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Abstract: In this paper, we address a lot splitting and scheduling problem 
existent in a textile factory. The factory we study produces a set of products 
that are made of, or assembled from, a list of components. During production, 
each component can be split into one or several lots of different sizes and each 
lot will be produced independently on one of a group of identical parallel 
machines. 
 We formulate the problem into a mixed integer programming model and 
develop a heuristic method to solve the model. The heuristic method is based 
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on a network flow model with the objective to minimise the weighted sum  
of the total tardiness of products and the deviations occurred during production 
of each product. The deviation of a product is measured by the deviation  
of product completion time (the last component lot completion time) and 
completion time of the rest of components lots for the same product. 
 We present computational results and performance measures of the network 
flow heuristic for a set of randomly generated instances based on real world 
data. 

Keywords: lot splitting and scheduling; mixed integer programming; MIP; 
network flows. 
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1 Introduction 

This paper studies a planning and scheduling problem existent in a knitting section of a 
textile industry that produces fine knitted goods. The objective is to develop a tool that 
simultaneously solves: 

1 a lot splitting problem where components are split into lots of different sizes 

2 an assignment and scheduling problem, in which the lots determined in (1) are 
assigned and scheduled on a set of identical parallel machines. 

The factory we study produces a set of products made up of a group of components. The 
demand quantity and due date for the products are known in advance. Each component 
order can be split into several lots of different sizes, and each lot will be assigned and 
produced independently on one of a group of identical knitting machines. The objectives 
are: 

1 to minimise total tardiness 

2 to minimise the sum of deviations completion times of all the lots of components that 
belong to the same product from the product’s completion time, which is assumed to 
be the completion time of the last component lot. 

The first objective is related to on-time delivery of the products, while the second one is 
related to the reduction of the work-in-process inventory. The first objective is prioritised 
over the second one, since it has a major impact in the quality of service. Nevertheless, 
the second objective is very important to guarantee a smooth production flow. This 
second objective has not received an appropriate treatment in the literature. We are not 
aware of any work considering this topic. 

We formulate the problem into a mixed integer programming (MIP) model and 
develop a heuristic method to solve the MIP model. The MIP is a continuous time model, 
with variable length time periods, in which only single component production runs may 
occur, i.e., only one lot may be produced. In Floudas and Lin (2004), continuous time 
representations are examined in detail. 

The heuristic approach consists of solving two network flow problems in which the 
origins are associated with components to be produced and the destinations are associated 
with time intervals on each machine. The flow in an arc corresponds to the production 
time of the component (associated with the origin) spent in the time interval and on the 
machine (associated with the destination). Therefore, a solution of this model defines 
how much to produce of each component in each (pre-defined) time interval on each 
machine. In order to obtain a schedule from that solution, we apply a simple single pass 
procedure. 

The problem of how to split and schedule a set of jobs on a set of parallel machines, 
motivated by time based objectives, has not yet been sufficiently studied in the literature. 
Yalaoui and Chu (2003) and Tahar et al. (2006) propose a heuristic algorithm to solve the 
identical parallel machine scheduling problem with sequence dependent setup times and 
job splitting to minimise makespan. They solve the problem in two phases. In Phase 1 the 
problem is reduced into a single machine scheduling problem with sequence dependent 
setup times. They transform this problem into a travelling salesman problem and solve it 
using Little’s method. In Phase 2, Yalaoui and Chu (2003) try to improve the solution 
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obtained in Phase 1 in a step by step procedure, taking into account setup times and job 
splitting, while Tahar et al. (2006) use a linear program to determine the size of the lots. 

The main differences between our problem and the one studied by Yalaoui and Chu 
(2003) and Tahar et al. (2006) are that: 

1 they consider the minimisation of the makespan, while we consider the minimisation 
of total tardiness plus the minimisation of the deviation between the completion time 
of a product and the completion times of all the lots of components that belong to 
that product 

2 they consider sequence dependent setups, while we do not 

3 they consider that all the machines can process all the jobs, while we restrict job 
assignments to specific machines. 

Sheen and Liao (2007) present a network flow technique to solve a preemptive 
scheduling problem of identical parallel machines with availability constraints. Their goal 
is to minimise the maximum lateness. In their problem, each job can only be processed 
on specific machines. They solve this problem using a series of maximum flow problems. 
They propose a polynomial time two-phase binary search algorithm to verify the 
feasibility of the problem and to solve the scheduling problem optimally if a feasible 
schedule exists. This problem is related to ours, although we allow lot splitting while they 
allow preemption (a job cannot be processed at the same instant on different machines) 
and the objectives are different. 

We adopt a continuous time representation in order to accurately determine the 
completion time deviations. We do not find in the literature any MIP model for the 
combined lot splitting and scheduling problem with the same representation. Rocha et al. 
(2008) develop two continuous time MIP models for a scheduling problem, although they 
do not consider lot splitting. Besides that, their problem has other characteristics, such as 
unrelated parallel machines and setup times that depend on both the job sequence and 
machine, which is different from ours. 

Three general review papers related to scheduling are Allahverdi et al. (1999, 2008) 
and Zhu and Wilhelm (2006). All of them consider research involving setups and  
present the literature categorised by shop environment/machine configuration. In Zhu and 
Wilhelm (2006) both optimisation and heuristic solution methods are reviewed. Zhu and 
Wilhelm (2006) argue that there are fertile opportunities available for research addressing 
due date related objectives. We also agree and, as far as we know, there are no papers 
addressing the minimisation of deviations between the completion times of all the lots 
belonging to the same product, which we study here. Allahverdi et al. (1999) and 
Allahverdi et al. (2008) also argue that due date related objectives need to be emphasised, 
especially on parallel machines and multi-stage scheduling configurations. 

Xing and Zhang (2000) prove that the identical parallel machine scheduling problem 
with splitting jobs, without setup times and with the objective of minimising total 
tardiness is NP-hard. As our problem is an extension of the previous one, it is also  
NP-hard. 

The main contributions of this paper are as follows: 

1 The development of a MIP model for a lot splitting and scheduling problem that, 
besides splitting demands into lots of smaller size and sequencing those lots on a set 
of parallel machines, determines the beginning and finishing instant times of each lot 
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on each machine. This allows to model the objective related to the minimisation of 
deviations between the completion times of related lots. 

2 The development of a network flow heuristic that produces solutions for this NP-
hard problem very quickly, making it an effective tool for practical use. 

3 The development of algorithms that provide automated scheduling plans for a 
knitting problem of a textile industry. 

The remainder of this paper is structured as follows: in Section 2 we define the lot 
splitting and scheduling problem and in Section 3 we present a MIP model for it. Section 
4 is dedicated to the network flow heuristic and Section 5 to the computational 
experiments. Finally, in Section 6, the main conclusions of this work are summarised. 

2 Problem definition 

This research is motivated by the need of a textile company to improve their current 
knitting scheduling plans and to increase its efficiency. The knitting section produces the 
garment parts of a product, such as sleeves, back bodies, front bodies and scarves. 

The production system of the knitting section consists of three groups of identical 
parallel machines. The main characteristic that distinguishes these three sets of machines 
is a gauge (21, 24 or 27) which is also a characteristic of each product. The planning and 
scheduling of the section is done by gauge. Therefore, three independent production plans 
must be prepared. 

Plans are made weekly. Each production order has information about the products 
(defined by a piece of cloth and size) requested by customers, including their due dates, 
quantities and the corresponding set of components. All the components belong to the 
same level of the product structure. The customer demands by component will be split 
into smaller lots of variable size and each lot will be assigned to one machine. The 
completion time of a product is the completion time of the last component produced. The 
setup times involved in a change between garment parts are neglected. 

Due to machines and components technical characteristics, a compatibility matrix 
between machines and components must be considered. Even within the same gauge 
type, a given machine may be appropriate to produce a given component, while another 
one may not. Besides, each machine has a given release date. The machines are identical, 
since they take the same amount of time to produce a unit of a given component. 

The first objective is to minimise total tardiness. The second objective is related to the 
minimisation of the time deviation between the completion time of the product (the 
moment when all its components are finished) and the completion time of all the 
components lots. 

The production plan must state how to split the components demand into lots of 
variable size, on which machines those lots are produced, and when they are started and 
finished. As the lot splitting decisions are taken at the same level and in coordination with 
the scheduling decisions, the quality of the solutions is increased. It is worth noting that, 
in an optimal solution, two or more lots of the same component may be assigned to the 
same machine (with lots of other components in-between them). Another important 
feature of the problem is that, in an optimal solution, empty intervals may exist between 
two successive lots. 
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3 MIP model 

In this section, we present a MIP model developed for the lot splitting and scheduling 
problem presented in Section 2. This MIP is based on a discretisation of the time horizon 
into several macro-periods (days), each one with a pre-defined number of micro-periods 
(production runs). In each micro-period a single component is produced or there is no 
production at all. The lengths of the macro-periods and the micro-periods can vary. We 
consider arbitrary capacities per macro-period in order to introduce more flexibility into 
the model, for example, to allow a part of the day for machine maintenance. If the 
machines are always available, then the set of macro-periods can be removed and only a 
set of micro-periods is needed. 

The main decision variables are related to: 

1 the quantities to produce of each component, in each run, in each day and on each 
machine 

2 the completion time of each component, in each run, in each day and on each 
machine 

3 the production completion time of each product 

4 the tardiness of each product 

5 a binary variable that takes the value one if there is a production of a given 
component, in a given run, in a given day, and on a given machine, or zero 
otherwise. 

There are several sets of constraints to consider. The first set of constraints is related to 
the product demand. The second set determines the completion times of each lot of 
components. The third set determines the completion time of each product, and the fourth 
set determines the tardiness of each product. We also consider a set of capacity 
constraints guaranteeing that the completion times of each component, in each run of a 
day, on each machine respect the daily capacity. Another set of constraints determines the 
values of the variables that are associated with the calculations of the completion time 
deviations and, the last set, guarantees that at most one component is produced in each 
production run. 

Next we formally present the proposed MIP model which we designate by lot 
splitting and scheduling model (LSSM). Consider the following sets, parameters and 
decision variables: 

Sets: 

N set of products 

J set of components 

M set of machines 

K set of runs 

I set of days 

S(n) set of components that belong to product n. 
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Parameters: 

Dn demand of product n 

rm ready time of machine m 

aj production unit time of component j 

fjn number of units of component j required to produce one unit of product n(j ∈ S(n)) 

βn tardiness weight of product n per unit time 

dn due date of product n 

hmi clock time when day i finishes on machine m 

θj weight of a production run of component j 

αn per unit time weight resulting from the deviation between the production 
completion time of product n and each of its components 

bjm is equal to one if component j can be processed on machine m and is equal to zero 
otherwise 

kmax is the pre-defined number of runs of a day 

M a big number. 

Decision variables: 

Xjmki quantity to produce of component j during the kth production run of day i on 
machine m 

Tjmki completion time of component j in the kth production run of day i on machine m 

Cn production completion time of product n 

Ln tardiness of product n 

Zjmki is equal to one if component j is produced in the kth production run of day i on 
machine m and is equal to zero otherwise 

Ujmki is equal to Tjmki if component j is produced in the kth production run of day i on 
machine m(Zjmki = 1) and is equal to Cn if component j is not produced in the kth 
production run of day i on machine m(Zjmki = 0). 

LSSM model is: 

( )
( ) 1

1

jm

jm

n n jmki
n N j J j S n k K i Im M b

j jmki n n
j J k K i I n Nm M b

Min C U

Z L

α

θ β

∈ ∈ ∈ ∈ ∈∈ =

∈ ∈ ∈ ∈∈ =

− +

+

∑ ∑ ∑ ∑∑
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subject to: 

1

, , ( )
jm

jmki jn n
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(1 ), 1,jmki m j jmki jmki jmT r a X M Z j J b m M≥ + − − ∀ ∈ = ∀ ∈  (2) 

1 , 1, 1 , 1,(2 ),

, 1  1, , 2,..., ,
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In the objective function, the deviations between the completion time of a product and the 
completion time of all the components that belong to this product are minimised, as well 
as the tardiness. The second term of the objective function is a penalty for running a 
production, which can be considered as a dummy cost. This cost is only considered 
because of the set of constraints (5). Constraints (1) are the demand constraints. These 
constraints associate the demand of a product with the demand of its components. The 
quantities to produce of each component (Xjmki) can be sized in lots of smaller quantities 
and can be produced on several machines at the same time or at different times. 
Constraints (2), (3) and (4) give the completion time of each component, on each 
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machine, run and day. In constraints (5), the completion time of a given product is 
determined. Constraints (6) and (7) are the capacity constraints. They associate the 
completion time of each component, on each machine, run and day with the finish time of 
a day. Constraints (8) relate the due date of a product with its completion time and 
tardiness. The sets (9) and (10) are related to the minimisation of the deviations between 
the completion time of a product and the completion time of all the lots of components 
that belong to this product. In these constraints, the values of the Ujmki variables, that are 
present in the objective function, are determined. In constraints (11) it is stated that at 
most one production per machine, run and day can occur. Constraints (12) establish the 
relation between the quantity to produce of a given component on a given machine, run 
and day (Xjmki) and the Zjmki variables, forcing the Xjmki to be equal to zero if the Zjmki 
variables are equal to zero. Constraints (13) are included in the model in order to 
correctly determine the completion times of each component, on each machine, run and 
day. Constraints (14) are the non-negativity constraints and constraints (15) force the Zjmki 
decision variables to take binary values. 

Solving real-world instances directly with model LSSM is not computationally 
efficient. Besides the large number of binary variables and constraints, the presence of a 
large number of big-M constraints suggests that the linear relaxation of the model 
provides poor quality lower bounds. Furthermore, the model has symmetry (usual on 
parallel machine problems) which makes branching (in a branch-and-bound based 
approach) less effective. LSSM was a first effort to model time deviations in scheduling 
problems, using integer programming. For addressing real-world instances, we propose 
the heuristic approach described in the next section. 

4 Network flow heuristic 

The MIP model formulated in Section 3 can be used to solve the lot splitting and 
scheduling problem defined in Section 2. However, the problem is NP-hard and the MIP 
model takes a large amount of time to solve real world instances. Since solution times are 
an important concern for practical problems, we adopted a heuristic approach. This 
approach consists of solving the problem in two phases using a network flow model and a 
scheduling heuristic. 

4.1 Phase I 

In this subsection we present the network model and a scheduling heuristic that converts 
the network model solution (a set of flows) into a valid schedule. 

4.1.1 Network flow model 

In this first phase, we only consider one component of each product: the one with the 
longest processing time. The network is defined in a bipartite graph. The components  
are associated with origin nodes, with supplies defined by the processing time of the 
corresponding component. 

The destinations nodes are associated with time intervals and machines. The 
information used to define the time intervals consists of: 
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1 the machine release times 

2 the due dates of the components considered in the origins 

3 the planning horizon. 

The definition of the intervals is illustrated in the example described below. 

Example: Consider a problem with five products that must be scheduled, at most, on five 
machines, in the next 48 hours. The data associated with this example is presented in 
Table 1 and in Table 2. 
Table 1 Example data 

Product Due date (hours) Component Compatible 
machines 

Total processing 
time (hours) 

CM1F 1, 2, 3, 4, 5 25 
CM1 24 

CM1C 1, 2, 3, 4, 5 25 
CM2F 1, 4, 5 33.33 

CM2 48 
CM2C 1, 4, 5 33.33 
CM3F 1, 2, 3, 4 8.33 
CM3C 1, 2, 3, 4 8.33 

CM3 24 

CM3M 1, 2, 3, 4, 5 16.67 
CS1F 1, 3, 4 3.33 
CS1C 1, 3, 4 3.33 

CS1 24 

CS1M 1, 2, 3, 4, 5 6.66 
CS2F 1, 2, 3, 4, 5 5 
CS2C 1, 2, 3, 4, 5 5 

CS2 48 

CS2M 1, 2, 3, 4, 5 10 

Table 2 Release times of machines 

Machine Release time (hours) 

1 0 
2 1 
3 0 
4 1 
5 2 

The components defining the origins are: CM1F, CM2F, CM3M, CS1M and CS2M (the 
ones with longest processing times). In Figure 1, where the solution is represented, the 
time intervals are defined, based on the release times of the machines presented in  
Table 2, the due dates of the components considered in the origins and the planning 
horizon. The total number of destinations of example is 16 (4 associated with machine 1, 
3 with machine 2, 4 with machine 3, 3 with machines 4 and 2 with machine 5).  
Machine 1 destinations will be: I1, I2, I3 and I4. The demand of each destination is equal 
to the duration of the time interval. For example, the demand associated with time 
interval I3-M1 is 22. 
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Figure 1 Time intervals and Gantt chart for the solution of Phase I of example 

 

Each time interval must have a machine associated because of the compatibility matrix 
between the components and the machines. If all the components could be processed  
on all the available machines, this association would not be needed and the demand of  
each time interval would be the product of the time interval duration by the number of 
machines available in that time interval. 

Between each origin and each destination, there is an arc if the component associated 
with the origin can be produced on the machine associated with the destination. The flow 
in each arc represents the processing amount of the corresponding component in the 
corresponding interval. 

The cost of an arc depends on three factors: tardiness, earliness and machines 
prioritisation. We associate weights with the tardiness and earliness penalties, being the 
tardiness weight much larger. The tardiness penalty only appears in arcs associated with 
time intervals beyond the associated component due date, and its value is the product of 
the tardiness weight by the difference between the end time of the interval and the due 
date of the given component. The earliness penalty is associated with arcs representing 
time intervals that end earlier than the due date of the corresponding component. Its value 
is the product of the earliness weight by the difference between the due date of the 
component and the end time of the considered time interval. The machines are prioritised 
with the aim of minimising the deviations between the completion time of a product and 
the completion time of all the lots of related components. That is accomplished by 
associating an order number to each arc that is multiplied by a prioritisation penalty. All 
the arcs of a given machine will have the same order number. We use the data of the 
example to illustrate how the order numbers are determined. We order the machines 
according to their release times and we use that order during the assignment of the 
machines to the time intervals. Considering the release dates of Table 2 one possible 
order of machines is: M1 – M3 – M2 – M4 – M5. This order will be used in the 
decomposition of the intervals by machines. For example time interval 3 (see Figure 1) 
will be decomposed into 5 intervals. The first one will be I3-M1, the second one I3-M3, 
the third I3-M2, the fourth I3-M4, and finally the fifth I3-M5. All the arcs associated with 
machine 1 (for example I3-M1) will have order number 1; all the arcs associated with 
machine 3 will have order number 2; all the arcs associated with machine 2 will have 
order number 3; and so on. 
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We solve the problem using all the alternative orders of machines and we select the 
best solution, i.e., the one with a lower value of total tardiness plus total deviation 
between a product completion and the completion times of all the lots of components 
associated with that product. 

We next present the network flow model. Consider the sets, parameters and decision 
variables defined below. 

Sets: 

N1 set of selected components (one for each product) 

N2 set of interval/machine pairs 

A set of arcs 

Mj set of components that can be produced on machine j. 

Parameters: 

pi total production time of component i 

bj duration of time interval j 

cij cost of arc (i, j) based on the tardiness, earliness and machine priority 

di due date of component i 

tj finish time of interval j 

α weight of machine priority 

β weight of tardiness per unit time 

μ weight of earliness per unit time 

oij order number of arc (i, j). 

4.1.2 Decision variables 

xij – flow of arc (i, j), i.e., time spent producing component associated with node i in the 
interval and on the machine associated with node j. 

The network flow model is: 

( , ) : j

ij ij
i j A i M

Min Z c x
∈ ∈

= ∑  

subject to: 

1
:( , )  and 

,   
j

ij i
j i j A i M

x p i N
∈ ∈

= ∀ ∈∑  (16) 

2
:( , )   

,
j

ij j
i i j A and i M

x b j N
∈ ∈

≤ ∀ ∈∑  (17) 

0, ( , )ijx i j A≥ ∀ ∈  (18) 

The value of cij is determined using equation (19). 
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( ) ( )
( , ) : ( , ) : ( , ) :  and i j i j i j j

j i i j ij
i j A d t i j A d t i j A d t i M

t d d t oβ μ α
∈ < ∈ > ∈ ≥ ∈

− + − +∑ ∑ ∑  (19) 

In the objective function we minimise the sum of tardiness, earliness and machine 
priority penalties. Constraints (16) are the supply constraints that force the sum of the 
flows out of each component to be equal to its total production time. Constraints (17) are 
the demand constraints. In these constraints we force the flow into each interval/machine 
pair not to exceed the interval duration. Constraints (18) are non-negativity constraints. 
The reader is referred to Ahuja et al. (1993) for additional details about network flow 
models. 

In Table 3, we present one of the optimal solutions of the network flow model of 
Phase I for the above presented example, for machine order M1 – M3 – M2 – M4 – M5. 
In this solution, component CM3M is produced using 16.67 hours of time interval 3 on 
machine 3. The same type of analysis can be done for the remaining components. 
Table 3 Optimal solution of the network flow model of Phase I of example 

Component/size Interval Machine Flow 

CM1F I3 M1 22 

CM1F I3 M2 0.33 

CM1F I3 M3 2.67 

CM2F I4 M1 24 

CM2F I4 M4 9.33 

CM3M I3 M3 16.67 

CS1M I1 M1 1 

CS1M I2 M1 1 

CS1M I1 M3 1 

CS1M I2 M3 1 

CS1M I3 M3 2.67 

CS2M I4 M3 10 

4.1.3 Scheduling procedure 

After solving the network flow model, a single-pass procedure is applied to compute a 
schedule from the obtained flow solution. Note that the network flow solution defines the 
time spent by each component in each time interval and on each machine, but does not 
provide the exact moment when the production should start. We apply the following three 
steps in the scheduling procedure: 

Step 1 Schedule all the fully occupied intervals with only one component. 

Step 2 For all the intervals with only one component, but not fully occupied. 
Step 2.1 Schedule the component next to an already scheduled part of it, if the 

component is also produced in the first position of the next interval 
or in the last position of the previous interval and go to Step 3. 
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Step 2.2 Schedule the component from the end time of the interval to its start 
time, if the finish time of the interval is smaller than or equal to the 
due date of the component. If the finish time of the interval is greater 
than the due date of the component, schedule it from the beginning of 
the interval. 

Step 3 For all the intervals with more than one component. 

Step 3.1 Select the component(s) that is(are) also scheduled in the first 
position of the next interval or in the last position of the previous 
interval, and schedule it (them) next to the already scheduled part(s) 
of it(them). If a given component is simultaneously scheduled in  
the first position of the next interval and in the last position of the 
previous interval, schedule it at the beginning of the current interval. 

Step 3.2 Schedule all the remaining components, according to the minimum 
slack first rule (described ahead), starting in the beginning of the 
interval or in the first free instant inside the interval. If more than  
one component has the same slack, select arbitrarily one of them. 

The minimum slack of a given component, i, in a given interval/machine, j, is given by: 
di – xij – t, where t is the beginning of the free subinterval inside interval j. Note that t can 
correspond to the beginning instant time of the interval j or to a certain instant time inside 
interval j. This second case can exist if in interval j there is one or more components 
already scheduled at the beginning of that interval. In Figure 1 we present the Gantt chart 
resulted from the application of the scheduling heuristic to the solution presented in  
Table 3. 

4.2 Phase II 

In Phase II, we define a new network flow model based on the solution obtained in the 
first phase. In this model the origins are associated with the components that were not 
considered during Phase I and the supply of each origin is given by the production time 
of the corresponding component. As in Phase I, the destinations are also associated with 
time intervals and machines. 

The release times of the machines and the planning horizon are again used in the 
intervals definition. The due dates of the components are now given by the Phase I 
completion time of the component belonging to the same product. Consider, for example, 
product CM3 of the presented example. The due date of this product is 24 as can be seen 
in Table 1, but as CM3M finishes at 21.33, as can be seen in Figure 2, the due date of 
CM3F and of CM3C (that are the other components of CM3) will be 21.33. Besides 
considering this data to define the time intervals, in Phase II, the machine loads of Phase I 
also need to be considered. The time intervals of Phase II for the example, which we 
present in Figure 2, are: I1-M2, I1-M4, I2-M2, I2-M4, I2-M5, I3-M2, I3-M4, I3-M5,  
I4-M2, I4-M4, I4-M5, I5-M4, I5-M5, I6-M4, I6-M5, I6-M2, I6-M3, I7-M4, I7-M5,  
I7-M2, I8-M5 and I8-M2. The demand associated with each time interval/machine is 
given by the duration of the time interval. 
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Figure 2 Time intervals and Gantt chart for the solution of Phase II of example 

 

Table 4 Optimal solution of the network flow model of Phase II of example 

Component/size Interval Machine Flow 

CM1C I1 M2 1 

CM1C I2 M2 2.67 

CM1C I4 M2 2.33 

CM1C I3 M4 13.67 

CM1C I4 M4 2.33 

CM1C I5 M4 0.33 

CM1C I4 M5 2.34 

CM1C I5 M5 0.33 

CM2C I6 M4 13.33 

CM2C I7 M4 0.67 

CM2C I6 M5 9.33 

CM2C I7 M5 0.67 

CM2C I8 M5 9.33 

CM3F I3 M2 8.33 

CM3C I3 M2 8.33 

CS1F I2 M4 0.33 

CS1F I3 M4 3 

CS1C I1 M4 1 

CS1C I2 M4 2.33 

CS2F I8 M2 4.33 

CS2F I6 M4 0.67 

CS2C I8 M2 5 

The arcs of the network of Phase II are defined in the same manner as in Phase I and the 
arc penalties are also calculated in the same way. In Phase II the order number of each arc 
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is formed dynamically, using the machine release dates and the machine loads of the 
solution of Phase I. The order numbers of the arcs that link component CM1C to the time 
intervals above presented, is respectively:1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 3, 4, 1, 2, 
3, 1, 2. We do not present in this subsection the network model analytically as it is similar 
to the one presented in Phase I. The scheduling heuristic used in Phase II is equal to the 
one used in Phase I. In Table 4 and in Figure 2 we present the flow solution and the Gantt 
chart of Phase II, respectively. 

5 Computational experiments 

In this section we present some computational results for the network flow heuristic. We 
address instances similar to those occurring in the factory: the number of machines of 
each gauge is the same as in the company, and the demands of different product types 
and the processing times were randomly generated but within intervals defined by data 
obtained at the company. There are other parameters of the real problem that are 
generated randomly taking into account the data provided by the company. 

We tested 18 instances grouped by gauge (six instances of gauge 21, six of gauge 24 
and six of gauge 27). In Table 5 the instances characteristics are depicted, being the first 
six associated with gauge 21, the next six with gauge 27 and the last six with gauge 24. 
Table 5 Instances characteristics 

Instance Number of products Number of components Number of machines 

Inst20T1.4.G21 8 18 5 

Inst30T1.5.G21 20 60 5 

Inst40T1.3.G21 20 58 5 

Inst50T1.1.G21 29 74 5 

Inst60T1.2.G21 26 70 5 

Inst70T1.3.G21 30 90 5 

Inst20T1.4.G27 31 89 11 

Inst30T1.5.G27 44 128 11 

Inst40T1.3.G27 53 142 11 

Inst50T1.1.G27 43 120 11 

Inst60T1.2.G27 71 197 11 

Inst70T1.3.G27 70 182 11 

Inst20T1.4.G24 34 94 13 

Inst30T1.5.G24 38 90 13 

Inst40T1.3.G24 57 152 13 

Inst50T1.1.G24 55 152 13 

Inst60T1.2.G24 81 216 13 

Inst70T1.3.G24 82 226 13 
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Table 6 Solution outputs 
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We wrote a computer program for the network flow heuristic in visual C++, and solved 
the network flow model with Cplex 11.0 (ILOG, 2007). The code produces a week 
production plan represented in a Gantt chart, with the main performance measures and 
information related to the machines (the number of machines used for each product, the 
number of machines used for each component and the number of components produced 
on each machine). 

In Table 6 we present the main performance measures. All the instances tested were 
solved within half an hour and most of them were solved in few seconds. In column 2 the 
solution time to solve the problem with the best machine order is presented, while in 
column 3 the total solution time is presented, including the time to test all the possible 
machine orders. The values of total tardiness and of total deviation are presented  
in columns 4 and 6. The machine utilisation of a given machine Mi is given by: 

100.i

i

Total occupied time of  M
Time Horizon - Release date M

×  In column 7 the average machine utilisation of 

each instance is presented. Finally, in column 8 and 9 we present the number of lots of 
components obtained for each instance and the average number of lots per component. 

In some instances, the total tardiness is large. This may occur, because the due dates 
are generated randomly, and there may be a huge order with a due date that cannot be 
fulfilled even if all the resources were assigned to it. The total deviation seems to increase 
with the size of the instances (measured in terms of the number of components and of the 
number of machines), especially when the average machine utilisation is high. Those 
deviations are usually high for the set of instances tested, denoting a potential field of 
improvement. There seems to be a positive correlation between the number of lots of a 
solution and the total deviation of that solution, i.e., the instances with a larger number of 
lots have a larger total deviation (see for example instances Inst60T1.2.G24 and 
Inst70T1.3.G24). However this relationship does not hold for all the instances tested (see 
for example instances Inst60T1.2.G27 and instance Inst50T1.1.G24). Finally, as the 
instance size increases the average number of lots per component also increases. 

6 Conclusions 

In this paper we presented a MIP model for an integrated lot splitting and scheduling 
problem existent in the knitting section of a textile factory. The problem has the 
following characteristics: sets of identical parallel machines, demands and due dates 
associated with end products, unit production times associated with components, a 
compatibility matrix between machines and components, release dates of machines and a 
weekly planning horizon. Besides the minimisation of the total tardiness, we addressed 
the objective of minimising the deviations of the completion times of the lots of 
components of the same product. This latter objective is not usually treated, but it is 
clearly relevant in the practical application described. 

For obtaining solutions in a reasonable time, we also developed a heuristic approach 
based on a network flow model. In the context of the practical problem, the developed 
methods and computational tools are of major interest since they potentially allow 
reducing the amount of work-in-process. The computational tests show that feasible 
solutions for high machine utilisations can be obtained quickly. 
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