SIMPLICIAL RESOLUTIONS AND GANEA FIBRATIONS

THOMAS KAHL, HANS SCHEERER, DANIEL TANRÉ, AND LUCILE VANDEMBROUCQ

ABSTRACT. In this work, we compare the two approximations of a path-connected space X, by the Ganea spaces $G_n(X)$ and by the realizations $\|\Lambda_{\bullet}X\|_n$ of the truncated simplicial resolutions emerging from the loop-suspension cotriple $\Sigma\Omega$. For a simply connected space X, we construct maps $\|\Lambda_{\bullet}X\|_{n-1} \to G_n(X) \to \|\Lambda_{\bullet}X\|_n$ over X, up to homotopy. In the case n=2, we prove the existence of a map $G_2(X) \to \|\Lambda_{\bullet}X\|_1$ over X (up to homotopy) and conjecture that this map exists for any n.

We use the category **Top** of well pointed compactly generated spaces having the homotopy type of CW-complexes. We denote by Ω and Σ the classical loop space and (reduced) suspension constructions on **Top**.

Let $X \in \mathbf{Top}$. First we recall the construction of the Ganea fibrations $G_n(X) \to X$ where $G_n(X)$ has the same homotopy type as the *n*-th stage, $B_n\Omega X$, of the construction of the classifying space of ΩX :

- (1) the first Ganea fibration, $p_1: G_1(X) \to X$, is the associated fibration to the evaluation map $ev_X: \Sigma \Omega X \to X$;
- (2) given the nth-fibration $p_n \colon G_n(X) \to X$, let $F_n(X)$ be its homotopy fiber and let $G_n(X) \cup \mathcal{C}(F_n(X))$ be the mapping cone of the inclusion $F_n(X) \to G_n(X)$. We define now a map $p'_{n+1} \colon G_n(X) \cup \mathcal{C}(F_n(X)) \to X$ as p_n on $G_n(X)$ and that sends the (reduced) cone $\mathcal{C}(F_n(X))$ on the base point. The (n+1)-st-fibration of Ganea, $p_{n+1} \colon G_{n+1}(X) \to X$, is the fibration associated to p'_{n+1} .
- (3) Denote by $G_{\infty}(X)$ the direct limit of the canonical maps $G_n(X) \to G_{n+1}(X)$ and by $p_{\infty} : G_{\infty}(X) \to X$ the map induced by the p_n 's.

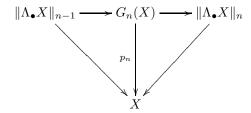
From a classical theorem of Ganea [3], one knows that the fiber of p_n has the homotopy type of an (n+1)-fold reduced join of ΩX with itself. Therefore the maps p_n are higher and higher connected when the integer n grows. As a consequence, if X is path-connected, the map $p_\infty\colon G_\infty(X)\to X$ is a homotopy equivalence and the total spaces $G_n(X)$ constitute approximations of the space X.

The previous construction starts with the couple of adjoint functors Ω and Σ . From them, we can construct a simplicial space $\Lambda_{\bullet}X$, defined by $\Lambda_n X = (\Sigma\Omega)^{n+1}X$ and augmented by $d_0 = \operatorname{ev}_X \colon \Sigma\Omega X \to X$. Forgetting the degeneracies, we have a facial space (also called restricted simplicial space in [2, 3.13]). Denote by $\|\Lambda_{\bullet}X\|$ the realization of this facial space (see [7] or Section 1). An adaptation of the proof of Stover (see [8, Proposition 3.5]) shows that the augmentation d_0 induces a map $\|\Lambda_{\bullet}X\| \to X$ which is a homotopy equivalence. If we consider the successive stages of the realization of the facial space $\Lambda_{\bullet}X$, we get maps $\|\Lambda_{\bullet}X\|_n \to X$ which constitute a second sequence of approximations of the space X. In this work, we study the relationship between these two sequences of approximations and prove the following results.

Date: February 2, 2008.

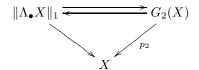
1

Theorem 1. Let $X \in \textbf{Top}$ be a simply connected space. Then there is a homotopy commutative diagram



The hypothesis of simply connectivity is used only for the map $G_n(X) \to \|\Lambda_{\bullet}X\|_n$, see Theorem 3 and Theorem 5. In the case n=2, the situation is better.

Theorem 2. Let $X \in \text{Top}$. Then there are homotopy commutative triangles



We conjecture the existence of maps $\|\Lambda_{\bullet}X\|_{n-1} \xrightarrow{\longleftarrow} G_n(X)$ over X up to homotopy, for any n.

This work may also be seen as a comparison of two constructions: an iterative fiber-cofiber process and the realization of progressive truncatures of a facial resolution. More generally, for any cotriple, we present an adapted fiber-cofiber construction (see Definition 9) and ask if the results obtained in the case of $\Sigma\Omega$ can be extended to this setting.

Finally, we observe that a variation on a theorem of Libman is essential in our argumentation, see Theorem 4. A proof of this result, inspired by the methods developed by R. Vogt (see [9]), is presented in an Appendix.

This program is carried out in Sections 1-8 below, whose headings are self-explanatory:

Contents

1.	Facial spaces	2
2.	First part of Theorem 1: the map $\ \Lambda_{\bullet}X\ _{n-1} \to G_n(X)$	6
3.	The facial space $\mathcal{G}_{\bullet}(X)$	7
4.	The facial resolution $\Omega' \Lambda_{\bullet} X \to \Omega' X$ admits a contraction	9
5.	Second part of Theorem 1: the map $G_n(X) \to \Lambda_{\bullet}X _n$	10
6.	Proof of Theorem 2	11
7.	Open questions	13
8.	Appendix: Proof of Theorem 4	14
References		18

1. FACIAL SPACES

A facial object in a category **C** is a sequence of objects X_0, X_1, X_2, \ldots together with morphisms $d_i: X_n \to X_{n-1}, \ 0 \le i \le n$, satisfying the facial identities

 $d_i d_j = d_{j-1} d_i \ (i < j).$

$$X_0 \rightleftharpoons \frac{d_0}{d_1} X_1 \rightleftharpoons \frac{d_0}{d_2} X_2 \qquad \cdots \qquad X_{n-1} \rightleftharpoons \frac{d_0}{d_n} X_n \rightleftharpoons \cdots$$

The morphisms d_i are called *face operators*. We shall use notation like X_{\bullet} to denote facial objects. With the obvious morphisms the facial objects in \mathbb{C} form a category which we denote by $d\mathbb{C}$. An augmentation of a facial object X_{\bullet} in a category \mathbb{C} is a morphism $d_0: X_0 \to X$ with $d_0 \circ d_0 = d_0 \circ d_1$. The facial object X_{\bullet} together with the augmentation d_0 is called a *facial resolution of* X and is denoted by $X_{\bullet} \stackrel{d_0}{\to} X$.

1.1. **Realization(s) of a facial space.** As usual, Δ^n denotes the standard n-simplex of \mathbb{R}^{n+1} and the inclusions of faces are denoted by $\delta^i:\Delta^n\to\Delta^{n+1}$. We consider the point $(0,\ldots,0,1)\in\mathbb{R}^{n+1}$ as the base-point of the standard n-simplex Δ^n . If X and Y are in **Top**, we denote by $X\rtimes Y$ the half smashed product $X\rtimes Y=X\times Y/*\times Y$.

A facial space is a facial object in **Top**. The realization of a facial space X_{\bullet} is the direct limit

$$||X_{\bullet}||_{\infty} = \lim_{\longrightarrow} ||X_{\bullet}||_{n}$$

where the spaces $\|X_{\bullet}\|_n$ are inductively defined as follows. Set $\|X_{\bullet}\|_0 = X_0$. Suppose we have defined $\|X_{\bullet}\|_{n-1}$ and a map $\chi_{n-1}: X_{n-1} \rtimes \Delta^{n-1} \to \|X_{\bullet}\|_{n-1}$ (χ_0 is the obvious homeomorphism). Then $\|X_{\bullet}\|_n$ and χ_n are defined by the pushout diagram

$$X_n \rtimes \partial \Delta^n \xrightarrow{\varphi_n} \|X_{\bullet}\|_{n-1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$X_n \rtimes \Delta^n \xrightarrow{\chi_n} \|X_{\bullet}\|_n$$

where φ_n is defined by the following requirements, for any $i \in \{0, 1, \dots, n\}$,

$$\varphi_n \circ (X_n \rtimes \delta^i) = \chi_{n-1} \circ (d_i \rtimes \Delta^{n-1}) : X_n \rtimes \Delta^{n-1} \to ||X_\bullet||_{n-1}.$$

It is clear that φ_1 is a well-defined continuous map. For φ_n with $n \geq 2$, this is assured by the facial identities $d_i d_j = d_{j-1} d_i$ (i < j).

We also consider another realization of the facial space X_{\bullet} . The free realization of X_{\bullet} is the direct limit

$$|X_{\bullet}|_{\infty} = \lim_{\longrightarrow} |X_{\bullet}|_n$$

where the spaces $|X_{\bullet}|_n$ are inductively defined as follows. Set $|X_{\bullet}|_0 = X_0$. Suppose we have defined $|X_{\bullet}|_{n-1}$ and a map $\bar{\chi}_{n-1}: X_{n-1} \times \Delta^{n-1} \to |X_{\bullet}|_{n-1}$ ($\bar{\chi}_0$ is the obvious homeomorphism). Then $|X_{\bullet}|_n$ and $\bar{\chi}_n$ are defined by the pushout diagram

$$X_{n} \times \partial \Delta^{n} \xrightarrow{\bar{\varphi}_{n}} |X_{\bullet}|_{n-1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$X_{n} \times \Delta^{n} \xrightarrow{\bar{\chi}_{n}} |X_{\bullet}|_{n}$$

where $\bar{\varphi}_n$ is defined by the following requirements, for any $i \in \{0, 1, \dots, n\}$,

$$\bar{\varphi}_n \circ (X_n \times \delta^i) = \bar{\chi}_{n-1} \circ (d_i \times \Delta^{n-1}) : X_n \times \Delta^{n-1} \to |X_{\bullet}|_{n-1}.$$

Again the facial identities $d_i d_j = d_{j-1} d_i$ (i < j) assure that $\bar{\varphi}_n$ is a well-defined continuous map. Since $\bar{\chi}_{n-1}$ is base-point preserving, so is $\bar{\varphi}_n$ and hence $\bar{\chi}_n$.

We sometimes consider facial spaces with upper indexes X^{\bullet} . In such a case, the realizations up to n are denoted by $||X^{\bullet}||^n$ and $|X^{\bullet}|^n$.

Let $X_{\bullet} \stackrel{d_0}{\to} X$ be a facial resolution of a space X. We define a sequence of maps $\|X_{\bullet}\|_n \to X$ as follows. The map $\|X_{\bullet}\|_0 \to X$ is the augmentation. Suppose we have defined $\|X_{\bullet}\|_{n-1} \to X$ such that the following diagram is commutative:

$$X_{n-1} \rtimes \Delta^{n-1} \xrightarrow{X_{n-1}} \|X_{\bullet}\|_{n-1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$X_{n-1} \xrightarrow{(d_0)^n} X,$$

where $(d_0)^n$ denotes the *n*-fold composition of the face operator d_0 . Consider the diagram

$$X_{n} \rtimes \Delta^{n-1} \xrightarrow{d_{i} \rtimes \Delta^{n-1}} X_{n-1} \rtimes \Delta^{n-1}$$

$$X_{n} \rtimes \delta^{i} \downarrow \qquad \qquad \downarrow \chi_{n-1}$$

$$X_{n} \rtimes \partial \Delta^{n} \xrightarrow{\varphi_{n}} \|X_{\bullet}\|_{n-1}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \chi_{n-1}$$

$$\downarrow \qquad \qquad \downarrow \chi_{n-1$$

The upper square is commutative for all i and so is the outer diagram. It follows that the lower square is commutative. We may therefore define $||X_{\bullet}||_n \to X$ to be the unique map which extends $||X_{\bullet}||_{n-1} \to X$ and which, pre-composed by χ_n ,

is the composite $X_n \rtimes \Delta^n \xrightarrow{\operatorname{pr}} X_n \xrightarrow{(d_0)^{n+1}} X$. Similarly, we define a sequence of maps $|X_{\bullet}|_n \to X$. We refer to the maps $|X_{\bullet}|_n \to X$ and $|X_{\bullet}|_n \to X$ as the canonical maps induced by the facial resolution $X_{\bullet} \to X$. The next statement relates these two realizations; its proof is straightforward.

Proposition 1. Let X_{\bullet} be a facial space. Then for each $n \in \mathbb{N}$, the canonical map $|X_{\bullet}|_n \to X$ factors through the canonical map $|X_{\bullet}|_n \to X$

1.2. Facial resolutions with contraction. A contraction of a facial resolution $X_{\bullet} \stackrel{d_0}{\to} X$ consists of a sequence of morphisms $s: X_{n-1} \to X_n \quad (X_{-1} = X)$ such that $d_0 \circ s = \operatorname{id}$ and $d_i \circ s = s \circ d_{i-1}$ for $i \geq 1$.

Proposition 2. Let $X_{\bullet} \stackrel{d_0}{\to} X$ be a facial resolution which admits a contraction $s: X_{n-1} \to X_n \quad (X_{-1} = X)$. For any $n \geq 0$, $|X_{\bullet}|_n$ can be identified with the quotient space $X_n \times \Delta^n / \sim$ where the relation is given by

$$(x, t_0, ..., t_k, ..., t_n) \sim (sd_k x, 0, t_0, ..., \hat{t}_k, ..., t_n), \quad \text{if } t_k = 0.$$

As usual, the expression \hat{t}_k means that t_k is omitted. Under this identification the canonical map $|X_{\bullet}|_n \to X$ is given by $[x, t_0, ..., t_k, ..., t_n] \mapsto (d_0)^{n+1}(x)$ and the inclusion $|X_{\bullet}|_n \mapsto |X_{\bullet}|_{n+1}$ is given by $[x, t_0, ..., t_k, ..., t_n] \mapsto [sx, 0, t_0, ..., t_k, ..., t_n]$.

Proof. We first note that the simplicial identities together with the contraction properties guarantee that the relation is unambiguously defined if various parameters are zero and also that the two maps

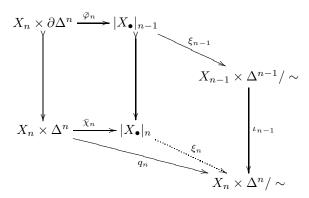
$$\begin{array}{ccc} X_n \times \Delta^n/\sim & \rightarrow & X_{n+1} \times \Delta^{n+1}/\sim \\ [x,t_0,...,t_k,...,t_n] & \mapsto & [sx,0,t_0,...,t_k,...,t_n] \end{array}$$

and

$$\begin{array}{ccc} X_n \times \Delta^n / \sim & \to & X \\ [x,t_0,...,t_k,...,t_n] & \mapsto & (d_0)^{n+1}(x) \end{array}$$

that we will denote by ι_n and ε_n respectively are well-defined.

Beginning with $\xi_0 = \mathrm{id}$, we next construct a sequence of homeomorphisms $\xi_n : |X_{\bullet}|_n \to X_n \times \Delta^n / \sim \mathrm{inductively}$ by using the universal property of pushouts in the diagram



where q_n is the identification map. If $t_k = 0$, the construction up to n-1 implies

$$\xi_{n-1} \circ \bar{\varphi}_n(x, t_0, ..., t_n) = q_{n-1} \circ (d_k \times \Delta^{n-1}) = [d_k x, t_0, ...\hat{t}_k, ..., t_n].$$

Therefore, we see that the diagram

$$X_{n} \times \partial \Delta^{n} \xrightarrow{\xi_{n-1} \circ \bar{\varphi}_{n}} X_{n-1} \times \Delta^{n-1} / \sim$$

$$\downarrow \iota_{n-1}$$

$$X_{n} \times \Delta^{n} \xrightarrow{q_{n}} X_{n} \times \Delta^{n} / \sim$$

is commutative and, by checking the universal property, that it is a pushout. Thus ξ_n exists and is a homeomorphism. Through this sequence of homeomorphisms, ι_n corresponds to the inclusion $|X_{\bullet}|_n \rightarrow |X_{\bullet}|_{n+1}$ and ε_n to the canonical map $|X_{\bullet}|_n \rightarrow X$.

Proposition 3. Let $X_{\bullet} \stackrel{d_0}{\to} X$ be a facial resolution which admits a natural contraction $s: X_{n-1} \to X_n$ $(X_{-1} = X)$. For any $n \ge 0$, the canonical map $|X_{\bullet}|_n \to X$ admits a (natural) section $\sigma_n: X \to |X_{\bullet}|_n$ and the inclusion $|X_{\bullet}|_{n-1} \mapsto |X_{\bullet}|_n$ is naturally homotopic to σ_n pre-composed by the canonical map:

$$|X_{\bullet}|_{n-1} \xrightarrow{X_{\bullet}|_{n}} |X_{\bullet}|_{n}$$

In particular, if the facial resolution $X_{\bullet} \to *$ admits a natural contraction then the inclusions $|X_{\bullet}|_{n-1} \rightarrowtail |X_{\bullet}|_n$ are naturally homotopically trivial.

Proof. Through the identification established in Proposition 2, the section $\sigma_n: X \to |X_{\bullet}|_n$ is given by

$$\sigma_n(x) = [(s)^{n+1}(x), 0, ..., 0, 1].$$

Using the fact that

$$sd_n sd_{n-1} \cdots sd_2 sd_1 s = (s)^{n+1} (d_0)^n,$$

we calculate that the (well-defined) map $H: |X_{\bullet}|_{n-1} \times I \to |X_{\bullet}|_{n-1}$ given by

$$H([x, t_0, ..., t_{n-1}], u) = [sx, u, (1-u)t_0, ..., (1-u)t_{n-1}]$$

is a homotopy between the inclusion and σ_n pre-composed by the canonical map $|X_{\bullet}|_{n-1} \to X$.

2. First part of Theorem 1: the map $\|\Lambda_{\bullet}X\|_{n-1} \to G_n(X)$

Let $X \in \mathbf{Top}$. We consider the facial resolution $\Lambda_{\bullet}(X) \to X$ where $\Lambda_n(X) = (\Sigma\Omega)^{n+1}X$, the face operators $d_i: (\Sigma\Omega)^{n+1}X \to (\Sigma\Omega)^nX$ are defined by $d_i = (\Sigma\Omega)^i(\mathrm{ev}_{(\Sigma\Omega)^{n-i}X})$, and the augmentation is $d_0 = \mathrm{ev}_X: \Sigma\Omega X \to X$.

Theorem 3. Let $X \in \text{Top}$. For each $n \in \mathbb{N}$, the canonical map $\|\Lambda_{\bullet}X\|_{n-1} \to X$ factors through the Ganea fibration $G_n(X) \to X$.

The proof uses the next result.

Lemma 4. Given a pushout

$$\Sigma A \rtimes \partial \Delta^n \longrightarrow Y$$

$$\downarrow f$$

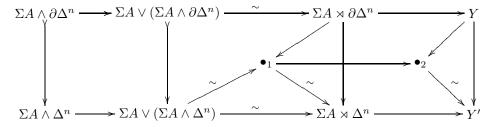
$$\Sigma A \rtimes \Delta^n \longrightarrow Y'$$

where the left-hand vertical arrow is a cofibration, then there exists a cofiber sequence $\Sigma A \wedge \partial \Delta^n \longrightarrow Y \stackrel{f}{\longrightarrow} Y'$.

Proof. With the Puppe trick, we construct a commutative diagram

from which we obtain a commutative diagram

because the left-hand vertical arrow is a cofibration. We form now



where \bullet_1 and \bullet_2 are built by pushout and the left-hand square is a pushout. The map $\bullet_2 \to Y'$ is a weak equivalence because it is induced between pushouts by the weak equivalence $\bullet_1 \to \Sigma A \rtimes \Delta^n$.

Proof of Theorem 3. We suppose that $\Phi_{n-2}: \|\Lambda_{\bullet}X\|_{n-2} \to G_{n-1}(X)$ has been constructed over X and observe that the existence of Φ_0 is immediate. We consider the following commutative diagram

$$(\Sigma\Omega)^{n}(X) \wedge \partial \Delta^{n-1} - - \stackrel{\hat{\Phi}_{n-2}}{-} - > F_{n-1}(X)$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\|\Lambda_{\bullet}X\|_{n-2} \longrightarrow G_{n-1}(X)$$

$$\parallel \Lambda_{\bullet}X\|_{n-1} \longrightarrow \chi$$

$$\|\Lambda_{\bullet}X\|_{n-1} \longrightarrow \chi$$

where the left-hand column is a cofibration sequence by Lemma 4. From the equalities

$$p_{n-1} \circ \Phi_{n-2} \circ \tilde{v}_{n-2} = \lambda_{n-2} \circ \tilde{v}_{n-2}$$
$$= \lambda_{n-1} \circ v_{n-2} \circ \tilde{v}_{n-2} \simeq *,$$

we deduce a map $\hat{\Phi}_{n-2}$: $(\Sigma\Omega)^n(X) \wedge \partial \Delta^{n-1} \to F_{n-1}(X)$ making the diagram homotopy commutative. From the definition of $G_n(X)$ as a cofiber, this gives a map Φ_{n-1} : $\|\Lambda_{\bullet}X\|_{n-1} \to G_n(X)$ over X.

Instead of the explicit construction above, we can also observe that the cone length of $\|\Lambda_{\bullet}X\|_{n-1}$ is less than or equal to n and deduce Theorem 3 from basic results on Lusternik-Schnirelmann category, see [1].

3. The facial space
$$\mathcal{G}_{\bullet}(X)$$

For a space X we denote by P'X the Moore path space and by $\Omega'X$ the Moore loop space. Path multiplication turns $\Omega'X$ into a topological monoid. Given a space X, we define the facial space $\mathcal{G}_{\bullet}(X)$ by $\mathcal{G}_n(X) = (\Omega'X)^n$ with the face operators $d_i: (\Omega'X)^n \to (\Omega'X)^{n-1}$ given by

$$d_i(\alpha_1, ..., \alpha_n) = \begin{cases} (\alpha_2, ..., \alpha_n) & i = 0\\ (\alpha_1, ..., \alpha_{i-1}, \alpha_i \alpha_{i+1}, ..., \alpha_n) & 0 < i < n\\ (\alpha_1, ..., \alpha_{n-1}) & i = n. \end{cases}$$

The purpose of this section is to compare the free realization of $\mathcal{G}_{\bullet}(X)$ to the construction of the classifying space of $\Omega'X$.

We work with the following construction of $B\Omega'X$. The classifying space $B\Omega'X$ is the orbit space of the contractible $\Omega'X$ -space $E\Omega'X$ which is obtained as the direct limit of a sequence of $\Omega'X$ -equivariant cofibrations $E_n\Omega'X \mapsto E_{n+1}\Omega'X$. The spaces $E_n\Omega'X$ are inductively defined by $E_0\Omega'X = \Omega'X$, $E_{n+1}\Omega'X = E_n\Omega'X \cup_{\theta} (\Omega'X \times CE_n\Omega'X)$ where θ is the action $\Omega'X \times E_n\Omega'X \to E_n\Omega'X$ and C denotes the free (non-reduced) cone construction. The orbit spaces of the $\Omega'X$ -spaces $E_n\Omega'X$ are denoted by $B_n\Omega'X$. For each $n \in \mathbb{N}$ this construction yields a cofibration $B_n\Omega'X \mapsto B\Omega'X$. It is well known that for simply connected spaces this cofibration is equivalent to the nth Ganea map $G_n(X) \to X$.

Proposition 5. For each $n \in \mathbb{N}$ there is a natural commutative diagram

$$B_n\Omega'X \longrightarrow |\mathcal{G}_{\bullet}(X)|_n$$

$$\downarrow \qquad \qquad \downarrow$$

$$B\Omega'X \longrightarrow |\mathcal{G}_{\bullet}(X)|_{\infty}$$

in which the bottom horizontal map is a homotopy equivalence.

Proof. We obtain the diagram of the statement from a diagram of $\Omega'X$ -spaces by passing to orbit spaces. Consider the facial $\Omega'X$ -space $P_{\bullet}(X)$ in which $P_n(X)$ is the free $\Omega'X$ -space $\Omega'X \times (\Omega'X)^n$ and the face operators $d_i: (\Omega'X)^{n+1} \to (\Omega'X)^n$ (which are equivariant) are given by

$$d_i(\alpha_0, ..., \alpha_n) = \begin{cases} (\alpha_0, ..., \alpha_{i-1}, \alpha_i \alpha_{i+1}, ..., \alpha_n) & 0 \le i < n \\ (\alpha_0, ..., \alpha_{n-1}) & i = n. \end{cases}$$

The maps $s: P_{n-1}(X) \to P_n(X)$ given by $s(\alpha_0, \ldots, \alpha_{n-1}) = (*, \alpha_0, \ldots, \alpha_{n-1})$ constitute a natural contraction of the facial resolution $P_{\bullet}(X) \to *$. By Proposition 3, the maps $|P_{\bullet}(X)|_{n-1} \to |P_{\bullet}(X)|_n$ are hence naturally homotopically trivial.

The construction of the realization of $P_{\bullet}(X)$ yields $\Omega'X$ -spaces. We construct a natural commutative diagram of equivariant maps

$$E_{0}\Omega'X > \longrightarrow E_{1}\Omega'X > \longrightarrow \cdots > \longrightarrow E_{n}\Omega'X > \longrightarrow \cdots$$

$$g_{0} \downarrow \qquad \qquad \downarrow g_{n} \qquad \qquad \downarrow g_{n}$$

$$|P_{\bullet}(X)|_{0} > \longrightarrow |P_{\bullet}(X)|_{1} > \longrightarrow \cdots > \longrightarrow |P_{\bullet}(X)|_{n} > \longrightarrow \cdots$$

inductively as follows: The map g_0 is the identity $\Omega'X \stackrel{=}{=} \Omega'X$. Suppose that g_n is defined. Since the map $|P_{\bullet}(X)|_n \mapsto |P_{\bullet}(X)|_{n+1}$ is naturally homotopically trivial, it factors naturally through the cone $C|P_{\bullet}(X)|_n$. Extend this factorization equivariantly to obtain the following commutative diagram of $\Omega'X$ -spaces:

$$\Omega'X \times |P_{\bullet}(X)|_{n} \longrightarrow |P_{\bullet}(X)|_{n}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Omega'X \times C|P_{\bullet}(X)|_{n} \longrightarrow |P_{\bullet}(X)|_{n+1}$$

Define g_{n+1} to be the composite

$$E_{n}\Omega'X \cup_{\Omega'X \times E_{n}\Omega'X} (\Omega'X \times CE_{n}\Omega'X)$$

$$\rightarrow |P_{\bullet}(X)|_{n} \cup_{\Omega'X \times |P_{\bullet}(X)|_{n}} (\Omega'X \times C|P_{\bullet}(X)|_{n})$$

$$\rightarrow |P_{\bullet}(X)|_{n+1}.$$

It is clear that g_{n+1} is natural. In the direct limit we obtain a natural equivariant map $g: E\Omega'X \to |P_{\bullet}(X)|_{\infty}$. This map is a homotopy equivalence. Indeed, $E\Omega'X$ is contractible and, since each inclusion $|P_{\bullet}(X)|_n \to |P_{\bullet}(X)|_{n+1}$ is homotopically trivial, $|P_{\bullet}(X)|_{\infty}$ is contractible, too. For each $n \in \mathbb{N}$ we therefore obtain the following natural commutative diagram of $\Omega'X$ -spaces:

$$E_{n}\Omega'X \longrightarrow |P_{\bullet}(X)|_{n}$$

$$\downarrow \qquad \qquad \downarrow$$

$$E\Omega'X \xrightarrow{\sim} |P_{\bullet}(X)|_{\infty}.$$

Passing to the orbit spaces, we obtain the diagram of the statement. It follows for instance from [4, 1.16] that the map $B\Omega'X \to |\mathcal{G}_{\bullet}(X)|_{\infty}$ is a homotopy equivalence.

Remark. Note that the upper horizontal map in the diagram of Proposition 5 is not a homotopy equivalence in general. Indeed, for X = *, $B_1\Omega'X$ is contractible but $|\mathcal{G}_{\bullet}(X)|_1 \simeq S^1$. It can, however, be shown that there also exists a diagram as in Proposition 5 with the horizontal maps reversed.

4. The facial resolution $\Omega' \Lambda_{\bullet} X \to \Omega' X$ admits a contraction

Consider the natural map $\gamma_X \colon \Omega' X \to \Omega' \Sigma \Omega X$, $\gamma_X(\omega, t) = (\nu(\omega, t), t)$ where $\nu(\omega, t) \colon \mathbb{R}^+ \to \Sigma \Omega X$ is given by

$$\nu(\omega, t)(u) = \begin{cases} \left[\omega_t, \frac{u}{t} \right], & u < t, \\ \left[c_*, 0 \right], & u \ge t. \end{cases}$$

Here, c_* is the constant path $u \mapsto *$ and $\omega_t \colon I \to X$ is the loop defined by $\omega_t(s) = \omega(ts)$.

Lemma 6. The map γ_X is continuous.

Proof. It suffices to show that the map $\nu^{\flat}: \Omega' X \times \mathbb{R}^+ \to \Sigma \Omega X$, $(\omega, t, u) \mapsto \nu(\omega, t)(u)$ is continuous. Consider the subspace $W = \{\omega \in X^{\mathbb{R}^+} : \omega(0) = *\}$ of $X^{\mathbb{R}^+}$ and the continuous map $\rho: W \times \mathbb{R}^+ \to X^{\mathbb{R}^+}$ given by

$$\rho(\omega, t)(u) = \begin{cases} \omega(u), & u \le t, \\ \omega(t), & u \ge t. \end{cases}$$

Note that if $(\omega, t) \in P'X$ then $\rho(\omega, t) = \omega$. Consider the continuous map

$$\phi: W \times \mathbb{R}^+ \times [0, \frac{\pi}{2}] \to \Sigma P' X$$

defined by

$$\phi(\omega, r, \theta) = \begin{cases} [\rho(\omega, r\cos\theta), r\cos\theta, \tan\theta], & \theta \le \frac{\pi}{4}, \\ [c_*, 0, 0], & \theta \ge \frac{\pi}{4}. \end{cases}$$

When r=0, we have $\phi(\omega, r, \theta)=[c_*,0,0]$ for any θ . Therefore ϕ factors through the identification map

$$W \times \mathbb{R}^+ \times [0, \frac{\pi}{2}] \to W \times \mathbb{R}^+ \times \mathbb{R}^+, (\omega, r, \theta) \mapsto (\omega, r \cos \theta, r \sin \theta)$$

and induces a continuous map $\psi: W \times \mathbb{R}^+ \times \mathbb{R}^+ \to \Sigma P'X$. Explicitly,

$$\psi(\omega, t, u) = \begin{cases} \left[\rho(\omega, t), t, \frac{u}{t} \right], & u < t, \\ \left[c_*, 0, 0 \right], & u \ge t. \end{cases}$$

Consider the continuous map $\xi: P'X \to PX$ defined by $\xi(\omega,t)(s) = \omega(ts)$. Note that $\xi(\omega,t) = \omega_t$ if $(\omega,t) \in \Omega'X$ and, in particular, that $\xi(c_*,0) = c_*$. The restriction of $\Sigma \xi \circ \psi$ to $\Omega'X \times \mathbb{R}^+$ factors through the subspace $\Sigma \Omega X$ of ΣPX and the continuous map

$$\Omega' X \times \mathbb{R}^+ \to \Sigma \Omega X, (\omega, t, u) \mapsto (\Sigma \xi \circ \psi)(\omega, t, u)$$

is exactly ν^{\flat} .

Proposition 7. The maps $s = \gamma_{(\Sigma\Omega)^n X} : \Omega'(\Sigma\Omega)^n X \to \Omega'(\Sigma\Omega)^{n+1} X$ define a contraction of the facial resolution $\Omega' \Lambda_{\bullet} X \to \Omega' X$.

Proof. We have $(\Omega'(ev_X) \circ \gamma_X)(\omega, t) = \Omega'(ev_X)(\nu(\omega, t), t) = (\beta(\omega, t), t)$ where

$$\beta(\omega, t)(u) = \begin{cases} \omega_t(\frac{u}{t}) = \omega(u), & u < t, \\ * = \omega(u), & u \ge t. \end{cases}$$

Hence $(\Omega'(ev_X) \circ \gamma_X) = id_{\Omega'X}$.

In the same way one has $(\Omega'(\text{ev}_{(\Sigma\Omega)^n X}) \circ \gamma_{(\Sigma\Omega)^n X}) = \text{id}_{(\Sigma\Omega)^n X}$. This shows the relation $d_0 \circ s = \text{id}$. It remains to check that $d_j \circ s = s \circ d_{j-1}$, for $j \geq 1$. For

 $(\omega,t) \in \Omega'(\Sigma\Omega)^n X$ we have $(d_j \circ s)(\omega,t) = (\Omega'(\Sigma\Omega)^j (\operatorname{ev}_{(\Sigma\Omega)^{n-j}X}) \circ \gamma_{(\Sigma\Omega)^n X})(\omega,t) = (\sigma(\omega,t),t)$ where

$$\sigma(\omega,t)(u) = \left\{ \begin{array}{l} (\Sigma\Omega)^j (\operatorname{ev}_{(\Sigma\Omega)^{n-j}X}) \left[\omega_t,\frac{u}{t}\right] = \left[(\Sigma\Omega)^{j-1} (\operatorname{ev}_{(\Sigma\Omega)^{n-j}X}) \circ \omega_t,\frac{u}{t}\right], \ u < t, \\ (\Sigma\Omega)^j (\operatorname{ev}_{(\Sigma\Omega)^{n-j}X}) \left[c_*,0\right] = \left[c_*,0\right], & u \geq t. \end{array} \right.$$

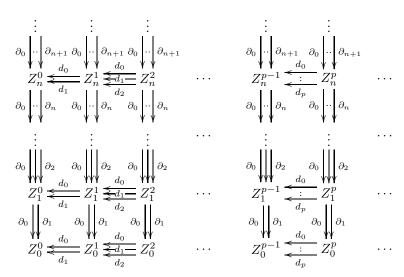
On the other hand, $(s \circ d_{j-1})(\omega, t) = (\gamma_{(\Sigma\Omega)^{n-1}X} \circ \Omega'(\Sigma\Omega)^{j-1}(\operatorname{ev}_{(\Sigma\Omega)^{n-j}X}))(\omega, t) = (\tau(\omega, t), t)$ where

$$\tau(\omega,t)(u) = \left\{ \begin{array}{ll} \left[((\Sigma\Omega)^{j-1} (\operatorname{ev}_{(\Sigma\Omega)^{n-j}X}) \circ \omega)_t, \frac{u}{t} \right], & u < t, \\ \left[c_*, 0 \right], & u \geq t. \end{array} \right.$$

This shows that $d_i \circ s = s \circ d_{i-1} \ (j \ge 1)$.

5. Second part of Theorem 1: the map $G_n(X) \to \|\Lambda_{\bullet}X\|_n$

A bifacial space is a facial object in the category d**Top** of facial spaces. We will use notations like Z^{\bullet}_{\bullet} to denote bifacial spaces and refer to the upper index as the column index and to the lower index as the row index. In this way, a bifacial space can be represented by a diagram of the following type:



As in this diagram we shall reserve the notation ∂_i for the face operators of a column facial space and the notation d_i for the face operators of a row facial space. For any k, $|Z_{\bullet}^k|_m$ (resp. $|Z_{\bullet}^{\bullet}|^m$) is the realization up to m of the kth column (resp. kth row) and $|Z_{\bullet}^{\bullet}|_m$ (resp. $|Z_{\bullet}^{\bullet}|^m$) is the facial space obtained by realizing each column (resp. each row) up to m.

The construction of the map $G_n(X) \to \|\Lambda_{\bullet}X\|_n$ relies heavily on the following result which is analogous to a theorem of A. Libman [5]. As A. Libman has pointed out to the authors, this result can be derived from [5] (private communication). For the convenience of the reader, we include, in an appendix, an independent proof of the particular case we need.

Theorem 4. Consider a facial space Z_{\bullet}^{-1} and a facial resolution $Z_{\bullet}^{\bullet} \stackrel{d_0}{\to} Z_{\bullet}^{-1}$ such that each row $Z_k^{\bullet} \stackrel{d_0}{\to} Z_k^{-1}$ admits a contraction. Then, for any n, there exists a not necessarily base-point preserving continuous map $|Z_{\bullet}^{-1}|_n \to ||Z_{\bullet}^{\bullet}|^n|_n$ which is a section up to free homotopy of the canonical map $||Z_{\bullet}^{\bullet}|_n|^n \to |Z_{\bullet}^{-1}|_n$.

The second part of Theorem 1 can be stated as follows.

Theorem 5. Let $X \in \text{Top}$ be a simply connected space. For each $n \in \mathbb{N}$ the nth Ganea map $G_n(X) \to X$ factors up to (pointed) homotopy through the canonical map $\|\Lambda_{\bullet}X\|_n \to X$.

Proof. Consider the column facial space $Z_{\bullet}^{-1} = \mathcal{G}_{\bullet}(X)$ and the facial resolution $Z_{\bullet}^{-1} \leftarrow Z_{\bullet}^{\bullet}$ where $Z_{i}^{j} = \mathcal{G}_{i}(\Lambda_{j}X)$. Each row facial resolution

$$Z_i^{-1} = \mathcal{G}_i(X) \leftarrow Z_i^{\bullet} = \mathcal{G}_i(\Lambda_{\bullet}X)$$

admits a contraction. Since $\mathcal{G}_0(\Lambda_{\bullet}X) = *$, this is clear for i = 0. For i > 0, $\mathcal{G}_i(\Lambda_{\bullet}X) = (\Omega'\Lambda_{\bullet}X)^i$. Indeed, since, by Proposition 7, the facial resolution $\Omega'X \leftarrow \Omega'\Lambda_{\bullet}X$ admits a contraction, its *i*th power also admits a contraction.

For $n \in \mathbb{N}$ consider the commutative diagram

in which the left-hand square is the natural square of Proposition 5. Recall that the lower left horizontal map is a homotopy equivalence. Since X is simply connected, X is naturally weakly equivalent to $B\Omega'X$ and hence to $|\mathcal{G}_{\bullet}(X)|_{\infty}$. It follows that the map $||\mathcal{G}_{\bullet}(\Lambda_{\bullet}X)|_{\infty}|^n \to |\mathcal{G}_{\bullet}(X)|_{\infty}$ is weakly equivalent to the map $|\Lambda_{\bullet}X|_n \to X$. Since this last map factors through the map $||\Lambda_{\bullet}X||_n \to X$ and since, by Theorem 4, the upper right horizontal map of the diagram above admits a free homotopy section, we obtain a diagram

$$B_n\Omega'X \longrightarrow \|\Lambda_{\bullet}X\|_n$$

$$\downarrow \qquad \qquad \downarrow$$

$$B\Omega'X \xrightarrow{f} X$$

which is commutative up to free homotopy and in which f is a (pointed) homotopy equivalence. Since the left hand vertical map is equivalent to the Ganea map $G_n(X) \to X$, there exists a diagram

$$G_n(X) \xrightarrow{g} \|\Lambda_{\bullet} X\|_n$$

which is commutative up to free homotopy and in which g is a (pointed) homotopy equivalence. This implies that the Ganea map $G_n(X) \to X$ factors up to free homotopy through the canonical map $\|\Lambda_{\bullet}X\|_n \to X$. Since X is simply connected and $\|\Lambda_{\bullet}X\|_n$ is connected, the Ganea map $G_n(X) \to X$ also factors up to pointed homotopy through the canonical map $\|\Lambda_{\bullet}X\|_n \to X$.

6. Proof of Theorem 2

Proof. Recall the homotopy fiber sequence

$$\Omega X * \Omega X \xrightarrow{h} \Sigma \Omega X \xrightarrow{d_0} X$$

where h is the Hopf map. This sequence is natural in X and the space $G_2(X)$ is equivalent to the pushout of $\mathcal{C}(\Omega X * \Omega X) \longleftarrow \Omega X * \Omega X \longrightarrow \Sigma \Omega X$, where $\mathcal{C}(Y)$

denotes the (reduced) cone over a space Y. We use the following diagram

We observe that

- the image of Line (-1) by Ω has a contraction in the obvious sense;
- Line (0) is the image of Line (-1) by $\Sigma\Omega$ therefore Line (0) admits a contraction;
- the face operators of Line (1) are the maps $\Omega d_i * \Omega d_i$ with the face operators d_i of Line (-1), thus Line (1) admits a contraction;
- Line (2) admits a contraction induced by the previous one.

From the expression of the Hopf map $h \colon \Omega X \ast \Omega X \to \Sigma \Omega X$, $h([\alpha,t,\beta]) = [\alpha^{-1}\beta,t]$, we observe that the map $H \colon (\Omega X \ast \Omega X) \times [0,1] \to X$, defined by $H([\alpha,t,\beta],s) = \alpha^{-1}\beta(st)$, induces a natural extension of $d_0 \circ h$ to $\mathcal{C}(\Omega X \ast \Omega X)$. Therefore, we can complete the diagram by maps from Line (2) to Line (-1) which are compatible with face operators.

Denote by \tilde{G} the homotopy colimit of the framed part of the diagram. We have a commutative square:

$$G_2(X) \longleftarrow \tilde{G}$$

$$\downarrow \qquad \qquad \downarrow$$

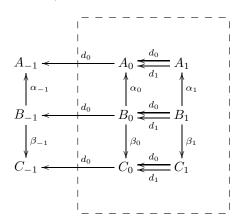
$$X \longleftarrow \|\Lambda_{\bullet}X\|_1$$

Lemma 8 provides a homotopy section of the map $\tilde{G} \to G_2(X)$. Thus we obtain a map

$$G_2(X) \to \|\Lambda_{\bullet}X\|_1$$

up to homotopy over X.

Lemma 8. We consider the following diagram in **Top**, satisfying $d_0 \circ d_0 = d_0 \circ d_1$ and the obvious commutativity conditions.



Let \tilde{G} be the homotopy colimit of the framed part and G_{-1} be the homotopy colimit of the first column. We denote by $\tilde{d} \colon \tilde{G} \to G_{-1}$ the map induced by d_0 . If the lines of the previous diagram admit contractions in the obvious sense, then the map \tilde{d} has a (pointed) homotopy section.

Proof. This is a special case of a dual of a result of Libman in [5]. It is not covered by the proof of the last section but this situation is simple and we furnish an ad-hoc argument for it.

First we construct maps $f: A_{-1} \to \|A_{\bullet}\|_1$, $g: B_{-1} \to \|B_{\bullet}\|_1$ and $k: C_{-1} \to \|C_{\bullet}\|_1$ such that $\|\alpha_{\bullet}\|_1 \circ g \simeq f \circ \alpha_{-1}$ and $k \circ \beta_{-1} \simeq \|\beta_{\bullet}\|_1 \circ g$. With the same techniques as in Proposition 2, it is clear that $\|A_{\bullet}\|_1$ is homeomorphic to the quotient $A \rtimes \Delta^1$ by the relation $(a, t_0, t_1) \sim (sd_i a, 0, 1)$ if $t_i = 0$. So, we define f, g and k by

$$f(a) = [s_A s_A(a), 0, 1], g(b) = [s_B s_B(b), 0, 1] \text{ and } k(c) = [s_C s_C(c), 0, 1].$$

A computation gives:

$$\begin{split} \|\alpha_{\bullet}\|_{1} \circ g(b) &= [\alpha_{1}s_{B}s_{B}(b), 0, 1] \\ &= [s_{A}d_{0}\alpha_{1}s_{B}s_{B}(b), 0, 1] \\ &= [s_{A}\alpha_{0}d_{0}s_{B}s_{B}(b), 0, 1] \\ &= [s_{A}\alpha_{0}s_{B}(b), 0, 1] \\ f \circ \alpha_{1}(b) &= [s_{A}s_{A}\alpha_{-1}(b), 0, 1] \\ &= [s_{A}s_{A}d_{0}\alpha_{0}s_{B}(b), 0, 1] \\ &= [s_{A}d_{1}s_{A}\alpha_{0}s_{B}(b), 0, 1] \\ &= [s_{A}\alpha_{0}s_{B}(b), 1, 0], \end{split}$$

the last equality coming from our construction of $||A_{\bullet}||_1$. These two points, $||\alpha_{\bullet}||_1 \circ g(b)$ and $f \circ \alpha_1(b)$, are canonically joined by a path that reduces to a point if b = *. The same argument gives the similar result for k. We observe now that these homotopies give a map between the two mapping cylinders which is a section up to pointed homotopy.

7. Open questions

The main open question after these results concerns the existence of maps over X up to homotopy, $G_n(X) \to \|\Lambda_{\bullet}X\|_{n-1}$ for any n. This question is related to the Lusternik-Schnirelman category (LS-category in short) cat X of a topological space X. Recall that cat $X \leq n$ if and only if the Ganea fibration $G_n(X) \to X$ admits a section. The truncated resolutions bring a new homotopy invariant $\ell_{\Sigma\Omega}(X)$ defined in a similar way as follows:

$$\ell_{\Sigma\Omega}(X) \leq n$$
 if the map $\|\Lambda_{\bullet}X\|_{n-1} \to X$ admits a homotopical section.

From Theorem 1 and Theorem 2, we know that this new invariant coincides with the LS-category for spaces of LS-category less than or equal to 2 and satisfies

$$\cot X \le \ell_{\Sigma\Omega}(X) \le 1 + \cot X.$$

Grants to the result in dimension 2, $\ell_{\Sigma\Omega}(X)$ does not coincide with the cone length. We conjecture its equality with the LS-category and the existence of maps $G_n(X) \to \|\Lambda_{\bullet}X\|_{n-1}$ over X up to homotopy.

We now extend our study by considering a cotriple T. Recall that a cotriple (T, η, ε) on **Top** is a functor $T : \mathbf{Top} \to \mathbf{Top}$ together with two natural transformations $\eta_X : T(X) \to X$ and $\varepsilon_X : T(X) \to T^2(X)$ such that:

$$\varepsilon_{F(X)} \circ \varepsilon_X = F(\varepsilon_X) \circ \varepsilon_X$$
 and $\eta_{T(X)} \circ \varepsilon_X = T(\eta_X) \circ \varepsilon_X = \mathrm{id}_{T(X)}$.

It is well known that T gives a simplicial space $\Lambda^T_{\bullet}X$ defined by $\Lambda^T_nX = T^{n+1}(X)$. From it, we deduce a facial space and the truncated realizations $\|\Lambda^T_{\bullet}X\|_n$. If T satisfies $T(*) \sim *$, takes its values in suspensions and $\Omega'(\Lambda^T_{\bullet}X)$ admits a contraction, a careful reading of the proofs in this work shows that we get the same conclusions as in Theorem 1 and Theorem 2 with the Ganea spaces $G_n(X)$ and the realizations $\|\Lambda^T_{\bullet}X\|_i$.

We could also use a construction of the Ganea spaces adapted to the cotriple T as follows.

Definition 9. Let T be a cotriple and X be a space, the *nth fibration of Ganea* associated to T and X is defined inductively by:

 $-p_1^T:G_1^T(\underline{X})\to X$ is the associated fibration to $\eta_{\underline{X}}:T(X)\to X,$

- if $p_n^T \colon G_n^T(X) \to X$ is defined, we denote by $F_n^T(X)$ its homotopy fiber and build a map $p'_{n+1}^T \colon G_n^T(X) \cup \mathcal{C}(T(F_n^T(X)) \to X$ as p_n^T on $G_n^T(X)$ and sending the cone $\mathcal{C}(T(F_n^T(X)))$ on the base point. The fibration p_{n+1}^T is the associated fibration to p'_{n+1}^T .

The results of this paper and the questions above have their analog in this setting. New approximations of spaces arise from the truncated realizations $\|\Lambda_{\bullet}^T X\|_i$ and from the adapted fiber-cofiber constructions. One natural problem is to look for a comparison between them. These questions can also be stated in terms of LS-category. For instance, does the Stover resolution (see [8]) of a space by wedges of spheres give the s-category defined in [6]?

8. Appendix: Proof of Theorem 4

The purpose of this appendix is to give a proof of Theorem 4. This proof is contained in the Subsection 8.2 below and uses the constructions and notation of the following subsection.

8.1. n-facial spaces and n-rectifiable maps. Let $n \ge 0$ be an integer. A facial space X_{\bullet} is a n-facial space if, for any $k \ge n+1$, $X_k = *$. To any facial space Y_{\bullet} , we can associate an n-facial space $T_{\bullet}^n(Y)$ by setting $T_k^n(Y) = Y_k$ if $k \le n$ and $T_k^n(Y) = *$ if $k \ge n+1$. Obviously, for any $k \le n$, we have $|T_{\bullet}^n(Y)|_k = |Y_{\bullet}|_k$.

Let Y_{\bullet} be a facial space with face operators $\partial_i: Y_k \to Y_{k-1}$. We associate to Y_{\bullet} two n-facial spaces $I^n_{\bullet}(Y)$ and $J^n_{\bullet}(Y)$ and morphisms $\eta, \zeta, \pi, \overline{\pi}$ which induce homotopy equivalences between the realizations up to n and such that the following diagram is commutative:

For any integer $k \geq 1$ we denote by $\partial_{\underline{k}}$ the set $\{\partial_0, ..., \partial_k\}$ of the (k+1) face operators $\partial_i: Y_k \to Y_{k-1}$ and, for any integer $l \geq k$, we set $\partial_{\underline{k}:\underline{l}} := \partial_{\underline{k}} \times \partial_{\underline{k+1}} \times ... \times \partial_{\underline{l}}$.

The *n*-facial space $J^n_{\bullet}(Y)$. For $0 \le k \le n$, consider the space:

$$(Y_k \times \Delta^0) \coprod \coprod_{m=1}^{n-k} (\partial_{\underline{k+1}:\underline{k+m}} \times Y_{k+m} \times \Delta^m).$$

An element of this space will be written $(\partial_{i_1}, ..., \partial_{i_m}, y, t_0, ..., t_m)$ with the convention $(\partial_{i_1}, ..., \partial_{i_m}, y, t_0, ..., t_m) = (y, 1)$ if m = 0. Set

$$J^n_k(Y) := \left(\left(Y_k \times \Delta^0 \right) \coprod \coprod_{m=1}^{n-k} \left(\partial_{\underline{k+1} \, : \, \underline{k+m}} \times Y_{k+m} \times \Delta^m \right) \right) / \sim$$

where the relations are given by

$$(\partial_{i_1},...,\partial_{i_m},y,t_0,...,t_m) \sim (\partial_{i_1},...,\partial_{i_{m-1}},\partial_{i_m}y,t_0,...,t_{m-1}), \text{ if } t_m = 0,$$

and

$$(\partial_{i_1},...,\partial_{i_n},\partial_{i_{n+1}},...\partial_{i_m},y,t_0,...,t_m) \sim (\partial_{i_1},...,\partial_{i_{n+1}-1},\partial_{i_n},...\partial_{i_m},y,t_0,...,t_m),$$

if $t_p = 0$ and $i_p < i_{p+1}$.

Together with the face operators $J\partial_i: J_k^n(Y) \to J_{k-1}^n(Y), 0 \le i \le k$, defined by

$$J\partial_i(\partial_{i_1},...,\partial_{i_m},y,t_0,...,t_m) = (\partial_i,\partial_{i_1},...,\partial_{i_m},y,0,t_0,...,t_m),$$

 $J^n_{\bullet}(Y)$ is a *n*-facial space.

The *n*-facial space $I_{\bullet}^n(Y)$. For $0 \le k \le n$, we consider now the space:

$$(Y_k \times \Delta^1) \coprod \coprod_{m=1}^{n-k} (\partial_{\underline{k+1}:\underline{k+m}} \times Y_{k+m} \times \Delta^{m+1}).$$

We write $(\partial_{i_1}, ..., \partial_{i_m}, y, t_0, ..., t_{m+1})$ the elements of that space with the convention $(\partial_{i_1}, ..., \partial_{i_m}, y, t_0, ..., t_{m+1}) = (y, t_0, t_1)$ if m = 0. The space $I_k^n(Y)$ is defined to be the quotient

$$I_k^n(Y) := \left(\left(Y_k \times \Delta^1 \right) \coprod \coprod_{m=1}^{n-k} \left(\partial_{\underline{k+1} \,:\, \underline{k+m}} \times Y_{k+m} \times \Delta^{m+1} \right) \right) / \sim$$

with respect to the relations

$$(\partial_{i_1}, ..., \partial_{i_m}, y, t_0, ..., t_{m+1}) \sim (\partial_{i_1}, ..., \partial_{i_{m-1}}, \partial_{i_m}y, t_0, ..., t_m), \text{ if } t_{m+1} = 0,$$

and

$$(\partial_{i_1},...,\partial_{i_p},\partial_{i_{p+1}},...\partial_{i_m},y,t_0,...,t_{m+1}) \sim (\partial_{i_1},...,\partial_{i_{p+1}-1},\partial_{i_p},...\partial_{i_m},y,t_0,...,t_{m+1}),$$

if $t_{p+1} = 0$ and $i_p < i_{p+1}$.

Together with the face operators $I\partial_i: I_k^n(Y) \to I_{k-1}^n(Y), 0 \le i \le k$, defined by

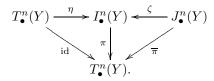
$$I\partial_i(\partial_{i_1},...,\partial_{i_m},y,t_0,t_1,...,t_{m+1}) = (\partial_i,\partial_{i_1},...,\partial_{i_m},y,t_0,0,t_1,...,t_{m+1}),$$

 $I^n_{\bullet}(Y)$ is a *n*-facial space.

The morphisms $\eta, \zeta, \pi, \overline{\pi}$. The facial maps $\eta: T^n_{\bullet}(Y) \to I^n_{\bullet}(Y), \zeta: J^n_{\bullet}(Y) \to I^n_{\bullet}(Y), \pi: I^n_{\bullet}(Y) \to T^n_{\bullet}(Y)$ and $\overline{\pi}: J^n_{\bullet}(Y) \to T^n_{\bullet}(Y)$ are respectively defined (for $k \leq n$) by:

$$\eta_k(y) = (y, 1, 0),
\zeta_k(\partial_{i_1}, ..., \partial_{i_m}, y, t_0, ..., t_m) = (\partial_{i_1}, ..., \partial_{i_m}, y, 0, t_0, ..., t_m),
\pi_k(\partial_{i_1}, ..., \partial_{i_m}, y, t_0, ..., t_{m+1}) = \partial_{i_1} \cdots \partial_{i_m} y \text{ and } \pi_k(y, t_0, t_1) = y,
\overline{\pi}_k = \pi_k \circ \zeta_k.$$

We have $\pi_k \circ \eta_k = id$ so that the following diagram is commutative:



In order to see that these morphisms induce homotopy equivalences between the realizations up to n, it suffices to see that, for any $k, 0 \le k \le n$, the maps $\eta_k, \zeta_k, \pi_k, \overline{\pi}_k$ are homotopy equivalences. Thanks to the commutativity of the diagram above we just have to check it for the maps π_k and $\overline{\pi}_k$. These two maps admit a section: we have already seen that $\pi_k \circ \eta_k = \operatorname{id}$ and, on the other hand, the map $\varphi_k : T_k^n(Y) \to J_k^n(Y)$ given by $\varphi_k(y) = (y,1)$ (which does not commute with the face operators) satisfies $\overline{\pi}_k \circ \varphi_k = \operatorname{id}$. The conclusion follows then from the fact that the two homotopies

$$H_{k}: I_{k}^{n}(Y) \times I \to I_{k}^{n}(Y)$$

$$((\partial_{i_{1}}, ..., \partial_{i_{m}}, y, t_{0}, ..., t_{m+1}), u) \mapsto (\partial_{i_{1}}, ..., \partial_{i_{m}}, y, u + (1-u)t_{0}),$$

$$(1-u)t_{1}, ..., (1-u)t_{m+1})$$

$$\overline{H}_{k}: J_{k}^{n}(Y) \times I \to J_{k}^{n}(Y)$$

$$((\partial_{i_{1}}, ..., \partial_{i_{m}}, y, t_{0}, ..., t_{m}), u) \mapsto (\partial_{i_{1}}, ..., \partial_{i_{m}}, y, u + (1-u)t_{0},$$

$$(1-u)t_{1}, ..., (1-u)t_{m})$$
satisfy $H_{k}(-, 0) = \mathrm{id}, H_{k}(-, 1) = \eta_{k} \circ \pi_{k} \text{ and } \overline{H}_{k}(-, 0) = \mathrm{id}, \overline{H}_{k}(-, 1) = \varphi_{k} \circ \overline{\pi}_{k}.$

n-rectifiable map. We write $\varphi: T^n_{\bullet}(Y) \dashrightarrow J^n_{\bullet}(Y)$ to denote the collection of maps $\varphi_k: T^n_k(Y) \to J^n_k(Y)$ given by $\varphi_k(y) = (y,1)$. Recall that φ is not a morphism of facial spaces since it does not satisfy the usual rules of commutation with the face operators. In the same way we write $\psi: Y_{\bullet} \dashrightarrow Z_{\bullet}$ for a collection of maps $\psi_k: Y_k \dashrightarrow Z_k$ which do not satisfy the usual rules of commutation with the face operators and we say that ψ is an *n*-rectifiable map if there exists a morphism of facial spaces $\overline{\psi}: J^n_{\bullet}(Y) \to T^n_{\bullet}(Z)$ such that $\overline{\psi}_k \circ \varphi_k = \psi_k$ for any $k \leq n$. So, an *n*-rectifiable map $\psi: Y_{\bullet} \dashrightarrow Z_{\bullet}$ induces a map between the realizations up to n of the facial spaces Y_{\bullet} and Z_{\bullet} .

8.2. **Proof of Theorem 4.** Let $Z_{\bullet}^{\bullet} \xrightarrow{d_0} Z_{\bullet}^{-1}$ be a facial resolution of a facial space Z_{\bullet}^{-1} such that each row $Z_k^{\bullet} \xrightarrow{d_0} Z_k^{-1}$ admits a contraction and let $n \geq 0$. We first note that the realization of Z_{\bullet}^{\bullet} up to p along the rows and up to n along the columns leads to two canonical maps:

$$||Z_{\bullet}^{\bullet}|^p|_n \to |Z_{\bullet}^{-1}|_n \qquad ||Z_{\bullet}^{\bullet}|_n|^p \to |Z_{\bullet}^{-1}|_n.$$

Induction on p and standard colimit arguments show that these two maps are equal (up to homeomorphism). Here we prove that $||Z_{\bullet}^{\bullet}|^p|_n \to |Z_{\bullet}^{-1}|_n$ admits a homotopy section

For any k, we denote by s_k the contraction of the kth row

$$Z_k^{-1} \stackrel{d_0}{\longleftarrow} Z_k^0 \stackrel{d_0}{\rightleftharpoons} Z_k^1 \stackrel{d_0}{\rightleftharpoons} Z_k^2 \stackrel{d_1}{\rightleftharpoons} Z_k^2 \qquad \cdots \qquad Z_k^{n-1} \stackrel{d_0}{\rightleftharpoons} Z_k^n$$

and, in order to simplify the notation we will write L_k for the realization up to n of this facial space. That is, $L_k = |Z_{\bullet}^{\bullet}|^n$. Recall, from Proposition 2, that the

existence of the contraction permits the following description of L_k :

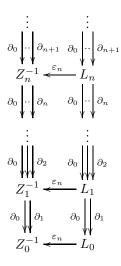
$$L_k = Z_k^n \times \Delta^n / \sim$$

where the relation is given by

$$(z, t_0, ..., t_i, ..., t_n) \sim (s_k d_i z, 0, t_0, ..., \hat{t}_i, ..., t_n)$$
 if $t_i = 0$.

With respect to this description, the canonical map $L_k \to Z_k^{-1}$ is given by $[z, t_0, ..., t_i, ..., t_n] \mapsto d_0^{n+1}z$ and is denoted by ε_n (without reference to k).

Realizing all the lines, we obtain a facial map:



The face operators $\partial_i: L_k \to L_{k-1}$ are given by $\partial_i[z, t_0, ..., t_n] = [\partial_i z, t_0, ..., t_n]$. Our aim is thus to see that the map obtained after realization (and always denoted by ε_n)

$$|Z_{\bullet}^{-1}|_n \stackrel{\varepsilon_n}{\longleftarrow} |L_{\bullet}|_n$$

admits a section up to homotopy.

For each k, the map $\varepsilon_n: L_k \to Z_k^{-1}$ admits a (strict) section given by $z \mapsto [s_k^{n+1}z,0,0,...,0,1]$ which we denote by ψ_k . The collection ψ of these maps does not define a facial map since the contraction s_k are not required to commute with the face operators ∂_i of the columns. The key is that $\psi: Z_{\bullet}^{-1} \dashrightarrow L_{\bullet}$ is an n-rectifiable map. We can indeed consider, for each $k \leq n$, the (well-defined) map $\overline{\psi}_k: J_k^n(Z^{-1}) \to L_k$ given by:

$$\overline{\psi}_k(\partial_{i_1},...,\partial_{i_m},z,t_0,...,t_m) = [s_k^{n+1-m}\partial_{i_1}s_{k+1}\partial_{i_2}s_{k+2}...\partial_{i_m}s_{k+m}z,0,...,0,t_0,...,t_m].$$

Straightforward calculation shows that the maps $\overline{\psi}_k$ commute with the face operators ∂_i so that the collection $\overline{\psi}$ is a facial map. This morphism also satisfies $\overline{\psi}_k \circ \varphi_k = \psi_k$ for any $k \leq n$ (which implies that ψ is an n-rectifiable map) and $\varepsilon_n \overline{\psi} = \overline{\pi}$. We have hence the following commutative diagram:

$$T^n_{\bullet}(Z^{-1}) \xrightarrow{\eta} I^n_{\bullet}(Z^{-1}) \xrightarrow{\zeta} J^n_{\bullet}(Z^{-1}) \xrightarrow{\overline{\psi}} T^n_{\bullet}(L)$$

$$\downarrow id \qquad \qquad \overline{\pi}$$

$$T^n_{\bullet}(Z^{-1}).$$

Since the morphisms η , ζ , π and $\overline{\pi}$ induce homotopy equivalence between the realizations up to n, we get the following situation after realization:

$$|T^n_{\bullet}(Z^{-1})|_n \xrightarrow{\sim} |I^n_{\bullet}(Z^{-1})|_n \xrightarrow{\sim} |J^n_{\bullet}(Z^{-1})|_n \xrightarrow{\overline{\psi}} |T^n_{\bullet}(L)|_n$$

$$|T^n_{\bullet}(Z^{-1})|_n.$$

Since $|T^n_{\bullet}(Z^{-1})|_n = |Z^{-1}_{\bullet}|_n$ and $|T^n_{\bullet}(L)|_n = |L_{\bullet}|_n$, we obtain that the map $|L_{\bullet}|_n \to |Z^{-1}_{\bullet}|_n$ admits a homotopy section.

References

- O. Cornea, G. Lupton, J. Oprea, and D. Tanré. Lusternik-Schnirelmann category, volume 103 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2003.
- [2] E. Dror and W. G. Dwyer. A long homology localization tower. Comment. Math. Helv., 52(2):185–210, 1977.
- [3] T. Ganea. Lusternik-Schnirelmann category and strong category. Illinois J. Math., 11:417–427, 1967.
- [4] T. Kahl. On the algebraic approximation of Lusternik-Schnirelmann category. J. Pure Appl. Algebra, 181(2-3):227-277, 2003.
- [5] A. Libman. Universal spaces for homotopy limits of modules over coaugmented functors. II. Topology, 42(3):569-602, 2003.
- [6] H. Scheerer and D. Tanré. Variation zum Konzept der Lusternik-Schnirelmann-Kategorie. Math. Nachr., 207:183–194, 1999.
- [7] G. Segal. Categories and cohomology theories. Topology, 13:293-312, 1974.
- [8] C. R. Stover. A van Kampen spectral sequence for higher homotopy groups. Topology, 29(1):9–26, 1990.
- [9] R. M. Vogt. Homotopy limits and colimits. Math. Z., 134:11–52, 1973.

Centro de Matemática, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal

 $E ext{-}mail\ address: kahl@math.uminho.pt}$

Mathematisches Institut, Freie Universität Berlin, Arnimalle
e $2\!-\!6,\,D\!-\!14195$ Berlin, Germany

E-mail address: scheerer@mi.fu-berlin.de

DÉPARTEMENT DE MATHEMATIQUES, UMR 8524, UNIVERSITÉ DE LILLE 1, 59655 VILLENEUVE D'ASCQ CEDEX, FRANCE

 $E\text{-}mail\ address{:}\ \mathtt{Daniel.Tanre@agat.univ-lille1.fr}$

Centro de Matemática, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal

 $E ext{-}mail\ address: lucile@math.uminho.pt}$