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Abstract. The elasticity difference tensor, used in [1] to describe elasticity
properties of a continuous medium filling a space-time, is here analysed. Prin-

cipal directions associated with this tensor are compared with eigendirections

of the material metric. Examples concerning spherically symmetric and axially
symmetric space-times are then presented.

1. Introduction

In recent years there has been a growing interest in the theory of general relativistic
elasticity. Based on the classical Newtonian elasticity theory going back to the 17th
century and Hooke’s law, some authors began to adapt the theory of elasticity to
relativity due to the necessity to study astrophysical problems, such as the deforma-
tions of neutron star crusts. One of the first elastic phenomenon considered in the
relativistic context was Weber’s observation of the elastic response of an aluminium
cylinder to gravitational radiation and the detection of gravitational waves [2], [3]
and [4]. Neutron stars have attracted attention since it has been argued [5] that
the crusts of neutron stars are in elastic states and since it has been established
the existence of a solid crust and speculated the possibility of solid cores in neutron
stars, [6], [7], [8].
There were many attempts to formulate a relativistic version of elasticity theory.
Thereby laws of non relativistic continuum mechanics had to be reformulated in a
relativistic way. The study of elastic media in special relativity was first carried out
by Noether [9] in 1910 and by Born [10], Herglotz [11] and Nordström [12] in 1911.
The discussion of elasticity theory in general relativity started with Synge [13], De
Witt [14], Rayner [15], Bennoun [16], [17], Hernandez [18] and Maugin [19] 1. In
1973 Carter and Quintana [20] developed a relativistic formulation of the concept
of a perfectly elastic solid and constructed a quasi-Hookean perfect elasticity theory
suitable for applications to high-pressure neutron star matter. Recently, Karlovini
and Samuelsson [1] have made an important contribution to this topic, extending
the results of Carter and Quintana (see also [21], [22]). Other relevant formulations
of elasticity in the framework of general relativity were given by Kijowski and Magli
([23], [24]) who presented a gauge-type theory of relativistic elastic media and a
corresponding generalization [25]. The same authors also studied interior solutions
of the Einstein field equations in elastic media ([26], [27]).
The recent increasing consideration of relativistic elasticity in the literature shows
the win of recognition and importance of this topic, motivating toward a detailed
study of quantities used in this context, the elasticity difference tensor defined in [1]
being one of them. This tensor occurs contracted with the relativistic Hadamard

1Relativistic elasticity has been treated in the mid-20th century until the early seventies by
many other authors. For further references, see, for example, [19], and for later references see also
[23], [1].
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elasticity tensor in the Euler equations for elastic matter. However, one can rec-
ognize the geometric role of the elasticity difference tensor, since, in principle, it
can be used to understand the influence of the material metric (inheriting elastic
properties) on the curvature of the space-time.

Here, in section 2, general results about relativistic elasticity are presented. In
section 3, the elasticity difference tensor is analysed and the principal directions
associated with this tensor are compared with the eigendirections of the pulled-back
material metric. A specific orthonormal tetrad is introduced to write a general form
of the elasticity difference tensor, which brings in Ricci rotation coefficients used in
the 1 + 3 formalism [28] and the linear particle densities.

Finally, in section 4, we apply the results obtained to a static spherically symmetric
space-time and an axially symmetric non-rotating space-time. The software Maple
GRTensor was used to perform some calculations.

2. General results

Let (M, g) be a space-time manifold, i.e. a 4-dimensional, paracompact, Hausdorff,
smooth manifold endowed with a Lorentz metric g of signature (−,+,+,+), U ⊆M
being a local chart around a point p ∈ M . We assume that the space-time is time
orientable. Suppose that U is filled with a continuous material. The material
space (X , k) is a 3-dimensional manifold, each point in X representing an idealized
particle of the material, and k being a Riemannian metric, the material metric,
measuring distances between particles in the “locally relaxed state” of matter. The
space-time configuration of the material is described by a smooth mapping

Ψ : U ⊆M −→ X ,

the configuration function, which associates to each point p of the space-time the
particle p̄ = Ψ(p) ∈ X of the material at the event p. The operators push-forward
Ψ∗ and pull-back Ψ∗ will be used to take contravariant tensors from M to X and
covariant tensors from X to M , respectively, in the usual way.

If {ξA} (A = 1, 2, 3) is a coordinate system in X and {ωa} (a = 0, 1, 2, 3) 2 a coordi-
nate system in U ⊆M , then the configuration of the material can be described by
the fields ξA = ξA(ωa). The mapping Ψ∗ : TpM −→ TΨ(p)X gives rise to a (3× 4)

matrix (the relativistic deformation gradient) whose entries are ξAa = ∂ξA

∂ωa .

It is required that the relativistic deformation gradient has maximal rank and that
its Kernel is a one-dimensional timelike subspace of TpM , ∀p ∈ M . Since (M, g)
is time orientable, we can choose a generator ua of the Kernel such that: u0 > 0,
uaua = −1, uaξBa = 0. The vector field ua is called the matter four-velocity and
for each p̄ ∈ X , Ψ−1(p̄) is an integral curve of u, the worldline of the particle p̄.

The pull-back of the material metric

kab = Ψ∗kAB = ξAa ξ
B
b kAB (1)

and the (usual) projection tensor

hab = gab + uaub (2)

2Capital Latin indices A,B,... range from 1 to 3 and denote material indices. Small Latin
indices a,b,... take the values 0,1,2,3 and denote space-time indices.
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are Riemannian metric tensors on the subspaces of TpM orthogonal to ua. These
tensors are symmetric and satisfy kabua = 0 = habu

a and Lukab = 0.

The tensor kab = gackcb has three positive eigenvalues, here called n2
1, n

2
2, n

2
3, asso-

ciated with spacelike eigenvectors. The positive quantity n = n1n2n3 =
√
det(kab )

is the particle density of the material. This definition is justified by the continuity
equation ∇a(nua) = 0.

The state of strain of the material can be measured by the relativistic strain tensor,
according to e.g. [26], [27]:

sab =
1
2
(hab − kab). (3)

The material is said to be “locally relaxed” at a particular point of space-time if
the material metric and the projection tensor agree at that point, i.e. if the strain
tensor vanishes.

When considering elastic matter sources in general relativity, one is confined to a
stress-energy tensor taking the form Tab = −ρgab + 2 ∂ρ

∂gab
= ρuaub + pab, where

pab = 2 ∂ρ
∂gab

− ρhab, the energy density being written as ρ = nε, where ε is the
energy per particle.

Choosing an orthonormal tetrad {u, x, y, z} in M , with u in the direction of the
velocity field of the matter and x, y, z spacelike vectors along the eigendirections
of kab = gackcb, the orthogonality conditions are −uaua = xax

a = yay
a = zaz

a = 1,
all other inner products being zero. For this tetrad, k and g can be written as

kab = n2
1 xaxb + n2

2 yayb + n2
3 zazb, (4)

and

gab = −uaub + hab = −uaub + xaxb + yayb + zazb. (5)

It should be noticed that the eigenvectors x, y, z are automatically orthogonal when-
ever the corresponding eigenvalues are distinct. However, if the eigenvalues are not
all distinct, the eigendirections associated with the same eigenvalue can (and will)
be chosen orthogonal.

Consider the spatially projected connection Da acting on an arbitrary tensor field
tb...c... as follows:

Dat
b...
c... = hdah

b
e...h

f
c ...∇dte...f.... (6)

Here ∇ is the connection associated with g and one has Dahbc = 0. Now, consider a
differential operator D̃a acting on space-time tensors obtained from the Levi-Civita
connection D̃A of kAB under the following hypothesis [1]:

(i) there exists a torsion-free connection ∇̃ on M such that

D̃at
b...
c... = hdah

b
e...h

f
c ...∇̃dte...f...; (7)

(ii) for all space-time vector fields V b and Za, Za having zero convected derivative

Ψ∗(V bD̃bZ
a) = V BD̃BZ

A, V B = Ψ∗(V b), ZA = Ψ∗(Za).

It follows that

D̃bX
a −DbX

a = hmb h
a
n(∇̃mXn −∇mXn) = SabcX

c, (8)
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for any space-time vector field X. The tensor field Sabc is the elasticity difference
tensor as introduced by Karlovini and Samuelsson in [1]. Using hypothesis (ii), this
third order tensor can be written as

Sabc =
1
2
k−am(Dbkmc +Dckmb −Dmkbc), (9)

where k−am is such that k−amkmb = hab . It occurs in the Euler equations∇bT ab = 0
for elastic matter contracted with the Hadamard elasticity tensor as given by the
same authors.

The covariant derivative of the timelike unit vector field u can be decomposed as
follows

ua;b = −u̇aub +Dbua = −u̇aub +
1
3
Θhab + σab + ωab, (10)

where u̇α is the acceleration, σαβ , the symmetric tracefree rate of shear tensor field,
ωαβ , the antisymmetric vorticity tensor field and Θ, the expansion scalar field for
the congruence associated with u.

3. The Elasticity Difference Tensor

In this section we investigate the elasticity difference tensor. This tensor arises
when studying elasticity within the framework of general relativity and is related
to the connection of the space-time, as shown in the previous section.

The following two properties of the elasticity difference tensor are straightforward:

(i) it is symmetric in the two covariant indices, i. e.

Sabc = Sacb; (11)

(ii) it is a completely flowline orthogonal tensor field, i.e.

Sabcua = 0 = Sabcu
b = Sabcu

c. (12)

The following result provides a mathematical construction for the elasticity dif-
ference tensor which requires a second metric defined on M and its associated
Levi-Civita connection.

It is a well known result that the difference between two connections ∇̃ and ∇,
associated with two different metrics g̃ and g, respectively, defined on U , is the
following (1, 2) tensor:

Cnml = Γ̃nml − Γnml, (13)

Γ̃nml and Γnml being the Christoffel symbols associated with those two metrics. In
a local chart, this tensor can be written as ([29], [30])

Cnml =
1
2
g̃np(g̃pm;l + g̃pl;m − g̃ml;p), (14)

where g̃np is such that g̃npg̃pr = δnr and a semi-colon ; represents the covariant
derivative with respect to g. The difference tensor Cnml can be used to write the
difference of the Riemann and the Ricci tensors associated with the two metrics in
the following form (see e.g. [31]):

R̃abcd −Rabcd = −Cabd;c + Cabc;d − CalcC
l
bd + CaldC

l
bc (15)

and

R̃bd −Rbd = −Cabd;a + Caba;d − CalaC
l
bd + CaldC

l
ba. (16)
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The projection of the difference tensor orthogonally to u is defined by the expression

han h
m
b hlc C

n
ml. (17)

Assume that ∇ and ∇̃ are the Levi-Civita connections associated with the two
metric tensors gab = −uaub + hab and g̃ab = −uaub + kab. Then, writing (14)
explicitly and projecting the resulting expression according to (17), one obtains

han h
m
b hlc C

n
ml =

1
2
k−am(Dbkmc +Dckmb −Dmkbc). (18)

The expression on the right hand side of (18) is the elasticity difference tensor given
in (9).

Under this approach, the elasticity difference tensor equals the projection, orthogo-
nal to u, of the difference between two Levi-Civita connections, one associated with
the space-time metric and the other with the metric g̃ab = −uaub + kab, where kab
is the pull-back of the material metric kAB .

Using (6) and (17) the calculation of the spatial projection of equation (15) yields
the following expression for the difference of the Riemann tensors:

hfm h
n
g h

p
e h

q
h [hma h

b
n h

c
p h

d
q (R̃abcd −Rabcd)]

= −DeS
f
gh +DhS

f
ge − SfkeS

k
gh + SfkhS

k
ge. (19)

The spatial projection of (16) expressing the difference of the Ricci tensors can be
obtained analogously by equating the indices a = c in (19).

Therefore, these expressions, which contain the elasticity difference tensor, give the
difference between the projected Riemann and Ricci tensors associated with the
metrics referred to above.

Now we obtain the tetrad components of the elasticity difference tensor. From now
the following notation is used for the orthonormal tetrad: eaµ = (ea0 , e

a
1 , e

a
2 , e

a
3) =

(ua, xa, ya, za). Tetrad indices will be represented by Greek letters from the sec-
ond half or the first half of the alphabet according to their variation as follows:
µ, ν, ρ... = 0− 3 and α, β, γ... = 1− 3. The Einstein summation convention and the
notation for the symmetric part of tensors will be applied to coordinate indices only,
unless otherwise stated. The operation of raising and lowering tetrad indices will

be performed with ηµν = ηµν = diag(−1, 1, 1, 1) and one has gab =
3∑

µ,ν=0

eµaeνbη
µν .

The tetrad components of the elasticity difference tensor can be obtained using the
standard relationship

Sαβγ = Sabce
α
ae
b
βe
c
γ (20)

the result being

Sαβγ =
1

2n2
α

[
(
n2
α − n2

γ

)
γαγβ +

(
n2
α − n2

β

)
γαβγ +

(
n2
γ − n2

β

)
γ α
βγ +Dn(n2

α)enβδ
α
γ

+Dp(n2
α)epγδ

α
β −Dl(n2

β)e
lαδβγ ].

(21)

Here the following notation was used for the Ricci rotation coefficients: γµνρ =
eµa;be

a
νe
b
ρ.
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An alternative form for (21) is:

Sαβγ =
1
2
[(1− εγα)γαγβ + (1− εβα)γαβγ + (εγα − εβα)γ α

βγ +mβαδ
α
γ +mγαδ

α
β

−mα
βδβγεβα],

(22)

where εγα =

(
n2
γ

n2
α

)
and mα

β = Da(lnn2
β)e

aα.

For the elasticity difference tensor it is possible to define two independent traces.
Here we give their expressions in the orthonormal tetrad already chosen:

Sααγ =
1
2
mγα =

1
nα
Da(nα)eaγ (23)

and

Sαββ = mββ −
1
2
mα
βεβα =

2
nα
Da(nα)eaα −

nβ
n2
α

Da(nβ)eaα. (24)

The Ricci rotation coefficients, when related to the quantities used in the decom-
position (10), can be split into the set [32]:

γ0α0 = u̇α (25)

γ0αβ =
1
3
Θδαβ + σαβ − εαβγω

γ (26)

γαβ0 = −εαβγΩγ (27)

γαβγ = −Aαδβγ +Aβδαγ −
1
2
(εγδαN δ

β − εγδβN
δ
α + εαβδN

δ
γ). (28)

The quantities A and N appear in the decomposition of the spatial commutation
functions Γαβγ = γαγβ − γαβγ (see [33]), where N is a symmetric object.

The elasticity difference tensor can be expressed using three second order symmetric
tensors, designated as Mbc

α
, α = 1, 2, 3, as follows:

Sabc = Mbc
1

xa +Mbc
2

ya +Mbc
3

za =
3∑

α=1

Mbc
α

eaα. (29)

Here we study these three tensors Mbc
α

in order to understand to what extent the

principal directions of the pulled back material metric remain privileged directions
of the elasticity difference tensor through the tensors Mbc

α
, following the eigenvalue-

eigenvector approach for these second order tensors.

First, we obtain a general expression for Mbc
α

, α = 1, 2, 3, which depends explicitly

on the orthonormal tetrad vectors, the Ricci rotation coefficients and the linear
particle densities nα. In fact, contracting Sabc in (9) with each one of the spatial
tetrad vectors and using then the relationships (4), (6), after some appropriate
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simplifications the final result becomes:

Mbc
α

= um(eαm;(buc) + u(beαc);m) + eα(b;c) − emα eα(ceαb);m

+ γ0αα u(beαc) − γ0α0 ubuc

+
1
nα

[2nα,(beαc) + 2nα,mumu(beαc) + nα,me
m
α eαbeαc]

+
1
n2
α

{−emα (eβbeβcnβnβ,m + eγbeγcnγnγ,m)

+ n2
γ [(γ0γα − γαγ0)u(beγc) + emα (eγm;(beγc) − eγ(beγc);m)]

+ n2
β [(γ0βα − γαβ0)u(beβc) + emα (eβm;(beβc) − eβ(beβc);m)]}.

(30)

Here γ 6= β 6= α and a comma represents a partial derivative.3 It should be noticed
that this expression also contains the non-spatial Ricci rotation coefficients given
in (25), (26) and (27).

The expressions obtained for Mbc
α

still satisfy the conditions Mbc
α

ub = 0, as a con-

sequence of the orthonormality conditions for the tetrad together with (29).

The eigenvalue-eigenvector problem for Mbc
α

is quite difficult to solve in general.

However, one can investigate the conditions for the tetrad vectors to be eigenvectors
of those tensors, the results being summarized in the two following theorems.

On what follows, intrinsic derivatives of arbitrary scalar fields Φ, as derivatives
along tetrad vectors, will be represented by ∆eα and defined as:

∆eαΦ = Φ,memα ,

where a comma stands again for a partial derivative.

Theorem 1. The tetrad vector eα is an eigenvector for M
α

iff nα remains invariant

along the two spatial tetrad vectors eβ, such that β 6= α, i.e. ∆eβ (lnnα) = 0
whenever β 6= α.
The corresponding eigenvalue is λ = ∆eα(lnnα).

Proof: In order to solve this eigenvector-eigenvalue equation the following algebraic
conditions are used

M c
b

α
ebαeαc = λ, (31)

M c
b

α
ebαeβc = 0 (32)

and

M c
b

α
ebαeγc = 0, (33)

where γ 6= β 6= α. Considering the orthogonality conditions satisfied by the tetrad
vectors and the anti-symmetry of the Ricci rotation coefficients on the first pair of
indices, expressions (32) and (33) yield ∆eβ (lnnα) = 0 = ∆eγ (lnnα). Therefore
∆eβnα = 0 = ∆eγnα. On the other hand, from (31) one obtains, after some
calculations, the eigenvalue λ = ∆eα(lnnα). �

3To read (30) properly one must see that each value of α = 1, 2, 3 fixes exactly one pair of
values for (β, γ). For example, α = 1 fixes (β, γ) as either (2, 3) or (3, 2), yielding the same result
for both choices.
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For each value of α, the eigenvalue λ in Theorem 1 vanishes iff nα remains constant
along eα. However this condition is equivalent to nα = c, with c as a constant. In
this case, kab = c2 eαa eαb +

∑
β 6=α

n2
β eβa eβb.

Theorem 2. eβ is an eigenvector of M
α

(with α 6= β ) iff the following conditions
are satisfied:

(i) ∆eβ (lnnα) = 0, i.e. nα remains invariant along the direction of eβ;
(ii) γαγβ [n2

α − n2
γ ] + γαβγ [n2

α − n2
β ] + γβγα[n2

γ − n2
β ] = 0, where γ 6= β 6= α for

one pair (β, γ).

The corresponding eigenvalue is λ = −nβ
n2
α
∆eαnβ + γαββ(−

n2
β

n2
α

+ 1).

Proof: Contracting M c
b

α

ebβ = λecβ with eαc one obtains ∆eβ (lnnα) = 0. This con-

dition is satisfied whenever ∆eβnα = 0. The second condition is a consequence of
M c
b

α

ebβeγc = 0.

Contracting M c
b

α

ebβ = λecβ with eβc yields the eigenvalue λ.

The simplifications performed are based on the orthogonality conditions of the
tetrad vectors and on the properties of the rotation coefficients. �

Notice that the two conditions (i) and (ii) in Theorem 2 are satisfied simultaneously
if nα = nβ = nγ = c, with c a constant, in which case λ = 0 and kab = c2 xaxb +
c2 yayb + c2 zazb.

The previous theorems show that strong conditions have to be imposed both on
nα ( α = 1, 2, 3) and the metric if one requires that the spatial tetrad vectors are
principal directions of M

α
, for α = 1, 2, 3.

However, the conditions for eα to be an eigenvector of M
α

are less restrictive then
the conditions for eβ to be an eigenvector of the same tensor, for all values of β 6= α:
in the first case the conditions to be satisfied contain only intrinsic derivatives of
the quantities nα; in the second case, besides conditions on the intrinsic derivatives
on the nα, one also has conditions containing the Ricci rotation coefficients.
Furthermore, for eα to be an eigenvector of M

α
only conditions on nα have to be

satisfied: nα is to remain constant along the directions of eβ for all values of β 6= α.
In this case the eigenvalue corresponding to eα depends on nα only. Moreover,
the conditions for the vectors eβ , for all β 6= α, to be eigenvectors of M

α
depend

explicitly on the three quantities n1, n2 and n3.

Finally we use the previous theorems to establish the conditions for each vector eα,
with α = 1, 2, 3, to be an eigenvector of the three tensors M

1
, M

2
, M

3
simultaneously.

One can show that those conditions are:

(i) ∆eβ (lnnα) = 0,
(ii) ∆eα(lnnβ) = 0,
(iii) γαβγ [n2

α − n2
β ] + γαγβ [n2

γ − n2
α] + γβγα[n2

β − n2
γ ] = 0,

for all values of β and γ such that β 6= γ 6= α.
Here conditions (i), (ii) and (iii) must be satisfied for all values of β 6= α.
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Ruling out the solution n1 = n2 = n3 = constant, which is not physically in-
teresting, it is not easy to solve these last equations. However one can say that,
in general, the principal directions of the pulled back material metric k are not
principal directions of the three tensors M

1
, M

2
and M

3
.

4. Examples

In this section examples concerning a static spherically symmetric metric and an
axially symmetric, non-rotating metric are presented and the analysis developed in
the last section is applied. The main problem when dealing with examples lies in
the difficulties of finding an orthonormal tetrad for the space-time metric such that
the corresponding spacelike tetrad vectors are precisely the principal directions of
the pulled back material metric. However, in the examples presented, this difficulty
was overcome.

4.1. The static spherically symmetric case. In this subsection we analyse the
elasticity difference tensor and corresponding eigendirections for a static spherically
symmetric metric, due to its significance on modelling neutron stars. The metric
regarded here can be thought of as the interior metric of a non-rotating star com-
posed of an elastic material.
For a static spherically symmetric spacetime the line-element can be written as

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2dθ2 + r2 sin2 θdφ2, (34)

where the coordinates ωa = {t, r, θ, φ} are, respectively, the time coordinate, the
radial coordinate, the axial coordinate and the azimuthal coordinate. Choosing the
basis one-forms ua = (−eν(r), 0, 0, 0), xa = (0, eλ(r), 0, 0), ya = (0, 0, r, 0) and za =
(0, 0, 0, r sin θ) for the orthonormal tetrad, the metric is given by gab = −uaub +
xaxb+yayb+zazb and hab = xaxb+yayb+zazb defines the corresponding projection
tensor. Using this tetrad, the pulled-back material metric becomes

kab = n2
1xaxb + n2

2yayb + n2
2zazb, (35)

where we have chosen n3 = n2 since for this material distribution k has only two
different eigenvalues.

Let ξA = {r̃, θ̃, φ̃} be the coordinate system in the material space X . Since the
space-time is static and spherically symmetric, r̃ can only depend on r and one
can take θ̃ = θ and φ̃ = φ so that the configuration of the material is entirely
described by the material radius r̃(r). Moreover, the only non-zero components of
the deformation gradient are dξ1

dω1 = dr̃
dr ,

dξ2

dω2 = 1 and dξ3

dω3 = 1.
In X the material metric is kAB = x̃Ax̃B + ỹAỹB + z̃Az̃B , with x̃A = eλ̃dr̃A,
ỹA = r̃dθ̃A, z̃A = r̃sinθ̃dφ̃A and λ̃ = λ(r̃). The pull-back of the material metric
becomes

kab = gackcb = gac(ξCc ξ
B
b kCB) =

(
dr̃

dr

)2

e2λ̃−2λδa1δ
1
b +

r̃2

r2 δ
a
2δ

2
b +

r̃2

r2
δa3δ

3
b . (36)

Comparing (35) and (36) it is simple to obtain the following values for the linear
particle densities (all positive), which are found to depend on r alone:

n1 = n1(r) =
dr̃

dr
eλ̃−λ (37)

n2 = n2(r) = n3(r) =
r̃

r
. (38)
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The non-zero components of the strain tensor (3), when written as functions of the
quantities nα, are

srr =
1
2
e2λ(1− n2

1)

sθθ =
1
2
r2(1− n2

2)

sφφ =
1
2
r2sin2θ(1− n2

2).

Using the expressions obtained for the nα one can find that the condition for this
tensor to vanish identically is r̃ = r.

Calculating the quantities given in (10) one obtains

Θ = 0

u̇a =
(

0, e2ν
dν

dr
, 0, 0

)
σab : σ12 =

1
2
e4ν

dν

dr
= σ21

ωab : ω12 = e2ν
dν

dr
+

1
2
e4ν

dν

dr
ω21 = −ω12,

where the remaining components of σab and ωab vanish.

The non-zero components of the elasticity difference tensor Sabc are:

Srrr =
1
n1

dn1

dr

Sθθr =
1
n2

dn2

dr

Sφφr =
1
n2

dn2

dr

Srθθ = re−2λ − re−2λn
2
2

n2
1

− e−2λr2
n2

n2
1

dn2

dr

Srφφ = e−2λrsin2 − e−2λrsin2θ
n2

2

n2
1

− e−2λr2sin2θ
n2

n2
1

dn2

dr
.

Since Sabc = Sacb, there are only seven non-zero components for this tensor on the
coordinate system chosen above.
Again, using (37) and (38) one obtains:

(i) the components Sθθr and Sφφr are zero whenever the function r̃ is of the form
r̃ = c1r, where c1 is a constant;
(ii) Srrr is zero whenever r̃ = c2 + c3

∫
eλ−λ̃dr;

(iii) the components Srθθ and Srφφ are zero whenever r̃ = c4e
R
e−2λ̃+2λ

r dr.
10



The second order symmetric tensors M
α

, for α = 1, 2, 3, have the following non-zero
components:

Mrr
1

=
eλ

n1

dn1

dr

Mθθ
1

= e−λr − e−λr
n2

2

n2
1

− e−λr2
n2

n2
1

dn2

dr

Mφφ
1

= e−λrsin2θ − e−λrsin2θ
n2

2

n2
1

− e−λr2sin2θ
n2

n2
1

dn2

dr

Mrθ
2

= Mθr
2

=
r

n2

dn2

dr

Mrφ
3

= Mφr
3

=
rsinθ

n2

dn2

dr
.

The eigenvalues and eigenvectors of these tensors are presented in tables 1, 2 and
3. The eigenvectors are then compared with the eigendirections of the material
metric.

Table 1 - Eigenvectors and eigenvalues for M
1

Eigenvectors Eigenvalues
x µ1 = e−λ

n1

dn1
dr

y µ2 = e−λ

r − e−λ

r
n2

2
n2

1
− e−λ n2

n2
1

dn2
dr

z µ3 = e−λ

r − e−λ

r
n2

2
n2

1
− e−λ n2

n2
1

dn2
dr

Notice that, in the present example, M
1

maintains the eigenvectors of k, namely x,
y and z, the two last ones being associated with the same eigenvalue. Therefore
the canonical form for M

1
is Mbc

1
= µ1xbxc + µ2(ybyc + zbzc), where µ1 and µ2 are

the eigenvalues corresponding to x and y (≡ z), respectively.

Table 2 - Eigenvectors and eigenvalues for M
2

Eigenvectors Eigenvalues
x+ y µ4 = e−λ

n2

dn2
dr

x− y µ5 = − e−λ

n2

dn2
dr

z µ6 = 0

In this case, only z is simultaneously an eigenvector of k and M
2

. The corresponding
eigenvalue is now equal to zero. The other two eigenvectors are x+ y and x− y so
that the canonical form for M

2
can be expressed as Mbc

2
= 2µ4(xbyc + ybxc), where

µ4 = e−λ
(

1
r̃
dr̃
dr −

1
r

)
.

Table 3 - Eigenvectors and eigenvalues for M
3

Eigenvectors Eigenvalues
x+ z µ7 = e−λ

n2

dn2
dr

x− z µ8 = − e−λ

n2

dn2
dr

y µ9 = 0
11



Comparing M
2

and M
3

, it is easy to see that the role of z and y is interchanged. The
eigenvalues of M

2
are equal to the eigenvalues of M

3
and the canonical form of this

tensor field can be written as Mbc
3

= 2µ7(xbzc + zbxc), where µ7 = e−λ
(

1
r̃
dr̃
dr −

1
r

)
.

It should be noticed that for n2 =constant the tensors M
2

and M
3

vanish. Therefore
this is not an interesting case to analyse.

The condition for x, y and z to remain eigenvectors for M
2

and M
3

is that r̃ = cr,
in which case M

2
and M

3
vanish identically.

The tetrad components of the elasticity difference tensor can be calculated from
(22), yielding:

S1
11 = e−λ

1
n1

dn1

dr

S2
21 = e−λ

1
n2

dn2

dr

S3
31 = e−λ

1
n2

dn2

dr

S1
22 = e−λ

1
r
− e−λ

1
r

n2
2

n2
1

− e−λ
n2

n2
1

dn2

dr

S1
33 = e−λ

1
r
− e−λ

1
r

n2
2

n2
1

− e−λ
n2

n2
1

dn2

dr
.

The expressions for the Ricci rotation coefficients are

γ122 =
e−λ

r

γ133 =
e−λ

r

γ233 =
cos θ
r sin θ

.

4.2. The axially symmetric non-rotating case. First, consider an elastic, ax-
ially symmetric, uniformly rotating body in interaction with its gravitational field.
The exterior of the body may be described by the following metric, [27],

ds2 = −e2νdt2 + e2µdr2 + e2µdz2 + e2ψ(dφ− ωdt)2, (39)

where ν, ψ, ω, µ are scalar fields depending on r and z.

Assume that the material metric is flat. Introducing in X cylindrical coordinates
ξA = {R, ζ,Φ}, then the material metric takes the form:

ds2 = dR2 + dζ2 +R2dΦ2, (40)

where Φ(t, r, z, φ) = φ− Ω(r, z)t and the parameters R, ζ depend on r and z.

The space-time metric for the limiting case of an axially symmetric non-rotating
elastic system can be written as

ds2 = −e2νdt2 + e2µdr2 + e2µdz2 + e2ψdφ2. (41)

This metric is obtained from (39), when ω = 0 and the angular velocity Ω vanishes.
12



Imposing R = R(r), ζ = z and gab = gab(r), one obtains a further reduction to
cylindrical symmetry. This reduction is considered in [27].

We will work with the space-time metric presented in (41), where ν, µ, ψ depend
on r only, so that gab = −uaub + xaxb + yayb + zazb, with ua = (−eν(r), 0, 0, 0),
xa = (0, eµ, 0, 0), ya = (0, 0, eµ(r), 0) and za = (0, 0, 0, eψ(r)). The space-time
coordinates are ωa = {t, r, z, φ}.

In X the material metric kAB is defined by kAB = x̃Ax̃B + ỹAỹB + z̃Az̃B , where
x̃A = dRA, ỹA = dzA and z̃A = RdφA. The relativistic deformation gradient has
the following non-zero components: dξ1

dω2 = dR
dr , dξ

2

dω1 = 1 and dξ3

dω3 = 1. The pull-back
of the material metric yields

kab = gackcb = gac
(
ξCc ξ

B
b kCB

)
= e−2µδa1δ

1
b +

(
dR

dr

)2

e−2µδa2δ
2
b +R2e−2ψδa3δ

3
b . (42)

Therefore, the corresponding line-element can be expressed as

ds2 = dr2 +
(
dR

dr

)
dz2 +R2dφ2. (43)

On the other hand, the pulled back material metric is given by

kab = n2
1xaxb + n2

2yayb + n2
3zazb. (44)

Comparing (42) with (44) one concludes that the linear particle densities (all posi-
tive) are expressed as

n1 = n1(r) = e−µ (45)

n2 = n2(r) = e−µ
dR

dr
(46)

n3 = n3(r) = Re−ψ. (47)

The components of the strain tensor (3) are:

srr =
1
2
e2µ(1− n2

1)

szz =
1
2
e2µ(1− n2

2)

sφφ =
1
2
e2ψ(1− n2

3).

This tensor vanishes if the condition R(r) = eψ holds.

In this case the quantities in (10) are given by the following expressions:

Θ = 0

u̇a =
(

0, e2ν
dν

dr
, 0, 0

)
σab : σ12 =

1
2
e4ν

dν

dr
= σ21

ωab : ω12 = e2ν
dν

dr
+

1
2
e4ν

dν

dr
ω21 = −ω12,

where the remaining components of σab and ωab vanish.
13



The non-zero components of the elasticity difference tensor are listed below:

Srrr =
1
n1

dn1

dr

Szzr =
1
n2

dn2

dr

Sφφr =
1
n3

dn3

dr

Srzz =
dµ

dr
− n2

2

n2
1

dµ

dr
− n2

n2
1

dn2

dr

Srφφ = e−2ψ−2µ

(
dψ

dr
− n2

3

n2
1

dψ

dr
− n3

n2
1

dn3

dr

)
.

One can see that only seven components of the elasticity difference tensor are non-
zero. However, using the expressions (45), (46) and (47) to obtain the conditions
for those components to vanish, leads to the following results:

(i) Srrr is zero whenever µ(r) = c, where c is a constant;
(ii) Szzr is zero whenever R(r) = c1 + c2

∫
eµ(r)dr;

(iii) Sφφr is zero whenever R(r) = c3e
ψ(r);

(iv) Srzz is zero whenever R(r) = ±
∫ √

2µ(r) + c4dr + c5;

(v) Srφφ is zero whenever R(r) = ±
√

2
∫
e2ψ

e2µ
dψ
dr dr + c6.

In this case, the second-order tensors M
1

, M
2

and M
3

have the following non-zero
components:

Mrr
1

= eµ
1
n1

dn1

dr

Mzz
1

= eµ

(
dµ

dr
− n2

2

n2
1
dµ
dr

− n2

n2
1

dn2

dr

)

Mφφ
1

= e2ψ−µ
(
dψ

dr
− n2

3

n2
1

dψ

dr
− n3

n2
1

dn3

dr

)
Mrz
2

= Mzr
2

= eµ
1
n2

dn2

dr

Mrφ
3

= Mφr
3

= eψ
1
n3

dn3

dr
.

The next three tables contain the eigenvalues and eigenvectors for these tensors.
Their eigenvectors are then compared with the eigenvectors of the pulled-back ma-
terial metric.

Table 1 - Eigenvectors and eigenvalues for M
1

Eigenvectors Eigenvalues
x λ1 = e−µ 1

n1

dn1
dr

y λ2 = e−µ
(
dµ
dr −

n2
2
n2

1

dµ
dr −

n2
n2

1

dn2
dr

)
z λ3 = e−µ

(
dψ
dr −

n2
3
n2

1

dµ
dr −

n3
n2

1

dn3
dr

)
One can see that x, y and z are eigenvectors for both k and M

1
, however the

eigenvalues are not the same. The canonical form for M
1

can be written as Mbc
1

=

λ1xbxc + λ2ybyc + λ3zbzc.
14



Table 2 - Eigenvectors and eigenvalues for M
2

Eigenvectors Eigenvalues

x+ y λ4 = e−µ
(

1
n2

dn2
dr

)
x− y λ5 = −e−µ

(
1
n2

dn2
dr

)
z λ6 = 0

M
2

inherits only one eigenvector z from k, which corresponds to a zero eigenvalue.
The other two eigenvectors of M

2
are linear combinations of x and y, namely x+ y

and x− y, the corresponding eigenvalues being symmetric. The canonical form for

M
2

can be written as Mbc
2

= 2λ4(xbyc + ybxc), where λ4 =
(

d2R
dr2
dR
dr

− dµ
dr

)
e−µ.

Table 3 - Eigenvectors and eigenvalues for M
3

Eigenvectors Eigenvalues

x+ z λ7 = e−µ
(

1
n3

dn3
dr

)
x− z λ8 = −e−µ

(
1
n3

dn3
dr

)
y λ9 = 0

M
3

and k have the eigenvector y in common, the corresponding eigenvalue being
equal to zero. The other two eigenvectors of M

3
are linear combinations of x and

z, namely x+ z and x− z. These two eigenvectors are associated with symmetric
eigenvalues. The canonical form for M

3
can be written as Mbc

3
= 2λ7(xbzc + zbxc),

where λ7 =
(

1
R
dR
dr −

dψ
dr

)
e−µ.

Imposing that x and y are eigenvectors of M
2

, one obtains R(r) = c1 +
∫
eµdrc2,

in which case M
2

= 0. Analogously, for x and z to be eigenvectors for M
3

one must

require that R(r) = c3e
ψ, in which case M

3
= 0.

The tetrad components of the elasticity difference tensor are obtained from (22),
yielding:

S1
11 = e−µ

1
n1

dn1

dr

S2
21 = e−µ

1
n2

dn2

dr

S3
31 = e−µ

1
n3

dn3

dr

S1
22 = e−µ

dµ

dr
− e−µ

n2
2

n2
1

dµ

dr
− e−µ

n2

n2
1

dn2

dr

S1
33 = e−µ

dψ

dr
− e−µ

n2
3

n2
1

dψ

dr
− e−µ

n3

n2
1

dn3

dr
.
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For the expressions of the Ricci coefficients one obtains:

γ122 =
dµ
dr

eµ

γ133 =
dψ
dr

eµ
.

5. Concluding remarks

In the present paper we have presented a detailed study of the elasticity difference
tensor. This tensor is decomposed along the spatial eigendirections of the pulled
back material metric, here called x, y and z, yielding three second order symmetric
tensors named as M

1
, M

2
and M

3
, respectively. The eigendirections of these tensors

are compared with the eigendirections of the pulled back material metric to find
conditions for them to coincide. These conditions are presented in the theorems
of section 3, showing that only in very restrictive cases those eigendirections coin-
cide. Two classes of static space-times are then considered, one being spherically
symmetric and another axially symmetric. In both cases canonical forms for the
tensors M

1
, M

2
and M

3
are obtained and the following conclusions are drawn:

- the eigenvectors of the pulled back material metric are also eigenvectors of M
1

;

- the eigenvectors of M
2

are x+ y, x− y and z;

- the eigenvectors of M
3

are x+ z, x− z and y.

For both examples the deformation gradient depends only on the radial coordinate
r, the eigenvector associated with this coordinate being x. Therefore a similar
pattern is found when the spatial eigenvectors of the pulled back material metric
are compared with the eigenvectors of those tensors arising from the decomposition
of the elasticity difference tensor referred above.

In the near future we intend to analyse other classes of space-time metrics, in
particular non-static cases.
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