Colección de sus Memorias Y 2o Que,
en señal de honrosa y merecida estima, se le entreguen, después de impresa, al autor
doscientos ejemplares de su obra, para que de ellos haga el uso que crea conveniente.
Anuario de la Real Academia de Ciencias Exactas F́ısicas y Naturales de Madrid, 1896,
p. 295-296.
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The Academy accepted this proposal of the Exact Sciences Section, in
the session of May the 29th, and decided the publication of the memoir,
without any need of translation into Castilian, as shown in the statement:

It is to bear in mind that the memoir printing should be done, not
in Castilian, which would delay its publication and would make it
difficult the printing revisions by the author, which is indispensable
in works of this kind, of complicated typographic composition and
which requires perfect and detailed correction, but in the language
in which it is written, intelligible, without effort, by the people, that
wishes or need to assure its content, in Spain, for those to whom the
subject isn’t strange at all. Exception in our usual procedures of
publication, that no one should find strange, by such a singular case,
that doesn’t compromise anything, and shouldn’t even compromise
us in the future8.

By opening the envelope that accompanied the memoir, closed until
then, the Academy verified that its author was “the distinct Portuguese
mathematician, Head of the Porto Polytechnical School, our correspon-
dent D. Francisco Gomes Teixeira9”. Later, in 1898, we can read, in
the Academy Anuary, in some news entitled “By special decision of the
Academy, out of contest10” that Gomes Teixeira’s memoir had been pre-
sented in the ordinary competition to prizes in 1893 and excluded from it,
due to being written in Portuguese, but, besides that, should be printed,
in that language, in the Colección de Memorias de la Academia, and 200
copies should be delivered to the author. Between parentheses we can

8De advertir es, además, que la impresión da la memoria deberá hacerse, no en
castellano, lo cual retrasaŕıa demasiado su publicación, y dificultaŕıa la revisión de
las pruebas de imprenta por el autor, indispensable en trabajos de esta ı́ndole, de
composición tipográfica complicada, y que pide corrección muy esmerada y hasta nimia,
sino en el idioma en que de halla escrita, inteligible sin esfuerzo por cuantas personas
deseen, ó necesiten, enterarse de su contenido en España, para quienes no sea de
todo punto extraña la materia á que se refiere. Excepción ésta en nuestros habituales
procedimientos de publicación, que nadie puede extrañar, por lo singular del caso de
que se trata, y que á nada compromete, ni debe comprometernos tampoco, para lo
sucesivo Anuario de la Real Academia de Ciencias Excatas Fisicas y Naturales, 1896,
p. 296-297.

9distinguido matemático lusitano, Director de la Escuela Politécnica de Porto, nue-
stro Corresponsal D. Francisco Gomes Teixeira. Anuario de la Real Academia de
Ciencias Excatas Fisicas y Naturales, 1896, p. 135.

10Por decisión especial de la Academia, fuera de concurso Anuario de la Real
Academia de Ciencias Exactas Fisicas y Naturales, 1898, p. 286.
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read: “Published in C. of M., volume XVIII, part I”. This volume corre-
sponds to 1897. Later it was inserted in volume I (1904) of Obras11.

2.2 Memoir Structure

The memoir starts with the introduction, where the contents sequence of
the six chapters, in which it is divided, is explained.

In the first chapter12, Gomes Teixeira started by the developments
ordered by the positive and full powers of a real variable, exposing the
method presented by J. Bernoulli and Taylor and completed by Lagrange
and Cauchy, to the development of real variable functions.

In chapters II and III the author develops an extension of that method
to the case of the imaginary variable functions, that he stated as being
sketched by Cauchy and completed by Darboux. He exposed the method
of Cauchy, based on the theory of the curvilinear integrals; presented Rie-
mann method, based in the theory of the harmonical functions; described
the Weierstrass method, based on the theory of the full series; and de-
ducted the Laurent series.

In chapter IV, Gomes Teixeira continues the study of Taylor’s series
in the case of the complex variable functions, presenting the Riemann’s
method.

In chapter V, he proceeds with the study of Taylor’s series in the
case of the complex variable functions and develops the Weierstrass and
Mittag-Leffler’s method.

In chapter VI, the last one, Gomes Teixeira demonstrates Burmann’s
formula, which gives the development of the functions in ordered series ac-
cording to the full and positive powers of a given function, retrieving from
it the Lagrange formula. After this exposition, Gomes Teixeira presents
some personal contributions, as he says in his own words:

In the sixth chapter we will demonstrate Burmann’s formula, which
gives the development of series functions ordered by the full and
positive powers of a given function, from which we retrieve the
Lagrange one, that only differs from the previous in the notation.

11The Portuguese government ordered the publication of the colection Obras de
Mathematica, constituted by seven volumes, where we can see Gomes Teixeira’s pub-
lished papers, the two books of Analysis and the Traité des Coubes Spéciales Remar-
quables planes et gauches.

12We have followed the original writing, as far as the chapters numbers are concerned.
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Next we will do, in num. 61 and 62, an application, that we think
is new, of the same formula to the development of series functions
ordered by the sinx powers and also to the demonstration of two
formulas attributed to Euler. Finally, to answer to the last part of
the program, we will give a formula which gives the development of
series functions ordered by the full, positive and negative powers of
a given function. This formula, that we think is new and that we
have studied in num. 64 and 65, includes the Burmann one, and
also the Taylor’s and Lagrange’s, as well as the Laurent’s13.

After the last chapter, the memoir, published in volume XVIII of
Memorias de la Real Academia de Ciências Exactas F́ısicas y Naturales,
from Madrid, contains what Gomes Teixeira calls “Note to n. 61”, in the
beginning of which he wrote:

After presenting the precedent memoir to the Academy, we spent
some time especially in the development of series functions ordered
by the sinx powers in a memoir published in Jornal de Crelle
(Berlin, volume 116, p. 14), where we presented a formula to obtain
this development, with a much easier application than the one that
results from the Baumann’s formula14.

The memoir, referred in the text that we have just transcribed, has
as title “Sur le développement des fonctions en série ordonnée suivant les
puissances du sinus et du cosinus de la variable” and was published in
1896. Later, in 1900, Gomes Teixeira, published in volume CXXII of the
same journal, another memoir, called “Sur les séries ordonnées suivant les
puissances d’une fonction donnée15”.

It should be noticed that the “Note to n. 61”, transcript above, in-
serted in the Madrid publication, isn’t the same as the existing “Notes”
at the end of the text inserted in the Obras, probably because the context
was different. In fact, from 1897 to 1904, Gomes Teixeira had already
published other papers on series16.

13Teixeira F. G., 1897, p. 3.
14Ibidem, p. 111.
15The memoir of 1896 is reproduced in volume I of Obras, from page 103 to page

125, and correctly referenced. The one from 1900, is also inserted in volume I of Obras,
and reproduced from page 126 to page 161, referenced as having, also, been published
in Journal de Crelle, 1896, Band 116 which isn’t correct. In fact, by consulting Journal
de Crelle in this reference, we have observed that this memoir doesn’t exist there, but
in Journal de Crelle from 1900, Band CXXII.

16It is noticeable that “Note to n. 61”, transcript above, inserted in Madrid’s publi-
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2.3 Historical Component

In parallel to the scientific development, Gomes Teixeira enriched his work
introducing detailed historical references on each one of the subjects that
he kept approaching. With these historical texts Gomes Teixeira gives the
reader a perspective of the scientific evolution of the several approached
subjects, the mathematicians that have studied them and even the de-
tailed indication of the original sources17. He, himself, enlightens us on
this point, stating:

We should even say that we accompanied each subject with the
bibliographic and historical indications that appeared convenient18.

In fact, the reader can take, from these precious indications, the most
important sources on each subject. In each one of the chapters, parallel
to the theoretical development, Gomes Teixeira introduces texts on the
historical evolution of the method, indicating the authors, the respective
works and even the publication dates. In some cases he even refers to
correspondence among mathematicians, in which they had presented their
results.

Due to being out of the temporal sphere of action of our work, we
didn’t analyze these references. Since we think that the knowledge of
these references is very interesting for possible researches, we decided to
produce a summary table (attached). This seems to be a way for the
reader to have a quick, clear and generic perception of the introduced
references in this memoir by Gomes Teixeira.

3 “Teixeira’s Series”

We discussed the memoir “On the development of functions in series”, not
only because it was awarded, but by the scientific and historical views;
global and, at the same time, detailed that the reader might have over
what was published as most relevant, as far as the development of function

cation isn’t the same as the one in “Notes” that are at the end of the text inserted in
Obras. Maybe because the context was different. In fact, from 1897 to 1904, Gomes
Teixeira had already published other works on series.

17We have maintained the authors’ designation given by Gomes Teixeira and their
respective writing.

18Teixeira F. G., 1897, p. 3.



Functions in Series, by Gomes Teixeira 11

series is concerned. Gomes Teixeira’s explanation is remarkable by its
clarity, synthesis and personal contributions. Those contributions are still
referenced today, mainly by his generalization of Burmann’s series. This
generalization is specially treated in A Course of Modern Analysis, from
E. T. Whittaker & G. N. Watson and Applied Analysis and Force Fields,
by Lúıs Manuel Braga da Costa Campos19. The first of these essays had
its first edition in 1915 and a fourth reprint edition in 1969, with other
intermediate editions. In paragraph 7.31 from the 1969 edition, entitled
Teixeira’s extended form of Bürmann’s theorem, we can read:

[. . .] in the last paragraph we have only considered the expansion
of a function of positive powers from another function, and now
we are going to discuss the expansion of a function of positive and
negative powers from the second function.

The general statement of the theorem is owed to Teixeira* whose
exposition we will follow in this section20.

In this transcription, the character “*” leads the reader to a footnote,
where “Journal für Math, CXXII, (1900), pp 97-123”, can be read, which
is a reference to Gomes Teixeira’s memoir, “Sur les séries ordonnées sui-
vant les puissances d’une fonction donnée”. The same text can be found
in all the previous editions.

In the paragraph entitled as “Hierarchy of developments in powers of
series”, Professor Costa Campos calls “Teixeira’s Series” to the series that
Gomes Teixeira obtained in the article of 1900, putting it on the top of the
hierarchy of the powers series. This book presents an interesting scheme
that we reproduced in the next page.

We established contact with Professor Costa Campos21, who enlight-
ened us, by saying that he himself had made a generalization of Teixeira’s
series to fractional calculus. He also informed us that “something similar
to Teixeira’s series had been used before by Lavoie, Tremblay e Osler”
and that he had used “other power series of Teixeira’s type, for instance,
exponential series, in the resolution of fractional differential equations”.

19Professor António Leal Duarte’s kindeness.
20[. . .] in the last paragraph we were concerned only with the expansion of a function

in positive powers of another function, whereas we shall now discuss the expansion
of a function in positive and negative powers of the second function. The general
statement of the theorem is due to Teixeira* whose exposition we shall follow in this
section Whittaker E. T. & Watson G. N., 1969, p. 131.

21Full Professor at Instituto Superior Técnico, Universidade Técnica de Lisboa.
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Figure 2: Hierarchy of the power series scheme Lúıs M. B. da Costa Campos,
Applied analysis and force fields, 1988, p. 181.

In the National Library we found the Transactions of the American
Mathematical Society Magazine, from several authors. In H. Bateman’s
article, entitled “An Extension of Lagrange’s Expansion”, of 1926, p. 346-
356, there is also a reference to Gomes Teixeira’s generalization.

4 Conclusions

The future research that we are prone to accomplish will have, among
several others, as possible aims: to analyse the bibliographic and historical
references inserted in the memoir; to check out the original sources, when
feasible, with the respective memoir subject; to find out if there were
influences from the referred sources in the memoir; to compare “Note n.
61” from the memoir with “Notes” from volume I of Obras; to analyse
Gomes Teixeira’s scientific contribution and his influence in subsequent
applications.

Observations:

• A detailed bibliography can be found in the thesis Francisco Gomes
Teixeira - the man, the scientist, the pedagogue, which can be found
in Minho’s University Repository, on pages 599 to 652.
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• Attached to this article one may find, as an example, a list of some
references in the studied memoir and related to chapter 1. A full
list for chapter 1, itself and for other chapters may also be seen
in the same thesis and it includes tens of other authors such as
Peano, Cauchy, Laurent, Riemann, Weierstrass, Wronski and Gomes
Teixeira himself, just to name a few.

Attachment
List of Gomes Teixeira’s references in Chapter 1 of the memoir

“On the development of functions in series”

Volume Notes taken
Author Book/ Publication /Page from the text

/Year

Gregory Exercitationes 1668 1st development in
geometricae arctanx series

Mercator Logarithmotechnia 1668 1st development in
log(1 + x) series

Newton Letters to Leibniz 1676 Development in
series of the binomial,
sine, co-sine
and exponential

João Bernoulli Acta eruditorum/ 1694 Very general formula
(Opera omnia, t. I, to the development of
p. 125) function series

Taylor Methodusincrementorum 1715 Taylor’s formula
Euler Institutiones calculi Taylor’s formula

differentialis
Maclaurin Treatise of Fluxions 1742 Maclaurin’s formula

Memoir presented to Taylor’s formula
Academia de Sciencias 1772 demonstration
(de Berlim/Œuvres,
t. III, p. 441)

Lagrange Théorie des fonctions Taylor’s formula
analitiques/Œuvres, 1797
t. IX, p.69)

Leçons sur le calcul des Lagrange’s surplus
fonctions/Œuvres,
t. X, p. 85)

Cauchy Exercices de Vol.I/ Cauchy’s surplus
Mathématiques p.29/
(Œuvres, t. VI, 2.a série) 1826
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Abstract

The continued fraction representation of real numbers has some
desirable properties: it is finite if and only if the number is ra-
tional; it is short, for “simple” rational numbers (like 1/3); it
is unique for irrational numbers and almost unique for rational
ones; the truncation of the continued fraction representation of a
number yields “the best possible” rational approximations of it.
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equations.

Keywords: Continued fractions, Pell equation.

1Work supported by the Research Centre of Mathematics of the University of Minho
through the FCT Pluriannual Funding Program.



A look thought continued fractions 16

1 Preliminaries

The history of continued fractions started with the Euclidean algorithm,
which introduced the idea of successive divisions to find the greatest com-
mon divisor of two natural numbers. Late in the seventeenth century John
Wallis [3] introduced the term “continued fraction” into the mathematical
literature.

In 1748 Leonhard Euler [1] published a very important theorem show-
ing that a particular type of continued fraction is equivalent to a certain
general infinite series.

Continued fractions are applied to problems in number theory, specif-
ically in the study of Diophantine equations. In the eighteenth century
Joseph Louis Lagrange [2] used continued fractions to solve Pell equations,
answering a question with more than a thousand years.

An expression of the type

a0 +
1

a1 +
1

a2 +
1

. . . +
1

an

, a0 ∈ Z, a1, . . . , an ∈ N (1)

represents a rational number. Reciprocally, if p
q
, with p ∈ Z and q ∈ N

is a rational number then, by the Euclides’s algorithm, there exist a ∈ Z

and r ∈ N with 0 ≤ r < q such that p = qa + r, i.e., p
q
= a + r

q
. Note

that a =
[
p
q

]

. If r = 0 the process stops and if r > 0 we write p
q
= a+

1
q
r

.

The conclusion now follows from an induction argument on the size of the
denominator, also noting that q

r
> 1. For example

80

29
= 2 +

1
29

22

= 2 +
1

1 +
1
22

7

= 2 +
1

1 +
1

3 +
1

7

.

What happens with the irrational numbers? Let us consider the num-
ber

√
13 and try to adapt the argument used above. As the integer part of
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√
13 is 3, we have

√
13 = 3+

(√
13− 3

)

︸ ︷︷ ︸

∈]0,1[

and then, after some calculations,

√
13 = 3 +

1
1√

13− 3

= 3 +
1√

13 + 3

4

= 3 +
1

1 +
1√

13 + 1

3

, repeating the process,

and we can be doing this forever. We will return to this example later.
We are thus led to consider a more general type of fraction than the

one presented in (1).

Definition 1. A continued fraction is an expression of the form

a0 +
1

a1 +
1

a2 +
1

· · ·+ 1

an

, with a0 ∈ Z, a1, . . . , an−1 ∈ N

and an ∈ ]1,+∞[.

If an ∈ N we will say the fraction is simple.

We denote the above expression by [a0, a1, . . . , an]. For example
80
29 = [2, 1, 3, 7] and

√
13 = [3,

√
13+3
4 ] = [3, 1,

√
13+1
3 ].

If x = [a0, a1, . . . , an], i = 0, 1, . . . , n− 1 and xi = [ai, . . . , an] then:

• xi = [ai, xi+1] = ai +
1

xi+1
;

• ai is the integer part of xi, as
1

xi+1
∈]0, 1[.

Therefore, if [b0, b1, . . . , bm] is another continued fraction then

[a0, a1, . . . , an] = [b0, b1, . . . , bm] ⇐⇒ ∀i = 0, 1, . . . , n ai = bi.

Sometimes we accept an to be equal to 1. In those case, we lose the
unicity in the representation of rational numbers as continued fractions,
as

[a0, a1, . . . , an, 1] = [a0, a1, . . . , an + 1].
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Returning to the number x =
√
13 we have, using the above,

a0 = 3, x1 =
√
13+3
4 , a1 = 1, x2 =

√
13+1
3

a2 = 1, x3 =
√
13+2
3 , a3 = 1, x4 =

√
13+1
4 ,

a4 = 1, x5 =
√
13 + 3, a5 = 6, x6 =

√
13+3
4 .

This reasoning can be used for every real number.

Theorem 2. If x ∈ R \Q and n ∈ N then x can be written (in a unique
way) in the form [a0, a1, . . . , an−1, xn] where a0 ∈ Z, a1, . . . , an−1 ∈ N

and xn ∈]1,+∞[.

The effective calculation of some terms of the continued fraction of a
given number can be very difficult due to the errors that can be accumu-
lated by the successive inversions used in the process.

2 Convergents

If we develop the expression [a0, a1, . . . , an] we obtain a fraction whose
numerator and denominator can be easily found, because they obey a
simple recurrence rule. If k ≤ n then [a0, a1, . . . , ak] =

pk

qk
where

{
p0 = a0
q0 = 1

{
p1 = a0a1 + 1
q1 = a1

· · ·
{

pi = aipi−1 + pi−2

qi = aiqi−1 + qi−2, if i ≥ 2.
(2)

It follows that the sequences (pn)n∈N and (qn)n∈N are strictly in-
creasing (tending to +∞) and, if the continued fraction is simple, then
(pi, qi) = 1 for all i.

Definition 3. With the above notation, we call convergents to the frac-
tions pk

qk
, with k ≥ 0.

Let us see some properties of the convergentes.

Theorem 4. Let a0 ∈ Z and (an)n∈N
be a sequence of positive integers

and, for n ∈ N0, γn = [a0, a1, . . . , an] =
pn
qn

. Under these conditions:

a) the sequence (γ2n)n∈N0
is strictly increasing;
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b) the sequence (γ2n+1)n∈N0
is strictly decreasing;

c) γ2n < γ2m+1, for n,m ∈ N0;

d) pnqn+1 − qnpn+1 = (−1)n+1, for n ∈ N0;

e) γn − γn+1 =
(−1)n+1

qnqn+1
, if n ∈ N0.

In particular the sequence (γn)n∈N
converges.

This result gives us, not only the convergence of the sequence (γn)n∈N
,

but also the speed of convergence. On the other hand “the bigger the a′is,
the bigger the q′is” and faster is the convergence of the sequence. In
particular the convergence is the slowest possible in the case ai = 1 for
all i ∈ N (see page 20).

Consider the following example: let γ = lim
n∈N

([1, 2, 3, . . . , n+ 1])n∈N
.

As

[1, 2, 3, 4, 5] =
225

157
∼ 1, 433121 and [1, 2, 3, 4, 5, 6] =

1393

972
∼ 1, 433128,

we conclude that γ4 and γ5 are γ approximations with 5 correct decimals
(as γ4 < γ < γ5).

Essentially as a consequence of Theorem 4 we have the following result.

Theorem 5. If a0 ∈ Z and (an)n∈N
is a sequence of positive integers then

the sequence ([a0, a1, . . . , an])n∈N
converges for an irrational number.

Reciprocally, every irrational number is the limit of a unique such se-
quence of continued fractions.

Notation: If x = lim
n∈N

[a0, a1, . . . , an] we write x = [a0, a1, . . . , an, . . .].

This expansion is called an infinite simple continued fraction. For ex-
ample,

√
13 = [3, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, . . .].

3 Periodic continued fractions

We saw in page 17 that, if x =
√
13, then x6 = x1. From this we obtain

xi = xi+5 and ai = ai+5 for i ∈ N.
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Definition 6. An infinite continued fraction [a0, a1, . . . , an, . . .] is peri-
odic if

∃k ∈ N0 ∃r ∈ N ∀i ∈ N [i ≥ k ⇒ ai = ai+r].

If k = 0, we say that the fraction is purely periodic.

Under the conditions of this definition, we have ak+nr+j = ak+j , for
n ∈ N and 0 ≤ j < r. Thus, the continued fraction [a0, a1, . . . , an, . . .]
is determined by the knowledge of a0, . . . , ak+r−1. We use the notation
[a0, a1, . . . , ȧk, . . . , ȧk+r−1].

The smallest r in the referred conditions is called the period of the
fraction. For example,

√
13 = [3; 1̇, 1, 1, 1, 6̇] is a fraction with period 5.

Remark 1. With the preceding notation, a number x has a periodic con-
tinued fraction if and only if there exist k ∈ N0 and r ∈ N such that
xk = xk+r.

3.1 Characterization of periodic and purely periodic
continued fractions

We intend now to characterize the real numbers whose continued fraction
is periodic or purely periodic. Of course those number are irrationals.

Let us consider two examples:

• x = [ 1̇ ]. As x = 1 + 1
x
we have x = 1±

√
5

2 . But, as x > 1, then

x = 1+
√
5

2 , the golden number, the more irrational of the irrational
number, from the continued fractions point of view (see page 19).

• x = [1, 2, 3̇, 4, 5̇]. Notice that x = [1, 2, y] where y = [3̇, 4, 5̇] =
[3, 4, 5, y]. Then

y = 3 +
1

4 +
1

5 +
1

y

= 3 +
1

4 +
y

5y + 1

=
5y + 1

21y + 4
=

68y + 13

21y + 4
.

From this we obtain 21y2 + y − 64y − 13 = 0, which gives y =
32+

√
1297

21 . Finally, as x = [1, 2, y], we obtain x = 103+
√
1297

97 .

Let us introduce some notations.
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Definition 7. An irrational number x is quadratic if it is a zero of o
polinomial of degree two with integers coefficients. To the other zero of
the polinomial we call conjugate of x and denote it by x. Moreover, if
x > 1 and −1 < x < 0, x is called reduced.

Note that every quadratic number can be written on the form c+
√
d

e

where c ∈ Z, e ∈ Z \ {0} and d ∈ N with
√
d 6∈ N. We can also suppose

that e|d − c2 (multiplying the numerator and the denominator by e, if

necessary). Of course c−
√
d

e
is the conjugate of c+

√
d

e
.

The golden number 1+
√
5

2 and the number 32+
√
1297

21 , referred above,
are both reduced quadratic number.

Using the same argument as in the cases [ 1̇ ] and [1, 2, 3̇, 4, 5̇], we have
the following.

Proposition 8. All periodic continued fraction represents a quadratic
number.

The following are elementary results that will be used in the next
theorem.

Lemma 9. Let x = c+
√
d

e
, with c ∈ Z, e ∈ Z\{0} and d ∈ N with

√
d 6∈ N

and e|d−c2, be a quadratic number and (xn)n∈N be defined as in Theorem
2. Then:

a) for n ∈ N, there exist cn ∈ Z, en ∈ N such that xn = cn+
√
d

en
with

en|d− c2n;

b) if xk is reduced then xn is reduced for n ≥ k;

c) if xn is reduced then 0 < cn <
√
d and 0 < en < e

√
d.

The following was first proved by Lagrange.

Theorem 10. If x is an irrational number then x is represented by a pe-
riodic continued fraction (respectively, purely periodic continued fraction)
if and only if it is quadratic (respectively, quadratic and reduced).

Proof. (Just one implication) Suppose that x = c+
√
d

e
is quadratic. One

can prove that there exists k0 ∈ N such that xk0
is reduced. Using the

previous lemma (notations and results), the set {(cn, en) : n ≥ k0} is
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finite because, for n ≥ k0, 0 < cn <
√
d and 0 < en < 2

√
d. In particular,

we must have r > s ≥ k0 such that (cr, er) = (cs, es) or equivalently,
xr = xs.

Although the Euler number e is a transcendental number, its contin-
ued fraction has a surprising regularity (with elaborated but elementary
proof):

e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, . . .]

It is easy to find good rational approximations of e (or any other number
whose continued fraction is known) with as many correct decimals as we
want. To do this we can keep going calculating convergents of the number,
using the recurrence formula (2), and if two convergents have the same
k first decimals, then these decimals are correct, relatively to the initial
number. For example, as

{
[2, 1, 2, 1, 1, 4, 1, 1, 6] = 1264

465 ∼ 2, 7182796

[2, 1, 2, 1, 1, 4, 1, 1, 6, 1] = 1457
536 ∼ 2, 7182836

we can conclude that these two rational numbers are approximations of e
with 4 correct decimals, as 2, 7182796 < e < 2, 7182836.

Regarding the number π (which is equal to [3, 7, 15, 1, 292, 1, 1, 1, 2, . . .])
it is not known any regularity on its continued fraction. Note that
[3, 7, 15, 1] is an approximation of π with 6 correct decimals.

3.2 Continued fraction of
√
d

With the purpose of studying Pell’s equations, that will be defined later,
we now study the continued fractions of numbers of the form

√
d. We

start with an observation: if d ∈ Q,
√
d 6∈ Q with d > 1 and x =

√
d,

then x is a non reduced quadratic number but x1 (= 1√
d−[

√
d]
) is reduced.

Thus, using Theorem 10 we can conclude that the continued fraction of√
d is of the form [a0, ȧ1, . . . , ȧr].
Some simple calculations show that:

√
2 = [1, 2̇]

√
77 = [8, 1̇, 3, 2, 3, 1, 1̇6]

√
11

7
= [1, 3̇, 1, 16, 1, 3, 2̇]

√
111

13
= [2, 1̇, 11, 1, 4̇]

√
34 = [5, 1̇, 4, 1, 1̇0]

√
13 = [3, 1̇, 1, 1, 1, 6̇].
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All these continued fractions have the form [a0, ȧ1, a2, . . . , a2, a1, ˙2a0].
In fact this is quite general. Before “proving” it, let us state a preliminary
result, concerning the continued fraction of the symmetric of the inverse
of the conjugate of a reduced number.

Proposition 11. If y = [ȧ0, a1, . . . , ȧr−1] then −1/y = [ȧr−1, . . . , a1, ȧ0].

Theorem 12. If x is an irrational positive number then, there exists
d ∈ Q with d > 1 (respectively d < 1) such that x =

√
d if and only if the

continued fraction of x is of the form [a0, ȧ1, a2, . . . , a2, a1, ˙2a0] (respec-
tively, [0, a0, ȧ1, a2, . . . , a2, a1, ˙2a0]) with a0, a1, . . . ∈ N.

Proof. (Just one implication) If x =
√
d with d a rational number greater

than 1 then
√
d if of the form [a0, ȧ1, . . . , ȧr], being [ȧ1, . . . , ȧr] =

1√
d−[

√
d]
.

Then,

√
d+

[√
d
]

=

{
[ȧr, . . . , ȧ1] by the previous proposition

[2a0, ȧ1, . . . , ȧr] obviously,

and the result follows.

If 0 < d < 1 then
√
d =

[

0,
√

1
d

]

and we can use the first part of the

theorem, as 1
d
> 1.

In page 26 we present a table with the continued fractions of the
numbers of the form

√
d, where d is any non square number between 2

and 52.
The continued fraction of numbers of the form

√
d with d a non square

positive number has some more properties, easy to prove, that will be the
core in the study of Pell’s equations.

Theorem 13. Let d be a non square positive integer, n ∈ N0 and r the
period of the continued fraction of

√
d. Then, with the usual notations:

a) en = 1 if and only if r divides n.

b) (−1)nen = −1 if and only if r is odd and n = rk for some positive
odd number k.
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4 Pell’s equation

Let us see an application of the continued fractions to the study of the
Pell’s equations, which are equations, on the positive integer variables x
and y, of the type x2 − dy2 = m where d ∈ N and m ∈ Z. Note that, if
d = k2, with k ∈ N, then the equation is equivalent to (x−ky)(x+ky) = m,
which has trivial solution if we have a factorization of m. By this reason
we consider only the case where d is not a square number.

Using the natural bijection from Z×Z to Z[
√
d] (={x+y

√
d : x, y ∈ Z})

we can consider the solutions of the equation on Z[
√
d] instead of Z× Z.

Theorem 14. Let d be a non square positive integer and m,m∗ ∈ Z.
Then, with the usual notations we have:

a) if there exists n ∈ N such that m = (−1)nen, the equation x2 −
dy2 = m has a nontrivial solution. More specifically, (pn−1)

2 −
d(qn−1)

2 = (−1)nen;

b) the equation x2 − dy2 = 1 always admits a nontrivial solution;

c) if the period of the continued fraction of
√
d is odd, then the

equation x2 − dy2 = −1 has a solution;

d) if a + b
√
d is a solution of x2 − dy2 = m and a∗ + b∗

√
d is a

solution of x2 − dy2 = m∗ then (a+ b
√
d)(a∗ + b∗

√
d) is a solution

of x2 − dy2 = mm∗;

e) if the equation x2 − dy2 = m admits a solution, then it admits
infinitely many solutions.

Proof. (Just some ideas) a), b) and c) are consequences of Theorem 4
d) and Theorem 13. For d), just note that (a + b

√
d)(a∗ + b∗

√
d) =

(aa∗ + dbb∗) + (ab∗ + a∗b)
√
d and

(aa∗ + dbb∗)
2 − d(ab∗ + a∗b)

2 = a2a2∗ + d2b2b2∗ − da2b2∗ − da2∗b
2

= a2
(
a2∗ − db2∗

)
− db2

(
a2∗ − db2∗

)

=
(
a2∗ − db2∗

) (
a2 − db2

)
= m∗m.

Alinea e) is a consequence of b) and d) (using m∗ = 1).
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We wish to make some considerations about this theorem.

• If p, q are positive integers such that p2−dq2 = m, |m| <
√
d and m

is square free then there exists n ∈ N such that m = (−1)nen and
there exists k ∈ N such that p = pk and q = qk.

• Let r be the period of the continued fraction of
√
d. Then:

– if r is even, the equation x2 − dy2 = −1 has no solution and
the solutions of x2 − dy2 = 1 are all of the form (pkr−1, qkr−1);

– if r is odd then equation x2 − dy2 = −1 admits as solutions
exactly the pairs of the form (pkr−1, qkr−1) with odd k and the
equation x2 − dy2 = 1 admits as solutions exactly the pairs of
the form (pkr−1, qkr−1) with even k.

As an application of the last theorem we have,

⋆ (p4, q4) = (18, 5) is a solution of equation x2 − 13y2 = −1;

⋆ (p9, q9) = (649, 180) is a solution of equation x2 − 13y2 = 1;

⋆ equation x2 − 77y2 = −1 has no solution.

5 Khinchin’s theorem

Among many other results about continued fractions we decided to present,
without proof, the very surprising Khinchin’s theorem.

We start with some notation: if x ∈ R, [a0, a1, a2, . . .] is its continued
fraction and n ∈ N we denote by Gn(x), the geometric mean of the set
{a1, a2, . . . , an}.

Theorem 15 (Khinchin’s Continued Fraction Theorem). There is a con-
stant K0 such that, for almost all real numbers, x

lim
n→∞

Gn(x) = K0,

Here “almost all” means “except for a set of measure zero”. For ex-
ample, the rational, the quadratic numbers and the Euler number e do
not satisfy this property. In fact, no number has been showed to satisfy
the condition of this theorem.
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Among the numbers whose continued fraction expansions apparently
do have this property (based on numerical evidence) are π, the Euler-
Mascheroni constant γ, andthe Khinchin’s constant itself.

The constant K0 is known to the equal to
∏∞

k=1

[

1 + 1
k(k+2)

]log2 k

and

is approximately equal to 2, 68545. It is not known if K0 is rational.

d
√
d

2
[

1, 2̇
]

3
[

1, 1̇, 2̇
]

5
[

2, 4̇
]

6
[

2, 2̇, 4̇
]

7
[

2, 1̇, 1, 1, 4̇
]

8
[

2, 1̇, 4̇
]

10
[

3, 6̇
]

11
[

3, 3̇, 6̇
]

12
[

3, 2̇, 6̇
]

13
[

3, 1̇, 1, 1, 1, 6̇
]

14
[

3, 1̇, 2, 1, 6̇
]

15
[

3, 1̇, 6̇
]

17
[

4, 8̇
]

18
[

4, 4̇, 8̇
]

19
[

4, 2̇, 1, 3, 1, 2, 8̇
]

d
√
d

20
[

4, 2̇, 8̇
]

21
[

4, 1̇, 1, 2, 1, 1, 8̇
]

22
[

4, 1̇, 2, 4, 2, 1, 8̇
]

23
[

4, 1̇, 3, 1, 8̇
]

24
[

4, 1̇, 8̇
]

26
[

5, 1̇0
]

27
[

5, 5̇, 1̇0
]

28
[

5, 3̇, 2, 3, 1̇0
]

29
[

5, 2̇, 1, 1, 2, 1̇0
]

30
[

5, 2̇, 1̇0
]

31
[

5, 1̇, 1, 3, 5, 3, 1, 1, 1̇0
]

32
[

5, 1̇, 1, 1, 1̇0
]

33
[

5, 1̇, 2, 1, 1̇0
]

34
[

5, 1̇, 4, 1, 1̇0
]

35
[

5, 1̇, 1̇0
]

d
√
d

37
[

6, 1̇2
]

38
[

6, 6̇, 1̇2
]

39
[

6, 4̇, 1̇2
]

40
[

6, 3̇, 1̇2
]

41
[

6, 2̇, 2, 1̇2
]

42
[

6, 2̇, 1̇2
]

43
[

6, 1̇, 1, 3, 1, 5, 1, 3, 1, 1, 1̇2
]

44
[

6, 1̇, 1, 1, 2, 1, 1, 1, 1̇2
]

45
[

6, 1̇, 2, 2, 2, 1, 1̇2
]

46
[

6, 1̇, 3, 1, 1, 2, 6, 2, 1, 1, 3, 1, 1̇2
]

47
[

6, 1̇, 5, 1, 1̇2
]

48
[

6, 1̇, 1̇2
]

50
[

7, 1̇4
]

51
[

7, 7̇, 1̇4
]

52
[

7, 4̇, 1, 2, 1, 4, 1̇4
]
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Abstract

José Anastácio da Cunha (1744–1787) is usually recognized as one
of the most important Portuguese mathematicians ever. Never-
theless, his work does not seem to have had much repercussion
abroad. His Principios Mathematicos (Lisbon, 1790) were trans-
lated into French (Principes Mathématiques, Bordeaux, 1811), but
with limited impact — until recently all that was known were a
few reviews, passing mentions in biographical dictionaries, and a
positive reference by Gauss in private correspondence.
However, thanks to the mainly positive review by John Playfair in
the Edinburgh Review, English author John Radford Young (1799–
1885) used in his Elements of Geometry (London, 1827) a proof
by Anastácio da Cunha (of a proposition on parallels). This proof
also made its way to an American textbook (Benjamin Greenleaf,
Elements of Geometry, Boston, 1858). Young’s and Greenleaf’s
are, so far, the only known cases of actual use (instead of mere
reference) of Cunha’s work outside Portugal.
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1 José Anastácio da Cunha’s Principios

Mathematicos and their reception abroad

José Anastácio da Cunha (1744–1787) is probably, with Pedro Nunes
(1502–1578), the best-known Portuguese mathematician; see [Cunha 1987 ,
2006a; Queiró 1992 ; Youschkevitch 1973 ]. Here we need only to recall a
few facts.

The only work by Cunha published in his own lifetime (and then,
only partially) was Principios Mathematicos [Cunha 1790 ]. This was also
his only work published in any language other than Portuguese before
the 20th century: a French translation, by Cunha’s friend João Manuel
d’Abreu, appeared in 1811 in Bordeaux and was reissued in 1816 in Paris2.

The purpose of Cunha’s Principios was to be a sort of elements (in the
Euclidean sense) for the whole of mathematics, as rigorous as possible.
It is an incredibly concise work, covering from elementary geometry to
variational calculus, through arithmetic, analytical geometry, differential
and integral calculus, finite differences, and so on, in just over 300 pages,
divided into 21 “books”. But its claim to international fame — that is, its
historical relevance beyond the Portuguese context — rests just on three
aspects:

1. The first rigorous treatment of convergent series, in book 9, using
what is now called the Cauchy criterion as the definition of conver-
gence — and actually using this definition in proofs [Oliveira 1988 ,
Queiró 1988 ]. Cunha has appeared in a very successful American
textbook on History of Mathematics [Katz 1993 ] precisely because
of this.

2. A surprisingly “modern”–looking treatment of powers (ab defined
as a power series, in a way equivalent to eb log a, thus including in
one definition the cases of integer, rational, real, and even complex
exponent), logarithms and exponentials, also in book 9
[Youschkevitch 1973 , 10–16]. Gauss himself had praised Cunha’s
definition of power in a letter to Bessel dated 11 November 1811
[Youschkevitch 1978 ].

2This reissue does not mean that the book was successful: on the contrary, it
appears to be a “false” reprint, making use of the remainders of the 1811 edition with
only new cover and title pages printed.
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3. A definition of what Cunha, in Newtonian fashion, calls “fluxion”,
described by Youschkevitch as the first “définition analytique ri-
goureuse de la différentielle”3 [1973 , 19]. This merited a footnote
passage in [Grattan-Guinness 1980 , 112]: “Cauchy’s definition of
the differential was anticipated by the obscure Portuguese mathe-
matician J. A. da Cunha”.

At the time of its publication, [Cunha 1811 ] went largely unnoticed.
Three reviews are known4: one in the French newspaper Moniteur Uni-
versel, by Anastácio Joaquim Rodrigues, who had been a friend and stu-
dent of Cunha’s; one in the German literary journal Göttingische gelehrte
Anzeigen; and one in the British literary journal Edinburgh Review (this
last one is a fundamental piece connecting Cunha to John Radford Young).
Besides these reviews, [Duarte & Silva 1987 ] cite Gauss’s private refer-
ence, mentioned above, criticizing theGelehrte Anzeigen review, and pass-
ing references in Cunha’s entries in a couple of biographical dictionaries
published in France. It is noteworthy that these reviews and references
exist, but they show only that Cunha’s book was noticed by a few people
in France, Britain and Germany (in the case of the review in the Moniteur
Universel, not even that, since the reviewer was Portuguese).

Was Cunha’s book ever used outside Portugal5? That is, was it ever
cited, or did it influence in any way some non-Portuguese mathematician?
As we will see, the answer is yes, even if the influence was not profound and
was not concerned with the three aspects for which the book is nowadays
renowned.

2 John Playfair

The name of the Scotsman John Playfair (1748–1819) is familiar among
mathematicians because of the so-called “Playfair’s axiom” – probably
the most popular substitute for Euclid’s parallel postulate: “two straight
lines, which intersect one another, cannot be both parallel to the same
straight line” [Playfair 1795 , 2nd ed, 7]. This had been used by others

3“rigorous analytic definition of differential”.
4They are collected in [Cunha 1987 ].
5In [Duarte & Silva 1987 ] there are several examples of its influence on 19th-century

Portuguese mathematicians.
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[1795 , 4th ed, 422], but its usual name indicates that it was Playfair who
popularized it.

Actually, Playfair was a very respected and well-read mathematician,
but not a highly creative one. He did publish a few research articles,
but he is not remembered for them. What influence he may have had in
mathematics resulted from his textbook [1795 ] and the reviews he wrote
for the Edinburgh Review.

Reviews in the literary journal Edinburgh Review were published anony-
mously but, according to Ackerberg–Hastings [2008 , 82], 39 of them can
be certainly attributed to Playfair, 22 of which of works in the exact sci-
ences. In several of these reviews Playfair expounded his views on the
British decline in mathematics, when compared to the great advances
made by Continental European mathematicians in the second half of the
18th century [Ackerberg–Hastings 2008 ]; this decline was associated to
the British clinging to synthetical methods and to fluxions, as opposed to
Continental analytical methods and to the differential and integral calcu-
lus.

As for [Playfair 1795 ], it is a textbook based for the most part on
Robert Simson’s edition of Euclid’s Elements, with some changes intro-
duced for pedagogical reasons, but trying to keep Euclid’s order [1795 ,
369–371] (which is probably why Playfair did not introduce Cunha’s proof
about parallels, in post-1812 editions).

Playfair’s connection with Anastácio da Cunha comes from the review
he wrote of Cunha’s Principios [Playfair 1812 ]6. This review is, globally,
quite positive, although with several negative criticisms. The most impor-
tant defect applied to the book as a whole: Cunha had used synthetical
methods in too many situations (“even in Algebra”), thus deviating from
“the path of discovery” and making some parts less simple than they could
be7.

Playfair did not see any of Cunha’s three innovations listed at the

6Actually, as usual, the review is anonymous, but it has been systematically at-
tributed to Playfair, at least since the publication of a Portuguese translation in O
Investigador Portuguez em Inglaterra (a Portuguese periodical published in London),
in February 1813; John Radford Young also attributed this review to Playfair. Here it
will also be assumed that he is the author.

7British influence on Cunha is a well-known fact (Newton, with d’Alembert, was
one of his mathematical heroes; he had English and Scottish friends; he even wrote a
mathematical paper in English [Cunha 1778 ], something quite unusual in 18th-century
Continental Europe). He may have been too “British” for Playfair.
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beginning of this paper as positive: he regarded Cunha’s definitions of
power and fluxion as too complicated, and simply ignored his treatment of
convergence of series (marred, anyway, by a defective French translation).
The strongest obstacle for Playfair appreciating Cunha’s innovations lied
probably in their lack of utility. Playfair saw two possible uses for Cunha’s
book: as a textbook (but one that required a very intelligent and skilful
teacher, who should “furnish many illustrations, and supply many steps
of the reasonings”); or as a “portable compendium for reminding [those
already instructed in mathematics] of those formulas and demonstrations
which may have escaped their recollection” [1812 , 426, 433]. For these
purposes, he preferred the “equally comprehensive” text of the abbé de
La Caille: not only it was much clearer, as it did not “so much affect
originality of method as the Portuguese; and on that account perhaps [it
was] the more useful”.

Despite all these objections, Playfair’s global judgement was positive,
as has already been said. He praised the conciseness and rigour of the
work. To comprehend so much in such a small book had been “no doubt
an undertaking of considerable difficulty”; and “the book forms a very
useful and concise digest of Mathematical learning” [Playfair 1812 , 425].

The particular passages most praised by Playfair were three. One
was the extraction of roots [Playfair 1812 , 429–430]. Another was the
definition of proportion used by Cunha, which had “great merit”, being
equivalent, but simpler, easier to understand, and easier to remember
than Euclid’s [1812 , 429]; this will not be examined here, but it may
be observed that this definition is not due to Cunha, but rather to the
Jesuit Andreas Tacquet (1612–1660). Finally, Cunha’s simplification of
the theory of parallels, by means of a new proof that straight lines making
equal alternate angles with a third line are parallel, was “a considerable
improvement in elementary geometry” [1812 , 428]; this is the proof in the
title of this article, and will be examined in section 5.

3 John Radford Young

John Radford Young (1799–1885) was an English mathematician and text-
book author. His most important employment was as professor of math-
ematics at Belfast College, from 1833 to 1849 (he lost this appointment,
apparently for religious reasons, when it was replaced by the Queen’s
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College, Belfast). He published some original research work, and sev-
eral textbooks, helping to familiarize English students with continental
methods of analysis [Carlyle 1900 ].

Young’s connection with Anastácio da Cunha occurs in his second text-
book — Elements of Geometry [1827 ]. Young had read [Playfair 1812 ]
and agreed that Cunha’s proof that straight lines making equal alternate
angles with a third line are parallel was “superior to every other that has
been given of the same proposition” as, unlike in Euclid and most mod-
ern author, it did not depend upon “a subsidiary theorem, which is of
no other use whatever (Prop.XVIX.Euc.)” [Young 1827 , 165]; therefore,
naturally, he adopted it [Young 1827 , 12–13]8.

[Young 1827 ] had an American edition in 1833, “revised and corrected,
with additions, by M. Floy, Jun. A.B.”. But the passages related to Cunha
remained unchanged.

4 Benjamin Greenleaf

Benjamin Greenleaf (1786–1864) was a very sucessful author of elemen-
tary mahematics textbooks from Massachussets. Having graduated from
Dartmouth College in 1813, he was a preceptor at Bradford Academy from
1814 to 1836, a member of the Massachussets Legislature from 1837 to
1839, and afterwards he founded the Bradford Teacher’s Seminary. “For
a third of a century his works were almost universally used in the schools
of New England” [Essex 1900 , 56].

In his Elements of Geometry [1858 ], Greenleaf also used Cunha’s proof
that straight lines making equal alternate angles with a third line are
parallel — stressing this not only in a note to the proof, but also in
the preface [Greenleaf 1858 , iii–iv, 31]; moreover, in an advertisement
for [Greenleaf 1858 ], included at the end of [Greenleaf 1860 ], one of the
featured qualities is that

“The acknowledged improvements of M. da Cunha, and other
distinguished modern mathematicians, have been carefully in-
corporated into the work”.

8He also used a definition of proportion given in [Playfair 1812 ] and seemingly based
on Cunha’s; and, inspired by Cunha, he decided not to use ratios — only proportions
(an aspect of Cunha’s book that Playfair had not mentioned).
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Since Greenleaf [1858 , 31] invokes the authority of Young and Playfair
for the importance of Cunha’s proof, it seems clear that his source was
[Young 1827 ], possibly in its American edition9. There is no indication
that he may have seen Cunha’s book.

Like other textbooks by Greenleaf, [1858 ] had multiple “editions” (or
maybe printings): in 1868 it had reached its “nineteenth electrotype edi-
tion”.

5 Straight lines making equal alternate an-
gles with a third line are parallel

What Playfair regarded as a “considerable improvement”, due to Cunha,
in the deduction of the properties of parallel lines, was the disentanglement
of a “circuitous route” present in Euclid’s Elements. To understand this
circuitous route, let us look at the statements of three propositions from
book I of the Elements10:

I, 16: In any triangle, if one of the sides be produced, the exterior angle
is greater than either of the interior and opposite angles.

I, 17: In any triangle two angles taken together in any manner are less
than two right angles.

I, 32: In any triangle, if one of the sides be produced, the exterior angle is
equal to the two interior and opposite angles [taken together], and
the three interior angles of the triangle [taken together] are equal to
two right angles.

It is immediately obvious that the facts stated in I, 16 and I, 17 are less
precise versions of those stated in I, 32. Why are they not corollaries of
I, 32? Because Euclid’s proof of the latter uses I, 31 (through a given point
to draw a straight line parallel to a given straight line); the proof of this
one uses I, 27, namely

I, 27: if a straight line falling on two straight lines make the alternate
angles equal to one another, the straight lines will be parallel to one
another;

9Nevertheless, Greenleaf’s chapter on “ratio and proportion” shows no influence
whatsoever from Young or Cunha — he uses ratios as quotients [Greenleaf 1858 , 43].

10Following Heath’s version, which in this respect is close to Simson’s.
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and the proof of this one uses I, 1611.
It should be said that Cunha was not the first to try to avoid this

circuitous route. Tacquet [1654 ] avoided it too, but in a very different
manner, much more confused, and assuming the existence of a parallel
through a given point before giving the construction of such a line.

Cunha’s path is very simple. Actually, it seems quite trivial — he
simply merged Euclid’s proof of I, 16 into the proof of I, 27.

Euclid’s proof of the latter goes along the following lines:

E B

C A D

F

G

Suppose AB meets CD and EF making the alternate angles CAB,
ABF equal. If CD,EF were not parallel, they would meet (when pro-
duced), say at G; but then ABG would be a triangle, with an exterior
angle, namely CAB, equal to one interior and opposite angle, namely
ABG — and this is impossible, by I, 16.

Cunha’s proof [1790 , 8–9; 1811 , 9–10] starts similarly, but he does not
yet have results about external angles; so, he bisects AB at H, draws the
straight line GHI withHI equal to GH, and joins I to A, in order to com-
pare triangles AHI and BHG; in modern terms, they would be congruent
(by the side-angle-side criterion) and angles IAH and HBG(= HBF )
would be equal; but this cannot be, because the latter is, by assumption,
equal to CAH.

E B

I

C A D

H

F

G

11Actually, I, 17 is not used before I, 32, so that it could be a corollary to the latter.
But it is a very easy consequence of I, 16.
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But this is precisely the main argument involved in Euclid’s proof of
I, 16: given any triangle BGA, with GA produced to C, exterior angle
BAC is greater than interior angle GBA because the latter is equal to
angle HAI (where H and I are constructed in the same way).

G A
C

B I

H

The rest of Cunha’s path, up to the sum of the interior angles of a
triangle being equal to two right angles, and an exterior angle being equal
to the sum of the two interior and opposite angles, is not very different
from Euclid’s.

6 Final remarks

Cunha’s proof is definitely not a major originality. Nevertheless, it does
avoid the “circuitous route” mentioned by Playfair, allowing for a more
economical arrangement than Euclid’s. This was a typical concern of
Cunha’s. The numbering of Cunha’s propositions has been avoided so
far (to avoid confusion with Euclid’s), but the proof we have seen is of
his proposition 8, of Book I. Indeed, Cunha’s Book I has a total of only
16 propositions (going as far as the equivalent of Euclid’s I, 34). As a
further example of his economical style, it may be added that Pythagoras’
theorem, in the usual version, is not included in Cunha’s Principios —
what is included, as prop. 15 of Book V, is its more general version, with
arbitrary similar polygons (instead of squares) described on a right-angled
triangle [Cunha 1790 , 70–71; 1811 , 81]; Euclid, as is well known, has both
versions — propositions 47 of Book I and 31 of Book VI.

Nevertheless, as we have seen, Young and Greenleaf used Cunha’s
proof — and neither of them is so economical; rather, Young regarded
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the avoidance of Euclid’s Prop. I, 16 as advantage enough (and Greenleaf
simply followed Playfair’s and Young’s recommendations).

Two further remarks should be made. One relates to Cunha’s lack of
comments on this proof. In the Principios, comments are markedly absent
(apart from a few technical scholia); but recently a set of manuscripts by
Cunha has been discovered and published [Cunha 2006a, II], and one of
them is clearly a foreword to an early version of the geometrical books of
Cunha’s Principios [Cunha 2006b]. There, Cunha discusses several issues
where he departed from Euclid; he does not mention at all his proof that
equality of alternate angles implies parallelism; either this was a later
change or, much more likely, he did not regard it as an important issue.

The other remark is that, nowadays, Euclid’s propositions I, 16 and
I, 17 are relevant by themselves, as they are valid in absolute geometry,
while I, 32 is not.
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Abstract

In 1713 was published in Lisbon the Tratado de Arithmetica e Al-
gebra by António Pereira. The algebra that is presented in this
book is a sixteenth-century, rhetorical algebra. We will discuss
this Algebra comparing it with what was done in the rest of Eu-
rope.
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1 Introduction

It is well known that, after Pedro Nunes (1502-1578) and until the middle
of eighteenth century, the level of mathematical activity in Portugal was
low, with a few exception in some applied subjects (see e. g. [3], [4], [7],
[12]). According to F. Gomes Teixeira [12, p. 215-216]:

No peŕıodo de pobreza cientifica a que nos estamos referindo,
apareceram em Portugal alguns escritos sobre Aritmética, Ge-
ometria elementar e Astronomia, mas são apenas trabalhos

1project FCT HC/0119/2009, História da Ciência na Universidade de Coimbra
(1547-1933)



A Note on Mathematics in the Eighteenth Century Portugal 40

didáticos, mais ou menos bem compostos, sem originalidade
apreciável, e que não concorreram para se introduzir as de-
scobertas dos grandes matemáticos europeus.

Dormem nas estantes das bibliotecas; e não serei eu quem
os irá acordar2.

In this note, we will precisely wake up one of works which is, in our
opinion, a good representative of those didactic works. We think that in
order to understand the scientific activity of any epoch we need not only
to know its major works bur also the minor works.

2 The Tratado de Aritmethica e Algebra

by António Pereira

According to D. Barbosa Machado, [2, p. 346, 347], António Pereira was
born in Lisbon (Machado does not furnish the birthday date) and became
a member of the Congregation of Oratory in 13 of June, 1686, already an
adult, although he was never ordered priest. He died in Extremoz in the
Convent of the Congregation, on the 30th of October of 1698. In 1713 it
was published, posthumously, in Lisbon, his only known work the Tratado
de Arithmetica e Algebra3.

The biographical notice in Inocencio F. da Silva, [10, p. 221], is based
on Barbosa Machado. There is a second edition4 in 1760, mentioned by
R. Guimarães ([5, p. 191], who does not make any comment on the book.

2During the period of scientific poverty that we have been mentioning, some works
on Arithmetic, elementary Geometry and Astronomy were published in Portugal, but
they were merely didactic, more or less well written, without any appreciable origi-
nality, and they did not contribute to the introduction of the discoveries of the great
European mathematicians in Portugal.

They lie dormant in library shelves, and I will not wake them up.
3The full title is Tratado de Arithmetica e Algebra em o qual com muita clareza

se explica tudo o que pertence a esta Arte e se descrevem as Regras principais da
Geometria, e as proporções que as distinguem, com a noticia dos pezos, de ouro,
e de prata, e muitas questoens curiosas que se movem para sua inteligencia, nam
so necessario aos contadores que a profeçam, mas tambem aos q̃ seguem a milicia,
pilotos, navegantes, ourives, e aos que exertitam mercancia, ou de qualquer modo
negoceam.

4I will like to thank João Caramalho Domingues for having called my attention to
this second edition.
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In modern times there are also several references to it in [1] but in
connection to the first part of the book devoted to the Arithmetic. The
second part (Livro segundo), pages 230–392 of the book is devoted to
algebra: it begins with an introduction, having the title: Da Arte Mayor
chamada Algebra ou Regra da Cousa, que trata das Conjugações simples5.
Of course this title is a sixteenth-century title and this is what the book is.
Despite the fact of being published in 1713 its main sources are, according
to the author, Pedro Nunes (1502–1578) and Moya:

A arte de Algebra, o primeiro que a escreveu em forma
que se possa aprender, foy o famoso Pedro Nunes portugues
no anno de 1567... Depois de Pedro Nunes fez Moya seu
tratado della no seu livro de arithmetica, que de um e de outro
tiraremos hum extrato que baste para a inteligencia de todas
as suas questoens6.

Moya is certainly Juan Pérez de Moya (Santisteban del Puerto, Jaén, c.
1512 – Granada, 1597), author, among other things, of Arithmetica prac-
tica, y speculatiua, Salamanca 1562 (first edition); see e. g. [8, 105-108],
[13] (in fact the Moya published his Arithmetica before the publications
of the Libro de Algebra of Nunes.

We will not discuss here the relation of the Algebra of Pereira with
its sources: we just want to stress that Pereira seems to have ignored all
the evolution of Algebra since (at least) Vieta, namely the several Latin
editions of Descartes’ Geometry, prepared by F. van Schooten. If fact, the
algebra of Pereira is a rhetorical, cossist, algebra. After the introduction
we find a chapter on roots including the extraction of square and cubic
roots, one on proportions, another corresponding to what we will now call
polynomials operations (the polynomials being written in the sixteenth-
century notation of co (cousa), ce (censo) ce.ce.); the last chapter is on
conjugations that is equations; this includes the several cases of a second
degree equation, and cases of second degree equations in powers of the
unknown.

Now the question is: can the Algebra of Pereira and its popularity be
a proof of the low mathematical activity and also of the isolation of the

5On the great Art or Rules of the cosa, about simple conjugations.
6The art of algebra, the first to write it in a way that could be learned was the

famous portuguese on 1567. ... After Pedro Nunes, Moya composed a Treaty on the
subject in his book on Arithmetic, and from one and the other we will take an extract
enough for all its questions.
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Portuguese mathematical community during the seventeenth-century and
the first half of eighteenth century? To answer this question we have to
answer first another question: is the Algebra of Pereira unique in Europe
during this period or are there more examples? And the answer to this
question is yes, there are! According to Jacqueline Stedall, [11, p. 44]:

Elsewhere in Western Europe cossist Algebra continue to
appear well into the seventeenth century. The later text, how-
ever, lack the freshness and vigor of of their mid sixteen-
century predecessors and are often ponderous or confused.

In fact we think that cossist Algebra continue to appear (at least in
Iberia and France) well into the eighteenth century: the Arithmetica prac-
tica, y speculatiua of Perez de Moya had several edition in the eighteenth
century: see [13] were several eighteenth century editions are mentioned,
the last one from 1798 (some of these editions are available through Google
Books). In France the book L’Arithmetique en sa Perfection7 was ex-
tremely popular with several editions in seventeen and eighteen centuries
(again some editions are available through Google Books); the book has
a section also on algebra but rhetorical algebra.

Of course there is another question: What makes those kinds of works
so popular? Possibly it is not the chapters on Algebra but those on
commercial and practical Arithmetics; and the same may be true for the
Tratado of António Pereira. Moreover, we think that what may prove
the low level of mathematical activity in Portugal, in this period, is not
the existence of the the Tratado of Pereira, but the nonexistence of more
advanced works.

For instance there is another work around the middle of seventeen
century with a chapter on Algebra: the second volume of the Compen-
dio dos Elementos de Mathematica by the Jesuit Inácio Monteiro8 pub-
lished in 1756. The Chapter on Algebra is the last one of the two volume
set (pages 299–343) and it is even more elementary than the Tratado of

7The full title is L’Arithmetique en sa Perfection, mise en pratique selon l’usage
des financiers, banquiers, et marchands. Contenant une ample et familiere explica-
tion de ses principes, tant en nombres entiers qu’en fractions. Avec Un Traite de
Geometrie pratique appliquee a L’Arpentage et au Toise, tant des superficies que des
Corps solides. Et Un Abrege d’Algebre, suivi de quantitr de Questions tres-curieuses,
by François Le Gendre.

8On Inácio Monteiro see[6], [9].
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Pereira: Monteiro does not go beyond first degree equations! Nevertheless
there are two major differences: besides the modern aspect of Monteiro’s
Algebra, he was well aware of the major works of his time and he recom-
mended them to his readers. But the the Compendio dos Elementos de
Mathematica was addressed to a very different public: the curious people
that want to cultivate themselves, namely in Natural Philosophy and not,
as Pereira book, to merchants, accountants, pilots and sailors.
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Abstract

Mathematics and Architecture have been always related. The
constructive methods are much related to mathematics since cal-
culations have to be done. However, the design of the architectural
element is as well very much related with mathematics, since the
geometrical forms and proportions have meanings. In order that
an architectural element to be constructed, it has to be planned.
The project consists in defining the form, the materials to be used
in construction and the methods to raise the element, for as long
as historical documents and buildings show us.
All these phases include the mathematics thoughts and thus de-
pend on the development of science.
In this article, some examples of architectural elements that
demonstrate this relation will be shown. In particular, a last ex-
ample on the “Hospital da Irmandade de Riba de Ave” will show,
with some detail, the actual relationship that may still be needed
between Architects and Mathematicians.

Keywords: Architecture and Mathematics, geometrical forms, propor-

tions.

Dedicated to my friend Maria Fernanda, with thanks for her patience

and enseignements.
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1 Introduction

It is difficult to fully define Architecture, since it can be addressed to
many different fields. Here we will be concerned with the architecture of
edifices. So we will define architecture as the art and science of designing
and erecting buildings and other physical structures. The roman architect
Marcus Vitruvius (born c. 80-70 bc, died after c. 15 bc) is a reference in
this field.

Vitruvius is the author of the famous treatise “De architectura”, known
nowadays as The Ten Books on Architecture, written in Latin and Greek
and about architecture; it was, by then, dedicated to the emperor Augus-
tus. Vitruvius is particularly famous for asserting in his work that in a
structure must exhibit the three qualities of firmitas, utilitas, venustas -
that is, it must be solid (it should stand up robustly and remain in good
condition), useful (it should be useful and function well for the people
using it), beautiful (it should delight people and raise their spirits).

The first property, solid, is related with the construction, the other
two properties, useful and beautiful, are related with the conception. The
construction evolves the materials and the techniques used.

The conception is related to the usefulness and the beauty, but defines
as well the materials and techniques to be used. From what was said it
seems that it easy to design a building since each function has its form,
it is far from being true. When a construction is projected for a specific
function the architect introduces his dreams, ambitions and ideals. All
this depends on the period and the society the individual is placed in.
The achievement of his goals depends on the knowledge of the individual
and of the society.

Still according to Vitruvius architecture is an imitation of nature, hu-
mans construct buildings, with natural elements, to give them protection
against weather and predators. In a simple way we can consider that a
construction consists in raising a platform above the soil level using walls,
columns or pillars. It has been always the men aspiration to create spaces
wider and higher but the materials and the knowledge of the epoch has
been an obstacle to their aspirations. Some examples of constructions
will be given that evidence the connection between the ideals and the
knowledge of the epoch.
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2 Egyptian pyramids

The Egyptian religion considered that life in earth was temporary but
the spiritual life was eternal [Cole 2003]. Consequently the housing of the
eternal life, tumuli, should last forever. This explains the reason of the
effort they apply in the conception and construction of these structures.
The pyramids, the tomb for the pharaoh, where constructed in stone in
order to perpetuate, since was the housing for the eternal life. They
believe that their form facilitate the approach to Ré, sun god, with whom
the pharaoh should cross the sky. The examples of the pyramids, shown
in the Figure 1, are presented in chronological order. It seems that the
perfect desired form was achieved by trial error, what means that the
knowledge was an obstacle to the aim goal.

Figure 1: Egyptians pyramids - Pyramid of Djoser, Bent Pyramid, Khufu-
Pyramid.

The Pyramid of Djoser, or step pyramid is placed in the Saqqara
necropolis, Egypt, northwest of the city of Memphis. It was built for
the burial of Pharaoh Djoser by his vizier Imhotep, during the 27th cen-
tury bc. The Bent Pyramid, located at the royal necropolis of Dahshur,
approximately 40 kilometers south of Cairo, of Old Kingdom Pharaoh
Sneferu, is a unique example of early pyramid development in Egypt,
about 2600 bc. The lower part of the pyramid rises from the desert at a
55-degree inclination, but the top section is built at the shallower angle
of 43 degrees, lending the pyramid its very obvious “bent” appearance.
The Great Pyramid of Giza (also called the Pyramid of Khufu and the
Pyramid of Cheops) is the oldest and largest of the three pyramids in
the Giza Necropolis bordering what is now El Giza, Egypt. It is believed
the pyramid was built as a tomb for fourth dynasty Egyptian Pharaoh
Khufu (Cheops in Greek) and constructed over a 20-year period conclud-
ing around 2560 bc. Initially at 146.5 meters, the Great Pyramid was the
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tallest man-made structure in the world for over 3,800 years, unsurpassed
until the 160-metre-tall spire of Lincoln Cathedral was completed 1300,
the longest period of time ever held for such a record. Originally, the
Great Pyramid was covered by casing stones that formed a smooth outer
surface. Some of the casing stones that once covered the structure can
still be seen around the base. The sides of the square base are closely
aligned to the four cardinal compass points based on true north, not mag-
netic north, and the finished base was squared to a mean corner error of
only 12 seconds of arc. The completed design dimensions, as suggested
by Petrie’s survey and subsequent studies, [Wikipedia] are estimated to
have originally been 280 cubits high by 440 cubits long at each of the
four sides of its base. The ratio of the perimeter to height of 1760/280
cubits equals to 2π to an accuracy of better than 0.05% (corresponding
to the well-known approximation of π as 22/7). Some Egyptologists con-
sider this to have been the result of deliberate design proportion. Verner
wrote, “We can conclude that although the ancient Egyptians could not
precisely define the value of π, in practice they used it” [Verner 2003].

3 The Parthenon

Ancient Greece is the civilization belonging to the period of Greek history
lasting from the archaic period of the 8th to 6th centuries bc to 146 bc
and the Roman conquest of Greece after the Battle of Corinth. The art
of ancient Greece has exercised an enormous influence on the culture of
many countries from ancient times until the present.

Pythagoras, Euclid, and Archimedes were Greek mathematicians which
made important developments in the mathematics field, including the ba-
sic rules of geometry, the idea of formal mathematical proof, and discov-
eries in number theory, mathematical analysis. Pythagoras’ religious and
scientific views were, in his opinion, inseparably interrelated. For him all
could be interpreted by numbers.

The temple was the most common and best-known form Greek public
architecture. The temple function was to serve as a storage place for the
treasury associated with the cult of the god in question, as the location of
a cult image, and as a place for devotees of the god to leave their votive
offerings. The inner room of the temple, the cella, served mainly as a
strong room and storeroom. Therefore, the temple was not to be visited
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in the sense of the temple of modern church, the altar stood under the
open sky, often directly before the temple. This means that the temple is
to be seen and not to be visited. The ideal of beauty does not allow the
use the arch in temples. The materials to be used have to be the stone.
The function associated with the ideal of beauty explains its form.

Figure 2: Parthenon.

Figure 3: Parthenon; floor plan and facade scheme.

The Parthenon, temple dedicated to the Greek goddess Athena, placed
in the Athenian Acropolis, Greece. Its construction began in 447 bc and
was completed in 438 bc. In the Figure 3, is represented some of the
mathematics involved in the planning of the temple. The floor plan of
the Parthenon presents various symmetries; in fact the rear door only
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exists in order to give a full symmetry. The proportion of the Parthenon’s
facade as well as its elements can be circumscribed by golden rectangles
(Φ). Although Greek do not knew the rules of perspective, the distances
between columns were not equal in order to correct the perspective when
view from far.

4 The Pantheon of Rome

Ancient Rome was a civilization that grew out of a small agricultural
community, founded on the Italian Peninsula as early as the 10th century
bc. Located along the Mediterranean Sea, and centered at the city of
Rome, it became one of the largest empires in the ancient world.

The Architecture of Ancient Rome adopted the external Greek archi-
tecture for their own purposes; however the Romans didn’t feel restricted
by Greek aesthetic axioms, creating a new architectural style.

Social elements such as wealth and high population densities in cities
forced the ancient Romans to discover new (architectural) solutions of
their own. The use of vaults and arches together with a sound knowledge
of building materials, for example, enabled them to achieve unprecedented
successes in the construction of imposing structures for public use. Ex-
amples include the aqueducts of Rome, the Baths of Diocletian and the
Baths of Caracalla, the basilicas and Coliseum.

Figure 4: The Pantheon Rome - outside view, model.

Political propaganda demanded that these buildings should be made to
impress as well as perform a public function, free from the Greek aesthetic
axioms and the invention of concrete, amongst other, allows them to fulfill
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their goals. The Pantheon of Rome, Figure 4, is a supreme example of
this, particularly in the version rebuilt by Hadrian in about 126 ad.

The building is circular with a portico, of three ranks of huge gran-
ite Corinthian columns under a pediment, opening into the rotunda. A
coffered concrete dome, with a central opening (oculus) to the sky covers
the entire rotunda. The oculus is the only opening that gives light to the
interior, being 9 meters wide. The height to the oculus and the diame-
ter of the interior circle are the same, 43.3 meters, so the whole interior
would fit exactly within a cube, also, the interior could house a sphere
43.3 meters in diameter.

The dome represents the geocentric universe as described by Ptolemy.
In the center is placed the sun, represented by the oculus, surrounded by
the trajectories of the five planets, represented by the five rows of sunken
panels (coffers) [Stierlin 1997].

Figure 5: The Pantheon Rome - interior view, dome from interior.

Placed in seven apses used to be the seven gods linked to the worship
of planets, or considered to be such: the Sun, the Moon, Venus, Saturn,
Jupiter, Mercury and Mars. Pantheon means temple to all gods.

The massive dome required an advanced technology for the time, it
was the wider dome built for long centuries. In fact, it is only compared
with Brunelleschi’s 42 meter dome of Santa Maria del Fiore in Florence,
completed in 1436. The coffers help to diminish the height of the dome.
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Figure 6: The Pantheon Rome - Floor plan and transversal plan.

5 Cathedral Hagia Sofia

Flavius Valerius Aurelius Constantinus (272-337), commonly known as
Constantine I, was Roman Emperor from 306 to 337, best known for being
the first Christian Roman emperor. Constantine transformed the ancient
Greek colony of Byzantium into a new imperial residence, Constantinople,
which would be the capital of the Eastern Roman Empire for over one
thousand years. Among the several changes he set to the capital it was
the cathedral of Hagia Sophia, Church of the Holy Wisdom.

Figure 7: Cathedral of Hagia Sophia.

On 23 February 532, only a few days after the destruction of the second
basilica, Emperor Justinian I elected to build a third and entirely different
basilica, larger and more majestic than its predecessors, that served as the
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cathedral of Constantinople and the spiritual heart of Eastern Christianity
until the final extinction of Byzantium in 1453. It is also regarded as the
greatest monument of Byzantine architecture.

Justinian chose physicist Isidore of Miletus and mathematician An-
themius of Tralles as architects.

Anthemius of Tralles (474 - before 558) was a Greek professor of Ge-
ometry in Constantinople and architect. He described the string con-
struction of the ellipse and he wrote a book on conic sections, which was
excellent preparation for designing the elaborate vaulting of Hagia Sophia.
He compiled a survey of mirror configurations in his work on remarkable
mechanical devices.

Figure 8: Cathedral of Hagia Sophia, interior view and structural schemes.

The first Hagia Sophia was a typical Roman basilica, timber-roofed
and entered through an atrium. It was virtually destroyed by fire in
532. The emperor Justinian I immediately ordered the construction of the
present building, which was substantially complete by 537, when it was
dedicated, although work continued until 563. The architects, Anthemios
of Tralles and Isidorus of Miletus, designed the new cathedral as a huge,
almost square interior surmounted by a vast central dome. The dome,
which rises some 56 m from ground level, appears to be dramatically
poised over a circle of light radiating from the windows that pierce the
drum on which it rests. Four curved triangles, or pendentives, support
the rim and are in turn locked into the corners of a square formed by four
huge arches. The transition between the circular dome and the square
base of the building, achieved through the use of the pendentives, was
a major advance in building technology. To the east a vast semi-dome
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surmounts the three large vaulted niches of the sanctuary below. Arcades
that recall the arcaded naves of basilica churches occupy the ground level
on the northern and southern sides of the central square [Parkyn 2002].

6 Cenotaph for Isaac Newton

Neoclassicism was a movement that began after 1765, as a reaction against
both the surviving Baroque and Rococo styles, and as a desire to return
to the apparent purity of roman and Greek arts.

Étienne-Louis Boullée (1728-99) was a visionary French neoclassical
architect whose work greatly influenced contemporary architects and is
still influential today. It was as a teacher and theorist at the École Na-
tionale des Ponts et Chaussées between 1778 and 1788 that Boullée made
his biggest impact, developing a distinctive abstract geometric style in-
spired by Classical forms. His work was characterized by the removal of
all unnecessary ornamentation, inflating geometric forms to a huge scale
and repeating elements such as columns in huge ranges. Boullée’s fond-
ness for grandiose designs has caused him to be characterized as both a
megalomaniac and a visionary.

Figure 9: Boullee’s Cenotaph for Isaac Newton.

His style was most notably exemplified in his proposal for a ceno-
taph for the English scientist Isaac Newton, which would have taken the
form of a sphere 150 m high embedded in a circular base topped with
cypress trees. Though the structure was never built, its design was en-
graved and circulated widely in professional circles. Boullee’s Cenotaph
for Isaac Newton is a funerary monument celebrating a figure interred
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elsewhere; the hollow sphere foreshadows the death of Newtonian Physics.
For Boullée symmetry and variety were the golden rules of architecture,
he considered the sphere the perfect form, since no perspective rule could
alter its look [Janson 1998].

7 Hospital da Irmandade de Riba de Ave

The work presented here was designed by the architect Jorge Pinheiro
Rodrigues in 2009. In this building of linear forms an element of curvilin-
ear form is attached. From the outside of the building the element can be
perceptible, in fact it is placed in the open area inside the edifice, s shown
in Figure 10. The architect pretended that this element symbolizes the
beginning of life, what gives a new message to an hospital.

Figure 10: Hospital da Irmandade de Riba de Ave, external view, aerial view.

The beginning of life should be an element of prestige and so the
construction should reflect it, the construction element should be high
tech. So new forms need new technology, and the architect feels the need
of a mathematician to help solving the arisen problems.

The architectonic element form it is composed by the junction of two
spherical caps by a revolution surface. The radius of the spherical caps
is 8,33 m. The joining revolution surface is defined by the rotation of a
circular segment of radius 16,96 and the rotation axis is coincident with
the axis of the spherical caps. Only the superior spherical cap is complete
and self supported, the remaining part of the form is attached to the
building, in fact only about a quarter of the element is constructed. Two
aims were taken in consideration to create such a surface: i) to be build
with GRC pre-constructed elements, ii) to facilitate the construction in
site.
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The use of pre-constructed elements
enforces the possibility to transport and
establish the maximum size of the ele-
ments. With this aims the problem of how
to divide the surface in a number of ele-
ments that facilitate the construction in
site arises, and the solution is to find the
smallest number of different elements pos-
sible. Since part of the total surface is a
spherical cap, then the Buckminster Fuller Dome was a starting point.
But some modifications are due to the fact that the total surface is a
junction of two different types of surfaces (sphere and a revolution sur-
face) and the fact that the minimum of different elements were required.
Thus, the surface is sliced in fourteen rings, with a size that each con-
structive element (triangle) could be carried out into the construction
site. Since the curvilinear element is symmetric, thus the seven first rings
are symmetrical to the last seven rings. The first three top rings follow
the Buckminster Fuller Dome idea. The first ring is divided into 5 equal
triangles, the second ring is formed by fifteen triangles, being of three
types, and third top ring has twenty five triangles, of five types. This
ring is the one that connects to the new structure type. The next four
remaining rings are composed by 30 triangles of two types in each row.
Next figure explain the assemblage of this triangles in order to form the
surface.

Figure 11: Hospital da Irmandade de Riba de Ave, structural scheme.
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8 Conclusion

The examples presented show that the form and the function are related,
but above all the form is a function of the ideals of the epoch and of the
architect.

In order to be able to fulfil their goal technology has to be developed.
Mathematics is involved in the technology, but as well in the definition of
the forms. Regular solids are preferred since they translate the perfection
that is desired.
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Abstract

This article emphasizes some moments in the life of the German
mathematician August Gutzmer (1860-1924), who started his sci-
entific career 1887 with 3 publications in the Jornal de Sciências
Matemáticas e Astronómicas (Teixeira’s Journal) created by the
famous Portuguese mathematician Francisco Gomes Teixeira in
1877, and continued to publish therein until the volume of 1897.
A brief analysis of the correspondence between both scientists
makes clear that among all foreign authors of this journal Gutzmer
played a singular role as link between Gomes Teixeira and Ger-
many, probably also motivated by some coincidence of interests
and areas of their academic work. Becoming later the successor
of Georg Cantor at the Vereinigten Friedrichs-Universität Halle-
Wittenberg and a closed collaborator of Felix Klein, Gutzmer kept
contact with Gomes Teixeira until the end of his life and con-
tributed significantly to the recognition of the Portuguese mathe-
matician in Germany.
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Introduction

Today we understand better than ever that Mathematics can only be suc-
cessfully developed in an open world, although we know that in the past
as well as in the present Mathematics also depends on the general polit-
ical situation. For example, the problems between French and German
mathematicians after 1871 and again between World War I and World
War II are well known ([PR2002]). The distortions in the international
scientific cooperation as consequence of the Cold War, particularly in the
field of Mathematics, are more recent and a comprehensive analysis as
part of research in the History of Mathematics is still missing.

Nevertheless, looking in detail after some concrete examples of in-
ternational cooperation in the past, the picture can sometimes become
different. Of course, the therefore needed search for historical sources in
different countries is very difficult. But, if available, those sources often
show us that against all the difficulties in communication and all the po-
litical frontiers the exchange of scientific results or questions of academic
character continued to flow due to the civil courage and scientific devo-
tion of the involved actors. Two of the most famous mathematicians of all
times, the French Henri Poincaré and the German Georg Cantor, essen-
tially contributed at the end of the 19th century to the new foundation of a
mutually respected relationship between French and German mathemati-
cians, promoting also the organization of the first International Congress
of Mathematics 1894 in Zurich. It is known that the choice of this city
in a neutral country and not Paris or Berlin was not by chance, but the
expression of real existing political conflicts. The same happened again
in 1932, when the shadow of Hitler’s cohorts already poisoned the inter-
national cooperation. A well known example of the return to a friendly
relationship between France and Germany after World War II was given
by the French Henri Cartan and the German Heinrich Behnke1. In 1949
Cartan was the first French mathematician after 1945, who visited a Ger-
man university by invitation of Behnke in Münster ([GR1981]).

But the History of Mathematics during the 19th century was not only

1Behnke served from 1955 until 1958 as President of the Executive Committee of the
International Commission on Mathematical Instruction (ICMI). ICMI was established
at the Fourth International Congress of Mathematicians held in Rome in 1908. The
founding President of ICMI was the distinguished German mathematician Felix Klein
(1849-1925), for whom mathematics education was a deep and career-long interest.
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written by such giants like Cauchy, Gauss, Riemann, Weierstrass or the
already mentioned Poincaré and Cantor. Too often we tend to forget,
that for a comprehensive picture also the contributions of those mathe-
maticians are of importance, which have been disciples of this group of
sounding names or simply followed in their steps as part of the main cur-
rent of that time. Their work widened the new theories and methods,
extended the fields of applications and helped to transform all in, what
we call now, the common knowledge of mankind.

It is well known, that in the 19th century first Paris, than Berlin,
and later also Göttingen developed into, proverbially saying, Meccas of
Mathematics with pilgrims from whole Europe and also the United States.
An astonishing number of them became later on the leading figures in their
own countries. But, of course, it happened also in geographical distance
to those centers, that very remarkable mathematicians grew up, based on
their own talent, the help of dedicated teachers, and, may be, nearby a
well equipped library. The Portuguese mathematician Francisco Gomes
Teixeira bears therefore eloquent witness.

Sometimes it seems difficult to estimate the true scientific value of
the work of those scientists from countries in the periphery of Europe,
particularly if they stood alone as exceptional figures and their recognition
in their own country is mainly based on fame from abroad, confirming the
proverb, that the prophet does not have value in its own country. If they
are not forgotten at all and gained some name also in other spheres of
action more closed to the general understanding, then they are sometimes
considered as national heros. But does this mean that doubts about their
real merits are vanishing for ever? It seems to be not so. In this aspect
Gomes Teixeira is not an exception. We feel that the singular role of
this Portuguese mathematician from the end of the 19th and beginning
20th century, whose scientific work is world wide known, is often put in
question. Of course, here we are not able to discuss all aspects of this
problem. First of all it would be necessary to agree about the meaning of
scientific work, which is also now a hot theme in the everyday discussion
about the role of sciences in the modern society in general and the role of
Universities, in particular. Based on a common understanding of scientific
work as work doing research, teaching and educating on university level,
or being responsible for other academic duties like acting as editor of
journals or writing books, the main problem will be to understand him
today without prejudices, but really as person working under the specific
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conditions of his time and under the limitations of a peripherally country.
A possible approach to answer these questions could be by means of

comparative studies with foreign mathematicians of the same time. The
well documented ([V1935]) contacts of Gomes Teixeira with a large spec-
trum of foreign mathematicians of similar scientific interests seem to be
very useful for such attempts. As example, in this short note we report
about the life and work of August Gutzmer, who started his scientific

Figure 1: August Gutzmer 1860-1924

career 1887 with 3 publications in the Jornal de Sciências Matemáticas e
Astronómicas. The simple fact, that this happened with a mathematician
from a central country of Europe could, in our opinion, already create
some curiosity. On the other hand it also confirms, together with other
cases, that Teixeira’s Journal really found international recognition after
some years. But after some detailed study we found many indicators for
the fact that Gutzmer has been the most important person for Teixeira’s
contacts to German mathematicians. Even more, the activities in which
Gutzmer became involved later on show several parallels with Teixeira’s
live. Directly, like in the case of Teixeira, and indirectly, like in the case of
Gutzmer, both contributed by several activities to the development of a
European community of mathematicians at the end of the 19th, beginning
of the 20th century. We try here in this short note to stress this compar-
ative point of view on one man from a central country and one from a
peripherally country, without being able to go into details, particularly
what concerns the life of Gomes Teixeira which we consider as well known
in its main parts. In particular, we are not able to consider here the ac-
tions of both mathematicians under the conditions of the general political
development in Europe, as it should be. We mentioned in the beginning
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the problems between French and German mathematicians for showing
that also mathematics does not go on in isolation from the surrounding
world. Here we remember only, that Gutzmer and Teixeira most probably
have been in contact since 1886 until 1924, which was a time - besides
the disastrous time caused by World War I with all its problems before
and after, marked in both countries by the Industrial Revolution in the
2nd half of the 19th century. What concerns particularly Portugal, we
have to remind the time of the Fontismo between 1886 and 1889, which,
in general, is characterized by the attempt to modernize the public sec-
tor and specially the infra-structures of Portugal in continuation of the
Regeneration period. The construction of railways and roads, the installa-
tion of a well working post service and other measures by the government
of Fontes Pereira de Melo had the objective to overcome the backlog and
stagnation of Portugal compared with other European countries. It is
evident, that these new possibilities of a rapid and secure communication
have been an indispensable condition for the success of Teixeira’s Jour-
nal as one of the few well recognized mathematical journals edited in a
peripherally country of that time. We can also not mention the merits
of Gomes Teixeira’s participation as representative of Portugal in several
European projects which emerged in the second half of the 19th century.
We mention only that Teixeira maintained an extensive correspondence
with the German E. Lampe , who served from 1885 until 1918 as edi-
tor of the Jahrbuch über die Fortschritte der Mathematik (1868-1942)2,
and participated actively in the work of the International Congress on
Bibliography of Mathematical Sciences in 1889 under the direction of H.
Poincaré with the aim of founding the Répertoire Bibliographique des Sci-
ences Mathématiques(1894-1912).

August Gutzmer

August Gutzmer was born 150 years ago at 2nd of February 1860 in
Neu-Roddahn, a small village in the north of Prussia, situated closed to
Schwerin, the capital of the Herzogtum Mecklenburg-Schwerin. His father
was a carpenter. In 1868, his family went to Berlin where he attended
the Friedrichswerdersche Gymnasium and finished the high-school in 1881
without having studied Latin or other foreign languages. That’s why he

2The well known Zentralblatt is considered as its successor.
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could not obtain together with his final examination the university en-
trance permission. Nevertheless he succeeded to attend mathematics lec-
tures at Berlin University, but was officially not registered as a student.
Only after the study of Latin with a private teacher and the correspond-
ing examination in 1884 he could finally be matriculated at the end of
April of 1884. Among those who lectured to Gutzmer were L. Kronecker,
K. Weierstrass and L. Fuchs. With the retirement of Kummer, replaced
by Fuchs in 1883, the “golden period” for mathematics in Berlin had
ended. Kronecker died in 1891 and H. A. Schwarz succeeded Weierstrass
in 1892. Gutzmer, therefore studied with two of the three great Berlin
mathematicians in the last years of their careers. He finished his studies
in Berlin in 1887 and began his doctorate under the supervision of Al-
bert Wangerin (1844-1933) at Halle-Wittenberg. He submitted his theses
On certain partial differential equations of higher order to the University
of Halle-Wittenberg and was awarded his doctorate on 13 January 1893.
The fact that up to this moment already five publications of Gutzmer
appeared in Teixeira’s Journal (in the volume VIII, IX and X; [G1886a],
[G1886b], [G1887], [G1889], [G1890]) permits at least two conclusions.
First of all, Gutzmer started serious research before he finished the Uni-
versity, the same as Teixeira had done following the advise of Daniel de
Silva ([V1935]). Secondly, he knew about the existence of Teixeira’s Jour-
nal and did not hesitate to submit his articles, written in French, to a
Journal edited in Portugal, far away from Germany. The analysis of the
foreign authors in Teixeira’s Journal indicates some probable reasons for
his decision. M. Lerch, later also becoming a very active and famous math-
ematician, was also a student of Kronecker and Weierstrass at almost the
same time. He published already in volume VII the article Remarque
sur la théorie des séries. As a remark to this paper Gutzmer sent his
first paper, entitled Sur une série considérée par M. Lerch. Remarkable
that also the well known Italian mathematician E. Cesaro after a note
in volume VI has published in volume VII his paper Remarques sur la
théorie des séries. It is well known, that Teixeira himself was very much
interested and working in the theory of series. Without going too far,
we believe that all this shows how Teixeira’s Journal had already earned
some international recognition in this field, very actual in that time. In
this context we would also like to mention the general analysis concerning
Portuguese Mathematical Journals: Some Aspects of (almost) Periodical
Research Publications by J. F. Rodrigues ([R2004]), which relies only on
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some well known foreign authors of Teixeira’s Journal. Among a very
reasonable number of foreign authors Lerch occupied the first place with
8 papers, followed by Ocagne with 7, Gutzmer with 6, and Cesaro with
5 papers. But let us come back to Gutzmer. After a short interrup-
tion for one year as administrator of a manor of his wife, the couple sold
the manor and moved to Berlin. Gutzmer became an assistant at the
Technischen Hochschule of Charlottenburg. Being in the army between
October 1894 and January 1895, but dismissed as being unfit for duty, he
returned to his position at the Technischen Hochschule. In 1896 Gutzmer
already was able to submit his habilitation thesis On the theory of adjoint
differential equations to the University of Halle-Wittenberg and worked
there as a Privatdozent until March 1899. From that time on he was
appointed as professor of mathematics at the University of Jena, holding
this position until 1905. Nevertheless, the contacts to Albert Wangerin
and also to Georg Cantor3 as one of the most influential mathematicians

Figure 2: Georg Cantor (1845-1918)

from Gutzmer’s former University Halle-Wittenberg led naturally to his
support of the German Mathematical Society. He produced for the Ger-
man Mathematical Society yearly reports, for example about the annual
meeting in

München, 17-23 September 1899; the annual meeting in Aachen, 16-
23 September 1900; and also in Breslau, vom 18 bis 24 September 1904.

3Georg Cantor was the first president of the German Mathematical Society (DMV)
and served as its President for three years until 1893.
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These activities culminated in the first document on its history, written
by Gutzmer ([G1909]).

Figure 3: Frontispiece of the Jahresbericht

Finally, on 3rd of August 1905 Gutzmer was appointed to an additional
full professorship for mathematics at Georg Cantor’s chair. He had to
substitute Cantor’s lectures in case of Cantor’s illness. In 1911 Georg
Cantor gave his last lecture and in 1913 Gutzmer succeeded on Cantor’s
chair.

Figure 4: Felix Klein (1849-1925)

Already one year before he was elected as President of the Commis-
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sion for Mathematical and Scientific Instruction from 1904 to 1907 and
President of the German sub-committee of ICMI from 1908 to 1913, in
closed contact with the President of ICMI, Felix Klein ([G1908], [G1912],
[G1914], [G1917]).

Already on the occasion of his visit to Heidelberg for participating in
the Third International Congress of Mathematicians Gomes Teixeira had
the opportunity to meet both of them personally ([G1904]).

Remarkable that Teixeira and Gutzmer shared also another field of
academic activity. Gomes Teixeira became Rector of the new created
University of Porto in 1911 and Gutzmer shared four years later the same
experience. During session 1914-1915 he was Rector of the University
Halle-Wittenberg. He was asked to continue as rector for a second session,
but because at this time his health was deteriorating he declined.

Figure 5: The famous Vivanti-Gutzmer textbook

Gutzmer was highly gifted as a teacher, showing infectious enthusiasm
for mathematics. He taught courses on differential and integral calculus,
analytic geometry, ordinary differential equations, analytic mechanics, cal-
culus of variations, number theory, higher algebra, function theory, and
the theory of algebraic curves. He did not wrote a textbook from the
beginning alone as Teixeira did, but the book of G. Vivanti on the Theory
of Analytic Functions, edited in German after a revision in collaboration
with the author by Gutzmer became an excellent and unique textbook in
the beginning of the 20th century, highly appreciated by students and re-
searches due to the first appearance of set theoretic basics in the function
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theoretic context.
Being elected to the German Academy of Scientists Leopoldina in 1900,

Gutzmer sent his curriculum vitae which proves very clearly how he esti-
mated his first six publications in Teixeira’s Journal.

Figure 6: Part of Gutzmer’s CV

In 1906 and together with Georg Cantor, Albert Wangerin, and P.
Stäckel from the University of Hannover, he proposed the election of
Francisco Gomes Teixeira to this famous academy, together with T. Levi-
Civita, for example.

Figure 7: Letter supporting the election of G. Teixeira



Some remarks on August Gutzmer 69

Like before Wangerin also Gutzmer has later on in 1921 been elected
as President of this academy ([Sch1998], [Sch1999]), a position which rec-
ognized and crowned his dedication to all areas of his scientific work.

Final remarks

Our aim was to call attention to some facts in the live of the German
author of Teixeira’s Journal August Gutzmer, which could be useful for
a comparative study of the work of Francisco Gomes Teixeira with other
foreign mathematicians, i.e. on international level. Of course, we are
conscious that we mentioned only few details, among them those which are
directly related to Gomes Teixeira and based on some unknown material,
available only in German. That’s why we consider this short remarks
only as the beginning of a longer lasting research on aspects in the live of
Gomes Teixeira, not studied so far in detail. It was a great pleasure to
got the opportunity for publishing it in honor of our colleague Fernanda
Estrada.
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Abstract

The determination of the frequencies of the pitches in musical
scales has been a problem that goes back to ancient Greece. The
problem is in itself simple. In modern language it could be stated
as follows: if you have an octave i.e. two pitches defined such that
the frequency of one pitch is twice the frequency of the other, what
values should have the frequencies of the pitches in between them
in order to have a musical scale? A musical scale is considered,
within this article, to be a set of pitches whose frequencies sat-
isfy predefined proportions. There are many possible systems but
there is not a solution that fulfills all the demands of the problem.
Gallimard presents a solution through a numerical system defined
with progressions and tempered with an accuracy possible by the
use of logarithms.
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pouco de História da Música.

1 Introduction

The definition of proportions between the frequencies of the notes in mu-
sical scales in western music is related with the study of the vibration of
chords. If two vibrating chords are absolutely equal except in length, and
one is half as long as the other, the long one will produce a pitch that
is one octave lower than the shorter one. If we want to state this fact
through the frequencies of the sounds we would have the inverse, i.e., the
frequency of the higher pitch is twice the frequency of the lower. The study
of the vibrating chords made it possible to determine the ideal proportion
(pure intervals) between the frequencies of the pitches (and the length of
the chords that produce them). The pitches that form a musical scale in
western music should have frequencies with values such that any two of
them played simultaneously should produce a pure interval. All musical
subjects in [Gallimard1754] follow the work of [Rameau1750]. For further
details the reader should also see [D’Alembert1772] and [Smith1749]. The
list of pure intervals can be found on Table 1.

proportion musical interval example
1 unisonus C - C (do - do)
9/8 second C - D (do - re)
5/4 third (major) C - E (do - mi)
4/3 fourth C - F (do - fa)
3/2 fifth C - G (do - so)
5/3 sixth C - A (do - la)
15/8 seventh C - B (do - ti)
2 octave C - C’ (do - do’)

Table 1: Pure intervals (the value of the pitch of C’ is twice the one of C).

Table 2 lists the musical notes that correspond to the first overtones
of C. The numerical index in each note specifies the octave. For example
D4 is the note D four octaves higher that the note D1.

The rules of composition allow that even when the tonality is chosen
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1 2 3 4 5 6 7 8 9 10
C1 C2 G2 C3 E3 G3 C4 D4 E4

11 12 13 14 15 16 17 18 19 20
G4 B4 C5 C5♯ D5 D5♯ E

Table 2: C overtones.

(which means essentially the scale used), there is a certain amount of
freedom to use other scales that are near to the one chosen. Near means
that the new scale will have few notes (one or two) that are different from
the original one2.

For example if the scale chosen is C major, then Gallimard admits that
the composer may also use the notes of major scales of G , F and B♭ and
from the minor scales G, D, A and E. If we look at the notes that form
these scales we see that to play a nice music written in C major we would
probably need thirteen notes C, C♯, D, D♯, E♭3, E, F, F♯, G, G♯, A, B♭, B
and C. For further details on scales see [Gallimard1754], [Rameau1750],
[Smith1749] or [D’Alembert1772]. It is important to notice that Gallimard
only uses melodic minor scales.

Gallimard will define a numerical system associating to each note a
number. The proportions defined by these numbers would have to obey
the proportions of pure intervals. This will allow the precise definition
of the length of the chord that will produce the musical note the player
wants.

2 Notations and definitions

Definition of interval, “relation” (French) or “rapport” (French) ac-
cording to [Gallimard1754]. “When one compares two quantities consid-
ering in what way the small is contained in the large, their respective
situation present to the mind some kind of “amplitude” (...) that changes
according to how the small one is contained in the larger”; this amplitude

2C-D-E-F-G-A-B are the notes that form the C major scale. There are scales that
are very similar to this one like A-B-C-D-E-F-G (A minor scale) or G-A-B-C-D-E-F♯
(G major scale).

3D♯ and E♭ are two different notes.
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is what Gallimard call interval or “relation ” or “rapport” between
this two quantities.

A relation like 2 to 3 will be written as : 2•3. If one changes the order
of the terms we get the inverse. The inverse will represent the relation
between the lengths of the chords. From now on the word interval always
designates this relation.

If two intervals are equal, i.e., : a • b =: c • d we obtain a geometric
proportion and write will it as follows: a • b :: c • d. Each interval will
be called a member of the proportion. If we have two intervals a• b :: b• c
then we can write ÷÷ a • b • c. It will represent the same as a • b :: b • c.
This new sequence will be called a geometric progression.

A musical interval between two sounds is the interval (relation) be-
tween the two numbers that express this interval. For a complete list
of the usual intervals please check the table in the appendix taken from
[Smith1749]. Gallimard also gives a very complete table identifying the
proportions with the musical intervals. His Table is not shown here be-
cause it too detailed and more difficult to understand.

Composition of intervals. If we consider an interval : a • b we can
decompose it in several intervals : a • c, : c • d,..., : z • b, called roots or
parts of the composed interval.

Mathematically if we consider fractions these computations are clear,
it all amounts to b

a
= c

a
× b

c
.

Let us look at composition of intervals in musical terms. Let us take,
for example the interval : 1•5 and take the decomposition in the intervals
: 1 • 3 and : 3 • 5.

These relations correspond to special musical intervals and this equal-
ity states that two octaves plus a major third is equal to an octave plus
a perfect fifth plus a sixth. Or to put more easily if C-D-E-F-G-A-B-C-
D-E-F-G-A-B-C-D-E is a sequence of two octaves plus a third to go from
the first note to the last is the same as to go from C to the second G (C-
D-E-F-G-A-B-C-D-E-F-G) and afterwards from G to E (G-A-B-C-D-E).

C −D − E − F −G−A−B − C −D − E − F −G−A−B − C −D − E
︸ ︷︷ ︸

is the same as

C −D − E − F −G−A−B − C −D − E − F −G
︸ ︷︷ ︸

followed by

A−B − C −D − E
︸ ︷︷ ︸

.
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The multiplication becomes an addition on music.
For more details on this correspondence see the Table included in the

appendix taken from [Smith1749] .
If we have a sequence of intervals like : b • a, : c • b, : d • c we can

transform these intervals in a progression, using the rule described by
Gallimard:

Pour renfermer distinctement les interv. qu’on voit en M dans
une suite N, on formera le 3e. terme en N du produit des
deux premiers conséquens divisé par le 2e. antécédent, et le
4e. terme du produit des trois conséquens divisé par celui des 2
derniers antécédents, et ansi à l’infinit, (un coup d’oeil remplit
ici l’esprit de la regle de trois.

Gallimard presents the rule but at the same time shows an example
(see Table 3) to help the reader. Note how he calls the attention to the
fact that this process is just an application of a simple rule of proportion
he mentions earlier.

Here is Gallimard’s example for the sequence of intervals : 5 • 6, : 4 • 5
and : 3 • 4 exactly how it is presented in Gallimard’s text.

: 5 • 6
M : 4 • 5

: 3 • 4
N 5 • 6 • 6×5

4 • 6×5×4
4×3

Table 3: Example given by Gallimard.

The sequence could be simplified and we would have:

5× 4× 3 • 6× 4× 3 • 6× 5× 3 • 6× 5× 4

If two intervals are given : a•b : c•d such that (b−a) = (d−c) we will
write a • b ∴ c • d. If c = d we can write the arithmetic progression,
÷a • b • d meaning a • b ∴ b • d.

Let a b and c be numbers such that : c • a = : (b − c) • (b − a) which
is the same as c • a :: (b − c) • b − a. We will say the three numbers a, b
and c make an harmonic progression and write ∽ a • b • c.

If ÷a • b • c • d is an arithmetic progression it is easy to see that the
sequence of the inverses of its members form an harmonic progression,
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i.e., ∽ 1
a
• 1

b
• 1

c
• 1

d
. This progression can also be obtained if we consider

the intervals : d • c, c • b and b • a and form a new sequence using the
process described above.

It is important to remark that Gallimard gave a correct rule to obtain
a harmonic progression from an arithmetic one. One of the most used
books on theory of counterpoint called “Gradus ad Parnassum” written by
Johann Fux has the following rule: if one takes an arithmetic progression
÷a • b • c one obtains an harmonic progression from this as follows ∽

ab • ac • bc. This only works if the ratio of the arithmetic progression is
the unity. Since the arithmetic progression the musicians were interested
in was the one mentioned above this rule worked.

3 Numerical system for an octave

Let us consider the following arithmetic progression ÷1 • 2 • 3 • 4 • 5 • 6...
and the sequence of intervals : 6 • 5, : 5 • 4, : 4 • 3, ... that will generate
the harmonic progression ∽ 10 • 12 • 15....

Let us now consider the geometric progression ÷÷ 1 • 3 • 9 on each of
its terms we will construct an arithmetic progression similar to ÷1 • 3 • 5,
and we will obtain (÷1 • 3 • 5)(÷3 • 9 • 15)(÷9 • 27 • 45).

In musical terms the geometric progression ÷÷1•3•9 is just a sequence
of the intervals of fifth. The circle of fifths is a well known sequence in
music ( ... B♭ F C G D A E B F♯ C♯....). Gallimard just takes F C and
G and produces over each of these notes the major chords.

1 3 9 F C G
3 9 27 C G D
5 15 45 A E B

Table 4: Progressions and musical notes 2.

Let us organize these numbers from the smaller to the larger we will
get the sequence 1, 3, 5, 9, 15, 27, 45. This musical scale is not all in the
same octave. And what Gallimard does next is to rescale the notes to try
to get all values within the interval : 1 • 2. He takes each one of these
progressions (÷1 • 3 • 5)(÷3 • 9 • 15)(÷9 • 27 • 45) and multiplies the first
one by the geometric progression ÷÷ 16 • 8 • 4, the second by ÷÷ 8 • 4 • 2
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F C A G E D B
1 3 5 9 15 27 45

Table 5: Major scale 1.

and the third by ÷÷ 4 • 2 • 1. In doing so he reduces all the notes to the
same octave and at the same time readjusts the numerical values to keep
the proportions. He then obtains the Table 6:

F A C E G B D
16 20 24 30 36 45 54

Table 6: Major scale 2.

This Table will also give major chords of the numerical system. We
will have C, E, G corresponding to (÷24 • 30 • 36) F, A, C (÷16 • 20 • 24),
G, B, D (÷36 • 45 • 54).

Notice that these notes are still not in the same octave, but if we take F
and A one octave higher (multiply by 2), take D one octave lower (divide
by 2) and consider another C one octave higher than the first C, we will
obtain:

C D E F G A B C
24 27 30 32 36 40 45 48

Table 7: Major scale (numerical system).

This Table corresponds to a numerical system for the major octave.
But it is not enough we still need more notes. Remember that for a

C major scale the composer will have to be able to use thirteen notes.
Gallimard does a similar process to obtain a numerical system for minor
scales. Gallimard only considers melodic minor scales and this means, in
the case of C minor for example, that we would have an ascending scale
C, D, E♭, F, G, A, B, C and one descending scale C, D, E♭, F, G, A♭,
B♭, C. The process is very similar to the previous one, but through an
harmonic progression.
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Let us consider the geometric progression ∽ 5 • 15 • 45 on each of its
terms we will construct an harmonic progression similar to ∽ 3 • 5 • 15.
The progression ∽ 3 • 5 • 15 represents a minor chord and the progression
∽ 5 • 15 • 45 continues to represent three intervals of fifth consecutive.
So basically one takes three musical notes from the circle of fifths and
over each one of them considers a minor chord. This produces the data in
Table 8. If we multiply the numbers on Table 5 by 5 and join those with

A♭ F E♭ C B♭ G D
3 5 9 15 27 45 135

Table 8: Minor scale (numerical system).

this last Table we will get Table 9.

A 25 E 75 B 225
F 5 C 15 G 45 D 135

A♭ 3 E♭ 9 B♭ 27

Table 9:

It is important to notice the numerical pattern we have here: From

25 75 225
5 15 45 135

3 9 27

Table 10:

left to right we have geometric progressions with ratio 3 from the bottom
up we have geometric progressions of ratio 5. Let us expand Table 10 up
and down and using the relations given in the Table in the appendix we
will get Table 114.

Since he is only using progressions of ratio 3 and of ratio 5 he is actually
only using two types of musical intervals the thirds and the fifths. It is

4Gallimard does not use fraction on this Table he just leaves the last row of the
Table with only the names of the notes. He actually also does not fill the first row.
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E ♯ 625 B♯ 1875 F ♯♯ 5625 C ♯♯ 16875
C♯ 125 G♯375 D♯ 1125 A♯ 3375
A 25 E 75 B 225 F♯675
F 5 C 15 G 45 D 135
D♭ 1 A♭ 3 E♭ 9 B♭ 27
B♭ 1

5 F♭ 35 C♭ 95 G♭ 275

Table 11:

important to remember here that these two intervals define the principal
accord of a scale (major or minor depending on the type of third).

Merging columns and readjusting the notes multiplying the numbers
by powers of two he actually obtains the lists of major and minor chords.

In order to reduce the notes in the previous Table to the same octave
Gallimard multiplies the values for powers of two and obtains Table 12:

C♯ 125× 8 G♯ 375× 4 D♯ 1125× 2
A 25× 32 E 75× 16 B225× 8 F♯ 675× 4
F 5× 128 C 15× 64 G 45× 32 D 135× 16
D♭ 1× 512 A♭ 3× 256 E♭ 9× 128 B♭ 27× 64

Table 12:

If one multiplies the values for D♭, F, A♭ A by 2 and divide the values
of D, D♯ and F♯ by 2, (this is the equivalent to adjust the notes taking
them one octave higher or lower as needed) we will obtain what Gallimard
calls the NUMERICAL SYSTEM FOR THE GENERAL OCTAVE OF
C.

Having produced his system Gallimard organizes the notes in intervals
of fifths and obtains the data organized in Table 14.

Looking at this Table one finds two geometric progressions. One with
ratio 5 written in bold characters and the order with ratio 3

2 that has four
consecutive terms and interrupts at the fifth. Because of this behaviour
the system has only one type of major third intervals but has two types
of fifth intervals.

Gallimard will temper his system adjusting his defected fifth, divid-
ing this difference (comma) through all four fifths. This adjustment is
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2 C 1920

15
8 B 1800

9
5 B♭ 1728

5
3 A 1600

8
5 A♭ 1536

25
16 G♯ 1500

3
2 G 1440

45
32 F♯ 1350

4
3 F 1280

5
4 E 1200

6
5 E♭ 1152

75
64 D♯ 1125

9
8 D 1080

16
15 D♭ 1024

25
24 C♯ 1000

1 C 960

Table 13: Numerical system for
the general octave

75
2 D♯ 2250

25 G♯ 1500

50
3 C♯ 1000

45
4 F♯ 675

15
2 B 450

5 E 300

10
3 A 200

9
4 D 135

3
2 G 90

1 C 60

2
3 F 40

9
20 B♭ 27

3
10 E♭ 18

1

5
A♭ 12

2
15 D♭ 3

Table 14: Inner intervals

very precise and it is the reason he introduces logarithms. That subject
has to be left for another occasion. It is important to notice that the
temperament Gallimard is interested in here does not prevent C♯ and D♭
from being different notes. Most people think of temperament related to
keyboard instruments where C♯ and D♭ are two notes that correspond to
the same key, therefore are equal. He want to have coherence between
intervals even with these different pitches.

Not satisfied with the results of the numerical system Gallimard ob-
tains even after the adjustments, he tries other systems of temperament,
either by dividing the octave into more parts (31 or 55 for example), the
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equal temperament, or even the Pythagorean temperament (leaving the
intervals of fifth pure and adjusting the thirds).

4 Jean Edme Gallimard and “Aritmétique

des musiciens”

Jean Edme Gallimard was born in 1685 in Paris and died on June the
12th, 1771 [Fetis1837], [Larousse1872], [Lacoarret1957]. According to
both Larousse and Lacoarret, he must have dedicated part of his life
to teaching. Lacoarret concludes through the analysis of his works that
he must have thought children since he wrote a Latin method “Alphabet
raisonné” (1757) that was never published, as well as some manuals like
“L’ Arithmétique littérale démontré” (1740) or “Géométrie élémentaire
d’ Euclide” (1746,1749). Lacoarret quotes Des Essarts in “Les siècles
Littéraires...” Paris 1800-1803, Michaud, Hoefer for this data. Actu-
ally since her article is dedicated to the French translators of Euclides
works, it was this later manual that called her attention to Gallimard.
There are nevertheless other mathematical works mentioned in the “Grand
Dictionaire Universel XIX Siécle” [Larousse1872] , like “L’Algébre ou la
science du calcul numérique” (1750) or “Méthode théorique et pratique
d’arthmétique, d’álgébre et de géométrie” (1753). None of this three
works ([Fetis1837], [Larousse1872], [Lacoarret1957] ) mentioned above in-
cludes“Les sections coniques et autres courbes anciennes traitées profonde-
ment” (1752) in their lists. However it is another work by Gallimard that
is quoted in the XXI century. It can be found in digital format and is still
available in old books sellers, but had a modern edition by Kessinger Pub
Co. in 2009.

Fétis is a respected author in music. He wrote several major works
that are still used as reference nowadays. In “Biographie Universelle des
Musiciens et Bibliographie Génerale de la Musique” , Fétis includes Gal-
limard in the following terms:

GALLIMARD (Jean-Edme), mathématicien mediocre, né a
Paris en 1685, morut dans la meme ville, le 12 juin 1771, à
l’age de quatre-vingt-six ans. Il a publié un petit écrit sous
ce titre: La théorie des sons applicable à la musique, où lón
démontre, dans une exacte precision, les rapports de tous les
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intervalles diatoniques et chromatiques de la gamme, Paris,
1754 in 8o, 16 pages.

Le même ouvrage remanié a reparu dans la meme année sous
ce titre, bien long pour si peu de choses: “Aritmétique des
musiciens, ou Essai qui a pour object diverses espéces de calcul
des intervalles; le développement de plusieurs systêmes de sons
de la musique; des experiences pour aider à discerner quel est
le veritable, c’est- à-dire celui de la voix: la description de celui
qu’on suppose l’étre sur quelques instrumens, ses rencontres
avec celui du clavecin, et leur disparité dans tous les modes
imaginables; des soupçon sur le nombre que l’oreille aperçoit
dans tous ou presque tous les accords de deux sons, notamment
dans ceux qui forment des intervalles superflus ou diminués;
une hypothèse relative aux sons harmoniques, et les moyens de
faire rendre par une même chorde en même temps deux sons
don’t l’intervalle ne soit point une consonance. On y a ajouté
une explication des propriétés les plus connues des logarithms
par celle qu’ils ont de mesurer les intervalles.” On voit par
ce titre que Gallimard n’avait pas l’art d’exprimer ses idées
avec simplicité, quoiqu’il eût mis pour épigraphe à sa brochure
“cum veritate simplicitas et ordo”; toutefois, son petit ouvrage
est un manuel qui n’est pas sans utilité.

It is curious this last statement from Fétis because this work must
have been important for theoretical musicians in order to remain a refer-
ence work in tuning and temperament (see [Balfour1948], [Balfour1951],
[CristensenBent1993] or the web site of Huygens-Fokker Foundation Cen-
ter for Microtonal music [website1]). Balfour, a respected specialist in
tuning and temperament, refers to the work of Gallimard [Balfour1951]
as follows:

Various writers have attempted to reduce this error - by di-
viding it between two fifths instead of having it concentrated
upon one; by raising several of the preceding fifths also, as
Mersenne and Rameau did; by carefully graduating all five
black key fifths, as Gallimard did.

Having placed Gallimard’s work with Mersennes’ “Harmonicuru”
(1647), and Rameau’s “Noveau systême de musique théorique” (1726),
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shows that Balfour did not share Fétis’s opinion.

5 “Aritmétique des musiciens”

The copy we had access to is a digital copy available from the French
National Library through Gallica stamped by the Biblioteque Royale. It
is written in French, and consists of 30 pages organized in 120 numbered
articles. It includes 6 pages (pages 22 to 27) totally or almost totally
filled with 29 Tables most with several columns (Table 16 has as many as
eight different columns), 5 geometric figures with Euclidean constructions,
(page 28) and three more figures that show the division of a chord to
produce the sounds with the tuning systems described by the author. A
curious characteristic of Gallimard presentation is the inclusion in almost
every page of examples identified by a capital letter like for instance in
Figure 1.

Figure 1:

This data refers to examples that are explained to in the text. For
example in the article 15:

Un entire pet outpours être censé multiplié ou divisé par 1.
Voyez H’.

(An integer can always be considered as multiplied or divided by 1).
These references have some particularities. They are ordered by capital

letters but the order is not very common. The first one on page one is
B, (there is no A in the beginning). In the second page comes D and E
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followed by the data on page 3 mentioned above. The letters “I”, “J” and
“O” do not occur ever. Maybe because they could be confused with “1”
or “0”.

In page 4 the letters are “M”, “N”, “P” and “Q” in one set of data.
“H” in the next and “R”, “S” and “T” in the third. The data in this
“M” is not related with the previous one. In page 5 two more sets of data
this time both named “A” and “B” (also not related with the previous
ones). In page 6 three more sets the first one named “X”, the second
“G”, “H”, “L” and “K” by this order and the third “C”, “D”, “E”,
and “F”. So apparently it started in some letter but the letters used
in each set of data were sequential (except for the second set in page
6, which could be justified by reasons of economy of space), however in
page 7 the letters used are “A”, “P”, “B”, “Q”, “X” and “Y”. This
choice of letters is probably made to emphasize the relation between the
arithmetic progression in A and the arithmetic proportion in B. The same
justification applies to the harmonic progression in P and the proportion
in Q. or to the progressions in “X” and “Y”.

The structure of “L’ Arithmétique des Musiciens” is very well defined.
The first 46 articles deal with proportions and progressions (arithmetic,
geometric and harmonic), powers and roots. The author gives clear defini-
tions and explains the basic rules he will need in the following discussions.
An example of how clear he tries to be is given in :

13. Réduction des rapports et des suites de fractions à des en-
tiers. On réduira un rapport de fractions à un rapport déntiers,
en formant le produit du numérateur de la premié par de dénominateur
de la segonde, et celui du numérateur de la segonde. Par de
dénominateur de la premié. Voyez F.

In articles 47 to 57 the author introduces a numerical system for scales
in C, major and the minor. In 58 to 61 Gallimard introduces logarithms
and from 62 till 98 applies logarithms to adjust temperaments in trying
different systems. Among others he tries to divide the octave in 31 equal
intervals (article 72) or in 55 (article 77), analyzes the Pythagorean sys-
tem (article 74) in article 83 he introduces the last experience ( “Derniere
expér.”). The following items are destined to apply the temperaments
defined before to different instruments like Viola, Cello, Harpsichord, etc.
The end of the work includes some explanation on the properties of loga-
rithm and geometric Euclidean constructions needed to divide the chord
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of the instrument in the proportions defined previously.

6 Conclusions

As it is shown in Figure 1 Gallimard actually shows the position of the
notes defined by the length of the chord. Not satisfied with the results
of this numerical system Gallimard tries other systems of temperament
It is quite obvious that Gallimard had a major concern in explaining
some mathematics needed for musicians in the XVIII century. He had
a greater concern explaining the arithmetic then explaining the music
behind it, which shows that since he was writing for musicians he supposed
they had some knowledge on the background needed to understand the
musical part of the work. There is a great deal left to be explained in
both subjects Mathematics and Music. This present article only covers
partially the first 52 articles in Gallimard’s book. Some of the musical
background is not exactly what is taught to music students nowadays,
even if one can see a pattern in what Gallimard says. This is the case
of modulations. How exactly do harmonic progressions in music relate
to harmonic progressions in arithmetics? It is clear that the harmonic
division of the octave in an arithmetic sense is important in music because
it even justifies some intervals being consonant or dissonant. For instance
[Fux1725] the interval of fourths are considered dissonant if they result
from the arithmetic division of the octave and are considered by some
musicians consonant if they are obtained by the harmonic division (in the
mathematical sense) of the chord. These two divisions lead to different
chords.

7 Appendix

The table included in Figure 2 taken from [Smith1749] gives a list of the
most common music intervals.
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Figure 2: Proportion and Musical Intervals



“Aritmétique des musiciens” 89

8 Acknowledgement

The author would like to thank the organizers of the “Seminário de Inves-
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1 Mathematics and its History

The French philosopher of Mathematics Jean Cavaillès, in the Introduc-
tion to his 1938 book Remarques sur la formation de la théorie abstraite
des ensembles [1], writes the following:

“L’histoire mathématique semble, de toutes les histoires, la
moin liée à ce dont elle est véhicule; s’il y a lien, c’est a
parte post, servant uniquement pour la curiosité, non pour
l’intelligence du résultat: l’après explique l’avant. Le mathéma-
ticien n’a pas besoin de connâıtre le passé, parce que c’est sa
vocation de le refuser: dans la mesure où il ne se plie pas à
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ce qui semble aller de soi par le fait qu’il est, dans la mesure
où il rejette autorité de tradition, méconnâıt un climat intel-
lectuel, dans cette mesure seule il est mathématicien, c’est-à-
dire révélateur de nécessités.”

It’s true that he immediately adds:

“Cependant avec quels moyens opère-t-il? L’œuvre négatrice
d’histoire s’accomplit dans l’histoire.”

And he uses the remainder of the Introduction to analyse the relations
between mathematical creation and historical conditions.

But the insight contained in those first sentences, which I read while
still a student, left me with an impression which, after many years, with
more information and maturity, has never gone away. The creation and
the study of Mathematics in the present can be carried out ignoring His-
tory. It is possible to conceive of a Fields Medal mathematician who knows
absolutely nothing about the origins and historical evolution of his field
of expertise. Of course, we can also consider him an uncultivated math-
ematician — or human being — but that is a kind of moral judgment,
external to Mathematics itself.

It is a fact that intelligibility of Mathematics is independent of the
knowledge of its past. One who studies Mathematics, be it at research
level be it while learning the subject, does not need to know the History
of what he is studying, apart from, possibly, in the case of the researcher,
the recent contributions on the problem under investigation.

The History of Mathematics — understood as the history of mathe-
matical ideas — is today an established academic field. Gone are the
days when the history of a scientific subject was considered a part of the
subject itself, and its knowledge a precondition to any attempt towards
progress in the field. This classical justification for studying the history
of any scientific discipline no longer exists (see [3] for a discussion).

As to Mathematics itself, its legitimacy is twofold: it is the area,
among human discourses, which most radically and rigorously questions
itself, its correctness and internal coherence; on the other hand, it is an
essential component of all fields of knowledge with any aspiration to be
called scientific.

Why Mathematics possesses the latter characteristic is a classical and
fascinating question, analysed, for example, in the famous article “The
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Unreasonable Effectiveness of Mathematics in the Natural Sciences”, by
the Nobel Prize winner Eugene Wigner. As noted by another Nobel Prize,
Paul Dirac, the mathematician plays a game for which he invents the rules,
while the physicist plays a game in which the rules are given by Nature;
but it turns out, over time, that the rules are the same.

What is of interest to us here is that History plays no part in the
legitimization of Mathematics, except in the broad sense that the subject
has been around for a long time (plus, of course, the historical component
of the twofold legitimization mentioned in the previous paragraphs).

History of Mathematics, on the other hand, cannot claim total inde-
pendence from Mathematics, at least for the last few centuries, for obvious
technical reasons. This is what makes it such a difficult field, beyond lin-
guistic, cultural and methodological requirements.

2 History and teaching

If Mathematics, as a current scientific field, is independent of its history,
as discussed, a fortiori the teaching of Mathematics does not formally
necessitate the use of the History of Mathematics. Such use, therefore,
can only be justified by pragmatic considerations, for example, bringing
about a stronger student motivation and thus improving the quality of
their learning.

My pragmatic claim is that the History of Mathematics should not be
used in the teaching of Mathematics too early, surely not before the 6th
grade. By “used” I mean really used, not giving the name of Pythagoras
to a theorem and the like.

Until the 6th grade, students are in a very immature phase of their
intellectual development. Teaching and learning should concentrate on
the acquisition of basic knowledge and techniques. Any reference to the
origins and historical evolution of introductory algorithms and results —
even assuming that such origins and evolution are easy to unravel — would
have, at these levels, a serious effect of distraction and confusion.

It is unproductive, for example, to try to teach children two or more
algorithms for the arithmetical operations, mentioning different historical
or cultural contexts. In the very imperfect environment of elementary
schools, the question is not whether children will learn more than one
algorithm, the alternative is between learning one or none at all.
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The idea behind learning more than one algorithm seems to be that
it enhances understanding of the underlying concept. The emphasis on
“understanding” basic material in these age groups is misguided. In Math-
ematics, there are many examples of skills that have to be acquired before
the corresponding concepts are fully understood.

Between the 6th and the 9th grade, there will occasionnaly be an
opportunity for interesting and relevant use of historical material. A few
times, with motivated groups of students, a reference to short biographies
of mathematicians and to historical contexts for the appearance of certain
results or techniques — including the re-enactment of famous calculations
— may be justified and useful. But this will be the exception, not the rule,
and it most certainly should not be mandated by the national curriculum.

Historical references should never crowd out the real purpose of ma-
thematical study, which is the acquisition of important knowledge and
techniques — either as ends in themselves or as prerequisites for further
study — and the progressive development of a logical and rigorous mind.
Time constraints, and student mental overload, are legitimate considera-
tions here.

On the other hand, Mathematics is a human activity, which progresses
and changes like any other. But truth criteria in Mathematics have been
the same for centuries, even millennia, only progressively more refined. So
one should not overuse historicism, nor make vague “historical” references
as illustrating an alleged temporal contingency of mathematical activity.
If this is to be the role of History of Mathematics in teaching, it’s better
to leave it out altogether.

In late secondary school, and especially in the university, the situation
changes. The book [2] contains several examples of the use of history
in teaching at those levels, and there are many other references on the
subject.

This makes sense. A cultivated relation with Mathematics, which
supposes an historical vision, can only be attained at university level,
where contents already possess some sophistication. So it is clearly an
option to use history to enhance and enrich teaching of Mathematics at
that level.

For students enrolled in teacher training, a course dealing exclusively
with the History of Mathematics should be mandatory. A Mathematics
teacher should know some History of Mathematics, not because he is going
to teach it, but because, unlike researchers — and even more so people who
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apply Mathematics to other fields such as Engineering — a teacher should
have the above mentioned cultivated relation with Mathematics. To have
a reasonable knowledge of the History of Mathematics makes for a more
cultivated researcher (possibly even a better one), but for a Mathematics
teacher it is an obligation, because a teacher must be a person of culture.
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The problem of finding the roots of polynomials has a long history.
Throughout centuries XVII-XIX, eminent scientists like Newton
(1643-1727), Lagrange (1736-1813), Fourier (1772-1837), Cauchy
(1789-1857), Sturm (1803-1855), and many others, gave contri-
butions for solving the problem. The Portuguese mathematician
J. Anastácio da Cunha (1744-1787) envisaged to make his own
contribution and in [Cunha1790] he describes his method. The
same method is also presented in one of the manuscripts left by
da Cunha but lost for more than 200 years, until they were found,
a few years ago, at the Arquivo Distrital de Braga. The motiva-
tion of our work has been the analysis of the convergence of the
method proposed by da Cunha.

Keywords: Portuguese mathematics, roots of polynomials, iterative

methods, convergence.

1Work supported by the Research Centre of Mathematics of the University of Minho
through the FCT Pluriannual Funding Program.



On a method proposed by J. Anastácio da Cunha 98

1 Introduction

The history of methods for approximating the roots of polynomials goes
back to ancient civilizations. Egyptians, Greeks and Hindus looked for ap-
proximate roots of numbers and formal equations. Those interested in the
topic will find a good survey in [Nordgaard1922] and [Chabert1999]. The
seventeenth century saw a remarkable advance in the theory of equations.
In [Nordgaard1922], p. 33, one can read

The symbolic notation introduced by Vieta ... made the sym-
bolic equation a chief instrument of analysis...For purposes of
numerical approximations one of the tools made most effec-
tive by the improved symbolism was the infinite series in an
equation ....

While finding the area under curves by his “method of fluxions”, Isaac
Newton discovered a new application of series. This was the starting point
for a method that is still, at present, one of the most popular for solving
equations (and much more). Raphson, Lagrange and others contributed
to the development of the method as it is known today.

The Portuguese mathematician J. A. da Cunha, inspired by the works
of Newton, Lagrange and others, proposed his own method to determine,
with as many digits as required, the largest positive root of a polynomial
of any degree. This method appears in one of the chapters (Livro X) of
“Principios Mathematicos” (in Portuguese) which has been published in
Lisbon, in 1790, a few years after the author’s death. A French translation
of “Principios Mathematicos” has been published in Bordeaux, in 1811,
and a fac-simile reproduction was published at Universidade de Coimbra,
in 1987. The same method is in the manuscript “Nouvelle Résolution
Numérique des Équations de tous les Degrés” which has been annotated
by Estrada et al. [Estrada2006].

In the manuscript, da Cunha claims that his own method is a serious
competitor with the best known methods (those of Newton and Lagrange).
However, in “Principios Mathematicos” he suggests its use to compute
initial approximations for Newton’s method. Unfortunately, there are
polynomials for which the method proposed by da Cunha will fail to
locate the largest positive root. The main purpose of the present paper
is to clarify this issue; in particular, we will give a sufficient condition for
the convergence of the method.
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2 Facile est inventis addere...

As pointed out in [Estrada2006], A. da Cunha gets his inspiration for
the new method mainly from Newton and Lagrange. Combined with
Newton’s result on the bounds of polynomial roots, A. da Cunha uses
successive changes of variable. He gives credit to Lagrange for his own
idea of using changes of variable. However, as observed in [Estrada2006],
much before Lagrange, Newton has made an extensive use of changes of
variables. This is also emphasized in [Nordgaard1922], p. 46:

The method of solving equations of higher degree by succes-
sive substitutions in derived equations was originated by New-
ton (1669) incidental to his getting integral expressions for his
work in areas. He performed a transformation for every new
supplement to the root. His method was first made public in
the algebra of Wallis (1685).

In [Estrada2006], the authors wrote that it would be interesting to
study the speed of convergence of the method proposed by A. da Cunha.
This was the motivation for our work whose conclusions we present here.

3 Newton’s bounds for the roots

We said before that a key component of the method proposed by A. da
Cunha is the result which gives an upper bound for the real roots of a
polynomial with real coefficients. In a modern style, this result may be
simply stated in the form

(Newton’s theorem) Let p be a monic polynomial, of degree n, with
real coefficients. If p and its derivatives p(k), for k = 1, ..., n, are all
positive at some point M , then M is an upper bound for the real
roots of p.

This result is stated, without proof, in [Newton1720], p. 208, as follows:

...Multiply every Term of the Equation by the Number of its
Dimensions, and divide the Product by the Root of the Equa-
tion; then again multiply every one of the Terms that come out
by a Number less by Unity than before, and divide the Product
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by the Root of the Equation, and so go on, by always multi-
plying by Numbers less by Unity than before, and dividing the
Product by the Root, till at length all the Terms are destroy’d,
whose Signs are different from the Sign of the first or highest
Term, except the last; and that Number will be greater than
any Affirmative Root...

Derivatives were still not in use at the time, therefore Newton needs a
verbose description of the process of getting the derivatives of p. Then,
he uses his result to show that every real root of the polynomial p(x) =
x5 − 2x4 − 10x3 + 30x2 + 63x− 120 has to be to the left of M = 2. This
is how he proceeds: from p, he determines the sequence of polynomials
(derivatives of p with coefficients divided by their gcd)

p(x) = x5 − 2x4 − 10x3 + 30x2 + 63x− 120

p1(x) = 5x4 − 8x3 − 30x2 + 60x+ 63

p2(x) = 5x3 − 6x2 − 15x+ 15

p3(x) = 5x2 − 4x− 5

p4(x) = 5x− 2

and then tries successive integer numbers to find the smallest one for which
all the polynomials are positive. Starting with 1, he finds p4(1) = 3 > 0
but p3(1) = −4 < 0, therefore the limit is larger than 1. Then, he finds
that for M = 2 the polynomials are all positive, therefore M = 2 is an
upper bound for the real roots.

Applying the result to the polynomial produced from the original one
by replacing x with −x, Newton gets a lower bound for the negative roots:

...In like manner, if I would find the Limit of the Negative
Roots, I try Negative Numbers. Or that which is all one, I
change the Signs of every other Term, and try Affirmative
ones...

In this way, he finds out that all the real roots of the given polynomial
are between −3 and 2. As already said, Newton did not include a proof of
his “theorem” in [Newton1720]. In [Cunha1790], pp.132-133, A. da Cunha
presents a proof using a monic polynomial of degree four for this purpose.
He describes the process of forming the derivatives of a polynomial very
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much in the same way as Newton did. From

G(x) = x4 + ax3 + bx2 + cx+ d (3)

he gets, with x = z + e,

F (z) = z4 + (4e+ a)z3 + (6e2 + 3ae+ b)z2 + (4)

+(4e3 + 3ae2 + 2be+ c)z + e4 + ae3 + be2 + ce+ d

and concludes that if all the new coefficients are positive, then for z to
be a root of F , it has to be z < 0, consequently if x = z + e is a root of
G, then x < e. Furthermore, the coefficients of F are the values of the
polynomials G and those formed in the manner described, at the point e.

4 Lagrange’s influence in the method
proposed by A. da Cunha

In his manuscript, A. da Cunha gives Lagrange full credit for the dis-
covery of a method that solves a polynomial equation (of any degree)
which, he adds, can be found in two memoirs published by the Royal
Academy of Sciences of Berlin. Full references for these memoirs are
given in [Estrada2006]. A. da Cunha briefly exposes Lagrange’s method
that produces a number α which is smaller than the distance between any
two consecutive real roots of a polynomial. Known α, the computation
of the polynomial in α, 2α, 3α, etc. and also −α,−2α,−3α, etc. would find
intervals containing one and only one real root. A. da Cunha praises La-
grange for this method but then observes that α is frequently too small
for the method to be of practical value.

One of the changes of variable used by Lagrange in his process of
finding α is simply a displacement x = z+e and A. da Cunha, inspired in
Lagrange’s works, uses the same change of variable. As we will see later,
such change of variable is not essential in da Cunha’s method and its use
obscures, to a certain extent, the essence of the process.

5 Evolving the digits of a root

We will see in the next section that da Cunha’s method aims at finding
the successive digits of the root, beginning with the most significant one.
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This idea of evolving the digits of a root, order by order, had been used
by other mathematicians before. This is the case of Vieta, for a good
description of his method see [Nordgaard1922], chapter VI. Before Vieta,
also Stevin computed roots of equations by evolving the digits, order by
order. The following can be found in [Nordgaard1922], pp. 21-22, with a
reference to the works of Stevin:

We can best explain his process by recording one of his illus-
trations. Suppose x3 = 300x+ 33915024:

if x = 1, then 13 < 300 · 1 + 33915024;

if x = 10, then 103 < 300 · 10 + 33915024;

if x = 100, then 1003 < 300 · 100 + 33915024;

if x = 1000, then 10003 > 300 · 1000 + 33915024.

Hence, the root lies between 100 and 1000. By trying x=200,
x=300, x=400, he finds the root to lie between 300 and 400.
Similarly, trying 310, then 320, then 330, he finds it to lie be
between 320 and 330. A similar procedure for the units gives
324 as the exact value of the root. Stevin observes that an ir-
rational root can be approximated to within any desired degree
of accuracy by using this method and his scheme of computing
decimal fractions. This method was advocated and used consid-
erably by Albert Girard in his Invention Nouvelle en l’Algèbre
(1629). Though laborious, the method is general. “Stevin’s
rule” was used by later algebraists...in connection with other
methods.

6 The method of A. da Cunha

A. da Cunha aims at finding the largest positive root of the polynomial,
evolving the digits by order. For this, he uses the signs of the values of
the polynomial and its derivatives at successive points. Unfortunately,
there appears to exist a major flaw in the proposal of the Portuguese
mathematician. We will clarify this in the next section. To illustrate his
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method, in the manuscript, A. da Cunha uses the following example

p(x) = x3 − 702x2 + 160600x− 16080000

p1(x) = 3x2 − 1404x+ 160600

p2(x) = 6x− 1404

Then, using Newton’s procedure, A. da Cunha immediately concludes,
just by looking at p2(x), that the bound M must be larger than 200
and then considers successively the numbers 300, 400, ... to find out that
M = 500 is an upper bound for the largest positive root (if it exists).
However, he also says that such root can not be smaller than 400...

Donc la racine cherchée est < 500 (par le théorém) elle ne
peut être < 400 (par le même théorém) et on vient de trouver
qu’elle n’est pas =400; donc le premier chiffre de la racine
cherchée est 4 manquant des centaines.

As observed in [Estrada2006], it looks like A. da Cunha is abusively using
the reciprocal of Newton’s theorem, and such reciprocal is not true, in
general. The polynomial has in fact a root between 400 and 500, which is
402. Estrada et al. conjecture a possible explanation for the conclusion of
A. da Cunha: x=400 fails the conditions of the Newton’s theorem because
p(400) < 0. Since p(500) > 0, it follows that there is a root between 400
and 500. Since this is such a simple argument (in fact this is essentially
the old “Stevin’s rule”, used by later algebraists in connection with other
methods, according to Nordgaard), can it be the case that A. da Cunha
did use it in an automatic manner, without caring to mention it?

In another example, presented in [Cunha1790], p. 134, the polynomial
is p(x) = x4 − 9x3 +15x2 − 27x+9; after correctly finding that M = 8 is
the smallest positive integer for which p and its derivatives are positive,
A. da Cunha states that the first digit is 7. Again, 7 fails the conditions of
Newton’s theorem just because p(7) < 0 and, being p(8) > 0, this shows
that there is, in fact, a root between 7 and 8.

7 A false reciprocal

Being clear to us that Newton’s theorem can not guarantee lower bounds
for the largest positive root, the method of A. da Cunha works well (in
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concluding that some x is a lower bound for such root) when p(x) < 0.
This is the situation in the two examples mentioned before and given by
A. da Cunha, one in the manuscript, the other one in [Cunha1790]. How
would A. da Cunha proceed if p(x) > 0 but some of the other polynomials
(derivatives) is negative? The answer is given by yet another example
which appears in [Cunha1790], pp. 136-137, in the context of dividing
p(x) by x−α, where α is some root already determined. In the following,
we will try to be as precise as possible in our translation of the original
text, in Portuguese.

Let x3 − 3x2 − 2x + 16 be the polynomial whose root is asked
for. Write (according to what has been taught)

((x− 3)x− 2)x+ 16

(3x− 6)x− 2

3x− 3

The smallest positive integer that makes all these expressions
positive is 3: then 2 is the first digit of the largest, or not the
smallest root of the proposed polynomial, if it exists.

In the process of determining the upper bound M = 3, A. da Cunha
has observed that the polynomial of second degree (the first derivative)
is negative in 2. Although p(2) > 0, he concludes that if a positive root
exists then it is between 2 and 3. This shows that A. da Cunha is, in fact,
using the reciprocal of Newton’s theorem. In continuation, A. da Cunha
makes a change of variable, as he learned from Lagrange

Supposing that the root is x = z + 2, we will use be the poly-
nomial (formed as taught before) z3 + 3z2 − 2z + 8 to find
the second digit, that is, the first digit in the fractional part.
Writing

((z + 3)z − 2)z + 8

(3z + 6)z − 2

we find that that it is equal to 0, 2.

Again using the false reciprocal, he takes 0, 2 to be a lower bound for the
largest root of the polynomial z3 +3z2 − 2z+8, even if this is positive in
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0, 2. He does so because the first derivative is negative in 0, 2. The same
happens for the polynomial z3 + 3, 6z2 − 0.68z + 7, 728 which is used to
find the next digit and gives the approximation 2,28. At this point, A. da
Cunha adds

This is all useless because x3 − 3x2 − 2x + 16 does not have
positive roots; and the method does not say that there is a
positive root; what it says is that there is no positive root that
exceeds or equals 3, or that is equal or smaller than 2; or equal
or smaller than 2,2; or equal or smaller than 2,28; and so on;
and this is all true.

It is true indeed for the given example, because the polynomial has no
positive roots, as A. da Cunha shows. From z3 + 3z2 − 2z + 8 = 0, he
writes2

z =
8

2− 3z − z2
(5)

and notes that this is impossible for z < 1. He then concludes that the
polynomial x3 − 3x2 − 2x+ 16 has no positive roots, replaces x with −x
and uses his method to find the negative root which is equal to -2.

At this point, one may observe that A. da Cunha managed to get the
correct answer for each one of the polynomials used, although the last
example shows that one may have to carry out useless calculations trying
to get an approximation for a root that does not exist. Worst than this is
the fact that the method may wrongly conclude that there is no positive
root. In modern words, the method may fail to converge.

8 A sufficient condition for the convergence
of the method proposed by A. da Cunha

From what has been said before, it may be understood that the method
of A. da Cunha will conclude, wrongly, that there are no positive roots
whenever the largest positive root is to the left of a point x for which
at least one of the derivatives is negative. This is because, using the
false reciprocal of the Newton’s theorem, the method will take such x
as a lower bound for the largest positive root, if it exists. One such

2In the original text, this appears as z = 8

2−3z−z3
.
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example has been given in [Estrada2006], p. 262; here, the polynomial is
p(x) = x3 − 7x2 +16x− 10, the second derivative 6x− 14 is negative in 1
and 2 and positive in 3, then it may be seen, in this order, that the first
derivative and the polynomial itself are both positive in 3. The conclusion
would be, using A. da Cunha’s own words,

the method does not say that there is a positive root; what it
says is that there is no positive root that exceeds or equals 3,
or that is equal or smaller than 2.

This is wrong since the polynomial has the root 1, the other two roots
being 3 ± i. As observed in [Estrada2006], p. 261, the reciprocal of
Newton’s theorem holds if all the roots of the polynomial are real. In
fact, it is not necessary that the roots are all real. We now show that a
sufficient condition for the reciprocal of Newton’s theorem to hold, that is,
for the method of da Cunha to converge, is that for any pair of imaginary
roots a± ib, the real part a is not larger than the largest positive root of
the polynomial, which will be denoted by rn. To prove this, let us write

p(x) =
n∏

j=1

(x− rj) (6)

where imaginary roots occur in conjugate pairs (the polynomial has real
coefficients). Each derivative p(k)(x), for k = 1, · · · , n − 1, is a sum of
products of factors of the form (x − rj). When the roots rj are all real,
such factors are all positive for x > rn and the derivatives are all positive.
For those products involving a pair of imaginary roots a± ib, we have

[x− (a+ ib)][x− (a− ib)]
∏

(x− rj) = [(x− a)2 + b2]
∏

(x− rj) (7)

for some values of j, and see that the sign of the overall product is in-
dependent of the roots a ± ib. Now, consider a product which is of the
form

[x− (a+ ib)]
∏

(x− rj) (8)

where none of the rj is the conjugate a− ib. In this case, there is another
product, in the expression of the derivative, which is equal to

[x− (a− ib)]
∏

(x− rj) (9)
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for the same values of j, and the sum of these two products is

2(x− a)
∏

(x− rj). (10)

Any derivative p(k)(x), for k = 1, · · · , n − 1, is the sum of expressions of
the form (7) and (10) and is therefore positive for x > a and x > rn.
When a < rn, no derivative can be negative for x > rn, therefore the
reciprocal of Newton’s theorem holds in this case.

Our condition a < rn is not necessary for the reciprocal of Newton’s
theorem to hold3. There are polynomials for which the condition is not
true and, nevertheless, the polynomial and derivatives are all positive for
x > rn. This is the case of the polynomial with roots 0, 3 and 4 ± 3i.
Therefore, da Cunha’s method will work well in this case, in spite of being
rn = 3 < a = 4.

We conclude this section by noting that the polynomials used by A.
da Cunha in the illustration of his method satisfy our condition, with the
exception of the polynomial x3−3x2−2x+16, mentioned in the previous
section, which has no positive roots.

9 Change of variables and derivatives

As described before, the method proposed by A. da Cunha uses a change
of variable and produces a new polynomial for each digit computed. In
fact, unlike in the methods proposed by Lagrange, which inspired A. da
Cunha, the change of variables is not essential in da Cunha’s method,
in the sense that it can be formulated in an equivalent manner without
changing the variable.

If, for some displacement value e, we replace x with z + e in the
expression of p(x), getting a new polynomial q(z), then we have

q(z) = p(z + e) (11)

q(k)(z) = p(k)(z + e), k = 1, · · · , n. (12)

The previous relations have a simple visualization: the graphic of q is
simply a translation in the x-direction of the graphic of p and so the

3Interestingly, the condition is necessary in the case of cubic polynomials; when
there is a pair of complex conjugate roots with real part a larger than the real root r,
the second derivative is equal to (x−r)+2(x−a), which is negative for x < (r+2a)/3.
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same is true for the graphic of the derivatives. It is therefore clear that
the original polynomial p can be used throughout the entire process, to
compute all the digits in the approximation, not just the first digit.

At this point, we wish to emphasize that our observation on the change
of variables (not being essential) is not a criticism to the method proposed
by A. da Cunha. The purpose of our observation is only that of exposing
the essence of da Cunha’s method, in order to simplify our analysis of the
efficiency of the method.

10 Efficiency of A. da Cunha’s method

The method proposed by A. da Cunha converges to rn, the largest positive
root of a given polynomial p (if it exists), whenever no derivative of p has
a real root larger than rn. In such cases, the speed of convergence of the
method is that of Stevin’s rule: since, in each iteration, one more correct
decimal place is added to the previous approximation, the error in each
iterate is bounded by one tenth of the error in the previous iterate, that
is,

rn − xi+1 ≤ rn − xi

10
(13)

where xi denotes the approximation produced in the ith iteration (here no
absolute value is required in the expression of the errors since it is always
xi ≤ rn).

A sequence {xi} is said to converge to the limit L with order of con-
vergence equal to p when

lim
i→+∞

|xi+1 − L|
|xi − L|p = µ (14)

for some constant µ. From (13) it follows that the method of A. da Cunha
converges to rn with order p = 1, that is, the method converges linearly.

Now, if p(k)(xi), for k = 1, · · · ,m, with m ≤ n− 1, are all positive, it
follows that the same is true for every x > xi. An efficient implementation
of the method should take this into account and avoid useless computa-
tions. A. da Cunha has done so, in an implicit manner. For instance, in
the case of the polynomial p(x) = x4−9x3+15x2−27x+9, the derivatives
are all positive in 7, and the change of variables x = z + 7 produces the
new polynomal z4 + 19z3 + 120z2 + 232z − 131. Looking at the signs of
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the coefficients of this polynomial, A. da Cunha concludes that the deriva-
tives will be all positive for z > 0, therefore, there is no need to compute
them. Next, in the determination of the third correct place, he gets the
polynomial z4 + 20, 6z3 + 143, 76z2 + 337, 376z − 17, 7584 and, again, ob-
serves that the derivatives do not need to be computed. Although the
Portuguese mathematician has avoided the redundant computation of the
derivatives, it is not clear that he came to see the general result.

The method of A. da Cunha can be understood as a method for finding
an interval that contains the largest positive root of a given polynomial.
It is for this end that the computations of the derivatives do play a role.
Under our assumption that the derivatives do not have real roots larger
than rn, when this root has been isolated, the derivatives will all be posi-
tive and so it is the sign of p(x) only that brings useful information for a
more precise computation of the root.

It should be noted that in the iterations following the isolation of the
root, bisection will be more efficient than evolving the decimal digits by
order. In the bisection method (which uses the middle point of the current
interval containing the root) the error is halved in each iteration, therefore
the number of iterations required for each digit is log2(10) ≈ 3, 3. In da
Cunha’s method, one decides which one of the digits 0, ..., 9 comes next in
the approximation of the root. If it is 0, then one single computation of the
polynomial (which will be positive when we test 1 as the next digit) will
be enough. This is the best possible case. In the worst possible case, the
next digit is 8 or 9 and p will need to be computed for as many as 9 points
to finish the iteration. The average number of times that p needs to be
computed per iteration is therefore (1+2+3+4+5+6+7+8+9+9)/10 =
5, 4 which is larger than log2(10) in bisection.

11 A. da Cunha and Newton’s method

The popular iterative formula

xi+1 = xi −
f(xi)

f ′(xi)
(15)

for computing some root of the equation f(x) = 0 has its origins in New-
ton, incidental to his work in computing areas. J. Raphson developed the
original method of Newton (the method is frequently referred to as the
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Newton-Raphson’s method) but, according to [Nordgaard1922], p. 15, the
functional expression in (15) is due to Lagrange (Simpson used it before
for solving simultaneous equations). Newton and Raphson computed the
same approximations as formula (15) but using transformed equations.
The method and its illustration with the classical example y3 − 2y− 5, as
given by Newton, are in [Newton1736], pp. 5-6. About Newton-Raphson’s
method, Nordgaard wrote (see [Nordgaard1922], p. 59)

... Its technique was improved by DeLagny, Halley, Taylor and
Simpson, and its scientific basis was clarified and strengthened
by Lagrange, Fourier, Budan and Sturm. No other method of
approximation has come up to it in general popularity.

The method was so popular that it is almost sure that A. da Cunha
knew about it. In his manuscript, A. da Cunha wrote

On me permettra donc de proposer une autre méthode, non
seulement générale e rigoureuse, mais d’une exécution expéditive
et aisée, que souvent elle rend inutiles les meilleurs méthodes
que nous ayons, celles de Sir Isaac Newton pour les racines
rationelles.

In our opinion, it is the popular Newton-Raphson’s method that A. da
Cunha has in mind when he writes this and it is that same method that
the Portuguese mathematician wants to beat with his new method.

In [Cunha1790], p. 138, A. da Cunha, without any mention to the
works of Newton, or of anyone else, presents Newton-Raphson’s method
in the following way. He takes the equation A+Bx+Cx2+Dx3+ · · · = 0
and makes the substitution x = r + z to produce

A+Br + Cr2 +Dr3 + · · ·+ (B + 2Cr + 3Dr2 + · · · )z + · · · (16)

Then, assuming that r is the number of the first two digits of the root, he
neglects the terms which involve powers of z larger than one, to write

r − A+Br + Cr2 +Dr3 + · · ·
B + 2Cr + 3Dr2 + · · · (17)

as the new approximation for the root which he states to have twice as
many the number of correct digits (this is to say that he expects the
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method to converge quadratically, which is in fact the case for simple
roots).

A. da Cunha uses Newton-Raphson’s method to compute the largest
positive root of the polynomial x4 − 9x3 + 15x2 − 27x+ 9. Starting with
the initial approximation r = 7, 4, he gets the successive approximations
r = 7, 45, r = 7, 4514, r = 7, 45149836, etc. We emphasize that A. da
Cunha uses the same expression (17) in every iteration and, doing so, he
is in fact using the functional expression (15) due to Lagrange, that is,
the Newton’s method in its modern formulation (without transforming
the polynomial through changes of variable).

A. da Cunha adds that praxis has shown that this method works
well. From here, one can conclude that he is presenting a method which
he reckons has been known for quite some time. However, the interesting
point is the following: A. da Cunha says that one possibility is to use
his own method to produce the initial approximation 7, 4 that is then
improved upon with Newton’s method. It looks like that, at this point
in his work, the Portuguese mathematician has already understood that
Newton’s method converges faster than his own method and so, rather
than trying to “beat the opponent”, he looks for an ally! And it is quite
true that Newton’s method alone can not do the job since good initial
approximations are required for the method to converge fast (if at all).

If our previous observations on Newton’s and da Cunha’s methods are
correct, as we believe they are, then an immediate conclusion is that the
manuscript has been written before the material in [Cunha1790] to which
we have been referring. However, this conclusion does not agree with that
in [Estrada2006], p. 256, and may deserve further discussion.

12 Conclusions

The method proposed by da Cunha for finding the largest positive root rn
of a polynomial equation p(x) = 0 works well if and only if the reciprocal
of Newton’s theorem, which gives an upper bound for the positive roots,
is true. Such reciprocal holds if and only if no derivative of p has a real
root larger than rn. We have shown that this condition is certainly true
whenever any pair of complex conjugate roots has real part smaller than
rn.

The derivatives play a role in da Cunha’s method, in producing a
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lower bound for the root, only until one point xi is found for which the
derivatives are all positive. This is because for x such that x > xi the
derivatives are all positive and if p(xi) < 0 one may conclude that there
is one and only one root larger than x > xi. From here, the calculation
of the root uses the value of the polynomial only. Therefore, da Cunha’s
method is in fact a criteria for locating the largest positive root (which
may fail, if a pair of complex roots has real part larger than the largest
positive root).

In the final stages (when the root is already isolated from the roots
of the derivatives), da Cunha’s method requires more iterations than the
simple bisection method (even if both methods converge linearly). The
Portuguese mathematician appears to have become aware of the slow
convergence of his own method and has suggested its use for finding initial
approximations to be used with the Newton-Raphson’s method.
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of two propositions of Álvaro Tomás
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Abstract

In the third chapter of the second treatise of the Liber de triplici
Motu, printed in 1509, Álvaro Tomás presents some results con-
cerning local movements that are a continuation of those given
by Nicole Oresme in the second half of the 14th century in the
Tractatus de Configurationibus Qualitatum et Motuum. Oresme
had given diagrams depicting all the aspects of the question, from
its statement to its solving procedure. It may seem strange that
in the time span of one and a half centuries geometry has disap-
peared, but it should be taken into consideration that by 1509 the
reproduction of geometrical diagrams posed very hard problems
to the printing techniques. It is probable that the absence of di-
agrams in Tomás’ treatise was just caused by the will to reduce
the costs of printing.
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do Porto (CMUP), financed by FCT (Portugal) through the programmes POCI
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Anyway, there can be no doubt about the affiliation of these re-
sults of Tomás’ in the last chapters of Oresme’s treatise. The
purpose of this short presentation is to propose geometrical ver-
sions of the rhetorical arguments with which Tomás proves two
of the most important conclusiones of this chapter of the Liber
de triplici Motu, namely, the second and the fourth ones. These
versions are strictly based on Tomás’ text and on the rules of the
theory of configurations as practised by Oresme.

Keywords: Tomás, numerical series, scholastic kinematics, Oresme’s

theory of configurations.

Introduction

Álvaro Tomás published his Liber de triplici Motu in Paris in 1509. Some
of the results about local movement in this treatise have caught the at-
tention of Heinrich Wieleitner in 1914 for admitting an interpretation in
terms of real number series2. The reader of this part of Tomás’ treatise is
immediately reminded of the last sections of Nicole Oresme’s Tractatus de
Configurationibus Qualitatum et Motuum, because of the identical (and
indeed rather unexpected) way in which the subject line is subdivided
into infinitely many partes proportionales.

Besides this striking similarity, there are also important differences
between the two texts. Tomás restricts himself to the study of local mo-
tions, whereas Oresme had considered these as a particular instance of
more general distributions of qualities. More importantly, Oresme’s con-
figurationes are totally absent from Tomás’s treatise. There are very few
geometrical diagrams in the Liber, and absolutely none in the part that
will interest us here.

Álvaro Tomás3 was a master of arts at Coqueret college in Paris, one
and a half centuries after Nicole Oresme had taught at the same Univer-
sity. Tomás mentions Oresme in the Liber several times, although he spells
this name as “Horem” or “Horen”. Therefore, there can be no question
as to whether Tomás knew the work of Oresme. Furthermore, it is highly

2H. WIELEITNER 1914: “Zur Geschichte der unendlichen Reihen im christlichen
Mittelalter”, in Bibliotheca Mathematica 14, pp. 150-168. A Portuguese translation
by S. Gessner of this article is found in H. WIELEITNER 2010.

3A good summary of what is known about Álvaro Tomás’ life can be found in H.
LEITÃO 2000.
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probable that he was well acquainted with the theory of configurations,
which is believed to have been a creation of Oresme and is exposed in the
above mentioned De Configurationibus.

Had Tomás chosen to use configurationes, they would have proved most
helpful in the explanation of some of his questions and in the exposition of
their solutions. I shall try to illustrate this statement taking the example
of two of Tomás’ kinematic conclusiones.

Prime partis Capitulum quintum

Tomás’ kinematic examples and arguments are based on arithmetic foun-
dations regarding a theory of proportions in the Nicomachean tradition.
In the fifth chapter of the first part of his treatise4 Tomás gives some
results concerning magnitudes in continuous proportion. The number of
such magnitudes being infinite, one obtains results about geometrical pro-
gressions.

To have an idea of the sort of prerequisite established by Tomás in
this chapter, we only have to look at three of his statements, namely, the
3rd and 4th suppositions and the 1st conclusion. For the sake of brevity,
they are given here in modern notation:

Let p1, p2, . . . , pn, . . . denote the parts into which a whole is subdivided.
We shall consider the case p1

p2
= p2

p3
= p3

p4
= · · · = g. In other words,

p1, p2, . . . , pn, . . . form a geometrical progression of ratio 1
g
.

Tomás’ “third supposition” is the following implication:

p1
p2

=
p2
p3

=
p3
p4

= · · · = g =⇒ p1 − p2
p2 − p3

=
p2 − p3
p3 − p4

= · · · = g.

The “fourth supposition” is merely a corollary of the previous one:

p1 + p2 + p3 + · · ·
p2 + p3 + p4 + · · ·

=
p2 + p3 + p4 + · · ·
p3 + p4 + p5 + · · ·

= · · · = g =⇒
p1

p2
=

p2

p3
=

p3

p4
= · · · = g.

The “first conclusion” is the converse implication of the latter:

p1
p2

=
p2
p3

=
p3
p4

= · · · = g =⇒ p1 + p2 + p3 + · · ·
p2 + p3 + p4 + · · · = · · · = g.

4Capitulum quintum in quo agitur de diuisione corporis in partes porportionales qua
proportione rationali quis voluerit (Fifth chapter, in which one handles the division of
a body into proportional parts according to the ratio one wishes).



Geometrical version of two propositions of A. Tomás 118

The first and last of these three implications may look like mere re-
statements, for the special case of geometrical progressions, of Euclid’s
propositions Elements VII, 11 and 12 (for integers) or Elements V, 19 and
12 (for magnitudes). However it is important to remark that, whereas
Euclid always restricts himself to a finite number of quantities, Tomás is
admitting that the whole is subdivided into infinitely many parts

p1, p2, . . . , pn, . . . .

These results are instrumental in the third chapter of the second trea-
tise (Secundi tractatus Capitulum tertium), where Tomás studies move-
ments taking place in a time interval which is subdivided into an infinity
of proportional parts. As Wieleitner has noticed, Tomás’ propositions in
this part of the Liber may be interpreted in terms of infinite series of
positive numbers5.

Before we go into any technical detail, an observation should be made
concerning the absence of algebraic symbolism in the Liber. Not only the
three propositions above, but indeed all of Tomás’ kinematic conclusiones,
are stated rhetorically.

Another instance of this lack of algebraic notation is the following.
Tomás denotes by the letter g the ratio of any proportional part to the
next one. Thus, by the “first conclusion” above, g is also the ratio of
the whole to the residue of the first proportional part. Tomás denotes
by another letter, f in this instance, the ratio of the whole to its first
proportional part. The obvious equality

1

f
+

1

g
=

p1
p1 + p2 + p3 + p4 + · · · +

p2 + p3 + p4 + · · ·
p1 + p2 + p3 + p4 + · · ·

then reduces to
1

f
+

1

g
= 1.

Tomás is perfectly conscious of the relationship between the ratios f
and g expressed by this equality, but he is unable to write it down in such
a condensed way. All he can do is express it rhetorically and give some
(more or less complicated) examples. We should keep it in mind, though,
in order to understand Tomás arguments.

5Of course there are serious anachronisms in this interpretation, not the least of
which is viewing geometrical or physical magnitudes as positive real numbers.
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Secundi tractatus Capitulum tertium

The sort of movements that Tomás considers in the third chapter of the
second treatise6 may look rather strange to many, but not to those ac-
quainted with the last sections7 of Oresme’s De Configurationibus. Time
is subdivided into proportional parts and the mobile moves with constant
velocity during each one of these parts. There are, therefore, infinitely
many “jumps”. What might be the degree of velocity at those instants is
not said, but one should of course be cautious not to fall into the trap of
reading (or rather: misreading) Tomás from an anachronistically “func-
tional” point of view. Besides, Tomás’ purpose does not seem to be the
study of existing movements, either natural or artificial. He is much more
interested in exploring imaginary situations that allow him to find infinite
series of spaces or velocities that do have a sum, in spite of their infinitude.

We shall use a unified and simplified notation. Thus, let

T be the whole time;

V be the mean velocity;

S be the whole space traversed during T .

Now let T be subdivided into proportional parts according to ratio g
and, for each n ∈ N, let

tn be the nth proportional part of time;

vn be the (constant) velocity during tn;

sn be the space traversed during tn with the velocity vn.

One should note that V is the velocity that would make the mobile
traverse exactly the space S during the time T if the movement were

6Capitulum tertium in quo ostenditur modus cognoscendi siue commensurandi mo-
tum uniformiter difformem et difformiter difformem quo ad tempus quo ad velocitatem
et tarditatem in omni specie (Third chapter, in which the way is shown to know or
measure the uniformely difform and difformly difform movement, both as to time and
as to velocity and slowness in all species).

7Sections III, 8, 9 and 10 are meant. Section III, 11, which is the very last one,
deals with an infinitely long subject or time, subdivided into equal parts.
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uniform8.
We shall concentrate on the second and the fourth of Tomás’ twelve

conclusiones of this chapter9. As will presently be seen, they both deal
with the same kinematic situation: a time interval divided into propor-
tional parts and a mobile which in the nth time subinterval moves with a
velocity equal to n times the velocity it had in the first time subinterval.
Symbolically, ∀n ∈ N vn = nv1.

This is a generalization of the situation studied by Nicole Oresme in
De Configurationibus III, 8. In fact, Tomás admits subdivisions of time
according to any ratio greater than unity10, whereas Oresme considered
only the case in which each time subinterval is the double of the next one.

In the 2nd conclusion Tomás proves that the subdivision of velocities
into proportional parts is analogous to the subdivision of times: the mean
velocity, V , has the same ratio to v1 as the whole time, T , to the first
proportional part of time, t1. Thus,

(
∀n ∈ N vn = nv1

)
=⇒ V

v1
= f.

The situation regarding spaces is quite different. In his 4th conclusion
Tomás proves that the ratio of whole space, S, to the first space, s1, is
the duplicate ratio of the ratio of corresponding times. Thus,

(
∀n ∈ N vn = nv1

)
=⇒ S

s1
= f2.

As we have previously mentioned Oresme had considered only the
particular case in which f = g = 1

2 , concluding of course that V = 2v1
and that S = 4s1. In order to construct his example, he started from
two equal squares; each one of these squares has one side subdivided
into proportional parts according to the ratio 1

2 ; this subdivision of the
side induces an analogous subdivision of the corresponding square into

8Tomás uses the expression velocitas totalis (as well as several other Latin variants)
to express what would today be called the mean velocity (and what is represented by
V in this text). Oresme, on the contrary, uses velocitas totalis to express the space
traversed by the mobile. An interesting work on this topic is P. SOUFFRIN 1997.

9A more detailed analysis of the twelve conclusions may be found in C. CORREIA
DE SÁ 2005.

10One ought to be aware that the terminology is different from the one used today.
The ratio according to which time is subdivided is necessarily greater than the ratio
1:1, because it means the ratio of any proportional part of time to the next part.
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proportional parts (which are rectangles), as in Diagram 1 (a). Next
Oresme moved the parts of the second square and places them on top of
the first square and on top of one another, as shown in Diagram 1 (b).
The bottom horizontal line represents the subject (which is linear) and all
the possible vertical lines inside the configuration are taken to represent
the corresponding degrees of intensity of the quality under scrutiny. The
top contour pictures the distribution of the quality along the subject and
the area of the configuration represents the totality of the quality.

When interpreted kinematically, the configuration in Diagram 1 (b)
obviously corresponds to: ∀n ∈ N vn = nv1.

Diagram 1 (a) Diagram 1 (b)

Secunda conclusio

One may distinguish two steps in Tomás’ rhetorical proof of the second
conclusion:

- In the 1st step Álvaro Tomás begins by extending velocity v1 to the
whole time interval; next he extends the excess of v2 over v1 to the residue
of t1; then he extendes the excess of v3 over v2 to the residue of t1 and t2;
and so on indefinitely.

- In the 2nd step Tomás considers the velocity that, if it were extended
to the whole time, would have the same effect11 as the excess of v2 over

11The effect of a certain degree of velocity extended to a certain time interval is of
course the space (or the length of the space) traversed during that time by a mobile
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v1 has being extended to the residue of t1; next he considers the velocity
that, if it were extended to the whole time, would have the same effect
as the excess of v3 over v2 has being extended to the residue of t1 and t2;
and so on.

If we choose to use Oresme’s theory of configurations, these two steps of
Tomás’ proof have very easy visualizations. The 1st step can be explained
by the passage from Diagram 2 (a) to Diagram 2 (b). The 2nd step consists
in the passage from Diagram 2 (b) to Diagram 2 (c).

Diagram 2 (a) Diagram 2 (b) Diagram 2 (c)

The configurations in Diagram 2 (a) and (b) are the same, only their
subdivision into partial rectangles changes. The rectangles in Diagram
2 (b) (all with equal heights) have the same area as the corresponding
ones in Diagram 2 (c) (all with equal bases); since the bases of the former
decrease according to the ratio g, the heights of the latter must decrease
exactly in the same ratio. Therefore, in Diagram 2 (c), the height of the
whole rectangle (which represents the degree of intensity of V ) must be to
the height of the first rectangle (which represents the degree of intensity
of v1) in the ratio f .

Quarta conclusio

The third conclusion works like a lemma for the proof of the next conclu-
sion. It states that, when the velocity is constant, the traversed space is
proportional to the time elapsed. In fact, Tomás says that, if the velocity
v1 be extended to the whole time, then S

s1
= T

t1
.

In the fourth conclusion Tomás considers once more the same subdivi-
sion of times and the same distribution of velocities as in the second one.

with such a velocity.
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But now he is interested in the question of the spaces traversed, or rather,
in the ratio between the space traversed during the whole time and the
space traversed during the first proportional part of time. Tomás’ proof
is based on the second and third conclusions.

Just as before, let T , S, V , t1, s1 and v1 denote the whole time, the
whole space, the mean velocity, the first proportional part of time, the
space traversed during t1 and the velocity during t1. Tomás also needs to
consider one of the auxiliary movements which had already been useful
in the proof of the second conclusion; namely, he considers the space that
would be traversed by the mobile during the whole time T if it had the
constant velocity v1. We shall use the letter σ to denote this space12.

Using once again configurations à la Oresme, the spaces s1, σ, S cor-
respond to the shaded rectangles in Diagrams 3 (a), (b), (c), respectively.
This makes the following argument by Tomás visually clear.

Diagram 3 (a) Diagram 3 (b) Diagram 3 (c)

The ratio of S to σ is the same as the ratio of V to v1, because the two
movements occur in the same time; but, by the second conclusion, we
already know that this ratio is f . By the third conclusion, the ratio of σ
to s1 is the same as the ratio of T to t1, because the velocity is the same;
by definition, this ratio is also f . Compounding both ratios, S is to s1 in
the ratio f2.

Symbolically:

(
S

σ
=

V

v1
= f ∧ σ

s1
=

T

t1
= f

)

=⇒ S

s1
=

S

σ
· σ

s1
= f2.

12Tomás denotes the spaces S, σ, s1 by the letters a, b, c, respectively, but there is
no need to introduce the two new letters a and c.
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Concluding remark

It is not probable that Tomás had any sort of philosophical objections
to the use of Oresme’s configurationes in the analysis of kinematic ques-
tions. It is more likely that the absence of geometry in this part of the
Liber is due to the financial cost that diagrams represented in book print-
ing at the beginning of the sixteenth century. Whatever the reason may
have been, Oresme’s theory of configurations is not present in the Liber
and we lack other documental evidences that might allow us to admit
the possibility that Tomás’ mental process of discovery of his kinematic
conclusiones was based on a geometric reasoning. In the present state of
development of Tomás’ intellectual biography, we must renounce any un-
conditional statement in that direction, no matter how tempting it might
appear. The translation of Tomás’ rhetoric arguments into Oresmes’s ge-
ometrical language is mathematically sound and pedagogically effective,
but historically undocumented. One may only wish for the development
of the studies on Renaissance mathematical physics in Paris, in order to
be able to decide whether or not such a translation constitutes any treason
either to the spirit of the Liber de triplici Motu or to the genius of Álvaro
Tomás.
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Abstract

We briefly refer the kind of constructions of the irrational numbers
that appeared in the last quarter of the nineteenth century.
We present the construction due to Dedekind, known as Dedekind
cuts. In the set of Dedekind cuts we define the sum and the prod-
uct of two cuts and we introduce a total order relation, providing
a few technical details about the proof that this structure is a
complete ordered field, unique up to isomorphism.

Key words: Construction of real numbers, Dedekind cuts.

Dedicated to Fernanda Estrada, on the occasion of her 80th birthday

1 Introduction

In 1821, in his “Cours d’Analyse” (see [5]), Cauchy revealed his concerns
about the foundations of Analysis, raising the following questions:

1Work supported by the Research Centre of Mathematics of the University of Minho
through the FCT Pluriannual Funding Program.
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What is a derivative, really? Answer: a limit.

What is an integral, really? Answer: a limit.

What is an infinite series, really? Answer: a limit.

This leads to:

What is a limit, really? Answer: a number.

And finally, the last question:

What is a number?

In 1858, Dedekind wrote (see [2]): As a professor in the Polytechnic
School in Zürich I found myself for the first time obliged to lecture upon
the elements of the differential calculus and felt more keenly than ever
before the lack of a really scientific foundation for arithmetic.

At that time, the rational numbers were well understood. This was
not the situation regarding the non-rational algebraic numbers. And, for
transcendental numbers, the first example was given by Liouville (see [8]),
only in 1851.

Dedekind started thinking about a construction of the real numbers.
In his book “Essays on the theory of numbers - continuity and irrational
numbers; the nature and meaning of numbers” ([2]), he stated he had
succeeded on the 24th of November of 1958 and he wrote , . . . but I could
not make up my mind to its publication, because in the first place, the
presentation did not seem altogether simple, . . . . This construction was
published only in 1872, coinciding with two publications on the same sub-
ject, one of Heine and another of Cantor. These two last constructions
had nothing in common with the one of Dedekind: while Dedekind intro-
duced the notion of cut, the other two authors used the notion of Cauchy
sequence. The construction due to Dedekind is of great beauty and el-
egance, using very few mathematical tools, in fact only elementary set
theory.

Another construction, due to Weierstrass, using infinite decimals, was
published as course notes by a student, Kossac, also in 1872. The most
known version of this construction was published by Pincherle, in 1880.

The perception of the difficulties felt by the mathematicians in the
last quarter of the nineteenth century can be slightly understood by the
following sentences:
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√
3 is thus only a symbol for a number which has yet to be

found, but is not its definition. This definition is, however,
satisfactorily given by my method as, say

(1.7, 1.73, 1.732, . . .).

(G. Cantor)

Numbers are the free creation of the human mind.

(R. Dedekind)

I take in my definition a purely formal point of view, calling
some given symbols numbers, so that the existence of these
numbers is beyond doubt.

(H. Heine)

And, out of the context, but irresistible. . .

It is true that a mathematician who is not also something of
a poet will never be a perfect mathematician.

(K. Weierstrass)

What was the situation in Portugal, at the end of the nineteenth cen-
tury?

In the first edition of the Curso de Análise Infinitesimal - Cálculo
Diferencial ([4]), Gomes Teixeira presented a brief construction of the set
of real numbers in a note, at the end of the book, using the Dedekind cuts
and he referred there the works of Dedekind, Dini, Heine and Tannery
(for details about the life and work of Gomes Teixeira, see [1]). The
construction presented in that first edition was not so rigorous as the
constructions proposed by Dedekind and Weierstrass. Nevertheless, his
didactic concerns are admirable.

In the three subsequent editions (1890, 1896 and 1906), Gomes Tei-
xeira improved his presentation of the set of real numbers. The con-
struction of the irrational numbers appears in the first chapter of the
introduction and it is obvious the influence of the presentation of Dini,
who also used the construction of Dedekind.
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In the forth edition, Gomes Teixeira proved the completeness of R and
provided a long list of bibliographic references, concerning the construc-
tions of the real and complex numbers.

In this paper, we define the Dedekind cuts and present the definitions
of sum and product of two cuts. We introduce an order relation in the set
of cuts and we verify that such set, endowed with these operations and this
order relation, becomes a totally ordered field, having the fundamental
property of completness with respect to the order relation. Finally we
prove the uniqueness of such a field, up to isomorphism.

In many calculus courses, the set of real numbers is introduced ax-
iomatically as the unique complete ordered field. The construction of
Dedekind is an efective tool to verify that this structure exists, in fact.

2 Dedekind cuts

It is well known that, starting from the Peano Axioms, we have the nat-
ural numbers well defined. Simple mathematical concepts leads us easily
to the construction of integer and rational numbers. One aim of the first
construction is to find an adequate set, containing the natural numbers,
where the subtraction is a closed operation. The set of the rational num-
bers extends the set of the integer numbers in a way that the division
operation is closed in this set apart zero. The construction of the rational
numbers raises another questions:

1. Is it true that any subset of Q bounded from above has a least upper
bound?

2. Is it true that every Cauchy sequence of rational numbers has a
rational limit?

The answer to both questions is obviously no:

•
{(

1 + 1
n

)n
: n ∈ N

}
is a bounded subset of Q with no rational least

upper bound;

•
((
1 + 1

n

)n)

n
is a Cauchy sequence not convergent in Q .

We wish to find out a set C , with two operations, the sum, +, and the
product, · , and an order relation, ≤, such that (C ,+, ·,≤) is an ordered
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field which is complete (i.e., all its subsets bounded from above have a
least upper bound). And this set C must have a subset that may be
identified with the ordered field of the rational numbers.

Definition 1. A (Dedekind) cut in Q is a pair (A,B) ∈ P(Q) × P(Q)
such that:

• A ∪B = Q, A ∩B = ∅, A 6= ∅, B 6= ∅;

• if a ∈ A and b ∈ B then a < b;

• A has no maximum.

We denote such a cut by A|B and the set of Dedekind cuts by C .

We observe that, if A|B is a cut, then B = Q \A and, given x ∈ Q, if
there exists a ∈ A such that x < a, then x ∈ A.

Definition 2. A real number is a cut in Q.

Let us present two examples:

1. A|B = {x ∈ Q : x < 2}
∣
∣{x ∈ Q : x ≥ 2};

2. A|B = {x ∈ Q : x ≤ 0 or x2 < 2}
∣
∣{x ∈ Q : x > 0 and x2 ≥ 2}.

Informally, we understand that the cut defined in 1. represents the
rational number 2 while the cut defined in 2. does not represent any
rational number. In fact, it defines a new (irrational) number, which is
called

√
2, by convention.

Below we make precise the above underlying idea:

• we say that a cut A|B is a rational number if B has a minimum and
we identify the cut A|B with minB, representing it by (minB)∗;
reciprocally, given any rational number c, we identify it with the
cut {x ∈ Q : x < c}

∣
∣{x ∈ Q : x ≥ c}, which we simply denote by c∗;

• a cut A|B such that B has no minimum shall be understood as a
new number, called an irrational number.

In the set of cuts C we define the following order relation:
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Definition 3. Given two cuts x = A|B and y = C|D we say that x ≤ y
if A ⊆ C and that x < y if x ≤ y and x 6= y.

We say that a cut x = A|B is positive if 0∗ < x.

It is easy to prove that this relation is a total order.

The sum of two subsets X and Y of Q is defined as follows

X + Y = {x+ y : x ∈ X, y ∈ Y }

and the symmetric of a subset X of Q by

−X = {−x : x ∈ X}.

It is immediate to verify that:

- if X and Y are subsets of Q, so is X + Y ;

- if A|B,C|D ∈ C then ∅ 6= A+ C 6= Q;

- if ∅ 6= X 6= Q, we also have ∅ 6= −X 6= Q.

Proposition 4. Given two cuts A|B, C|D, the pair (A+C)|
(
Q\(A+C)

)

is a cut.

Proof. By the observations above, we know that A+ C and Q \ (A+ C)
are not empty.

To prove that if x ∈ A+C and y ∈ Q\(A+C) then x < y, we start by
proving that any rational number below an element of A + C belongs to
A+C: in fact, if x < a+c for some a ∈ A and c ∈ C then x−a < c which
implies that x−a ∈ C, because C|D is a cut. So x = a+(x−a) ∈ A+C.
It follows that if x ∈ A+C and y ∈ Q \ (A+C) then, necessarily, x < y.

It only remains to prove that A + C has no maximum: as A|B and
C|D are cuts, then neither A nor C have maximum. So, given x ∈ A+C,
x = a + c, for some a ∈ A and some c ∈ C and there exists a′ ∈ A and
c′ ∈ C such that a < a′ and c < c′. So x = a + c < a′ + c′ and x is not
maximum of A.

Definition 5. Given two cuts A|B, C|D ∈ C we define its sum by

A|B + C|D = (A+ C)|
(
Q \ (A+ C)

)
.



About the reality of the real numbers 133

Proposition 6. (C ,+) is an abelian group.

Proof. The proofs of the commutativity and associativity of + are imme-
diate.

We recall the notations

Q− = {x ∈ Q : x < 0} and Q+
0 = {x ∈ Q : x ≥ 0}.

Let us prove that the cut 0∗ = Q−|Q+
0 is the element zero of C : given

a cut A|B,
A+Q− = {x+ y : x ∈ A, y ∈ Q−} = A.

In fact,

• A+Q− ⊆ A, because for x ∈ A and y ∈ Q− we have x+ y < x;

• A ⊆ A+Q−, because given x ∈ A, since A has no maximum, there
exists x′ ∈ A such that x < x′. Then x = x′ + (x− x′) ∈ A+Q−.

A|B+0∗ = A|B+Q−|Q+ = (A+Q−)|(Q\(A+Q−)) = A|(Q\A) = A|B.

In the case where A|B represents the rational number a, the symmetric
cut of A|B is {x ∈ Q : x < −a}|{x ∈ Q : x ≥ −a}, because

A+ {x ∈ Q : x < −a} = {x+ y : x < a, y < −a} = Q−,

which means that A|B + {x ∈ Q : x < −a}|{x ∈ Q : x ≥ −a} = 0∗.
In the case where A|B is an irrational cut, the symmetric of A|B is

the cut (−B)|(−A) (it is immediate to verify it is a cut). Let us prove
that A−B = Q−:

• let a ∈ A and b ∈ B. As a < b then a− b < 0, so A−B ⊆ Q−;

• to prove that Q− ⊆ A−B is equivalent to prove that Q+
0 ⊇ B −A.

Given a ∈ A and b ∈ B, as a < b then 0 < b− a.

So A|B + (−B)|(−A) = 0∗.

Notation: We represent by −x the symmetric of a cut x.

We are now able to define the product of two cuts.
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Definition 7. Let x = A|B and y = C|D be two cuts.

If 0∗ < x and 0∗ < y, we define x · y = E|F by:

E = {r ∈ Q : ∃ a ∈ A ∃ c ∈ C 0 < a, 0 < c, r < ac}, F = Q \ E.

In the other cases, we define:

x · y =







0∗ if x = 0∗ or y = 0∗;

−
(
x · (−y)

)
if 0∗ < x and y < 0∗;

−
(
(−x) · y

)
if x < 0∗ and 0∗ < y;

(−x) · (−y) if x < 0∗ and y < 0∗.

Theorem 8. (C ,+, ·,≤) is a totally ordered field.

Proof. We have already observed that (C ,+) is an abelian group and
(C ,≤) is a totally ordered set.

We will only prove that the element one of C \ {0∗} is the rational cut
1∗ and we will find out the inverse of any cut x 6= 0∗ (denoted, in what
follows, by x−1).

Given a positive cut A|B, the cut A|B · 1∗ is, by definition, the cut
E|F , where

E = {r ∈ Q : ∃ a ∈ A ∃x ∈ {y ∈ Q : y < 1} 0 < a, 0 < x, r < ax},
and it is easy to understand that E = A. So, E|F = A|B, as we wanted
to prove. If A|B is a negative cut, then −(A|B) is a positive cut and

A|B · 1∗ = −((−(A|B)) · 1∗) = −(−(A|B)) = A|B.

To find the inverse of a positive cut A|B, we suppose, first, that A|B
represents the rational number a > 0. Then the cut

{x ∈ Q : x < 1
a
}|{x ∈ Q : x ≥ 1

a
}

is the inverse of A|B. To prove our statement, we need to check that the
product of these two cuts is 1∗. Let E|F denote this product. Then, by
definition,

E ={r ∈ Q : ∃x ∈ Q ∃ y ∈ Q 0 < x < a, 0 < y < 1
a
, r < xy}

={r ∈ Q : r < 1}
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and so E|F = 1∗.
Suppose now that A|B is a positive not rational cut. Then (A|B)−1

is the cut C|D, where C = {x ∈ Q : x ≤ 0 or 1
x
∈ B} and D = Q \ C. If

E|F = A|B · C|D, we need to prove that

E = {r ∈ Q : ∃ a ∈ A ∃ c ∈ C 0 < a, 0 < c, r < ac} = {r ∈ Q : r < 1}.

If r ∈ E and r ≤ 0, then r < 1. Let r ∈ E and 0 < r. Then there
exists a ∈ A and c ∈ C such that 0 < a, 0 < c and r < ac. By the
definition of C we have 1

c
∈ B and so a < 1

c
, implying that r = ac < 1.

Let r < 1. If r ≤ 0 then r ∈ E. Suppose that 0 < r < 1. We want
to prove that r ∈ E. Defining X = {a

b
: a ∈ A, 0 < a, b ∈ B}, we start

by proving that supX = 1. If supX = r0 < 1 then r0 ∈ X: if not, we
should have, for all b ∈ B, r0b 6∈ A and, fixing any b0 ∈ B, necessarily
rn0 b0 ∈ B, for every n ∈ N; but, as rn0 b0 → 0 and A|B is a positive cut,
there would exist n0 ∈ N for which rn0

0 b0 ∈ A, and this is a contradiction.
The assumption supX = r0 < 1 and r0 ∈ X also leads to a contradiction
because, in this case, we have r0 = a0

b0
, for some a0 ∈ A and b0 ∈ B; but,

as A has no maximum, we can find a′0 ∈ A, a0 < a′0 and then r0 <
a′

0

b0
∈ X,

which is a contradiction. To conclude that E|F = 1∗ it is now enough to
notice that

X = {a
b
: a ∈ A, 0 < a, b ∈ B} = {ac : a ∈ A, 0 < a, c ∈ C, 0 < c}.

Given a negative cut A|B, then (A|B)−1 = −((−(A|B))−1) since, by
the definition of · ,

(A|B) · (−((−(A|B))−1)) = (−(A|B)) · (−(A|B))−1 = 1∗.

Definition 9. We say that a partially ordered set (P,≤) is complete if
any subset of P , bounded from above, has a least upper bound.

Theorem 10. The ordered field (C ,+, ·,≤) is complete.

Proof. Let D = {Ai|Bi : i ∈ I} be a subset of C , bounded from above.
Let

A = ∪
i∈I

Ai, B = Q \A. (18)
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Notice that

B = Q \ ∪
i∈I

Ai = ∩
i∈I

Q \Ai = ∩
i∈I

Bi.

We start by proving that A|B is a cut:

- obviously, A 6= ∅, B 6= ∅, A ∪B = Q and A ∩B = ∅;

- let a ∈ A and b ∈ B. We need to check that a < b. By (18), we
know there exists j ∈ I such that a ∈ Aj and b ∈ Bi, for all i ∈ I.
As Aj |Bj is a cut, then a < b;

- let us see now that A does not have maximum. Let c be any upper
bound of A. If c ∈ A then c ∈ Aj for some j ∈ I and so, c would be
maximum of Aj , which is impossible, since Aj |Bj is a cut.

The cut A|B is an upper bound of D since, because Ai ⊆ A, for all
i ∈ I, by the definition of the order in C , we have Ai|Bi ≤ A|B, for any
i ∈ I.

To prove that A|B is the least upper bound of D , let C|D be any
upper bound of D . Then Ai ≤ C, for all i ∈ I and so A = ∪

i∈I
Ai ⊆ C,

which means that A|B ≤ C|D.

For further details concerning the Dedekind cuts construction, see [6,
7].

Definition 11. We say that two ordered fields (A ,+, ·,≤) and
(B,⊕,⊙,�) are isomorphic if there exists a function f : A −→ B such
that:

a) f is bijective;

b) ∀x, y ∈ A f(x+ y) = f(x)⊕ f(y);

c) ∀x, y ∈ A f(x · y) = f(x)⊙ f(y);

d) x ≤ y ⇐⇒ f(x) � f(y).

Theorem 12. Any complete ordered field is isomorphic to (C ,+, ·,≤).

Before proving this theorem, we need some auxiliary properties of the
complete ordered fields.
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Proposition 13. Let (A ,⊕,⊙,�) be a complete ordered field. Denoting
by 0 its element zero, by 1 its element one, by −a the symmetric of a ∈ A
and by a−1 the inverse of a ∈ A \ {0}, we have:

a) if n = 1⊕ · · · ⊕ 1
︸ ︷︷ ︸

n times

, for n ∈ N, the set N = {n : n ∈ N} is not

bounded from above;

b) given a, b ∈ A , a ≺ b, there exists m ∈ Z, n ∈ N, such that
a≺ m⊙ (n)−1≺b, where, for m ∈ Z−, m = (−1)⊕ · · · ⊕ (−1)

︸ ︷︷ ︸

−m times

.

Proof. a) Suppose that N is bounded from above. As A is com-
plete, then N has a least upper bound m ∈ A . But then, as
m⊕ (−1) ≺ m, then m⊕ (−1) is not an upper bound of N , which
means that there exists n0 ∈ N verifying m ⊕ (−1) ≺ n0. So,
m ≺ n0 ⊕ 1 ∈ N and this contradicts the fact that m is an upper
bound of N .

b) Given a, b ∈ A , a ≺ b, we have 0 ≺ b ⊕ (−a). So, there existe
n ∈ N such that (b⊕(−a))−1 ≺ n or, equivalently, (n)−1 ≺ b⊕(−a).
If 0 ≺ a, it is easy to understand that there exists m ∈ N such that
a ≺ m⊙ (n)−1 = (n)−1 ⊕ · · · ⊕ (n)−1

︸ ︷︷ ︸

m times

≺ b. The case a � 0 is treated

similarly.

Proof of the Theorem 12: Let (A ,⊕,⊙,�) be a complete ordered
field. We want to find an isomorphism f : C −→ A . Using the notations
of the previous proposition, we define

• f(0∗) = 0;

• f(n∗) = n, for n ∈ N;

• f(−n∗) = −f(n∗), for n ∈ N;

• f((m
n
)∗) = f(m∗)⊙ f(n∗)−1, for all m ∈ Z and all n ∈ N such that

(m,n) = 1.
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So, we have f defined in the set of rational cuts and it is easy to verify
that

∀ r1, r2 ∈ Q

f(r∗1 + r∗2) = f(r∗1)⊕ (r∗2),

f(r∗1 · r∗2) = f(r∗1)⊙ (r∗2),

r∗1 < r∗2 =⇒ f(r∗1) ≺ f(r∗2).

(19)

Let A|B be any cut. The set AA = {f(r∗) : r ∈ A} is bounded from
above because, given an element b ∈ B, by (19) we have

∀ r ∈ A f(r∗) ≺ f(b∗).

As A is complete, the set AA has a least upper bound. Defining

f(A|B) = supAA (20)

we want to verify that, if A|B is the rational cut a∗, then f(a∗) = f(a∗):

- as, for all r ∈ A, we have r < a, then, by (19), f(r∗) ≺ f(a∗) and
so f(a∗) = supAA � f(a∗);

- suppose that f(a∗) ≺ f(a∗). By Proposition 13, b), there exist m,n,
with m ∈ Z and n ∈ N, such that f(a∗) ≺ m⊙ (n)−1 ≺ f(a∗). But
m ⊙ (n)−1 = f(r∗), for r = m

n
and, since f(r∗) ≺ f(a∗), we have

r < a, i.e. r ∈ A, which is a contradiction, because f(a∗) = supAA.

So, defining f = f , we have f defined in all C . It remains to prove
that f is an isomorphism, i.e., to prove a), b), c) and d) of the Definition
11:

d) Suppose that A|B ≤ C|D. Then AA ⊆ AC and so

f(A|B) = supAA � supAC = f(C|D).

a) Suppose that A|B 6= C|D and assume, without any loss of gener-
ality, that A|B < C|D. Then, by applying the Proposition 13, b), there
exists r = m1

n1
, with m1 ∈ Z and m2 ∈ N, such that

f(A|B) ≺ f(r∗) = m1 ⊙ (n1)
−1 ≺ f(C|D),

so f is one-to-one. The set By = {r∗ ∈ C : r ∈ Q and f(r∗) ≺ y},
for a fixed y ∈ A , is obviously not empty and is bounded from above
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(it is enough to note that there exists n ∈ N such that f(r∗) ≺ n, by
the Proposition 13, a)). Let A|B = supBy. We want to prove that
f(A|B) = y. Supposing that f(A|B) ≺ y, by the Proposition 13, b),
there exists r0 ∈ Q such that f(A|B) ≺ f(r∗0) ≺ y, which contradicts the
fact that A|B = supBy. Supposing now that y ≺ f(A|B) we can find
r1 ∈ Q such that y ≺ f(r∗1) ≺ f(A|B). But then we have r∗1 < A|B (recall
that f is one-to-one) and, being A|B = supBy, there exists s∗ ∈ By such
that r∗1 < s∗ < A|B. But then f(r∗1) ≺ f(s∗) ≺ y, which also contradicts
the fact that A|B = supBy. Then f(A|B) = y, as we wanted to prove.

b) Let x, y ∈ C and suppose that f(x+ y) 6= f(x)⊕ f(y). Then

f(x+ y) ≺ f(x)⊕ f(y) or f(x)⊕ f(y) ≺ f(x+ y).

In the first case, there exists r0 ∈ Q such that f(x + y) ≺ f(r∗0) ≺
f(x) ⊕ f(y) and so x + y < r∗0 . We can write r∗0 = r∗1 + r∗2 with x ≺ r∗1 ,
y ≺ r∗2 . Using (19) we know that

f(x)⊕ f(y) ≺ f(r∗1)⊕ f(r∗2) = f(r∗0) ≺ f(x)⊕ f(y),

which is a contradiction.
Analogously it can be proved that f(x) ⊕ f(y) ≺ f(x + y) is also a

contradiction.
c) The proof that, for x, y ∈ C , we have f(x · y) = f(x)⊙ f(y) is also

similar, so we omit it. �
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Abstract

In this paper we aim to analyze the Royal Military Academy of
Rio de Janeiro in its beginnings. We outline the situation in Brazil
before and after the arrival of King D. João VI to Rio de Janeiro in
1808. We discuss in detail the founding document of the academy,
evidencing some of its more innovative aspects.
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19th century.

1 Introduction

The aim of this paper is to give a general overview of the beginnings of
the Royal Military Academy of Rio de Janeiro in the period 1810-1822,
the year of Brazil’s independence. To be able to realize the impact of the

1This text is an abridged version of the paper “The Beginnings of the Royal Military
Academy of Rio de Janeiro”, which was published in Revista Brasileira de História da
Matemática, vol 1(2007), no 13, pp. 19-41, and is here included with its publishers’
kind authorization.
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coming to Brazil of the Royal Court, we give a brief overview of Brazil as
a Portuguese colony before the arrival of King D. João VI in 1808, and
contrast it with the changes implied in the multitude of decrees issued
by the King in Rio. The main part of the paper will be on the Royal
Military Academy, showing how it was thought to function, what was the
structure of its courses, the subjects taught, the textbooks used, the rules
for students and teachers.

2 Brazil before 18082

In order to maintain the intellectual dependence of the colony and to
control the diffusion of knowledge, the Portuguese did not allow either
the press or high education studies in Brazil before the establishment of
the Portuguese court in Rio de Janeiro. In those times only the Church
and the military had forums to teach scientific knowledge. The fact that
Brazil’s economy was mainly based on slave work in agriculture and on
the export of goods did not encourage the implementation of new tech-
niques and consequently it was not a factor for a demand of new scientific
practices and knowledge.

Some academies were founded during the 18th century, but they did
not last long and they had no influence in the diffusion of scientific knowl-
edge. In this the great distances between towns, with none of them acting
as a centralizing focus was also a factor that reduced their impact. Among
the more important we have:

1724 - Academia Brazileira dos Esquecidos [Brazilian Academy of the
Forgotten], in Salvador;

1736 - Academia dos Felizes [Academy of the Happy Ones], in Rio de
Janeiro;

1752 - Academia dos Selectos [Academy of the Chosen Ones], also in Rio;

1771 - Academia Cient́ıfica do Rio de Janeiro3 [Scientific Academy of Rio
de Janeiro].

2On this subject, and on the subject of the next chapter, our main reference is
[de Oliveira 2005].

3Concerning this academy, there are records that show that its general secretary
maintained correspondence with the Swedish Royal Academy of Sciences ; it is signifi-
cant also that the Academy’s regulations stated that at their meetings debates should
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Probably the most important of all the pre-1808 institutions was the
Seminary of Olinda4, in Pernambuco. This was founded in 1800 by Bishop
Azeredo Coutinho, who had studied in Coimbra’s Faculty of Law and had
returned to Brazil in 1798. The Seminary had the structure of Lisbon’s
Colégio dos Nobres. According to [de Oliveira 2005, p. 88] this was the
first Brazilian institution which was founded under the influence of Pom-
bal’s reform. It added a new science component, with the introduction of
topics of Mathematics, Physics and Natural Sciences. French and Greek
were also included in the curricula. It is also significant of a new attitude
towards science that the state supported the founding of the seminary.
Among the subjects taught there were geometry, natural history, chem-
istry and natural philosophy. In the last of these matters it was stated
that the teacher should explain experimental physics, including mechan-
ics, hydrostatics, and the principles needed to understand the machines
and their power5.

In spite of not having a press in Brazil, the written word arrived
from Europe regularly, either brought by people crossing the Atlantic
or through bookshops. According to [Cavalcanti 2003], between 1754 and
1805 there were at least 23 bookshops in Rio de Janeiro. Although cen-
sorship was always present, Cavalcanti states that he did not see a single
technical book in the lists of forbidden books. We can have some idea
of the books available through the analysis of the inventory that he pro-
duced of a bookshop in Rio in 1794. He mentions that there were 6.540
books. Of this, the vast majority (about 86%) were religious books, but
still there was a significant minority of books on cultural matters- art, the-
ater, poetry and opera-, and on didactic themes, respectively 531 books
(about 8.2%) and 214 (about 3.3%). Of this last category, 47 books were
on scientific matters, including 10 trigonometry and multiplication tables,
7 books on the elements of arithmetic, 6 architecture books, 4 pharmacy
books, and 3 botany textbooks.

be based on clearly written texts which had been in some way scientifically approved
[de Oliveira 2005, p. 95].

4For more detailed information on the Olinda Seminary, see [das Neves 1984].
5Among the Olinda staff was Friar José da Costa Azevedo, later a teacher at the

Royal Military Academy of Rio de Janeiro.
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3 D. João VI in Brazil, 1808-1810

Due to the invasion of Portugal by Napoleon’s armies in 1807, King D.
João VI decided to leave Europe and to go with his court to Rio de Janeiro,
where they arrived on January 22, 1808. With the King 15.000 people
left Lisbon for Brazil. Their arrival had an immense impact in Brazilian
life. Not only the nobility at least doubled their numbers, but also the
population in Rio increased between 20 and 30%. One month before the
King, the Royal Academy of Ensigns left Lisbon for the same destination,
arriving in Guanabara Bay on January 18, 1808. They chose S. Bento
Monastery as their new home.

The war had unexpected good consequences in the field of diffusion of
ideas. As a counterpart for England’s help in the war against France, the
Brazilian ports were declared open to what was labeled “friendly nations”,
and which in fact had very bad economic consequences for the Portuguese
crown. However this made the diffusion of ideas simpler, as many foreign-
ers entered Brazil between 1808 and 1822. In Rio alone there is a record
of 4.234 arrivals, of which 1.600 are from Spanish South-America, 1000
French, 600 English and over 200 German [Manchester 1970, p. 216]
quoted by [de Oliveira 2005, p. 122]. Until 1808 only people born in the
Portuguese Empire were authorized to compile data on scientific expe-
ditions in Brazil. From 1808 onwards foreign scientific expeditions were
encouraged to do research in Portuguese controlled territory, a clear sign
of a change in mentality in the Portuguese authorities.

With the King and his Court living permanently in Rio, it became
urgent to create a set of structures which until then had been denied to
Brazil in order to maintain its depending status on the European Portugal.
Thus a series of decrees started to change the face of the colony. It began
with a declaration on January 28, 1808, that Brazil was now the center
of the Portuguese Empire; on March 1 was declared the right to the free
establishment of factories; on March 7 the Military Archive was created,
with the aim to preserve and assemble all maps and charts, to copy them
for border reassessments, fortress plans, new roads designs. It was also
decided to publish a book on Topography aimed at perfecting geodesy
measures that could be the counterpart of an annual. French topography
handbook. On May 13 was founded the powder factory, with a higher
educated board and inspectors; the same day was created the Imprensa
Régia [the Royal Press]. It printed the first textbooks of mathematics,
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chemistry, physics and others used in higher education. The year after,
on April 23, 1809, there was the founding of Colégio das Fábricas [Fac-
tories College], the first establishment in Brazil with the aim of teaching
the technical trade to people coming from Europe lured by the working
possibilities in Brazil.

In the 1820s there were 13 periodical journals in Rio. O Patriota [The
Patriot], although it lasted less than two years, was of paramount impor-
tance6. It started its publication in 1813 on a monthly basis, and in 1814 it
was published twice a month. It ended its publication in December 1814.
Its director was Manoel Ferreira Araujo Guimarães (1777-1838), a teacher
at the Royal Military Academy of Rio de Janeiro, having been previously
a lecturer at Lisbon’s Navy Royal Academy. This was Brazil’s first cul-
tural journal, which included articles of pure and applied science side by
side with literary and history memoirs, translations, poems, news. Some
of the most prestigious members of Brazil’s scientific community collab-
orated with this journal, among them José Bonifácio de Andrada e Silva
(1763-1838), naturalist; Francisco de Borja Garção Stockler (1759-1829),
mathematician, historian of Portuguese mathematics and a previous sec-
retary of Lisbon’s Academy of Sciences; José Saturnino da Costa Pereira
(1773-1852), mathematician and lecturer at the Royal Military Academy.

Among journals which were published outside Rio it is worth mention-
ing A Idade de Ouro do Brazil (Brazil’s Golden Age), the first periodical
newspaper published in Bahia, and which had over 120 issues between
1811 and 1819. It was essentially of local interest, as it published mainly
local economic news.

4 The founding of the Royal Military
Academy of Rio de Janeiro

4.1 Introduction

By a Decree of December 4, 1810, the new military Academy was founded.
In its preface, it is said that that the main reason for the founding of the
academy is the need of trained staff at a higher level. It is the need of
new learned military staff that would be able not only to provide adequate

6On this journal see [de Oliveira 2004].
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leadership in military matters, but also be competent in administrative
posts, mainly those concerning trade and communications:

[...] Having in consideration that it is very important to my
Royal Service, to the public welfare of my subjects, and to the
defense and safety of my vast domains, that it is established in
Brazil, in my actual Court and in the city of Rio de Janeiro a
regular course of exact sciences, and of observation sciences,
as well as all those which are applications of these to military
and practical studies [...] such that from these courses gradu-
ate skilful Artillery and Engineering Officers, and also Officers
from the Class of Geographic and Topographic Engineers, who
can have the useful job of directing administrative matters in
mining, roads, ports, channels, bridges, fountains and pave-
ments. I decide to establish in my actual Court and city of Rio
de Janeiro a Royal Military Academy with a complete course
of Mathematical Sciences, of Observation Sciences, such as
Physics, Chemistry, Mineralogy, Metallurgy Natural History,
which will include the vegetal and animal kingdoms, and of
Military Sciences in all its range, as well of Tactics as of For-
tification and Gunnery [...]7

It is clear that there were high hopes that the success of the Academy
would bring a new generation of highly qualified officers, and to encourage
the enrolment in the Academy of those who wanted to follow a military
career many privileges were given.

The Decree [Collecção 1826], a 13-page document in twelve chapters
(in Portuguese, Tı́tulos), describes in detail, how the Academy should

7“[...] Tendo consideração ao muito que interessa ao Meu Real Serviço, ao Bem
Público dos Meus Vassallos, e á defensa e segurança dos Meus vastos Domı́nios, que
se estabeleça no Brazil, e na Minha actual Corte e Cidade do Rio de Janeiro, hum
Curso regular das Sciencias exactas, e de Observação, assim como de todas aquellas,
que são applicações das mesmas aos Estudos Militares e Práticos [...] de maneira, que
dos mesmos Cursos de estudos se formem habeis Officiaes de Artilharia, Engenharia, e
ainda mesmo Officiaes da Classe da Classe de Engenheiros Geographos e Topographos,
que possão tambem ter o util emprego de dirigir objectos administrativos de Minas, de
Caminhos, Portos, Canaes, Pontes, Fontes e Calçadas; Hei por bem, que na Minha ac-
tual Corte e Cidade do Rio de Janeiro, se estabeleça huma Academia Real Militar para
hum Curso completo de Sciencias Mathematicas, de Sciencias de Observação, quaes,
a Physica, Chimica, Mineralogia, Metallurgia e Historia Natural, que comprehenderá
o Reino Vegetal e Animal, e das Sciencias Militares em toda a sua extensão, tanto de
Tactica, como de Fortificação, e Artilharia,[...]” [Collecção 1826, p. 995].
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function. All is regulated, one feels that there is a will to let the min-
imum possible left to chance, to guarantee the good functioning of the
institution. There is an implicit recognition that all involved need well
defined guiding lines in order to well accomplish their tasks.

We are going to analyze this document in some of its most important
features.

4.2 The Academy’s Course

In the Coimbra reform of 1772 it was advised that the teachers should
write their own textbooks. However this was not successful, the only
original textbook written by a Coimbra Faculty of Mathematics teacher
before 1808 was not approved for teaching in the Faculty, and was only
published as part of a bigger work after his author’s death (Principios
Mathematicos by José Anastácio da Cunha). Maybe because of this, the
legislators wrote in Chapter III of the decree:

The appointed teachers can neither progress in the career nor
obtain rewards and favour unless they have organized and writ-
ten their textbooks by the method stipulated in the Statutes, and
their works are approved by the Military Board8.

This clearly seems to have been effective, as the majority of books
stated in the Statutes of 1810 were translated in the period 1809-1814,
frequently extensively annotated, and some original textbooks were also
written during this period.

The course was made to last seven years, of which the first four cor-
responded to the Mathematics course, and the last three to the Military
Sciences course. The matters to be taught, the recommended textbooks,
the number of teachers and of substitutes were all regulated in Chapter II,
the longest of the twelve chapters of the decree. We are going to describe
in some detail the course’s first four years.

Let us see in each year what were the subjects taught, the recom-
mended textbooks, its translations by Academy teachers (between brack-
ets are their years of publication), and the major guidelines for teachers.

8“Os Lentes, que forem nomeados, não poderão ser adiantados em Postos, nem
obter recompensas, e Graças, sem que cada hum delles tenha organizado e feito o seu
Compendio pelo methodo determinado nos Estatutos, e sem que o seu trabalho seja
approvado pela Junta Militar” [Collecção 1826, pp. 940/941].
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Titles of the original works will only be given if they are mentioned ex-
plicitly in the decree. There would be one mathematics teacher for each
of the first four years.

First year
Subject Textbooks Translations

Arithmetic S. F. Lacroix F.C.S.T. Alvim:
Tratado de Aritmetica (1810)

Algebra S. F. Lacroix F.C.S.T. Alvim:
(up to 3rd and 4th Elementos de Algebra (1812)

order equations) L. Euler: M.F.A.Guimarães:
Elementos de Algebra Elementos de Algebra (1809)

M.F.A.Guimarães:
Complementos dos Elementos

de Algebra de Lacroix (1809)
9

Geometry A. M. Legendre M.F.A.Guimarães:
Elementos de Geometria (1809)

Trigonometry A. M. Legendre M.F.A.Guimarães:
(including basic notions Tratado de Trigonometria (1809)

Spherical Trigonometry)

Table 1: Subjects of the mathematics class of the first year of the Royal
Military Academy

There are two important guidelines that are emphasized since the first
year of the course: firstly there is an explicit recommendation to show
connections between the different parts of mathematics, its inner coher-
ence (the decree mentions its beauty) and their application to the real
world; in particular it mentions the connections between the Principles of
Algebra and those of Geometry, and the applications of Trigonometry to
Geodesy; secondly it encourages the teachers to stir up research among
students.

[...] to try hard to make them [the students] work on problems,
and try to develop that spirit of invention which in Mathema-

9In the Preface it is stated that this book aims to compense the lack of the second
volume of Euler’s Elements of Algebra.
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tical Sciences bring the great discoveries10.

And it states that the textbook that each teacher in the Academy
should write not only had to include the matters developed in the recom-
mended textbooks but also any new methods and innovations that might
be discovered. So it is not only the Academy student that is encouraged to
be inventive in his work, but also the teacher, who must be aware of what
new knowledge is regularly being brought by the international community.
In the first year it is also stated that there will be a class of Drawing 11, im-
mediately after the Mathematics class, and lasting the same length o time.

In this part it is again emphasized the connections between different
parts of mathematics and its applications to the real world (Mechanics,
Hydrodynamics, Optics). The second year students will have another
class: in alternate days they will have to attend Descriptive Geometry
(textbook: G. Monge13) and Drawing.

It is recommended that the school should gradually build models of
the machines studied for the students use. Also all theoretical aspects of
Ballistics should be studied, so when the students arrived to the Gunnery
Class they had only to study the practical uses derived from the theoret-
ical principles. Third year students also had a class of Drawing, twice a
week.

Concerning Laplace’s Celestial Mechanics, the decree advised the tea-
cher not to go into its theories, because “time would not be enough”, but
instead recommended that he should use its results for practical problems,
like computing latitudes and longitudes, or to obtain Geodesy results.
Students of the fourth year had another two classes: Physics was taught
every day except two: in those two days the students had a Drawing class,

10“[...] trabalhando muito em exercitallos nos diversos Problemas, e procurando
desenvolver aquelle espirito de invenção, que nas Sciencias Mathematicas conduz às
maiores descobertas´´ [Collecção 1826, p. 937].

11Roberto Ferreira da Silva (?-?), substitute teacher of the class of Drawing at the
Academy, wrote a textbook, “Elements of Drawing, Painting, and General Rules of
Pespective´´, which was published in 1817.

12Although the date 1811 is stated on the book, it was only published in 1812.
13Translated into Portuguese by José Vitorino dos Santos e Souza (1780-1852), tea-

cher of Descriptive Geometry at the Academy, as “Elementos de Geometria Descriptiva
com applicações às Artes” (1812).
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Second year
Subject Textbooks Translations
Revision of the Calculus
notions taught in the

1st year
Methods of solving S. F. Lacroix: F.C.S.T. Alvim: Ele-
equations – Applica- Principles of mentos de Algebra
tions of Algebra to the Algebra (1812)12

Geometry of lines and J.V.S. Sousa: Tratado
curves (degrees 2 and Elementar de Appli-
higher) cação da Algebra à

Geometria (1812)
– translation of an-
other Lacroix book

Differential and Integral S. F. Lacroix: F.C.S.T. Alvim: Tra-
Calculus (and applica- Differential and tado Elementar de
tions to Physics, Astro- Integral Calculus Calculo Differencial
nomy and Probability e Calculo Integral –
Calculus) Two volumes: (Part

I: 1812; Part II: 1814)

Table 2: Subjects of the mathematics class of the second year of the Royal
Military Academy.

where they drew figures and machinery they studied in the fourth year.
For Physics the main recommended textbook was Abbé Hauy’s Elements
of Physics14; another reference given in the decree for the Physics course
was Brisson’s textbook of Physics.

To complete this first outline of the Mathematics course it is important
to point out the huge task accomplished by the Academy’s lecturers in
translating textbooks. Up to 1814 there were 16 major works translated15,
five in the period 1809-1814, all published in Rio de Janeiro by the Im-
prensa Regia. The fact that five of them were published during 1809/1810

14This was translated into Portuguese by Francisco Cordeiro da Silva Torres e Alvim
(1775-1856) , at one time teacher of the sixth year subject on Fortification, etc, as
“Tratado Elementar de Physica´´ (1810).

15Francoeur’s Mechanics is a set of four books on Statics, Dynamics, Hydrostatics
and Hydrodynamics.
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Third year
Subject Textbooks Translations
Principles of Mechanics L. B. Francoeur J: S. C. Pereira:
(Statics and Dynamics) Tratado Elementar

de Mechanica – 4
volumes (1812)

Principles of Hydro- L. B. Francoeur is
dynamics (Hydrostatics the main reference;
and Hydrolics) Prony, Abbé Bossut,

Fabre and Gregory
(for machines and
their applications)

Theory of Ballistics E. Bezout, B. Robbins
and L. Euler

Table 3: Subjects of the mathematics class of the third year of the Royal
Military Academy

Fourth year
Subject Textbooks Translations
Spherical Trigonometry A. M. Legendre M.F.A. Guimarães:

Tratado de Trigo-
nometria (1809)

Optics, Catoptrics, N. L. Lacaille A. P. Duarte: Trata-

and Dioptrics do de Óptica (1813)
System of the World J. J. L. F. Lalande,

P. S. Laplace –
Celestial Mechanics

Geographic maps and P: S. Laplace,
projection techniques; N. L. Lacaille,
Globe Geography J. J. L. F. Lalande,

J. Pinkerton’s Geo-
graphy

Table 4: Subjects of the mathematics class of the fourth year of the Royal
Military Academy.
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suggests that this project could have started as early as 1807. At the end
of 1815 all the textbooks mentioned in the decree for the first two years of
the course had been translated, and all the major works mentioned in the
decree were either translated or had Academy teachers writing textbooks
on those matters. For instance, Manoel Ferreira de Araujo Guimarães
published textbooks on Astronomy (1814) and on Geodesy (1815), and
had a small text on spherical triangles (1812). Guimarães also published
on military matters: he translated Jean de Briche’s Engineer Handbook
or Practical Geometry for Encampment Fortification published in Bahia,
with a second edition out in 1815. In a future paper I intend to analyze
the works and translations done by the Academy’s teachers in the early
19th century.

4.3 On the Academy’s teachers

Besides the appointed teachers, the decree considered that there should
be five Substitute teachers, in order to guarantee that there would not be
classes not functioning in subjects where there were registered students.
Chapter II ends with a recommendation: it said that, when conditions
would allow it, a Scientific and Military Library should be founded, and
its librarian would be the teacher of Military History, a subject to be
taught in a future eight year of the course. Chapter III mentions that
the publishing of Memoires is a criterion for the nomination of teachers
and their substitutes. And to encourage the military to apply to the
Academy, it is stated that they have the same privileges as the teachers
in the Lisbon Military Academies of the Navy and of the Army. Also
it is guaranteed that after 20 years of teaching in the Academy they are
entitled to retire. As for wages, teachers will have, besides the pay due
to their rank, 400,000 reis per year. The substitutes will be paid 200,000
reis per year, but if they are required to some destination which makes
impossible their contribution to the teaching of their subjects, they will
have no pay. On Chapter X it is also stated that the Academy’s teachers
will also have the same privileges as the University of Coimbra teachers.

4.4 On the Academy’s students

This is the subject of Chapter IV. In it it is established the conditions of
admission: the students must know the four elementary operations and
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be at least 15 years old. Among those eligible, there will be a prefer-
ence for those who are acquainted with Greek, Latin, or any living lan-
guages. There will be two classes of students: compulsory and voluntary.
The Academy tried to provide encouragement for the students’ work, and
above all for the compulsory ones, who were by far the main set of students
in the Academy. So the compulsory students were the only ones eligible
to be given the so called “partidos”, honors given to those who distin-
guished themselves in the Academy’s studies. Also there were monetary
penalties for those who did not do well at the exams. From the moment
they entered the Academy they received the pay of Artillery sergeants.
But those who in the annual final exam did not have a complete pass
saw their pay reduced to that of a soldier (Chapter XI).Also the Military
Board had the power to expel from the Academy those who fail the exams
in two consecutive years, and are seen with no hope of improving their
situation. The Royal Academy students were declared to have the same
privileges of the University of Coimbra (Chapter X). Also, when applying
for promotion officers of equal good services, it should be selected the one
who has completed the Academy’s seven year course with good marks.
Thinking of bringing improvement to the military leadership, it is also
stated that during peace time no officer can have the rank of General or
higher without having completed the Military Course. This last rule only
concerns those who engaged in the Army after the date of this decree
(Chapter VII) As said above, research was also encouraged. There were
three prizes of 250,000 reis each for those who, each year, presented the
best memoirs which had to include some discovery or some useful appli-
cation to science. The Military Board was said to be the jury for their
appreciation, and it had the authority to make them publish if they felt
they deserved it (Chapter XI). Good students would be favoured in pro-
motions application, and it was said that 2/3 of the Officer’s places should
be filled from the ranks of Academy students who have completed their
courses with good marks and with an exemplary behaviour in the King’s
Service (Chapter VII).

5 Concluding Remarks

The shortcomings of the functioning of the Royal Military Academy should
not detract from its immense merits. It tried to bring the mathematics
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made in Europe to Brazil, and in a way that the Academy´s students,
once finishing the Academy’s course, could be useful to their country us-
ing the subjects learned in the Academy. It was organized in a way that
also tried to promote research, as well by the lecturers as by the students,
with its “partidos” and awards. It marks the beginning of mathematics
courses at a higher level in Brazil, an introduction that was seconded by
accomplishing an enormous task of translating textbooks of some of the
most reputed European mathematicians and writers of textbooks, among
them Euler, Lacroix, Legendre, Francoeur, and Lacaille. It provided the
basis for the future development of mathematics in Brazil.
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1744/1787. O Matemático e o poeta, Lisboa, Imprensa Nacional/Casa da
Moeda.

da Cunha, P. J., 1940, As Matemáticas em Portugal no Século XVII,
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Abstract

The algebraic theory of semigroups is a relatively recent addition
to the development of Mathematics. Historically, original devel-
opment of the theory began in the first third of the twentieth
century. For decades prior to this, inspired by existing results in
both group and ring theory, researchers proved many important
results on semigroups, thus providing a solid foundation for the
theory of algebraic semigroups. In this article, we give a brief ac-
count of the development of the algebraic theory of semigroups up
to the publication of the major textbooks in the 1960’s. We begin
with aspects of the theory which were analogous to existing results
in both group and rings and we present a short description of the
group-theoretic circumstances which led to the initial definition of
a semigroup. Finally, we consider the first independent theorems
on semigroups: theorems with no group or ring analogues.
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matrix semigroup.
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1 Introduction

A semigroup is simply a non-empty set upon which an associative binary
operation is defined. The natural numbers, N, under either addition or
multiplication, and the set of all mappings of a set X into itself, under
composition of mappings, T (X), are natural examples of semigroups. This
makes the notion of semigroup extremely natural and, considering N, we
can even say that semigroups have been present in mathematics right from
its earliest origins. The real theory of semigroups is, however, a much more
recent development - the algebraic theory of semigroups is firmly rooted in
the twentieth century, with most of the major developments taking place
after the Second World War.

Paying a tribute to my colleague Fernanda Estrada, this paper gives
a short and simple account of the history of the algebraic theory of semi-
groups, focussing on certain aspects of the early theory which had a pro-
found effect on its subsequent development.

We will take the story as far as 1941, since the early 1940’s are a
landmark in the development of the theory:

• Three seminal papers were published around 1940, written by Rees
(1940) [20], Clifford (1941) [4] and Dubreil (1941) [9].

• Accordingly to Kleiner [16], the term semigroup was first defined
to correspond to the notion of an associative, cancellative magma -
here, magma is the Bourbaki term meaning a set which is closed un-
der a given binary operation. In spite of this, between 1905 and 1940,
the term semigroup was used with different meanings, for example,
associative magma Hilton (1908) [11], left cancellative associative
magma Bell (1930) [1], left cancellative, commutative, associative
magma with identity Clifford (1938) [3]. From 1940 onwards, the
term semigroup became fixed with its modern definition.

• Up to 1941, most of the results obtained were analogous of known
results for groups and rings. A paper by Clifford, establishing and
proving a result that has no precursor in either group or ring theory,
was published in 1941 [4]. Quoting Howie [14], this paper can be
considered the beginning of an independent theory of semigroups.

In Section 2 we give a brief overview of the development of the theory of
algebraic semigroups, up to the publication of the major textbooks in the
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1960’s. In Section 3 we present a short description of the group-theoretic
circumstances which led to the initial definition of a semigroup.

Section 4 describes the development of the first major theorem in semi-
group theory: the Rees Theorem. In this theorem, using the Wedderburn
Theorem in Ring Theory as a template, David Rees described the struc-
ture of what we now call completely 0-simple semigroups: semigroups
which are unions of groups. Clifford took up this study. This is the sub-
ject of Section 5, which also contains the first independent theorem of
semigroup theory.

Section 6 contains a comment on what we consider to be the most
important reference work in semigroup theory to this day.

2 A brief review of the development of the
theory

As we will see in Section 3, the term semigroup first appeared in order
to provide a name for algebraic structures, different from groups, which
arose during attempts to extend, to the infinite case, known results on
finite groups. This work cannot, however, be regarded as a semigroup
theory.

The theory of semigroups itself began to appear in the 1920s, with
the work of the russian mathematician Anton Suschkewitsch, so much
so that he has earned the title of the world’s first semigroup theorist.
He was the first mathematician to prove some of the results which we
now take for granted. For example, he proved the representation the-
orem for semigroups, the semigroup analogue of Cayley’s Theorem for
groups: every semigroup can be embedded in a full transformation monoid
(Suschkewitsch 1926). Suschkewitsch wrote the textbook The theory of
generalised groups published in 1937 [23]. However, due to the political
circumstances under which he lived in Ukraine, his work failed to find a
wide audience during his lifetime. In fact, many post-World War II re-
searchers did not realise that they were reproducing results first obtained
by Anton Suschkewitsch. For example, the embedding of a finite semi-
group in a full transformation monoid was reproduced by Stoll (1944) in
[21].

During the decade of the 30s, the study of semigroups was still very in-
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fluenced by the existing work on both groups and rings: semigroups were
approached either by dropping some of the group axioms or by ignoring
the addition operation from a ring. As the decade progressed, the theory
gradually consolidated and gained ground, culminating with the publica-
tion of three highly influential papers: Rees (1940) [20], Clifford (1941)
[4] and Dubreil (1941) [9]. The Rees and the Clifford papers are notable
for containing substantial theorems - we will look at them in more detail
in Sections 4 and 5. The Dubreil paper, primarily concerned with theory
building, is extremely creative and proved to be immensely influential.

As a result of the influence of the above-mentioned papers, the theory
of semigroups went from strength to strength and there was a signifi-
cant increase in the number of published papers. The theory did not
emerge fully structured, however, and the following comment was made
by Nathan Jacobson in the preface of Lectures in Abstract Algebra (1951)
[15]:

Though this notion appears to be useful in many connections,
the theory of semi-groups is comparatively new and it certainly
cannot be regarded as having reached a definitive stage.

The 1950’s saw the introduction of three broad concepts, still of enor-
mous use and importance in the modern theory: Green’s Relations, Reg-
ular semigroups and inverse semigroups. In 1951 J. A. Green [10] defined
five equivalence relations on a semigroup S, in terms of its principal ide-
als. These relations, which reduce to the universal relation if S is a group,
proved to be an immensely powerful tool in examining semigroups and
studying their structure. In the same paper, Green introduced the notion
of regular semigroup by analogy with that of von Neumann regularity
in rings; the concept of a regular ring had been introduced by von Neu-
mann in 1936, as an algebraic tool for the study of complemented modular
lattices [24]. The study of classes of regular semigroups has proved par-
ticularly fruitful over the years. The first of these classes to make an
appearance is believed to be the class of completely regular semigroups,
in Clifford (1941) [4], as we shall see in Section 5. The third concept
referred to above is that of an inverse semigroup. Inverse semigroups
were introduced independently by Wagner, in 1952 [25], who called these
semigroups generalised groups, and by Preston, in 1954 [18], who called
them inverse semigroups. These semigroups arose from both the study of
systems of partial one-one mappings of a set and the aim of finding an
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abstract structure corresponding to such a system, like abstract groups
correspond to systems of permutations of a set.

In the 1960s the theory expanded so much that more textbooks ap-
peared. First, Lyapin, Semigroups (1960), with the english translation ap-
pearing in 1963, [17]. In 1961 the first volume of Clifford and
Preston The algebraic theory of semigroups [5] was published and the
second volume followed in 1967, [6].

The subsequent development of semigroup theory clearly reflects the
solid foundation provided by these three semigroup textbooks. In 1970, a
journal completed devoted to semigroups was founded, Semigroup Forum,
giving the theory an effective platform for further development.

3 The group structure and the concept of
semigroup

The definition of group, as we know it today, exists since the beginning
of the twentieth century. Following Kleiner [16], the first book to survey
groups under the abstract point of view was Éléments de la Théorie des
Groups Abstraits, by de Séguier (1904). Although most of this book deals
with finite groups, various attempts to generalise, to the infinite case, the
more general theorems, were made. It was in this context of generalisa-
tion that de Séguier realised that there were certain algebraic systems that
were groups when they are finite and failed to be, when they are infinite.
The will to provide a name for these non-groups led de Séguier to the
definition of a new concept: that of a semigroup. De Séguier’s definition,
as translated by Dickson (1904) [7], is the following:

Definition 1. A set G, which has generating set S ⊆ G with respect to a
given binary operation, forms a semigroup if the following postulates hold:

(1) (ab)c = a(bc), for all a, b, c ∈ G;

(2) for any a ∈ S and any b ∈ G, there is at most one solution, x ∈ G,
of ax = b;

(3) similarly for xa = b.
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In his book, de Séguier mentions that left cancellation in a semigroup
S follows from the definition. While suggesting that de Séguier’s argument
must have been based on the decomposition of an element as a product
of the generators of S and on the repeated application of axiom (2), in [7]
Dickson objects to the fact that de Séguier does not explicitly demand, in
his definition, the closure of the binary operation. As a result, he modified
the definition accordingly and called the new system ’semi-group’, mean-
ing, perhaps ,‘half a group’ and emphasising the connection with groups.
We point out that, in defining a binary operation on a set S to be a map-
ping from S × S into S, the closure is ensured and is, therefore, implicit
in de Séguier’s definition. In a subsequent paper [8], Dickson introduced
the following new definition, which removes the reference to the generator
set and includes, explicitly, the closure and the cancellation law:

Definition 2. A set G forms a semi-group under a given binary opera-
tion, if the following postulates hold:

(1’) if a, b ∈ G then ab ∈ G;

(2’) (ab)c = a(bc), for all a, b, c ∈ G;

(3’) for any a, x, x′ ∈ G if ax = ax′ then x = x′;

(4’) for any a, x, x′ ∈ G if xa = x′a then x = x′.

This is what it is called today a cancellative semigroup. It is known
that every cancellative semigroup that is finite is a group. Thus, de
Séguier’s semigroup was only of interest when the set is infinite and does
not form a group. In general, in the infinite case, a cancellative semigroup
is not a group: for instance, under addition, N is a cancellative semigroup
which is not a group. An example, using a rather elaborate method, was
constructed by Dickson.

In the early decades of the twentieth century the distinction between a
semigroup and a group was not clear and quite often researchers referred to
systems corresponding to semigroups simply as ‘groups’. This is probably
due to the fact that the axiomatic definition of a group was still very
new and also to some uncertainty in the move to the infinite case. The
groups that many of theses researchers were studying were finite - groups
of permutations of a finite set - and so only closure need be postulated to
ensure that they were groups.
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This ‘unclear’ situation persisted until the beginning of the ‘real’ the-
ory of algebraic semigroups.

4 The Rees Theorem

Structure theorems are an important part of any algebraic theory. Basi-
cally, a structure theorem for a class A of algebras involves:

(1) buildings blocks belonging to a class B;

(2) a ‘recipe’ for constructing algebras in A from algebras in B;

(3) an isomorphism theorem indicating that the building blocks from B
and the construction recipe are essentially unique.

In a good structure theorem, the class B must be substantially better
understood than the class A and the recipe must be easy to implement.

In this section, we present the first major structure theorem of semi-
group theory: the Rees Theorem. Established and proved by David Rees
in 1940 [20], this theorem provides the structure of completely (0 -) simple
semigroups and is, indeed, a good structure theorem! We begin with the
definition of this class of semigroups.

Definition 3. (Howie [13]) A semigroup S is called simple if its only
two-sided ideal is itself. A semigroup S with 0 is called 0-simple if its
only two-sided ideals are itself and {0}, and S2 6= {0}.

A semigroup S without 0 (respectively, with 0) is said to be completely
simple (completely 0-simple) if the following conditions hold:

(CS1) S is simple (0-simple);

(CS2) S has a primitive idempotent, i.e., a non-zero idempotent e such
that, for all non-zero idempotents f ∈ S, ef = fe = f =⇒ e = f .

Completely (0-)simple semigroups appeared in Rees’ work when con-
sidering semigroup analogues of certain properties for rings. They also
emerged, around the same time and independently, in Clifford’s work
(1941) [4].
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(1) The building blocks

Let G be a group, let I , Λ be non-empty sets and let P be a matrix
over the 0-group G0 := G ∪ {0} which is regular in the sense that each
row and each column contains at least one non-zero entry.

(2) The recipe

In the set I ×G× Λ ∪ {0}, define a multiplication by

∀(i, g, λ) ∈ I ×G× Λ ∪ {0}, 0 (i, g, λ) = 0 = (i, g, λ) 0 and

(i, g, λ)(j, h, µ) =

{
(i, gpλjh, µ) if pλj 6= 0
0 if pλj = 0

The set I ×G ×Λ∪ {0} together with this binary operation is a com-
pletely 0-simple semigroup. This semigroup is denoted by M (G; I,Λ;P )
and is called the I × Λ Rees matrix semigroup over G0 with sandwich
matrix P .

(3) The isomorphism theorem

Every completely (0-)simple semigroup is isomorphic to a semigroup
constructed as above.

Rees Theorem 1 (1940). Let S be a Rees matrix semigroup over a
0-group with regular sandwich matrix. Then S is completely 0-simple.
Conversely, every completely 0-simple semigroup is isomorphic to such a
Rees matrix semigroup.

A Rees matrix semigroup without 0 is defined by dropping, in the
above definition, all references to 0, the requirement of P being ‘regular’
and defining multiplication simply by (i, g, λ)(j, h, µ) = (i, gpλjh, µ).

The completely simple version of the Rees Theorem is also due to Rees:

Rees Theorem 2 (1940). Let S be a Rees matrix semigroup without
0. Then S is completely simple. Conversely, every completely simple
semigroup is isomorphic to such a Rees matrix semigroup.

Although the Rees Theorem is the first important structure theorem of
semigroup theory, it is yet another result with an analogue in ring theory:
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the Wedderburn-Artin Theorem. This theorem states, in particular, that
any ring satisfying the descending chain condition for principal right ideals
is simple and isomorphic to some ring of square matrices over a division
ring. We will meet, in the next section, the first ’independent’ theorem
of semigroup theory.

5 The First Independent Theorem

Prior to the Rees Theorem, two papers gave the structure of certain special
classes of simple semigroups. Accordingly to Hollings [12], Suschkewitsch
(1928) determined the structure of finite simple semigroups - in particular,
he studied right groups and showed that these are unions of groups. A.
Clifford (1933) [2] extended this work to infinite right groups. We start
with a brief summary of this latter paper.

Given a set with a binary operation, Clifford considered the following
axioms:

(I) If a, b ∈ G then ab ∈ G;

(II) for all a.b.c ∈ G, a(bc) = (ab)c;

(III) for each a ∈ G, there exists at least one left identity e ∈ G;

(IVL) for each a ∈ G and each left identity e of a, there exists at least
one left inverse b of a, with respect to e;

(IVR) for each a ∈ G and each left identity e of a, there exists at least
one right inverse b of a, with respect to e;

(VL) for each a ∈ G, there exists at least one left identity e of a and at
least one left inverse b, with respect to e;

(VR) for each a ∈ G, there exists at least one left identity e of a and at
least one right inverse b, with respect to e.

He showed that the systems (I, II, III, IVR), (I, II, III, VL) and (I,
II, III, VR) define the same algebraic structure and that this structure
can be alternatively defined as follows: a semigroup S in which, for all
a, b ∈ S, the equation ax = b has a unique solution in S. Clifford showed
further that such a semigroup is a union of groups and named the structure
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accordingly: a multiple group. The main theorem of the paper determines
the structure of multiple groups.

With this work, Clifford extended part of the work of Suschkewitsch to
infinite right groups and built towards the later Rees Theorem. More im-
portantly, he initiated the study of semigroups which are unions of groups
and this gave rise to the first major independent theorem of semigroup
theory.

Definition 4. (Clifford [4]) A semigroup S is said to admit relative in-
verses if, for every a ∈ S,

(1) there exists e ∈ S such that ae = a = ea and

(2) there exists a′ ∈ S such that aa′ = e = a′a.

Semigroups with relative inverses are now called completely regular
semigroups.

Theorem 5 (Clifford [4], Theorem 2). Every completely regular semi-
group S determines a semilattice P such that each α ∈ P corresponds to
a subsemigroup Sα of S with the following properties:

(1) S is the disjoint union of the Sα;

(2) each Sα is a completely simple semigroup;

(3) SαSβ ⊆ Sαβ .

Conversely, any semigroup S with this structure is completely regular. We
say that S is a semilattice of completely simple semigroups.

The special case of completely regular semigroups in which the idem-
potents form a semilattice (i.e. the idempotents commute with each other)
was considered by Clifford because this particularity makes the Sα groups.
These semigroups are called Clifford semigroups. In a similar way that he
had proved that a completely regular semigroup is a semilattice of com-
pletely simple semigroups, Clifford showed that a Clifford semigroup is a
semilattice of groups. The following theorem provides a clear recipe for
the construction of such a semigroup.
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Theorem 6 (Clifford [4], Theorem 3). Let P be a semilattice. To each
α ∈ P , we assign a group Sα in such a way that distinct groups Sα are
disjoint. For each pair β < α (i.e., αβ = β), let φαβ : Sα −→ Sβ be
a morphism such that φαβφβγ = φαγ , if γ < β < α, and let φαα be the
identity automorphism of Sα. We let S be the union of the Sα and define
the product of aα ∈ Sα by bβ ∈ Sβ to be

aαbβ = (aαφαγ)(bβφβγ),

where γ = αβ. Then S is a Clifford semigroup. Conversely, every Clifford
semigroup is isomorphic to a semigroup constructed in this way.

Neither of these two theorems due to Clifford has an analogue in either
group or ring theory. Theorem 3 is considered to be the first major struc-
ture theorem of an independent semigroup theory. Theorem 4 is certainly
the second. Theorem 3 is also important because it provides a construc-
tion which has been the basis for many semigroup structure theories ever
since.

Clifford’s 1941 paper marks the beginning of an independent theory
of semigroups. Moreover, the effect of this paper in the subsequent de-
velopment of the theory was enormous. More than half a century later,
referring to this paper, Preston wrote [19]:

[It] was immensely influential. It contained definitive results
that have been in continual use since. It introduced new con-
cepts that provided powerful new tools for semigroup theory.

Clifford’s papers certainly influenced many researchers not only be-
cause of the mathematical content but also because of the manner in
which the content was presented, attracting to the domain of semigroups
many outstanding mathematicians. Douglas Munn was one of them - as
he often said,

the clarity of Clifford’s papers appealed to me greatly and this
consolidated my decision to work in the field.

6 The most important reference work

Rees Theorem had a tremendous impact in semigroup theory and a re-
markable influence in its subsequent development. After 1940, the number
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of research papers on semigroups appearing in the literature increased to
an average annual production of about 30 papers. In response to this
developing interest, two mathematicians, one american, A. H. Clifford
(1908-1992), and the other british, G. B. Preston (1925-), wrote the work
which remains, to this day and almost half a century later, the most
important reference work in semigroup literature:

A. H. Clifford and G. B. Preston

The algebraic theory of semigroups

Mathematical Surveys No.7 Vol I (1961), Vol II (1967), AMS

These two books are the most influential semigroup textbooks to date.
Not only did they collate many of the existing results on semigroups but
they also added new ones and, above all, standardised the notation and
terminology of the theory. The early work of Suschkewitsch, Clifford
and Rees provided the foundation for the first volume and both volumes
provided a solid foundation for the subsequent development of the theory.
The books by Clifford and Preston were one of the major driving forces
for the formation of a coherent theory of semigroups.
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As for the theory of semigroups, in the words of C. Hollings [12],

The investigations of Suschkewitsch, on finite simple semi-
groups, of Rees, on completely (0-)simple semigroups, and
of Clifford, on unions of groups, served not only as a solid
starting-point for the theory of semigroups, providing elegant
methods and a framework for subsequent research, but also as
a source of further interesting problems. Thanks to the early
boost that these early researchers provided, the theory of semi-
groups continues to go from strength to strength.

7 A privilege and a joy

While studying for her doctorate, at the University of St. Andrews, in
Scotland (1980-1983), the author had the honor and the pleasure of meet-
ing many important mathematicians, responsible for great advances in
semigroup theory and whose contributions cannot be ignored by anybody
researching on the history of semigroup theory. Douglas Munn (1929-
2008) and John Howie (1936-) are outstanding examples. The author also
had the immense privilege of meeting A. H. Clifford (1982) and having
discussed with him her first progress in her research problem. As if that
was not enough, the author lived the unforgettable experience of hearing
A. H. Clifford talking about his own achievements, ideas and difficulties
of the previous 40 years.

Almost twenty years afterwards, the privelege was ‘complete’: while
organising the International Conference on Semigroups, which was held



Semigroups also have history 170

at the Universidade do Minho, the author had the pleasure of having
Gordon Preston accepting the invitation to participate in the conference.
This new contact brought the joy of providing, to the younger generation
of semigroup researchers, a privilege similar to the one the author was
offered eighteen years before!

Suzana Gonçalves and G. B. Preston

(Castro Laboreiro, 1999)
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Abstract

In this brief note it is presented what is necessarily a personal,
and certainly by no means complete, point of view on the central
results and the most fruitful methods in finite semigroup theory.
The aim is to justify the autonomy of this field and to put it into
an historical context. The initial motivation for studying finite
semigroups was not originated by algebraic problems, by the con-
trary it comes from outside, from theoretical computer science
as a consequence of the connections of semigroups with formal
languages and automata. It was with the advent of electronic
computers, in the 1950’s, that the study of formal models of com-
puters, such as automata and sequential machines, was given the
attention of many researchers that develop an algebraic approach
for computational problems. As an algebraic field, the theory of
finite semigroup grows up using techniques from group theory,
ring theory and universal algebra, but their richness is a conse-
quence of the interaction with other areas of Mathematics and
with Computer Science.
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This exposition is not meant to be self-contained, so it is expected that
the reader has familiarity with basic algebraic concepts and techniques and
with rudiments of automata theory.

The first steps about finite semigroups had the aim to classify semi-
groups up to isomorphism, as it is usual in algebraic theories. At the time,
the finiteness of the semigroup order was not considered an important
property, and finite semigroups are only particular cases of semigroups.
A first successful result concerning finite semigroups is due to Anton Kaz-
imirovich Suschkewitsch, which described the structure of the minimal
ideal of a finite semigroup [24] in 1928. In 1940 and 1941, David Rees ex-
tends this result describing, up to isomorphism, every completely simple
and completely 0-simple semigroups as a certain matrix semigroups over
groups [16, 17]. The sequel of this work was the James Alexander Green’s
theory based in the introduction of the well known equivalence relations
R,L ,H ,D and J , actually known by Green’s relations, which are es-
sential for understanding how a semigroup is built up, both locally and
globally. From a local point of view, Green’s relations yield the notion of a
coordinate system for a regular D-class [10], generalizing Suschkewitsch’s
results. Note that in finite semigroups the relations J and D coincide.
A missing point was concerned with the product of elements of different
D-classes. The gap was filled in by Marcel-Paul Schützenberger with the
representation of semigroups by monomial matrices [20, 21]. From the
global point of view this representation gives wreath product coordinates
to the action of a semigroup on the left or right of a D-class.

There are too many isomorphism classes of finite semigroups and few of
them cover almost all finite semigroups, namely the classes of 3-nilpotent
semigroups, which are semigroups such that all products of three elements
are equal. In fact as the order of the semigroups grows up the percentage
of 3-nilpotent semigroups goes to 1. So, the classification of finite semi-
groups up to isomorphism is hopeless and the applications confirm this.
Hence, groups and semigroups are quite different. In a classical algebraic
approach the class of groups is richer than the class of semigroups, but
semigroups have wider applicability.

The crucial steps in direction to the autonomy of the field of finite
semigroup theory appear only in the 1950’s, and they were a consequence
of the development of electronic computers and the study of simple for-
mal models of computers such as automata and sequential machines. The
starting point of the automata theory is connected to a famous theorem
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due to Stephen Kleene, which characterizes rational languages as the lan-
guages recognized by a finite automata [11]. The basic notions and results
of automata and rational language theory can be interpreted in a very rich
way in algebraic and logical terms. An (finite) automaton can be alge-
braically interpreted as an action of the free semigroup on an alphabet
(which is a finite set) on the finite set of states. Hence, to each automa-
ton can be associated a finite semigroup called the transition semigroup,
which is generated by the partial transformations of the states defined by
the letters of the alphabet. Moreover, every semigroup is isomorphic to
the transition semigroup of a finite automaton. The free semigroup on
an alphabet A over the class of all semigroups is denoted by A+ and it
contains all nonempty words on A. Rational languages on A are subsets
of A+ defined by rational expressions, which can be thought of as a gen-
eralization of polynomials involving three operations: union (which plays
the role of addition), set concatenation (which plays the role of product),
and the plus operation (which generalizes the power operation since it
gives as a result the union of the iterated concatenations of a set, of any
positive order). If it is used the star operation instead the plus operation,
which means that one accepts the existence of a empty word and considers
iterated concatenations of any non negative order, then one works in the
monoid context instead in the semigroup context, which in some instances
are not identical.

In 1957, John Myhill proved that a language L on an alphabet A is
recognized by a finite automata if it is recognized by a finite semigroup,
which means that there is a finite semigroup S and a homomorphism
ϕ : A+ → S such that L = ϕ−1(ϕ(L)) [15]. He introduced the notion
of syntactic semigroup of a language, which is the quotient of the free
semigroup by the largest congruence that saturates the language (see also
the work of Michael Rabin and Dana Scott [18]). The syntactic semigroup
of a language is the smaller semigroup that recognizes the language, so
a language is recognizable if and only if its syntactic semigroup is finite
. Hence, rational languages are precisely subsets of the free semigroup
saturated by a finite index congruence.

The connection between automata, rational languages and semigroups
was first used to obtain computability results. In the mid-1960’s, Ken-
neth Krohn an John Rhodes studied a decomposition theory of machines
inspired in the theory of groups and they achieved a successful theory of
decomposition of machines and of semigroups. First, they proved that
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every finite automaton can be decomposed as an iterated cascade product
of elementary components, which are simple permutation automata (in
other words, automata whose transition semigroups are simple groups)
and the two state flip-flop.

0 1

b

a

a

b

Flip-flop automaton

The associative operation wreath product of semigroups models the cas-
cade product of automata and a fundamental notion to obtain a successful
algebraic decomposition theory is the division of semigroups. One says
that a semigroup S divides a semigroup T if S is homomorphic image of
a subsemigroup of T . Thus, for wreath product the prime semigroups are
the simple groups and the divisors of the tree element monoid of transfor-
mations of the set {0, 1} consisting of the constant maps and the identity
map. So, the prime semigroups which are not groups are the divisors
of the flip-flop transitions monoid, which are aperiodic semigroups (that
is semigroups whose subgroups are trivial). Hence in semigroup context
the fundamental result, known by Krohn-Rhodes Prime Decomposition
Theorem, states that every finite semigroup S divides an iterated wreath
product of prime semigroups, where the simple group factors are divisors
of S [12]. This is another theorem that led to develop the theory of finite
semigroups, which had not previously deserved any specific attention from
semigroups’s researchers. Krohn and Rhodes proposed as a measure of
(group) complexity of a finite semigroup the minimum number of group
factors (not necessarily simple groups) in a simplified form of the prime
decomposition which is an iterated alternate wreath product of groups
and aperiodic semigroups. Note that the wreath product of groups is a
group and of aperiodic semigroups is an aperiodic semigroup. The exis-
tence of an uniform algorithm to compute the complexity of a semigroup
has been a central question in finite semigroup theory. Although various
announcements of a solution were made, a complete and correct answer
to the problem has not been published yet.

The first reference book on the subject, Algebraic Theory of machines,
languages and semigroups [6], was edited by Michael Arbib and contains
an exposition of the state of the art of the semigroup theory approach to
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automata an languages theory as it is by the end of 1960’s. The book had
contributions from twelve authors with special reference to the contribu-
tions by Krohn and Rhodes.

One precursor example of a successful attempt to use algebraic pro-
prieties of finite semigroups to effectively characterize natural classes of
rational languages is the Schützenberger’s theorem, published in 1965,
that states that star-free languages are the languages whose syntactic
semigroups are aperiodic [22]. The appropriate framework for such appli-
cations was provided by Samuel Eilenberg together with Schützenberger
and Bret Tilson, in the mid-1970’s. They introduced the notion of pseu-
dovariety of semigroups, that is a class of finite semigroups closed for
homomorphic images, subsemigroups and finite direct products, and a
correspondence that to a pseudovariety V associates the variety of ratio-
nal languages whose syntactic semigroups are elements of V. Examples
of pseudovarieties are G, the class of all finite groups, A, the class of all
finite aperiodic semigroups, and N, the class of all finite n-nilpotent semi-
groups for any natural n. Since pseudovarieties of semigroups constitute a
complete lattice for the inclusion ordering, in actual language Eilenberg’s
fundamental theorem establish that the lattice of varieties of languages is
isomorphic to the lattice of pseudovarieties of semigroups. In this context,
the Schützenberger’s theorem is an instance of this correspondence in the
case of the pseudovariety A whose image is the variety of star free lan-
guages. Similar examples are due to Janusz Brozozowski and Imre Simon
and to Robert McNaughton for the variety of locally testable languages
which is the image of the pseudovariety LSl of the local semilattices [8, 14],
and to I. Simon for the variety of the piecewise testable languages which
is the image of the pseudovariety J of the J -trivial semigroups [23].

The classification of semigroups in pseudovarieties driven by applica-
tions was the successful one and the initial direction had to be abandoned.
Through Eilenberg’s framework a program for the classification of ratio-
nal languages was provided and many problems in finite semigroup theory
motivated by applications in computer science may be formulated in terms
of the decidability of pseudovarieties of semigroups. A pseudovariety V is
decidable if there is an uniform algorithm to check if a finite semigroup
belongs to V or not. In the mid-1970’s finite semigroup theory essentially
became the study of pseudovarieties and operators on pseudovarieties,
most of them reflecting important combinatorial operations on varieties
of rational languages. Examples of such operators are the wreath product,
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join, Mal’cev product and the power. Pseudovarieties that are operators
images are often defined by a set of generators. In such cases the study
of decidability becomes more difficult, because often it is unknown a pro-
cedure to check whether a semigroup is not in the pseudovariety.

At the pseudovariety level the operators semidirect product and wreath
product coincide, from which it follows that the semidirect product of
pseudovarieties is associative. The Krohn-Rhodes decomposition theorem
formulated in terms of pseudovarieties states that every semigroup lies in
to a pseudovariety of the form A ∗ G ∗ A ∗ · · · ∗ G ∗ A, where ∗ denotes the
semidirect product. Hence, the complexity problem became the problem
of the existence of a uniform decision procedure for iterated semidirect
products of this form.

A second reference book is Automata, languages and machines, vol. B
[9], written in 1976 by Eilenberg, which contains two chapters with con-
tributions from Tilson. The aim is to present the application of algebraic
methods on the study of recognizable sets and sequential functions. The
1970’s where rich in the development of Eilenberg’s program that encloses
two difficult problems. One is related to the computation of semidirect
products of pseudovarieties and the other to the syntactic characterization
of pseudovarieties. The attempts to solve such problems conduces finite
semigroup theory to its actual situation.

Influenced by previous works of several authors, in particular on graph
congruences and wreath products, Tilson realize that categories and semi-
groupoids (i.e. categories without the requirement of local identities)
viewed as partial algebras generated by graphs, are the essential ingredi-
ents to understand semidirect products. Hence, semigroups (respectively,
monoids) are particular cases of semigroupoids (respectively, categories)
by viewing its elements as edges at a single virtual vertex. The notion
of division naturally drives on to the notion of relational morphism in-
troduced by Tilson and Rhodes, as a relation between two semigroups, S
and T , such that the image of every element of S is a nonempty subset
of T , and for every two elements of S the product of its image sets is
contained in the image set of the product of the elements. In this context,
Tilson introduces the concept of derived semigroupoid which establishes
an intimate link between relational morphisms and wreath product de-
composition. The Derived Semigroupoid Theorem [25] clarifies this link
and implies that, if V andW are pseudovarieties of semigroups, the semidi-
rect product V∗W is the pseudovariety of all semigroups S such that there
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exists a semigroup T in W and a relational morphism ϕ : S −→◦ T such
that the derived semigroupoid associated to ϕ divides a semigroup on V.
Hence, there is an alternative definition of semidirect products of pseu-
dovarieties based on proprieties of its elements, instead defined by a class
of generators. Naturally this drives on to the extension of the concept of
pseudovariety to categories and semigroupoids.

Free semigroups over a pseudovariety are often infinite semigroups.
Moreover, in general pseudovarieties can not be characterized by equa-
tions. For example, there is no nontrivial semigroup equation satisfied
by all finite groups or by all finite nilpotent semigroups. The free semi-
groups on a set A over G and over N are equal to A+. So, classical results
of Universal Algebra, like the equational characterization of varieties in
the Birkhoff’s theory, does not hold for pseudovarieties. The solution
proposed by Eilenberg and Schützenberger was the characterization of a
pseudovariety by an infinite sequence of equations that ultimately defines
it, in the sense that every semigroup in the pseudovariety satisfies all
equations of the sequence after some sufficiently large order. In practice
this approach is useless and it was necessary to define limits on A+. In
order to define limits, semigroups needed to be endowed with a topolog-
ical structure and so one consider that all finite sets are endowed with
the discrete topology and A∗ is endowed with the initial topology for the
homomorphisms on semigroups of V.

In 1982, Jan Reiterman proposed the adequate approach to solve the
equational characterization problem of pseudovarieties. He proved that
pseudovarieties of semigroups are the classes of finite semigroups defined
by sets of pseudoidentities [19], defined as formal equalities between im-
plicit operations. The notion of implicit operation was already known
and it is due to F. William Lawere [13]. An implicit operation on a
class of semigroups is a family of semigroup operations with the same ar-
ity, indexed by the class, which commutes with homomorphisms between
semigroups in the class. Note that every word on an alphabet with n ele-
ments determines a n-ary operation on each semigroup, so each element of
the free semigroup determines an implicit operation. Reiterman defined
a metric on sets of implicit operations but no algebraic structure.

An independent proof of Reiterman’s theorem was done by Bern-
hard Banaschewski, who introduced pseudoidentities as formal identities
between members of a free profinite semigroup [7]. In general, given a
pseudovariety V, a semigroup is said to be pro-V if it is compact and
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residually in V in the sense that distinct elements could be separated by
continuous homomorphisms on elements of V. A profinite semigroup is
a pro-S semigroup where S is the pseudovariety of all finite semigroups.
Of course, semigroups of V are pro-V semigroups and, for every alphabet
A, the class of pro-V semigroups has a free object on A. Such free pro-
V semigroups capture the algebraic and combinatorial properties of the
semigroups of V. The elements of the free profinite semigroup on a set A
could be identified with limits of sequences of words on A.

However, it was only under the impetus of Jorge Almeida that profi-
nite methods and the syntactic approach became fundamental tools in
semigroup theory. Almeida’s early work on this subject explores connec-
tions with Universal Algebra in order to improve the knowledge about the
lattice of pseudovarieties of semigroups and to compute operators on pseu-
dovarieties. This is the aim of finite semigroup theory nowadays. Much
of this work can be founded in his book Finite semigroups and universal
algebra [1].

In general operators on pseudovarieties do not preserve decidability,
so a central question is under what conditions on the arguments the oper-
ator image is decidable. The notions of hyperdecidability, introduced by
Almeida [2], and of tameness, introduced by Almeida and Benjamin Stein-
berg [4, 5], came about precisely in trying to find a stronger form of de-
cidability which would be preserved or at least guarantee decidability of
the operator image.

In the case of the semidirect product, the profinite approach was ex-
tended to pseudovarieties of semigroupoids and one goal was to find basis
of pseudoidentities for pseudovarieties of the form V∗W given pseudoiden-
tity basis for V and forW. In general the problem is still open but an upper
bound is provided by the usually designed ”basis theorem” of Almeida and
Weil. Particular results were known, namely for cases where the upper
bound given by the basis theorem coincides with the semidirect product.
In [3] some key problems on finite semigroups that have guided the the-
ory of pseudovarieties until the end of the XX century are reviewed and
several open problems at the time are discussed.

The most recent book on finite semigroup theory is The q-theory of
finite semigroups, from Rhodes and Steinberg, published in 2009. The
q-theory is a new theory and the aim is to provide a unifying approach to
finite semigroup theory via quantization. The authors classify this book
as a research manuscript that contains a contemporary exposition of the
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complete theory of the complexity of finite semigroups, including clas-
sical results that profit from a recasting in a modern language. In this
approach, relational morphisms were considered instead homomorphisms
in the perspective that they should be the key structure. They intro-
duce the product and the division of relational morphisms and develop a
new language defining pseudovarieties of relational morphisms aiming the
construction of a Reiterman’s theory for such pseudovarieties.
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Abstract

Time has been a familiar topic for as long as one can imagine but,
as St. Augustine puts it, one is not capable of easily and briefly
explaining it. Besides, measuring time poses problems which may,
in particular, interfere with specific standards of mathematical
certitude.
The purposes of regularity and convenience in Calendars embody
an ancient and complex mathematical problem. One may even
think that timetables, in which human activities are scheduled
and recorded, rule life with natural perfection. However, no mat-
ter how natural may seem some cycles of one’s life and no matter
how perfect calendars may seem to be, the mathematical modeling
of such cycles - under social, cultural, religious and/or other con-
straints - is an artificial erroneous exercise whose ideal has often
appeared as an impossible task.

1Work supported by the Research Centre of Mathematics of the University of Minho
through the FCT Pluriannual Funding Program.
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In this article we will analyse some historical and some mathe-
matical data about calendars, reporting especially on Portuguese
literature. In particular, we will focus our attention on the Gre-
gorian Calendar and we will refer to some events and works in the
life of the Portuguese mathematician Pedro Nunes. It is our belief
that Nunes’ criteria for mathematical rigor are well reflected in his
approach to the problem of measuring time.

Keywords: Calendars, Portuguese literature, Mathematical Certitude,

Pedro Nunes.

Dedicated, with affection, to our friend Maria Fernanda Estrada.

. . . For what is time?
Who can easily and briefly explain it? Who can even
comprehend it in thought or put the answer into words?
Yet is it not true that in conversation we refer to nothing
more familiarly or knowingly than time? And surely we
understand it when we speak of it; we understand it also
when we hear another speak of it.
What, then, is time?
If no one asks me, I know what it is. If I wish to explain
it to him who asks me, I do not know.

St. Augustine, 4th Century, Confessions, Book XI

1 Introduction

Time has naturally been a human concern for as long as one can imagine.
Day and night, cyclic seasons and other periodic events came to be studied
by looking at the sky (the Sun and the Moon, in particular) which offered
the answers to planning the “right” moments for the most important daily
tasks: to sow, to harvest, to give birth, and so on.

Marshack’s research, as pointed out by [Richards2000], came to suggest
that men have been recording the phases of the Moon for more than 30 000
years. The birth of civilization pushed people even further to conceive
calendars as physical tools based on astronomical events defining basic
measures for time.

Astrologers, physicists and many other experts have attempted, more
or less successfully, to develop tools for measuring time aiming to reach
a necessary equilibrium between Religious demands and Mathematical
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solutions. In this context, Mathematics was once more to prove itself a
powerful instrument for organizing the practical knowledge of adapting
the day in accordance with the religious aspirations of different people on
different occasions and in various geographies.

The divisions of time, for instance at the beginning of Portugal’s own
history (12th century), were essentially the same as they are nowadays,
in spite of the Gregorian reform having taken place in the 16th century.
The traditional cycles that served as the inspiration for measuring time
(making calendars) are related to the Moon (∼ 29, 5305 days) and to the
Sun (∼ 365, 2422 days) and those are not nowadays, neither they were in
the past, easy numbers to work with. In fact, on this quest for finding
suitable numbers for measuring time Alphonso X wrote in one of his
famous books on Astronomy that if God had consulted me, I could have
offered Him some wise advice2.

The Hebrews, for example, choose the Moon and made their month
close to the average lunar cycle. From them we have inherited the regular
7-day week possibly because each phase of the Moon has, more or less,
this length and later on also used for the biblical account of Creation.
The Egyptians, acknowledging the connection between the floods of the
Nile and the rise of Sirius, were the first to establish an average cycle for
changes in the weather (seasons); from there we have inherited the year of
365 or 366 days. Christians did not give up on an even more difficult task:
the synchronization of both the lunar and the solar cycles, establishing a
lunisolar calendar.

2 The Julian Calendar legacy

When each 4 years we have one additional day in the annual cycle we
are, actually, using a rule already stated by Julius Caesar (by 46 b.C.) for
a leap/bissextile year. Acknowledging an error when using 365 days in
a year, the Julian calendar proposed that common length and managed

2Alphonso X (1221-1284) - “El Sabio” (the Wise/Learned Man) and King of Castile
and Leon - upon whose order a highly influential set of astronomical tables and treaties
was prepared (in Toledo, around 1260), was the grandfather of the Portuguese King D.
Dinis (founder of the Portuguese University). Following Ptolemaic methods, Alphon-
sine’s tables chartered the movement of heavenly bodies and proposed a new length
for the tropical year (using a sexagesimal system): 365 days, 5 hours, 49 minutes and
16 seconds.
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by having an ante diem bis sextus Calendas Martii (a second sixth day
before the beginning/calendas of March).

With this intercalation method, one year in the Julian calendar lasted,
on average, 365 days and 6 hours (one quarter of the day). But let´s check
with some easy calculations since this correction amounts to taking the
year almost 10 minutes longer than the tropical year itself:

365, 25− 365, 2422... = 0, 0078...

Does it seem small? Well, the difference is approximately 3, 12 days
for each 400 years (1 day in just over 128 years) and this “small” difference
was soon to be noticed by our ancestors.

3 Easter: an extra complexity

Setting the date of Easter (a movable feast registered according to the
Gospels) brought new complexity to the organization of the Julian Cal-
endar. By neglecting such movable feasts one has a “simple” arithmetic
solar calendar but the addition of these Christian ecclesiastical demands
transformed it into an arithmetic lunisolar calendar.

Figure 1: The Celestial Sphere, with the
equinoctial and the solsticial points.

By 325, the first Ecumeni-
cal Council, gathered at the
Imperial Palace of Nicaea, dis-
cussed the dissociation of two
dates: the celebration of the
Resurrection of Jesus could not
match nor precede the Jewish
Passover. This Council, hosted
by Emperor Constantine him-
self, gathered 380 representa-
tives of the Christian churches
and decided to accommodate
the date for the resurrection of
Christ in the existing Julian cal-
endar. In addition, the final de-
cision defined Easter by means
of the vernal equinox.
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From then on, Easter has been scheduled on the Sunday immediately
after the first full moon that falls on or next after the date of the vernal
equinox.

On the precision of using the equinoxes to set the length of the year
one may show (Cf. Figure 1) the Ecliptic (plane), the Celestial Equator
(above the Earth’s equator) and the Earth’s Polar Axis NS (in which N
represents the North Celestial Pole and S represents the South Celestial
Pole). The intersections shown between the Equator and the Ecliptic are
the equinoctial points: the vernal point EMarch and the autumnal point
ESeptember. By extension, the term equinox may denote an equinocial
point. Due to the obliquity of the Ecliptic (approximately 23.44o) there
are two points SJune and SDecember which are the northernmost and
southernmost extremes of the Ecliptic, when the solstices occur.

The bishops of Rome and Alexandria also decided that, each year,
they were due to inform, in advance, the correct date for celebrating
Easter. However, this procedure proved to be a complicated task and it
did not take long until Rome and Alexandria were implementing different
practices. Under the circumstances, direct astronomical observation had
been long before rejected as a method, and the theoretical mathematical
models prevailed.

Figure 2: Dionysius Exiguus’
Easter Table.

For instance, in the sixth century, a
mathematical model devised by Diony-
sius Exiguus3 became internationally
accepted. Marking the vernal equinox
invariably on the 21st of March for cal-
culating the Paschal full moon as the
fourteenth day of a specific lunation be-
neath the cycle of 19 years of the Golden
Number, Dionysius used his mathemati-
cal knowledge to build, from those foun-
dations, an Easter table for a cycle of 95
years4.

3Dionysius Exiguus (Dennis, the “little” 470 − 544), who wrote treaties on ele-
mentary mathematics, is best known as the inventor of the Anno Domini Christian
era.

4Dionysius’ Easter table was later continued by Isidore of Seville (for another 95
years) and Bede, the Venerable, completed them until 1064.
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Easter tables such as Dionysius’ were, invariably, limited and, grad-
ually, new algorithms for modeling time were being devised: with new
techniques (using fingers, wheels, etc.) priests could, on their own, cal-
culate the important dates for planning the celebrations and still be sure
that they were tuned to the Pope’s rules.

An example of these tools may be found in the Portuguese book Regra
geral para aprender a tirar pela mão as festas mudáveis. In addition, in
his work, Trancoso ([Trancoso1570]) explained that the computation of
Easter, in a certain year Y , should follow some stages, each one with
several alternative (and equivalent) methods. In an updated language
Trancoso’s rules may be read as follows:

Let Y be

Y = a× 1000 + b× 500 + c× 100 + d× 20 + e

with a ∈ N0, b ∈ {0, 1}, c, d ∈ {n ∈ N0 : n ≤ 4}, e ∈ {n ∈ N0 : n ≤ 19}.
One would have

1. To calculate the figure of the Golden Number valid for Y : gn(Y ),
by definition,

mod19(mod19(mod19(mod19(mod19(12a) + 6b) + 5c) + 1d) + e) + 1

2. To identify the Dominical Letter(s) valid for Y , over a “hand” matrix
W with general term wi,j :

W =













dc b a g
fe d c b
ag f e d
cb a g f
ed c b a
gf e d c
ba g f e













dl(Y ) = wi,j

i = 1 + mod7(a× 12 + b× 4 + c× 5 + ⌊d
4⌋)

j = 1 + mod4(d)

3. To find out which of the 29 conjunctures for the hand (Cf. Figure
3) has the calculated figure for the Golden Number.
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Figure 3: Using Hands for evaluating the Golden Number, in [Trancoso1570]
and in a diagram.

By analysing the criteria behind the numerical sequence and the allo-
cation of nichel5 one may find:

ti ∈ {0, 1, 2, . . . , 19}
t1 = 16 With bn = tn + 8.

{
tn+1 = bn − 19, if bn /∈ {1, 2, . . . , 19}
tn+1 = 0 ∧ tn+2 = bn, otherwise.

It means that in each iteration 8 years are added, leaving one empty space
whenever that sum does not lead to a new Golden Number cycle. Indeed,
if a new 19 years cycle starts, after 8 year epact, the age of the moon on
the 1st of January, decreases one unit and every full moon comes one day

5Nichel is a variant of nichil, which is, in turn, the scholastic form of nihil, for
“nothing”, in classical Latin. In the present example it means that the junct works as
an empty space and one must remember that, at that time, a numeral for “zero” was
not in use.
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later; otherwise, epact decreases two units and full moons are two days
delayed.

Figure 4: Using hands to evaluate the Do-
minical Letter, in [Trancoso1570].

Finally, to find out which
conjuncture in the hand matches
Easter there is yet another
“hand” in Trancoso.

In this case the conjunctures
were signified by the letters d, e,
f , g, a, b and c.

Where should one then mark
the dominical letter of Y (sec-
ond dominical letter if the year
is bissextile) after the conjunc-
ture that has the Golden Num-
ber of Y ?

Movable feasts depended on those two variables - Golden Number and
Dominical Letter. They also depended on a constant (for Easter the
earliest day is 22nd of March). Therefore, one should start counting on
from that date as many days as the conjunctures until the marked one is
reached...

Easter date would then be found.

4 Measuring Time:
tackling a historical problem

Understanding the rules implemented in calendars may be a tricky task
and it does not seem to have been by chance that some of the first books
printed in Portugal also dealt with calendar algorithms and/or calendar
tables. We have referred to Trancoso’s text but, before that, we may
find, for example, the Almanach Perpetuum (Cf. [Zacuto1496]) aiming at
being, as expressed in the title itself, a perpetual calendar6.

6Printed in Leiria it associated the work of three Jews: Abraham Zacuto (an as-
tronomer who came to Portugal expelled from Spain), José Vizinho (the main cosmog-
rapher of the Kingdom of Portugal) and Abraão Samuel Dortas (the editor). The book
consisted of numerous tables for Dominical Letters and tables to help the search for
the dates of the movable feasts (such as Easter). Previously, in Portugal, it had been
printed yet another treaty with some calendar details: we are referring to the Breviar-
ium Bracarense de 1494 (Cf. [Breviarium1494]), commissioned by the Archdiocese of
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Authors such as Zacuto or Trancoso were, even, presenting their ta-
bles together with instructions for some correction factors. Nevertheless,
in spite of numerous efforts, in spite of distinguishing texts/tables for
practical consultation of dates from texts/treatises for the explanation of
mathematical models behind such tables, the truth is that neither the
treatises nor the tables could ever have answered accurately to the prob-
lem of measuring time.

In a different literary domain one also finds Duarte Pacheco Pereira7

who, in 1506, wrote a memorable work on the Places of the Earth - Es-
meraldo de Situ Orbis - where he wrote that

Em todo o outro tempo do anno sobe o Sol noventa graaos
entrando na dita linha, salvo nos dias 11 de Março e 14 de
Setembro em que faz dous equinocios8.

The conventional Roman date for the nominal equinox, the 21st of
March, was, according to Duarte Pacheco Pereira, falling 10 days apart
from the real vernal equinox. That was, for sure, a serious problem whose
solution was, apparently, only involving a simple adjustment of the calen-
dar but the mathematical contours of the problem of measuring accurately
the time remained unclear.

Pedro Nunes (1502 − 1578), for example, showed that he was much
aware of the relevance of mathematical proofs and, on the quest for mea-
suring time, we believe that, he clearly applied his principles of mathema-
tical accuracy. In fact, whereas in De Crepusculis Nunes measured some
time events, namely the duration of the twilights, acknowledging, in par-
ticular, important peculiarities related to geographic as well as seasonal
factors and achieving his goal of mathematical certitude. On the other
hand, in his analysis of a proposed reform for the Julian calendar, Pedro

Braga.
7Duarte Pacheco Pereira (1460 − 1533) is well known as the expert mind behind

the famous Treaty of Tordesilhas, which split the world in two parts (to be divided by
the Portuguese and the Spanish empires) but he was, undoubtedly, a very competent
ship’s captain who knew profoundly the art of navigation. Pacheco Pereira is also
credited as the author of the following phrase A experiência é a mãe de todas as coisas
(“Experience is the mother of everything”, where the word experience is, perhaps,
better understood as a synonym for practice), which might be seen as Pacheco Pereira’s
attitude towards knowledge.

8“In every other day of the year the Sun rises 90o... except for the 11th of March
and the 14th of September where it makes two Equinoxes”.
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Nunes commented on the difficulties of the original problem and criticized
the solution, certainly also aware of the lack of mathematical rigor in the
process of making calendars.

5 De Crepusculis:
Pedro Nunes and the minimum twilight

Pedro Nunes, in his De Crepusculis (1942)9, established a profound study
where one notices clearly his opinion on how important mathematics was
to practical knowledge as well as to the theoretical one.

Figure 5: Celestial Sphere, showing the
Celestial Equator and the plane of the
Horizon of a certain location L.

In this case, reflecting upon
the application of mathematics
to the concrete/physical real-
ity of watching the skies and
understanding that reality, Pe-
dro Nunes proposed the mathe-
matical certitude for solving a
famous problem of measuring
time: the problem of the “min-
imum crepuscule”10.

According to Sacrobosco,
(Cf. [Sacrobosco1478]), crepus-
cule/twilight is: a diffused light,
in-between day and night, so
that there are, daily, one early
morning twilight, which occurs
at dawn just before sunrise, and
an evening one, which occurs
immediately when the sun sets.

9We are, in what relates to De Crepusculis, mostly reporting to the facts presented
in the study conducted by Carlos Vilar, in [Vilar2006].

10It is possible to find some misleading information on the solution presented by
Pedro Nunes and on citing Bernoulli and d’Alembert as the mathematicians who,
in fact, solved such problem (see, for example, [Dorrie1965]) but the truth is that
Jacob Bernoulli, himself, had already dismissed such opinion in a “Solutio Problematis
de Minimo Crepusculo” (Jacob Bernoullium communicata in litteris, Basileae, die 20
Julii, 1692, datis) and, later on, in a letter,1693, published in Journal des Sçavans
[JourSavants1693] where he credited Pedro Nunes as having first solved this problem.
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It was believed, since very ancient times, that the crepuscule, at a
certain place L, started when the Sun, in its daily (apparent) movement
around the Earth through a parallel, PABP ′, to the Equator lays at an
angular distance of 18o below the horizon of L11.

On Figure 5 we are representing the Earth’s Polar Axis NS (in which
N is the North Celestial Pole and S is the South Celestial Pole) and the
Zenith-Nadir Axis.

Point A is an intersection between the parallel PHAP ′
H to Horizon

(18o below it) and PABP ′ parallel to Equator, described by the Sun in
its daily movement. Point B is an intersection between that same parallel
PABP ′ and Horizon.

Therefore, according to our figure, the morning crepuscule starts in A
and ends in B. Those points mark the instances between which the Sun
describes on PABP ′ the arch AB, said to be the crepuscular arch. The
amplitude of the crepuscular arch divided by 15o gives us the length of
the crepuscule, stated in hours, minutes and seconds.

Pedro Nunes, in his treatise composed of 6 appendices and 19 propo-
sitions12, admitted the Ptolemaic view of the universe, as stated by the
geocentric theory, and also admitted that the depressão do Sol13, in the
limits of the crepuscules is 18o. The geocentrism was not important to his
conclusions (even by today’s standards) but on the depressão do Sol Pe-
dro Nunes taught, in his 1st Proposition, that this value was not constant,
it depended instead on gases emanating from the Earth and existing on
the spherical surface of the Earth itself: it varied, therefore, from place
to place on the same day and it also varied from day to day in the same
place.

(De Crepusculis’ Prop. I) Demonstrar que o arco da distância
do Sol ao horizonte, no prinćıpio do crepúsculo matutino,
ou no fim do vespertino, não pode ser sempre o mesmo e
que varia necessariamente com as mudanças do tempo14.

11It seems important to refer that the magnitude of 18o (set by Ptolemy), for the
depressão do Sol, both at the morning crepuscule and the evening one, although very
common, at the time, was, nevertheless, not unique. For example: 18o for Ptolemy,
17.5o for Strabo, 19o for Alhacen and Vitellius.

12For a summary see [Vilar2006], pp. 78 and 133.
13The depressão do Sol is defined by Pedro Nunes as being, at the beginning of the

morning crepuscule, or at the end of the evening one, the meridian distance of the Sun
to the horizon of the place.

14“To prove that the arch of the distance from de Sun to the horizon, at the beginning
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In Prop. XVIII he completes his study by evaluating “the maximum
height of the gases that make the air dense and thick, being able to reflect
the light of the Sun, provoking the crepuscules”:

(De Crepusculis’ Prop. XVIII) Avaliar a altura máxima
dos vapores15.

Moreover, Pedro Nunes shows, in his Prop. XVI, how to determine
the depressão do Sol

(De Crepusculis’ Prop. XVI) Dada a duração do crepúsculo,
deduzir a distância do Sol ao horizonte16.

Pedro Nunes, himself, made the necessary observations and found such
value, in Lisbon on the 1st of October 1541, to be 16o2′.

His Prop. XVII is, really, both a geometrical and a detailed mathe-
matical hymn to the problem of the minimum crepuscule. With this
important proposition, Pedro Nunes solved, in fact, two problems on the
minimum crepuscule: finding the dates where they occur and calculat-
ing/measuring its length.

(De Crepusculis’ Prop. XVII) Explicar a causa do aumento
e da diminuição dos crepúsculos17.

The equation for evaluating the length of the minimum crepuscule is
(Cf. Figure 5)

sin

(

CrM

2

)

=

sin

(

DpS
2

)

sin
(
AE
) ,

with CrM being the minimum crepuscular arch, DpS being the depressão
do Sol when the crepuscule starts and AE being the maximum height of
the Equator above Horizon.

The equation for finding the declination of the point on the Ecliptic,
occupied by the Sun, when the minimum crepuscule occurs is

sin
(
D
)
= sin

(
AO
)
sinφ,

of the morning crepuscule, or at the end of the evening one, can not be always the
same and that it varies with the changes of the time”.

15To evaluate the maximum height of the gases.
16“From the duration of the crepuscule, to deduce the distance from the Sun to the

horizon”.
17“To explain the causes for the increase and the decrease of the crepuscules”.
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where D is the declination of the point on the Ecliptic, occupied by the
Sun, when the minimum crepuscule occurs, AO is the ortiva amplitude
and φ is the latitude of the place.

Pedro Nunes could not have known the techniques of differential cal-
culus that, more than one century later, the two Bernoulli brothers came
to use for their solution on the minimum crepuscule but it seems fair to re-
mark that in spite of not having the calculus tools, Pedro Nunes managed
to include in his solution, by means of geometric methods, the evaluation
of the length of this crepuscule which the Bernoulli(s)’ solution did not
consider. Furthermore, Pedro Nunes applied his study by/to evaluating,
in particular, the crepuscular arch in Lisbon in the 25th of February and
on the 26th of September, namely18: 20o34′40′′.

Pedro Nunes’ quest for mathematical rigor was long validated even
at his time and Nunes’ international recognition as a mathematician was
soon to be called upon for dealing with yet another problem on measuring
time: the reform of the Julian calendar.

6 The Gregorian Calendar:
Pedro Nunes’ comments

Given the discrepancy between the calendar year and the true solar year,
as shown in section 4 of the present article, the vernal equinox had grad-
ually moved away from the established date of the 21st of March. Other
Ecumenical Councils, after Nicaea, had also attempted to tackle the prob-
lem and some Popes had shown interest in solving the problem but it was
not until the 16th-century that Pope Gregory XIII (1502 − 1585)19 as-
signed to himself the task of reforming the Julian calendar.

Gregory XIII, Pope from 1572 until 1585, was born Ugo Boncompagni
and acknowledged the errors with the date of Easter, as defined in Nicaea.
Known as having led a simple life, but not free of some scandals, Pope
Gregory XIII embraced the difficult task of reforming the Catholic Church.

18These values are mathematically correct even for today’s standards (where a simple
change of referential would be needed: a conversion from Julian to Gregorian calendar).

19According to [CatholicEncyc1913], Gregory XIII’s election was greeted with joy by
the Roman people, as well as by foreign rulers. Emperor Maximilian II, the kings of
France, Spain, Portugal, Hungary, Poland, the Italian and other princes sent their
representatives to Rome to tender their obedience to the newly-elected pontiff.
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However, it was the reformation of the Julian calendar, introduced to
Portugal and other Catholic countries in 1578, that was to gain him a
lasting fame.

A reform commission, in which one of the leading members was the
Jesuit priest/astronomer Christopher Clavius, was assigned to analyse
several proposals for the reform of the calendar and other member, Anto-
nio Lilio, an Italian scientist, would see his brother Luigi’s project stand
as a basis for the implemented solution.

The structural ideas of Lilio’s proposal for the reform were written by
Chacón in [Compendium1577]: the Compendium novae rationis restituendi
Kalendarium and further advised that assessment was required from the
best experts (universities and academies) throughout the Catholic terri-
tories.

Pedro Nunes was naturally aware of the equinocial shift long before.
Nunes, by then already an emeritus professor of Mathematics at the Uni-
versity of Coimbra, was asked to make the Portuguese appraisal of that
Compendium. Nunes’ condition was, however, that of an elderly man,
worried by some family scandals and seriously ill.

Joaquim de Carvalho, in [Carvalho1952], gathered some facts and tes-
timonies into a well-established narration aiming to obtain Nunes’ state-
ment over the project under discussion in the Compendium and, mainly
from his studies, we know that Monsignor Roberto Fontana, by then one
of the representatives of the Pope in Lisbon, is credited as having, af-
ter Pedro Nunes’ death, maintained talks with D. Henrique20 on Nunes’
opinion about the proposed reform of the calendar. We are, on the sub-
ject, told that D. Henrique, himself, searched for some related documents
having arranged the moving of Pedro Nunes’ writings from Coimbra to
Lisbon21. Fontana was, in the meantime, reporting to the Vatican the
status of the ongoing task in Portugal and registering that delays were
caused by the illness of the mathematician.

In spite of the absence of Nunes’ writings on the reform of the calendar,
one knows of the comments by Friar Lúıs de Souto Maior, a Dominican
priest at the College of St. Thomas and a relative of Pedro Nunes. Leon
Bourdon, in [Bourdon1953], publicized Nunes’s opinion on the subject

20Cardinal D. Henrique was uncle of the deceased Portuguese king D. Sebastião and
succeeded him as Regent of the kingdom.

21We know, nevertheless, that no document that alludes to reforming the calendar
was found in two boxes containing Nunes’ manuscripts.
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through a trustworthy testimony of Friar Lúıs who wrote a report on his
last visits to Pedro Nunes and where he recalled that

O Doutor Pero Nunes cosmographo moor, estando na cama
muito doente pouquos dias antes que morresse, me disse por
vezes que S. A. lhe mandara que visse hum certo tratado envi-
ado pello Santo Padre de celebration Pasche para que scrivesse
o seu parecer acerqua disto e que por elle estar tam doente
nam podia fazer isto como desejava; mas que elle nam era
de parecer que se fizesse nenh ua mudança no kalendario ac-
erqua deste ponto e que era melhor proceder desta maneira
que procede a igreja catholica tantos annos ha que nam fazer
esta novidade, porque de nenh ua maneira se podem evitar to-
dos os enconvenientes nem as regras que o autor do sobredito
tratado daa sam muito certas, antes sam incertas e falsas ou
fallivees, como elle determinava mostrar se nam morrera tam
depressa. Em fee disto asiney aqui de minha mão. Oje dia de
S. Catarina martyr 1578 22.

The content of that letter explicitly assured Nunes’ opposition to those
methods exposed in the Compendium set to amend the Julian Calendar.

Alternative solutions to analysing the Compendium, after Nunes’ death,
were also sought by D. Henrique who appointed Tomás da Orta and
Manuel Mendes Vizinho, doctors and cosmographers, to accomplish the
task.

Orta compared the actual astronomical movements with the dates of
Easter, as calculated by the Church, and settled that between 1576 and
1604 there would be five years in which the given difference would be no
less than 28 days. He expressed, as a consequence, his objection on the
proposed abolition of ten days to fix the equinoctial shift stated in the

22“Dr. Pero Nunes, chancel cosmographer, being very ill in bed a few days before
he died, told me that sometimes Y. H. appointed him to see a certain treaty sent by
the Holy Father de celebration Pasche [On the Easter Celebration] to write his opinion
about it and that because he was so sick he could not do it as he wished, but he was
not of the opinion to make any change to the Calendar about this point and it was
better to proceed in this way the Catholic church has been making for many years to
not make this news, because there is no way to avoid all the hassle, nor are the rules
that the author of the aforesaid treaty gives very certain but they are false or uncertain
and fallible as he was determined to show if he had not died so soon. In this faith I
signed here in my hand. Today Day St. Catherine martyr 1578”.
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Compendium. He was also uncomfortable with a computation founded on
the average motions of the Sun and the Moon.

Manuel Mendes Vizinho registered an inventory of the disadvantages
and weaknesses of Lilio’s proposed method: complex, arduous, uncertain,
based on the misfits of fictional motion cycles: the epacts. He also recalled
that, some 60 years before, the Portuguese Master Diogo23 submitted a
relevant draft to Pope Leo X’s request on the same subject.

Orta and Vizinho were aware of Nunes’ point of view but they both
conducted their own analysis and finally also sustained Pedro Nunes’ ob-
jections.

Those were not easy times for Portugal which was, by then, ruled by
a Castilian Monarch Philippe. Moreover the Portuguese experts’ opin-
ions on the proposed reform for the calendar were unanimously against
it. We are also acquainted with the fact that many other European ex-
perts shared and expressed Nunes’ view on the quality of Lilio’s proposal.
But, in spite of all this, in his Papal Bull of February 24th, 1582 - Inter
Gravissimas - Pope Gregory XIII finally decided that the calculation of
the date of Easter was, from then on, to depend on a cycle of epacts and
that, in particular, 10 days were to be suppressed from the calendar; the
choice fell over that same October of 1582.

Portugal was, nevertheless, one of the few countries, in the world, to
immediately adopt the papal decision.

7 Final Remarks

Legal implementation of the Gregorian reform for the calendar went ahead
but it was definitely a very controversial decision from its very beginning.
Divergent opinions immediately arose in a struggle where Clavius became
prime advocate in favour of the changes.

At the same time, new strategies facilitating the transition from the
Julian to the Gregorian model were required, while adapting and rein-
venting algorithms to everyone’s computations. For instance, it seemed
to us rather interesting to compare24 Trancoso’s approach (summarized

23One suspects that Master Diogo (Mendes Vizinho) is José Vizinho, whom we refer-
eed to previously, accredited for having worked with Abraham Zacuto on his Almanach
Perpetuum.

24For an extensive comparative study of Portuguese works on Julian and Gregorian
Calendars see [Lopes2007].
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in section 3) to the one given by Sequeira - in a text (Cf. [Sequeira1612])
with an odd title Thesouro de Prudentes - where he obviously aims at
explaining how the changes are slight.
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Figure 6: Using Hands, with Epact figures, to compute Easter, in
[Sequeira1612] and in a diagram.

Epact was calculated using the thumb as in Trancoso, similarly after
translation of two conjunctures, a new iteration that should be emended
due to non bissextile secular years. To find out which conjuncture in
the hand matched Easter a hand for Epacts was used for an immediate
result; instead Golden Number and hand for Letters suffered only the
proper adjustments25.

Yet, such rules, claimed to be simpler, did not please neither convince
the majority of people. Many seemed suspicious of the tricky mathema-
tical structure behind the Gregorian reform.

25Nevertheless, Sequeira explains the purposes of R for “Rubros” and N for “Nibros”
in the Epacts hand inwards a strategy to control an exception: to avoid epact 24
incompatibilities with the boundaries for Easter date settled in Niceae. In that case -
R - theoretical Easter full moon must come one day earlier (replacing epact 24 to 25);
if epact 25 already occurs in the same 19 year Golden number cycle - N - epact 25
should be also substituted by 26.
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Pedro Nunes was largely acquainted with the importance of mathe-
matics to practical as well as theoretical knowledge; with both classical
and current literature; and with the benefits of using mathematics (and
its certitude) as a tool to explaining real/concrete/physical problems. Ac-
quainted with all of these things, Pedro Nunes knew exactly the difficulties
behind an erroneous system for measuring time to which he referred by
saying, in particular, that the rules of the Compendium are uncertain and
false or prone to failure.

The same system, the erroneous one is, nevertheless still used at
present, and the advice left by Nunes himself may offer us, in the twenty-
first-century, some kind of comfort because, with respect to time measure-
ment, there is no way to avoid all the inconvenience.
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Maio, Ed. Atlântida, Coimbra (1953).

[Breviarium1494] Breviarium Bracarense de 1494, Imprensa Nacional-
Casa da Moeda, Lisboa (1987).

[Carvalho1952] J. Carvalho, “Sobre as vissitudes do manuscrito e autenti-
cidade desta obra” in Pedro Nunes, Defensão do Tratado da Rumação
do Globo para a arte de navegar, Separata da Revista da Universidade
de Coimbra, Vol, 17, Coimbra (1952).

[CatholicEncyc1913] Catholic Encyclopedia, The Encyclopedia Press,
Robert Appleton Company, (1913).



Time and Pedro Nunes’ 203

[Compendium1577] P. Chacón “Compendium novae rationis restituendi
Kalendarium”, in C. Clavius, Christophori Clavii Opera Mathemat-
ica, V, tomis distributa, pp. 3-12, Mainz (1612).

[Dorrie1965] H. Dorrie 100 Great Problems of Elementary Mathematics.
Their History and Solution, New York (1965).

[Dreyer1920] J. L. E. Dreyer, “The original form of the Alphonsine Ta-
bles” in Monthly Notices of the Royal Astronomical Society, 80, pp.
243-67, (1920).

[Gingerich1985] O. Gingerich, “The Astronomy of Alfonso de Wise” in
Sky and Telescope, 69, pp. 206-8, (1985).

[InterGravissimas1582] Gregory XIII, “Inter Gravissimas” in C. Clavius,
Christophori Clavii Opera Mathematica, V, tomis distributa, pp. 13-
15, Mainz (1612).

[JourSavants1693] “Crepuscule” (Extrait d’une lettre de M. Bernoulli),
in Le Journal des Sçavans, p. 29 (1693).
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Matemática, Universidade do Minho, Braga (2006).

[Zacuto1496] A. Zacuto, Almanach Perpetuum de Abraham Zacuto, Im-
prensa Nacional-Casa da Moeda, Lisboa, (1976).






