
Universidade do Minho

Núcleo de Investigação em
Geografia e Planeamento

Organizing Institutions:

Centro de Estudos de Geografia
e Ordenamento do Território

Funded by FCT-MCTES

FIELD TRIP GUIDEBOOK

3rd International Meeting of Fire Effects on Soil
Properties

Editors:
António Bento Gonçalves, António Vieira

Authors:
António Bento Gonçalves, António Vieira,
Flora Ferreira Leite, Luciano Lourenço,
Hermínio Botelho, Paulo Fernandes,
Xavier Úbeda, Artémio Cerdà

 F
IE

LD
 T

RI
P 

G
U

ID
EB

O
O

K 
   

   
 3

rd
 In

te
rn

at
io

na
l M

ee
tin

g 
of

 F
ire

 E
ffe

ct
s o

n 
So

il 
Pr

op
er

tie
s



3rd International Meeting of Fire Effects on Soil Properties 

 

 

 

 

Field Trip Guidebook 

 

17th March, 2011 

 

 

 

 

Edited by António Bento Gonçalves and António Vieira 

 

 

Authors: 

António Bento Gonçalves (University of Minho) 

António Vieira (University of Minho) 

Flora Ferreira Leite (University of Minho) 

Luciano Lourenço (University of Coimbra) 

Hermínio Botelho (University of Trás-os-Montes and Alto Douro) 

Paulo Fernandes (University of Trás-os-Montes and Alto Douro) 

Xavier Úbeda (University of Barcelona) 

Artemio Cerdà (University of Valencia) 

 

 

           

 

Guimarães, 2011 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Editors: António Bento Gonçalves and António Vieira 

Edition: NIGP-Univ. Minho and CEGOT 

ISBN: 978-989-97214-1-8 

Dep. Legal: 324603/11 

Print: Chapa5 

Design: António Vieira 

Text formatting: Flora Ferreira Leite 

 

 



Supporting Institutions: 

 

 

 

 

 

 

 

 

 

 

 



 

 



5 

 

Contents 
 

 

 

Introduction           7 

Itinerary of the Field Trip         8 

1. Geographic Characterization 

António Vieira, António Bento Gonçalves and Flora Ferreira Leite   11 

2. Mountain wild spaces in Portuguese northwest 

António Bento Gonçalves, António Vieira and Flora Ferreira Leite   17 

3. Forest Fires in Portugal 

Luciano Lourenço          20 

4. Forest Fires in the Portuguese northwest 

António Bento Gonçalves, António Vieira and Flora Ferreira Leite   28 

5. Prescribed burning in Portugal 

Hermínio Botelho and Paulo Fernandes       36 

6. Characteristics of prescribed burning in Northwestern Portugal pine stands 

Paulo Fernandes and Hermínio Botelho       38 

7. The effects of fire on soil properties 

Xavier Úbeda and Artémio Cerdá         45 

 

 



6 

 

 

 



7 

 

Introduction 

 

 

The present document is intended to be an auxiliary working instrument for the field 

trip to the northwest mountains of Portugal, organized during the 3
rd

 International Meeting of 

Fire Effects on Soil Properties by the Núcleo Investigação em Geografia e Planeamento da 

Universidade do Minho, with the collaboration of the Centro de Estudos de Geografia e 

Ordenamento do Território, scheduled for March 15-19, 2011, in the city of Guimarães 

(Portugal). 

The trip is programmed for 17 March 2011 and the proposed itinerary takes us on a 

tour of the beautiful and characteristic landscape of the Portuguese northwest. This occasion 

will allow us to discuss a series of issues associated with the theme of the conference: Fire 

Effects on Soil Properties. 

Accordingly, we will begin the journey by examining the question of the influence of 

forest fires on the evolution of the Portuguese northwest landscape. Our attention will centre 

on the plant life dynamics throughout the last half century. More precisely, we will focus on 

how man has constructed and ―deconstructed‖ the landscape, namely through its 

appropriation for economic activities and through man‘s influence on the occurrence of forest 

fires, either negligently or premeditated.  This discussion is crucial in order to understand the 

evolution of the northwest landscape since the 1970s. 

The second stop will bring us to the heart of the Peneda-Gerês National Park. This 

area was severely fustigated by forest fires in the summer of 2010. Here we will discuss the 

effects of the fires on the soil properties, as well as the cost-benefit of prescribed fires in the 

management of forest spaces and as an instrument of fire prevention and reduction. 

Subsequently, we proceed to the mountain region of the Serra da Cabreira. This is the 

ideal place to understand the social factors and the assortment of inherent conflicts of interest 

involved in the forest fires of rural areas of the Portuguese interior. 

The field trip will be led by a group of specialists on the themes of the conference, 

namely: António Bento Gonçalves (Universidade do Minho), António Vieira (Universidade 

do Minho), Flora Ferreira Leite (Universidade do Minho), Luciano Lourenço (Universidade 

de Coimbra), Hermínio Botelho (Universidade de Trás-os-Montes e Alto Douro), Artemio 

Cerdà (Universidade de Valencia), and Xavier Úbeda (Universidade de Barcelona). 
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Itinerary of the Field Trip 

 

 

The mid-conference field trip which will begin at the Universidade do Minho 

(Guimarães) will travel through 5 municipalities (Figure 1), where we will visit the scorched 

areas of the summer of 2010 and an area that has been subject to a prescribed fire in February 

2011. Lunch will be offered by the Municipality of Vieira do Minho. 

 

 

 
Figure 1 –Municipalities Visited in the in Field Trip 

 

 

Accordingly, the more precise itinerary is: 

 

8:30 – Guimarães (Universidade do Minho) 

9:00 – Braga 

9:30 – S. Mamede de Penafiel (Stop 1 – Landscape and forest fires) 

10:30 – S. Bento da Porta Aberta (Coffee Break) 

11:15 – Junceda (Stop 2 – Prescribed fire) 

12:45 – Gerês  

13:30 – Vieira do Minho (Lunch) 

15:30 – Serra da Cabreira – Vale do Turio (Stop 3 – Forest fires) 

17:30 – Braga 

18:00 – Guimarães (Universidade do Minho) 
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Figure 2 – Field Trip Itinerary 
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1. Geographic Characterization  
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(bento@geografia.uminho.pt) and Flora Ferreira Leite (floraferreiraleite@gmail.com) 
 

Centro de Estudos em Geografia e Ordenamento do Território (CEGOT), Núcleo de Investigação em Geografia 

e Planeamento (NIGP), Departamento de Geografia, Minho University, Campus de Azurém, 4800-058 

Guimarães (Portugal) 

Centro de Estudos em Geografia e Ordenamento do Território (CEGOT), Núcleo de Investigação em Geografia 

e Planeamento (NIGP), Departamento de Geografia (Ph.D. Student), Minho University, Campus de Azurém, 

4800-058 Guimarães (Portugal) 

 

 

Geology 

 

From a lithologic perspective, the principal rock formations in the Portuguese 

northwest are granites, quartzites, slates, and other related formations. Holocene (floodplain 

formations) and plio-pleistocene (fluvial terraces) cover formations are also present in this 

region (Figure 1). 

 

 
Figure 1 – Simplified Lithologic Map of the Portuguese Northwest 

 

In the northwest the Hercynian orogenesis played a fundamental role in the regional 

geology. Most of the local granitoids, sin-orogenic, and late to post-orogenic granites are 

associated with the Hercynian cycle (N. FERREIRA et al., 1987). However, ―the existence of 

large fault scarps, sometimes exceeding 200 meters, either in the area of the Peneda and the 

Gerês or the area of Monção and Arcos de Valdevez, is sufficient proof that important tectonic 

movements occurred in the alpine cycle‖ (P. LEMA e F. REBELO, 1996). 
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The existing records on the tectonic evolution of the Portuguese territory during the 

Neogene and the Quaternary reveal that after a period of intense tectonic activity throughout 

the Miocene a calm period ensued afterwards during the Pliocene. Intense tectonic activity 

commenced again in the final phase of the Pliocene, continuing well into the Quaternary 

(Figure 2). 

 

 
Source: J. CABRAL E A. RIBEIRO, 1988 

 

Figure 2 – Part of the Neotectonic Map of Portugal 

 

Relief 

 

Besides being determined by the contemporary climate, the relief of the northwest still 

presents signs of past climates due to the great variability climatic conditions throughout its 

geologic history. However, geology and tectonics are the factors most responsible for the 

main characteristics of the regions relief. 

The relief is scaled from West to East. In the proximities of the Serra do Gerês the 

relief is ―lifted‖ from 0 to 1500 meters in less than 70 km. The main rivers of the region 

(Minho, Lima, Cavado, and Ave) present what P. B LEMA E F. REBELO (1996) designated as a 

―betic‖ orientation/direction (ENE – WSW) and are characterized by running through very 

wide and open valleys in the coastal areas and through very deep and narrow valleys in the 

mountain regions close to the coast.  

As a result, it is not surprising that the most important mountains are separated by the 

deep valleys of the main rivers of the Portuguese northwest. 

 

Climate 

 

According to S. DAVEAU et al. (1985), the Portuguese northwest is characterized by 

fresh, wet winters cool winters and moderate to hot, dry summers. The average minimum 

temperature of the coldest month varies between 2 and 4ºC and negative temperatures are 

registered for 10/15 to 30 days a year. The highest average temperature of the warmest month 

varies between 23 and 32ºC. Temperatures over 25ºC are recorded between 20 to 120 days a 

year. According to the Atlas do Ambiente (1975) the average daily temperature varies between 

12,5 and 15ºC. 

Although the region exhibits Mediterranean features it is heavily influenced by the 

Atlantic. In effect, the climate reveals mild temperatures, with small thermal amplitudes, and 
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heavy average rainfall due to its geographic position, proximity to the Atlantic, and to the 

form and disposition of the main mountain ranges
1
 which O. RIBEIRO (1986) designated as an 

―amphitheatre facing the sea‖. 

As a result, the high volume of precipitation, which is unquestionably the dominant 

climatic trait of the Portuguese northwest, registers an average annual total of rainfall of over 

1400 mm, although unevenly distributed throughout the regional. The magnitude of this 

phenomenon is due to the frequent passage of surface fronts associated with the influence of 

the proximity of the mountain system to the coastline (―moisture barrier‖). 

 

Hydrography 

 

As previously mentioned, the rivers expose the principal forms of the landscape. 

Accordingly, the Minho and Lima rivers are divided by the Arga (816 m), Peneda (1373 m), 

Soajo (1415 m), and Castro Laboreiro (1335 m) mountains; the Lima and Cávado rivers are 

separated by the Amarela (1361 m), Gerês (1548 m), and Larouco (1525 m) mountains; the 

Cávado and Tâmega Rivers are separated by the Cabreira (1261 m) and Alturas do Barroso 

(1279 m) mountains; and finally, the Tâmega and Corgo rivers are divided by Alvão mountain 

(1281 m) (Figure 3). 

 

 
Figure 3 – Main Rivers and Mountains of the Portuguese Northwest. 

 

The flow of the ―Minho‖ region‘s rivers presents a distinguishing quality from the 

national perspective. Due to its climatic and geologic characteristics as well as its particular 

orography, the regional rivers have extraordinarily high stream flows. More precisely, the 

Cávado registers 38 l/s/Km
2
 (Barcelos), the Lima, 31 l/s/Km

2
 (Ponte de Lima), the Ave, 26 

                                                 
1
 In the northwest, in a radius of 65 Km the average annual rainfall is 1374,2 mm in Sto. Tirso, at 28 m altitude, 

increasing to 1772,6 mm in Fafe at 330 m altitude and to 3071,1 mm in Zebral/Serra da Cabreira at 775 m  

altitude. 
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l/s/Km
2
 (Açude de Tougues), and the Minho, 22 l/s/Km

2
 (Ponte de Felgueiras) (S. DAVEAU, 

1995). 

 

Pedology 

 

According to the Soil Map of Portugal, in the northwest region, there is a clear 

prevalence Cambisols which are moderately evolved and with a irregular fertility rates. Near 

the coast the Lithosols (incipiente soils, still developing due to rock degradation and rarely 

surpassing 10 cm in depth) are present, while the Rankers – i.e., shallow soils with reduced 

fertility – emerge in the higher altitudes. 

 

Human Characterization 

 

Regardless of the natural features of the region, human action (agriculture, pasture, 

silviculture, etc.) must be emphasized due to its profound influence in the regions 

physiognomy. To all intents and purposes, the prolonged activity of human beings in the 

region has contributed significantly to the degradation of the endogenous plant cover. 

Nevertheless, ―even this human activity, particularly through the organization of the 

traditional agricultural systems, was dependent on the same physical factors that shape the 

natural systems‖ (P. T. GOMES e A. BOTELHO, 2004). 

 

 
Figure 4 – Population Density by Municipality, for 2008, in the Portuguese northwest. 

 

In effect, the Portuguese northwest has witnessed a significant demographic dynamic with 

high birth and nuptial rates. 

The region has one of the densest concentrated populations in the Iberian Peninsula. 

Presently, the northwest has a demographic density that surpasses 360 inh./km
2
 (369,1), a 
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value markedly superior to both the northern region of Portugal  (175,1) and Portugal as a 

whole (112,9) (Figure 4) 

 

Basic Landscape Units 

 

The Portuguese northwest is a highly humanized region where the spatial organization 

reveals marked contrasts. However, this does not hinder the existence of a unitary ecologic 

system characterized by the physiognomy of the landscape, the group of species that inhabit 

it, and by the local adaptive strategies that differentiate the region from the rest of the country. 

―Traditionally, two large biogeographic spaces in the Iberian Peninsula are identified. 

[…] At our latitudes, the hydraulic regime is the principal factor responsible for the 

physiognomy of the landscape and the division between the dry and wet Iberia, the climatic 

types (atlanticity as opposed to mediterraneaty), and the large phyto-corologic regions (Euro-

siberian and Mediterranean) testify to this great division of the Peninsula‖ (P. GOMES e A. 

BOTELHO, 2004). It this context, the Portuguese northwest is part of the Euro-siberian region. 

The referred to climatic characteristics are responsible for determining the local 

vegetation. With a minor summer aridity, in which the number of dry months rarely surpasses 

two, natural vegetation is typically evergreen, resistant to drought and fire-prone. 

Ecologically, the Portuguese northwest, with its climatic characteristics that directly influence 

the type of endogenous plant communities, is situated in the humid Iberia and distinguishes 

itself from the rest of the country. 

Some plant species from middle Europe have the meridianal limit of their expansion in 

the North of Portugal, where some of their most important settlements are located. This fact is 

due to the affect of the ocean which attenuates the heat and dryness of the summer months by 

conditioning abundant rainfall. 

As a fundamental element of the landscape, the vegetation is an excellent testimony to 

the orographic and edafo-climatic conditions of a region as well as to the anthropic action. 

Biogeographically, the Portuguese northwest is located in the Miniense Subsector and 

the Geresiano-Queixense
2
 subsector (RIVAS-MARTINEZ, 1996), allowing for a correspondence 

between the Minho Lowlands and the transition described by O. RIBEIRO (1970, 1991) 

between the mentioned Lowlands and the Trás-os-Montes Highlands. 

The Miniense Subsector is essentially a granite dominated area that is progressively 

corrugated as we head inwards. It presents a tempered hiper-oceanic or oceanic bioclimate, 

mainly positioned in the termo-temperate and meso-temperate belt, with a humid to hyper-

humid ombroclimate. […] The climactic vegetation is constituted by Gallic-Portuguese 

Alvarinho Oaks (Quercus robur L.) which survive in small, highly threatened pockets (J. C. 

COSTA et al, 1998). 

From a biographic perspective, the Miniense Subsector corresponds to the Minho 

Lowlands (O. RIBEIRO, 1970, 1991), whose essential features are the dispersed and 

disseminated settlements in which the dwellings share a close relationship with the cultivated 

land and the landscape is highly compartmentalized due to the plethora of small estates which 

are fenced off by small port trees and bushes or vines in ramada. In the slopes with poorer 

and less irrigated soils we can find forests composed of a mixture of Maritime Pine Trees 

(Pinus pinaster Aiton.) and Eucalyptuses (Eucalyptus globulus Labill) with the manifestation 

of some spontaneous oaks and other corresponding fagaceas trees
3
. 

                                                 
2
 Both belong to the Gallic-Portuguese Sector, Sub-provincial Gallic-Asturiana, Provincial Cantabro Atlantic, 

Sub-provincial Atlantic, Sub-region Atlantic-Mideuropean, the Euro-Siberian region. 
3
 At the moment, forest fires and the changes in agricultural practices (due to social changes) altered 

significantly this setting, giving rise to large areas of shrubland instead of Pine Trees and vineyards, and 

orchards instead of the ramadas and corn fields. 
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The Geresiano-Queixense Subsector has a highly irregular relief where the hercynian 

granites are largely prevalent. It is situated in the supra-temperate belt (Montano) with a 

hyper-humid (humid) ombroclimate according to its exposure in the altitudes above 600-800 

m. The climactic vegetation is composed of Alvarinho Oaks (Quercus robur L.) in the more 

oceanic and hyper-humid areas or Pyrenean Oaks (Quercus pyrenaica Wild.) in the areas with 

a humid ombroclimate or in the higher and continental biotypes (J. C. COSTA et al, 1998). 

Biogeographically, the Geresiano-Queixense Subsector also corresponds to the 

transition between the Lowlands and the Highlands. Here we can verify a gradual shift in 

which the pine tree is substituted by Alvarinho Oaks (Quercus robur L.) and Birch Trees 

(Betula alba L) and low creeping shrubbery (O. RIBEIRO, 1991) in the slopes due to the 

increase in altitude (colder and with more rainfall in the humid season). 

In summary and considering the basic landscaped units, we can distinguish six 

different basic spatial uses in the Portuguese northwest (P. GOMES, 2001): the plain 

agricultural systems which comprise the lowland landscapes with dispersed settlements; the 

mountain agricultural systems in which the settlements are clustered; the urbanized systems, 

with its cities and towns; the uncultivated systems, composed primarily of more or less 

degredated shrubbery and bare or exposed rock; planted forests with a predominance of 

Maritime Pine Trees (Pinus pinaster Aiton.) and Eucalyptuses (Eucalyptus globulus Labill); 

deciduous forests, dominated by Alvarinho Oaks (Quercus robur L.) and Pyrenean Oaks 

(Quercus pyrenaica Wild.) which correspond to spontaneous or sub-spontaneous areas. 
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2. Mountain wild spaces in Portuguese northwest 
 

António Bento Gonçalves (bento@geografia.uminho.pt), António Vieira 

(vieira@geografia.uminho.pt) and Flora Ferreira Leite (floraferreiraleite@gmail.com)
 

 
Centro de Estudos em Geografia e Ordenamento do Território (CEGOT), Núcleo de Investigação em Geografia 

e Planeamento (NIGP), Departamento de Geografia, Minho University, Campus de Azurém, 4800-058 

Guimarães (Portugal) 

Centro de Estudos em Geografia e Ordenamento do Território (CEGOT), Núcleo de Investigação em Geografia 

e Planeamento (NIGP), Departamento de Geografia (Ph.D. Student), Minho University, Campus de Azurém, 

4800-058 Guimarães (Portugal) 

 

 

The influence that the climate and the relief exercise over the physical milieu is also 

determinant to the basic units of the landscape systems; forests, shrublands, agricultural 

zones, and urbanized structures (Figure 1). 

 

 
Figure 1 – Occupation and Land Use in the Portuguese Northwest (2000) 

 

As regards to the forests, the areas most affected by the influence of the Atlantic are 

the most productive due to the shorter duration and intensity of the aridness of the summer 

season. It is in this area that the more noble species, such as the Alvarinho Oaks (Quercus 

robur L.) or the Sycamore (Acer pseudoplatanus L.), and the Maritime Pine and the 

Eucalyptus presently find the best growth conditions (A. V. CORREIA E A. C. OLIVEIRA, 2003). 

As a result, the Portuguese northwest has excellent natural conditions for afforestation. 

The only limiting factors are related to altitude where the inauspicious topography and the 

lower temperatures can impose some restrictions
4
. 

                                                 
4
 The Portuguese northwest can be divided into four Great Afforestation Regions: Atlantic Basal Zone (zone of 

highly productive forests, the ―manor of the Alvarinho Oak‖ is home of species like the maritime pine, the 
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The afforestation that led to the present forest areas was initiated in the 20
th

 Century in 

accordance in the Forest Regime (1901 to 1905) and the establishment of the 1938 

Afforestation Plan (BENTO GONÇALVES, 2006). 

 

It was in this context that the woods and forest perimeters in the mountains of the 

northwest were ―born‖ (Figure 2) 

 

 
Figure 2 – Forest Perimeters and Protected Areas in the Portuguese Northwest 

 

The establishment of protected areas
5
 in Portugal remotes back to the 1970s (Law n. º 

9/70 of 19 June), but is also related to the 1938 Law of Forest Settlements since this document 

was the first national regulation to foresee protected areas in the modern sense of the term. 

In the northwest region we should highlight the Peneda-Gerês National Park, 

established by the Law n. 187/71 of 8 May, which is the only national protected area with a 

statute of National park, acknowledged by the International Union for Conservation of Nature 

(IUCN) (Figure 5). 

 

                                                                                                                                                         
monterrey pine and the eucalyptus; Sub-Atlantic Sub-mountain Zone (Zone with typical forest characteristics 

with great aptitude for various species); Sub-Atlantic Mountain Zone (typical forest zone where the oak and 

chestnut trees encounter excellent conditions to grow. In higher altitudes, due to the restrictions to the 

expansion of some specie, the maritime pine may be substituted by exotic resinous species. In the highland 

plateaus with sylvan-pastoral conditions, the forest species play a fundamental role in the 

compartmentalization and other solutions of pasture under cover); and Altimontana Zone (where the altitude 

imposes great limitations to forest expansion) (A. V. CORREIA E A. C. OLIVEIRA, 2003). 
5
 Protected Areas: ―territorial areas and interior and maritime bodies of water  in which the fauna, the flora, the 

landscape, the ecosystems or other natural occurrences present, due to their rarity, ecologic or landscape value, 

a scientific, cultural or social importance and relevance that merit special specific measures for the 

conservation and management of the natural resources in order to promote the rational management of the 

resources and promote the natural and cultural heritage, through the regulation of the artificial interventions 

that may cause them harm‖ (Law 19/93, of 23 January). 
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3. Forest Fires in Portugal 
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Since the last quarter century forest fires have registered a significant increase in both 

the number of occurrences and size of the scorched areas. This phenomenon is due mainly to 

the profound social changes that began to be felt in the population residing in the forest areas, 

especially in the Portuguese interior, since the second half of the twentieth century. 

These social changes began with the industrialization of the Setúbal Peninsula. This 

industrialization process attracted vast amounts of manpower to the Greater Lisbon Area. 

Also the subsequent surge of emigration to the Central European countries (France, Germany, 

Luxembourg, Switzerland, ...), led to a substantial reduction in the workforce living in the 

forest areas - or areas apt for forest development - causing major changes in the population 

that remained there. 

These changes affected not only the demographic, social, economic, and cultural 

structure of the population residing in these areas, but also the sectors of activity. There was a 

significant reduction in the primary sector, particularly in the agro-forestry-pastoral activities 

which were most associated with the agricultural activities with direct intervention in the 

forest. In contrast there was a significant increase in the activities associated with the 

industrial and service sectors, in accordance with what occurred in the wider Mediterranean 

areas of southern Europe. 

Such an unfavourable social situation was already present in the late 1970s. At that 

time processes of depopulation and aging of the rural population were already visible. These 

processes led not only to the decline in the rural labour-intensive workforce, but also to an 

increase in wages due their shortage. This, in turn, led to a number of other consequences that, 

however, cannot be dissociated from a set of external factors that also encouraged it. 

Of these other consequences, at least two should be highlighted. First, the gradual 

extinction of the practice of collecting scrublands for animals, due to an easier access to 

artificial fertilizers, which thus came to replace traditional manure. Second, the reduction of 

firewood consumption, which resulted from electrification and the increasing use of the gas 

cylinder. These two factors together contributed to the gradual and continuous increase of the 

biomass available in the forests (L. Lourenço, 2006a, p. 63). 

Equally significant, the small size of the property structure, coupled with the poor 

management of the forest areas, were factors that hampered the defence against forest fires 

and exacerbated the devaluation of the social, economic, and environmental usefulness of the 

forest and areas apt for forest activities and consequently to increase the fuel load in the 

forests. 

Finally, in result of not only these but other circumstances, the increasing rise of the 

fire risk, along with the intensification of the loss of competitiveness and attractiveness for 

investments in forestry activities, although with some exceptions, led to the abandonment of 

forest spaces due to its low economic value, increased phytosanitary problems, and higher 

exposition to the risk of forest fires (L. Lourenço et al., 2006, p. 5). 

Thus, the rural exodus has led to the concentration of the active population in large 

urban areas and district capitals, and left the forest areas with a very elderly population. On 

the other hand, the rapid change in the occupation of the active population that continues to 

mailto:luciano@uc.p
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live in the forest areas and is now occupied in activities primarily in the secondary and tertiary 

sectors, also contribute to the abandonment of many agricultural fields. 

Therefore, not only were many areas of uncultivated land gradually occupied by 

scrubland and forest, thus increasing significantly the spaces apt for forest activities,, but also, 

and concurrently, intervention in the forest diminished leading to the accumulation large fuel 

loads. 

Accordingly, those situations that apparently seem to have nothing to do with forest 

fires, which we have designated as indirect causes (L. Lourenço, 1995, p. 178), are not only 

the main factors responsible for the existence of large forest fires, but are also the most 

difficult to eliminate. 

In fact, by creating conditions that subsequently interfere directly in the behaviour of 

fires by facilitating the progression of the flame fronts and, therefore, the rapid development 

of the fires, they thus contribute indirectly to larger scorched areas. 

 

 

Temporal Evolution 

 

The tremendous increase in the exponential trend of the number of occurrences of 

forest fires verified since the end of last century should lead to a more serious and responsible 

analysis of the problem and subsequent implementation of concrete measures aimed at 

substantially reducing the number of occurrences. 

To our knowledge, this hasn‘t been done and therefore, as the result of specific actions 

and circumstances, this trend fortunately seems to have started to reverse since the beginning 

of the present century - assuming that 2005 was an anomalous year just as the fires of 1989, 

1995, 1996, 1998 and 2000 were. However 2009 and 2010 make us believe that this 

downward trend will not be as sharp as it might have initially seemed (Figure 1), especially 

since 2007 and 2008 were, from a meteorological point of view, unfavourable to the 

occurrence of ignitions and the development of large forest fires (Figure 2) - as the fires of 

1997, 1988 and 1977 also were. 

Accordingly, the temporal trend followed by these two variables - i.e., number of 

occurrences and scorched areas - is completely different. The number of occurrences is 

closely associated with human causes (either intentional or negligent), which result from 

different behaviours and attitudes that have  long been identified and that need changing. The 

extent of the scorched areas, for its part, is directly linked to the different weather conditions 

throughout the years, the lack of land and forest management, and, finally, to some 

inefficiencies in the fire fighting operations. 

Thus, on the one hand, if the sharp rise in the number of occurrences recorded in the 

late 1970s and early 1980s were mainly associated with the change in the methods of 

statistical summary data, the progressive increase verified over the 1990s cannot be due solely 

to the generalization of a more rigorous treatment of the statistical information. In fact, since 

1989 (with special reference to 1995, 1998, and 2000), values have been absolutely abnormal. 

These cannot be attributed only to the increment of greater statistical accuracy or to the 

favourable weather conditions for ignition, especially since they are not decisive for the 

explanation of number occurrences, as was demonstrated with what happened in 1991, with 

far fewer events than 1989.  
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Source: Elaborated from data collected from the DGRF/AFN 

 

Figure 1 – Evolution of the Annual Number of Occurrences of Forest Fire in Mainland 

Portugal. 

 

 
Source: Elaborated from data collected from the DGRF/AFN 

 

Figure 2 – Annual Evolution of the scorched areas in Mainland Portugal. 

 

On the other hand, in terms of scorched area, the values verified in 1977, 1988, and 

1997 were due to unfavourable weather conditions which facilitated ignition and the spread of 

forest fires. However,  the disasters of 2003 and 2005,cannot be explained only by the 

negative weather conditions. The fires of 2003 cannot be attributed only and exclusively to 

the heat wave of late July and early August, and the lightning discharged by dry 
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thunderstorms on 01 and 02 August, 2003. Similarly,  the fires of 2005 may not be entirely 

attributed to the drought of that same year. 

There is no doubt that these aspects were important. But the state of an almost total 

abandonment of the woodlands accompanied by the lack of adequate planning and 

supervision (L. Lourenço, 2006b, p. 73), and coordination of the fire fighting efforts were 

decisive. The fire fighting initiatives also suffered from a lack of overall efficiency that results 

from of the absence of training and the use of inappropriate equipment, to name just a few of 

the most flagrant and frequent deficiencies. 

In addition, contrasting with the slow evolution of forest cover growth over the 

centuries, recent years have demonstrated very rapid changes, mainly due to the high 

incidence of forest fires, which resulted, among other things, in a profound change of the 

species, particularly of the autochthonous species.  

At present, the two most representative species of forests in northern and central 

Portugal are the pine and eucalyptus forests (Table I), whereas previously, oak and chestnut 

tress were predominant.. 

 

TABLE I – Area Occupied by the Most Representative Species in the Portuguese Forests 

Forest Species Forest Aea 

Hectares (ha) Percentage 

(%) 

Maritime  Pine (Pinus pinaster) 976 069 31 

Eucalypts (Eucalyptus spp.) 672 149 21 

Cork Oak (Quercus suber) 712 813 22 

Holm Oak(Quercus rotundifolia) 461 577 14 

Other Resinous Tress 105 008 4 

Other leafy trees 273 515 8 

Total 3 201 131 100,0 
Source:DGF/IFN, 2001 

 

Although the holm and the cork oak still continue to dominate, eucalyptus and pine 

trees began to gain ground rapidly and occupy an increasingly significant areas. This 

transformation has also contributed to the increase in the number of occurrences, and 

especially, in recent years, to the large fires south of the Tagus River and in particular in the 

hills of the Algarve region. 

 

 

Spatial Distribution 

 

Similarly to the temporal distribution of the number of occurrences in which the 

scorched areas reveal different behaviours, the spatial distribution also reveals particular 

patterns of dispersion. 

Thus, a comparative analysis of the average values shows a concentration of the 

number of occurrences in the municipalities along the coast and in particular around the major 

urban centres in Porto in northern Portugal - sprawling across half-concentric circles that will 

dissipate northwards to Braga, southwards to Aveiro, and inwards to Vila Real and Viseu - 

and Lisbon, in the Centre and Southertn regions, although with minor importance in this case 

(Figure 3). 

In turn, the municipalities that registered the highest value of scorched areas are 

located in the mountainous areas, especially in the interior of central and northern Portugal. 

Therefore, the areas most affected by fires covered virtually all of the central and northern 
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municipalities (though less so on the coast and some of the ‗raia’), near the Spanish border 

(with particular focus on those developing along the Cordilhera Central), and in the South, in 

Serra de Monchique (Figure 4) 

 

              
Source: L. LOURENÇO, 2007, p. 31                              Source: L. LOURENÇO, 2007, p. 31 

 

Figure 3 – Geographic distribution of 

the average number of occurrences of 

forest fires per 100 km
2
 in each 

municipality of mainland Portugal for 

the period 1981 - 2005. 

Figure 4 – Geographic distribution of 

the average of scorched areas by 

percentage in each municipality of 

mainland Portugal for the period 1981 - 

2005 

 

 

The Critical Years: 2003 maximum of scorched area and 2005 maximum of the number 

of occurrences. 

 

The maximum values  for the forest fires in these two years – i.e., the scorched areas 

in 2003 and occurrences in 2005 -  cannot be attributed solely to weather conditions, although 

they were both favourable to the ignition and spread of wildfires. These conditions have long 

been known and are related to high air temperature and low relative humidity (L. Lourenço, 

1988, p. 262) and wind speed, preferably from the east quadrant, particularly when it is 

manifested through strong gusts (L. Lourenço, 1996, p. 59). These weather conditions are 

usually present during the most critical forest fires. Recent years have testified to the 

frequency of these conditions  over the past couple of years and are not a new phenomena. 

In fact, as previously underlined (L. Lourenço, 2007), 2003 distinguished itself for 

recording an unusually high number of dry thunderstorms, with a remarkable  discharge of 

lightning responsible for a substantial part of the high number of fire start-ups observed. 

However it should be stressed that on a weekly basis this value was always lower than the 

maximum weekly value recorded in the five preceding years. 
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From the meteorological point of view it is worth noting that 2003 was a year that 

registered cooler and more humid conditions than some of the previous years, particularly in 

traditionally problematic areas of the Central and Northern coast, or maintained weather 

conditions similar to those in the harshest years, particularly in late July and early August. 

In contrast, in the hinterland, especially in Central and Southern Portugal, the 

situations were generally more severe than those usually recorded, so it was in these areas that 

the large scorched areas were mainly concentrated (Figure 5). 

However, in the most critical period of the fires, corresponding to the first days of 

August, we must recognize that the simultaneity of many fires, due to an impressive amount 

of sparks from dry thunderstorms, created the conditions for the flames to spread easily and 

increased the difficulty of the fire fighting operations, which also contributed to the 

manifestation of a certain "collective hysteria" which in part resulted from the highlight given 

to the subject by the media. 

Moreover, the weather conditions in certain regions of mainland Portugal were 

without a doubt highly conducive to the development of the fires due to a major heat wave 

that occurred between July 29 and August 14, 2003. This period registered a high number of 

consecutive days with very high values for both the maximum and minimum air temperature 

and with low values for the relative humidity, which were particularly low in the countryside 

registering values under 20%. 

 

 
Source: DGRF. 

 

Figure 5 – Scorched Area in Mainland Portugal in 2003. 

 

On the other hand, the values of the air temperature were above 30 º C which, 

combined with the relative humidity under 30%, corresponded to situations of high forest fire 

risk, as has been the case over the years (L. Lourenço, 1991). From this viewpoint, one can 

not consider that the year has been abnormal.  
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However, the persistence of very high temperatures and very low values of relative 

humidity had a significant impact on the number of occurrences and the size of the scorched 

areas. The situation was so severe that a state of public calamity was decreed.  

Thus, the balance for 2003 could not have been worse in terms of forest fires. In fact, 

in 2003, 12 of the 20 largest wildfires on record and 8 of the 10 major fires that have occurred 

in Portugal so far were recorded.  

In turn, in 2005 the values of the scorched areas were once again much higher than 

those of the previous years, so it scores second in the ranking (Figure 2). But besides that, 

2005 was notable mainly because it countered the tendency for reducing the number of 

occurrences In fact, 2005 reached the maximum value recorded (Figure 1).  

Accordingly, in terms of spatial distribution of scorched areas, 2005 was different 

from 2003, but resumed the traditional spatial patterns: the largest scorched patches returned 

to the central and northern regions of Portugal (Figure 6), and the largest number of 

occurrences were near the urban centres (Figure 7).  

 

             
Source: DGRF                                                        Source: DGRF 

 

Figure 6 – Scorched areas in mainland 

Portugal in 2005 

Figure 7 – Occurrences in mainland 

Portugal in 2005 

 

It is obvious that large forest fires depend on numerous factors and constraints which 

we will not enumerate here. But, if weather conditions are one of the conditionalisms, we 

must insist on the importance of the management of forest spaces, without which it will be 

impossible to reduce the frequency and the magnitude of forest fires. The distribution maps 

for 2005 clearly indicate the areas where interventions should be prioritized. 
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The number of occurrences of forest fires and the scorched areas in the Portuguese 

northwest is remarkably high. In the period from 1990 to 2009 there were a total of 206423 

occurrences, representing 43,7% of the total occurrences on the national level. However, in 

relation to the area scorched by forest fires the same period registered a total of 387395 

hectares, which represented only 16,01% of the total area scorched in the whole of the 

Portuguese territory for the period under consideration (Table I and Figure 1). 

 

TABLE I – Historical record of the number of forest fires occurrences and scorched areas 

(hectares) in the Portuguese northwest in the period of 1990 – 2009 

Year Number of fires 
Scorched forest area 

(ha) 

Scorched 

Shrubland área 

(ha) 

Total 

Scorched  area 

(ha) 

1990 5049 11219 5062 16281 

1991 5867 2434 4461 6895 

1992 6476 1753 4047 5800 

1993 9179 4689 9013 13702 

1994 6207 1329 3623 4952 

1995 14657 12307 18263 30570 

1996 13489 7380 14394 21774 

1997 10394 5087 6530 11617 

1998 16136 16482 19851 36333 

1999 9492 3871 4069 7940 

2000 12667 10245 11162 21407 

2001 11947 6671 8405 15076 

2002 12228 9191 12225 21416 

2003 13465 7462 6204 13666 

2004 9760 5601 10773 16374 

2005 15688 43663 31869 75532 

2006 9025 13940 20705 34645 

2007 7772 2882 6605 9487 

2008 4394 1009 1946 2955 

2009 12531 8245 29218 37463 

Total 206423 175460 

 
228425 403885 

Source: AFN, 2010 
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Source: AFN, 2010 

 

Figure 1 – Evolution of the annual number of forest fire occurrences and total scorched area 

in the Portuguese Northwest in the period of 1990 – 2009 

 

Just as was case in the national context, the years of 1998 and 2005 registered the 

highest number of occurrences in the northwest region, with 16136 and 15688 respectively. 

The reduction of occurrences in the years between 2005 and 2008 (presenting the lowest 

value in the 19 year period under analysis) are worth signalling. This tendency was inverted in 

2009. Nevertheless, we can confirm a tendency, though slightly attenuated (R
2
=5,8%) for the 

rise in the number of occurrences (Figure 2). 

 

 
Source: AFN, 2010 

 

Figure 2 – Evolution of the annual number of forest fire occurrences and tendency line for the 

Portuguese northwest for the period of 1990 - 2009 

 

Regarding the area scorched in the northwest region, the years 1998, 2005, 2006, and 

2009 registered higher values and it is interesting to note that while 2003 had the highest 
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value at the national level, in regional terms it presented a rather diminished area. For the 

northwest 2005 witnessed the largest area scorched. 2008 stands out as the lowest value for 

this time series (Figure 3). 

 

 
Source: AFN, 2010 

 

Figure 3 – Evolution of the total scorched area (ha) in the Portuguese northwest for the period 

1990-2008 

 

The area of the settlements scorched annually is marked by annual variations which 

vary from a minimum of 1009 ha (in the year 2008) to a maximum of 43663 ha (in 2005). The 

year 2005 is an exception since it recorded unusually high values for the region (Figure 4). 

 

 
Source: AFN, 2010 

 

Figure 4 – Evolution of the scorched areas of settlements (ha) and tendency line for the 

Portuguese northwest for the period 1990-2009 

 

By analyzing the tendency line we can observe the existence of a positive correlation 

between the scorched settlement areas and the temporal evolution. More precisely, we can 

verify a tendency for augmentation of the scorched areas in the long run. However, the square 
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of the correlation coefficient (R
2
) indicates that only 4,86% of that growth can be correlated 

with the temporal evolution (Figure 4). 

The area of shrubland scorched anally varies considerably. The lowest value was 1946 

ha in 2008, which contrasted to the 31869 ha of 2005. Since 1993, only fiver years lowered 

under 500 ha (1991, 1992, 1994, 1999, and 2008). 2005 registered the highest value in the 

series with 31869 ha, while 2008 revealed the lowest value with 1946 ha. There is also a 

tendency for the area of shrubland scorched to augment over time. The correlation between 

the temporal evolution and the referred to scorched areas (R
2
) is 17,09% (Figure 5). 

 

 
Source: AFN, 2010 

 

Figure 5 – Evolution of the scorched area of shrublands (ha) and tendency line in the 

Portuguese northwest for the period 1990-2009 

 

In summary, an annual variability of the scorched areas (settlements and shrublands) is 

verified. Equally, the forest fires also display an annual variability. Nevertheless, there is a 

tendency in the long run for a rise in the scorched areas and number of occurrences. 

The value of the scorched areas and the number of occurrences of a particular year do 

not seem to influence the value of the following year (APIF/ISA, 2005). This estocastic 

behaviour can be explained in part by the variability of the meteorologic conditions of the 

summer season. 

The geographic distribution of the forest fires in the Portuguese northwest is não even. 

The number of occurrences is higher in the more urban municipalities. There is a positive 

correlation between the number of occurrences and the number of inhabitants (APIF/ISA, 

2005). 

The distribution of the scorched areas in the northwest is also charactized by a accentuated 

difference between the coastal and central municipalities and the more interior municipalities. 

This distinction is evident when we analyze the maps of the scorched areas of the region for 

the period between 1990 and 2009
6
 (Figure 6). Here we can verify that the more interior, 

mountainous municipalities, with their demographic debilities and the predominance of forest 

areas over the other land uses (Figure 1, 2.Mountain wild spaces in Portuguese northwest), 

present more extensive scorched areas, contrary to the distribution pattern of the forest fire 

occurrences. 

                                                 
6
 Information provided in shapefile format for Arcview by AFN. 



32 

 

 

 
Source: AFN, 2010 

 

Figure 6 – Scorched area per year in the Portuguese northwest for the period 1990-2009 

 

The geographic distribution of scorched areas per municipality in the northwest 

reveals the vulnerability of the mountain municipalities. The municipalities covered by the 

―moisture barrier‖, deserve special mention (Figure 3, 1.Geographic Characterization, 

Hydrography) 

The climate also significantly affects the quantity and type of plant life in each region. 

The seasonal dynamics, with its percentage of humidity, indirectly influences the occurrence 

of forest fires and their propagation (PYNE et al., 1996). This implies that the high volume of 

rainfall in the northwest – with an annual average of over 2000 mm – is na important factor in 

the production of biomass (Table I1) 

 

Table II – Rain stations located in the Cabreira Mountain, in the municipality of Vieira do 

Minho (1961-1990) 

Rain station 
Average annual rainfall 

R (mm) 

Station altitude 

(meters) 

Brancelhe 2118,7 380 

Guilhofrei 2705,7 350 

Salamonde 2281,9 550 

Zebral 3071,1 775 

Source: IMNG 

 

The high level of rainfall is unquestionably the most outstanding climatic 

characteristic of the northwest region. It contributes to the great level of productivity of 
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biomass of the region and, consequently, making the municipalities with the larger forest 

areas (generally the more mountainous) more vulnerable to the progression of fires. 

The demographic situation of the northwest has an incontestable direct influence in the 

―forest protection‖ in that the aging population in the rural areas and the concentration in the 

main urban centres contribute to significant spatial imbalances. This implies an abandonment 

of the agricultural areas and forests in the interior areas with the consequent lack of 

management of these spaces and the growth of the combustible load (PNDFCI, 2005). Due to 

this reality and to a climate the auspicious to the production of biomass, the shrub layer 

spilled over into the agricultural fields transforming them in shrublands which then are 

dominated by forest spaces that are more vulnerable to the occurrence of forest fires 

(LOURENÇO, 2006). 

As a result, the high production of biomass, the abandonment of the rural space, and, 

in particular, the mountain areas with their inherent problems and physical and social 

disadvantages (BENTO GONÇALVES 2006), generate conditions which are favorable to the 

rapid propagation/progression of forest fires. More precisely, the mountain areas are subject 

to a plethora of conflicts that result from a series of opposing interests – e.g., land use, 

coexistence between the rural life and urban visitors, cattle grazing and property rights, 

hunting, etc. – which make fighting fires more difficult and contribute to the extension of the 

scorched areas (BENTO GONÇALVES et al., 2009). 

The reincidence of fires in the same places is, in part, also due to the aspects above. 

The maps on the spatial distribution of the reincidence of scorched areas in the 

Portuguese northwest for the period 1990-2008 confirms the high vulnerability of some of 

these spaces to forest fires (Figure 7). 

 

 

 
Figure 7 – Reincidence of scorched areas in the Portuguese northwest in the period 1990-

2008 
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We can verify that this region presents areas with a level of maximum incidences 

equal to that registered for the national level (8). 

Of the total area of the northwest (785565,7 ha), 222648,5 ha, representing 28,3% of 

the region, have been scorched at least once. Of those spaces (222648,5 ha), 15,4%, 

corresponding to 121452,1 he were scorched only once. 8,2% of the total scorched area in the 

northwest were scorched only twice and 3,1% were scorched at least three times. The areas 

scorched more than three times are very few. Records show that areas scorched residual 

values for areas scorched four (1,1%), five (0,45), six (0,08%), seven (0,01%), and even eight 

times (0,002%) (TABLE III e IV) 

 

 

TABLE III - Scorched Area (ha) and percentage of scorched area in relation to the total area 

of the Portuguese Northwest in the period 1990-2008 

 

Scorched 

Area 

(ha) 

Scorched Area 

/Total Area 

(%) 

Total Area Scorched 
222648,5 

 
28,3 

Non-scorched Area 562917,2 71,7 

Total Area 785565,7 100 

 

 

TABLE IV – Scorched Area (ha) and percentage of scorched area in relation to the total area 

of the Portuguese northwest in accordance with the number of times scorches in the period 

1990 – 2008 

Scorched Area 

(N. of Times) 

Scorched Area 

 (ha) 

Scorched Area 

/ Total Area 

(%) 

Scorched Area/ 

Total Scorched Area 

(%) 

Only Once 121452,1 15,4 54,5 

Only Twice 64540,4 8,2 29,0 

Only Three Times 24302,2 3,1 11,0 

Only Four Times 8832,1 1,1 4,0 

Only Five Times 2758,4 0,4 1,2 

Only Six Times 659,8 0,08 0,3 

Only Seven Times 85,4 0,01 0,04 

Only Eight Times 18,1 0,002 0,008 

Total 222648,5 28,3 100 

 

 

While comparing the distribution of the area of the Portuguese northwest with the area 

of Portugal, in terms of the degree of forest fire incidences, we can verify that the total area of 

scorched land is higher in the northwest (28,3%/19,6%). The same hold true for the area 

effected by a fist incidence – i.e., 15,4% in the northwest and 14,4% in Portugal. It is after the 

first incidence that we can verify greater differences. In fact, the northwest registers, in 

percentage, a higher number value of scorched areas for the higher degrees of incidence. It is 

noteworthy to highlight the fact that the percentage of areas scorched eight times registers a 

value of 0,002%, in the northwest in comparison to the national value of 0,0002% (Figures 8 

and 9). 
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Figure 8 – Distribution of the area of the 

Portuguese northwest (%) by degree of 

forest fire incidences in the period 1990-

2008  

Figure 9 - Distribution of the area of the 

Portuguese mainland (%) by degree of 

forest fire incidences in the period 1990-

2008 
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Wildland fire is as old as terrestrial vegetation, and has shaped our landscapes, as well 

as our cultural evolution. However, the development of fire use as a technique anchored in 

science is recent. 

The use of fire in forest management in Portugal was firstly documented by Frederico 

Varnhagen in a handbook written in 1836. This forest officer wrote a burning prescription for 

the coastal pine plantations in Central Portugal, which remains qualitatively valid: 

"After a pine stand is 20 years old there is a safe way to prevent it from being burned by 

summer wildfires: burning the litter in dry winter days will not damage the roots, and if the 

operation is repeated annually there will be no danger of wildfires ... The pine stands that get 

used to have their floor burned grow much faster and the benefit is great in every sense ... It is 

obvious that for a safe operation, even in wintertime, the forest should not have tall shrubs in 

the understory… The burn must be done with appropriate winds, and fire should be lit on the 

opposite side of the wind". 

This pioneer testimony was ignored, but traditional fire use has persisted in our rural 

communities as a land management tool. Occupational burning to manage rangelands and 

habitas was learned by the new generations from their ancestors. Prescribed burning has been 

developed by foresters in the U.S. and Australia since the 1950s and was introduced in 

Portugal in the mid 1970s, after the visits made to the Peneda-Gerês National Park by Edwin 

Komarek, a fire ecologist from the U.S. Tall Timbers Research Station, invited by José 

Moreira da Silva, the National Park Director. 

After some burning trials, carried out between 1976 and 1981, Moreira da Silva 

implemented, as the regional head of the Forest Services, an operational prescribed burning 

program in the north-western region of Portugal. More than adopted, the technique was 

adapted to the specificities of the region, and was concurrent with research studies focused on 

its ecological effects. This was the first program of fuel management with prescribed fire in 

Europe. It began in January 1982 and was extensively applied to maritime pine (Pinus 

pinaster) stands, in the frame of an emergency plan to decrease fire hazard. 

The burnings programmed took place in 10 of the forest perimeters of Entre Douro-e-

Minho (NW Portugal), which made up 74,280 ha, about 55% of the total area of common 

lands in the region. The area treated annually has come to exceed 3,000 ha, about five percent 

of the pine forest under public administration in this region. The implementation was 

committed to seven teams, consisting of a technical supervisor and a 4-10 hand-crew. The 

Forest Department of UTAD was requested to follow these experiments and started a R&D 

program, focused on the environmental and ecological effects of prescribed burning, until 

1990. Further studies focused on prescribed fire behavior and technological development, 

were financed by national and international agencies, namely the European Commission 

projects FIRE TORCH, FIRE STAR and FIRE PARADOX. The variety of land management 

goals that prescribed burning can accomplish makes it the most powerful and flexible tool in 

forest and wildland management. The basic principles guiding the original pine underburning 

practice in Portugal were extensively disseminated to European foresters since then, including 

the recent development of a European Prescribed Burning Guide. 
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To ensure the exchange knowledge and technical skills development in the use of the 

technique, UTAD partnered with the Portuguese Federation of Forest Producers (FORESTIS) 

and the Forest Service to carry out knowledge transfer and training courses. Exchange 

programs with the U.S. Forest Service have allowed training of Portuguese as ―burn bosses‖, 

hence creating a core of trainers to teach courses in Portugal. 

Prescribed fire as a hazard-reduction tool was first mentioned in law in 1981 (DL. No. 

55/81 of 18 December). However, only in 2004 was a legal framework for prescribed burning 

established (DL No. 1061/2004). Since 2004 the PNDFCI (National Plan of Forest Fire 

Defense) recognizes the importance of prescribed burning in reducing fuels and increasing the 

territory resilience to wildfire. 

A group of fire specialists (GeFoCo) was created in 2006 to coordinate and foster 

prescribed burning training and operations. Prescribed burning can only be practiced under 

the responsibility of qualified personnel, according to the technical and functional rules 

defined by regulation. The Forest Service is in charge of the accreditation. Technicians must 

be trained to base-level or develop work in fire management, requiring in both cases the 

frequency with approval of a specialization course. Since 2002 nine technical accreditation 

actions in prescribed fire have been carried out, with 158 trainees, and 10 operational training 

courses in prescribed fire have involved 196 trainees. 

An approved Prescribed Burning Plan for a maximum of five years needs to be in 

place before any prescribed burn operation can be carried out. An Operational Burn Plan 

includes the prescription and other technical specifications, as well as the land owners 

authorization and other administrative requirements, and a postburn assessment of impact and 

effectiveness. Prescribed fires are allowed whenever fire danger rating is low to moderate. 
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In the 1930s most of the communal lands in the mountains northern and central 

Portugal were widely afforested by the Forest Service, essentially with maritime pine. As a 

result, the traditional mosaic of grazed shrublands and cultivated fields was replaced over 

thousands of hectares by continuous, dense and even-aged pine plantations, whose wildfire 

hazard potential soon became evident. The north-western Iberian Peninsula has the highest 

fire frequency in Europe, due to the favourable conditions for plant growth. Fuel 

accumulation in the maritime pine stands of the region is unparalleled by pine forests in 

temperate climates elsewhere. How to manage this increasing wildfire danger? 

Most Mediterranean Pinus species have the ability to withstand low- to moderate-

intensity fires without damage, making them obvious candidates to prescribed burnings. A 

prescribed fire aims well-defined effects that will fulfill one or more management goals, 

which are attained by burning in a specific fire environment (the prescription) and following 

specific operational procedures (the burn plan). Fire hazard reduction frequently is the main 

reason to use prescribed burning, but benefits to soil properties and the diversity and nutritive 

value of understorey vegetation were also expected. 

The success of a prescribed fire program depends of adequate planning, which clearly 

distinguishes prescribed burning from the traditional use of fire. A systematic monitoring and 

documentation of pre-fire, fire and post-fire variables is a crucial activity to determine 

whether the pursued objectives have been met. It also is used to assess the operational 

effectiveness of prescribed fire and provides a sound basis to adjust and refine the practice in 

the future. 

Considerable documentation exists on the prescribed burning operations conducted by 

the Forest Service in Portugal. The information provided by this data source (493 field forms, 

from 1979–2001) was retrieved from the Forest Service and translated into a database, to 

characterize and evaluate management-ignited fires in the pine forest of the Entre Douro e 

Minho region of northwestern Portugal. This sample, which represents more or less one 

seventh to one fifth of the total number of burn operations during the study period, is 

representative of prescribed fire activity in the region. 

Slope and elevation in the burned units range from zero to 68% and from 150 to 1000 

m, averaging 22% and 520 m. Soils are derived from schist or granite. 

The vast majority of the burns were conducted in maritime pine (P. pinaster) stands. 

Distribution of the treated area by cover type is 86.4% (pure P. pinaster), 7.9% (dominated by 

P. pinaster), 5.3% (P. sylvestris), and 0.4% (P. radiata). 

The stands subjected to prescribed fire are diverse in structure but carry in general a 

well-developed understorey layer, composed of evergreen sclerophylous shrubs of the 

Calluno-Ulicetea class. Gorse species (Ulex europaeus, Ulex minor) - favoured by the 

oceanic character of the climate and frequently in association with bracken-fern (Pteridium 

aquilinum) - dominate or co-dominate the community in 71% of the stands and account for 

more than half of total understorey cover in 57% of the cases. Dry sites and inland locations 

are dominated by the legume Chamaespartium tridentatum and by ericaceous species. 
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Potential heat release is directly proportional to fuel load, i.e. the amount of biomass 

available to burn, and this variable is therefore a fundamental input to fire behaviour 

prediction models and systems. Prescribed burning priorities are commonly assigned on the 

basis of a fuel hazard classification scheme driven by fuel load, whose pre-burn and post-burn 

estimates allow objective evaluations of the burn success in meeting management goals. 

A minor portion (2%) of the prescribed burns is conducted in stands where fine fuel 

accumulation (averaging 36 t ha
-1

) and shrub height (2.2 m) are on the opposite end of the fuel 

spectrum. The task of achieving a balance between proper fuel consumption and acceptable 

tree damage is complex in this situation, advising the replacement of prescribed fire by a 

mechanical fuel treatment. It is recommended the application of prescribed fire in maritime 

pine stands when the fine fuel load exceeds 8–10 t ha
-1

. 

Average understorey height exceeds one meter in 25% of the sites, and the shrub 

canopy - well aerated, dense, comprised of fine elements with an important dead component - 

will give rise to tall flames if fully involved in combustion; additionally, flames can be 

vertically transmitted to the ladder fuels (dead needles suspended in the lower branches of the 

trees) in unpruned stands. 

Fuel-complex structure and the quantity of elevated fuel should therefore be the main 

causes for the unusual flame dimensions and fire intensity reported for some fires, even when 

back firing was the method of ignition. The shrub layer dominates the fuel complex and hence 

has the prevailing role in fire behavior in 75% of the burn units. 

The prescribed burning program firstly emphasized pine stands older than 20 years, 

where fire use was deemed easier by the presence of taller trees and suppressed understorey. 

Subsequent tree mortality caused by Scolytidae insects, especially in dense stands with more 

than 30 years of age, motivated a shift towards younger age classes, and after 1995 there are 

no records of fires in stands older than 25 years. 

The burning activity takes place in the dormant season, during periods when weather 

and moisture conditions are conducive to low rates of heat release and selective biomass 

elimination. The burn season is variable and can extend from November to April, but the 

frequency and quantity of autumn rain can preclude any burning activity until January. Most 

fires are conducted from December to February. Prescribed burning is concentrated in 

January. Forty-one percent of the fires and area burned occurred in this month, when 

favourable burning conditions coincide with cold dry weather associated with dominance of 

high pressure systems. 

The burn blocks are, in general, delimited by pre-existing barriers, usually forest roads 

and fuel-breaks, complemented by the establishment of control lines. The fires are started by 

line ignition (rarely exceeding a length of 200 m) and are conducted as back fires, i.e. against 

the wind and down slope. When fuel moisture is too high for sustained back fire propagation, 

head firing (up slope and upwind) is used, ordinarily as a succession of fire lines separated by 

short distances. The burning crew is composed of a technical supervisor and 4–10 persons 

that rely solely on hand tools for fire containment. 

Prescribed fire in the pine stands of north-western Portugal is clearly a small-scale 

practice. The average burn lasts for six hours approximately and attains 3.5 ha in size, with 

mean values by Communal Forest ranging from 0.6 to 7.5 ha. Only 20% of the fires have 5 ha 

or more (60 ha is the maximum recorded value) and 15% of the burns are smaller than 1 ha. 

The average burn is accomplished at a rate of 0.52 ha h
-1

, which is two to five times faster 

than mechanical and chemical fuel management methods, but mean values by Communal 

Forest vary in the 0.12–1.03 ha h
-1

 interval. 

At the end of the prescribed fire season, mean patch size the average plot that results 

from adjacent treatment units burnt in different days is 8.6 ha, with a variation by Communal 
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Forest of 2.0–18.3 ha. Spatial patterns of prescribed burning programs elsewhere are not 

comparable, since they include burn units larger by one or two orders of magnitude.  

Several factors are accountable for the small fire size, including the limited fire 

suppression capabilities of the burning crews, the heterogeneity and steepness of the terrain, 

and weather patterns that constrain fire spread rate and fire sustainability (and therefore the 

number of hours that are available to burn on each day). Fire duration explains 21% of the 

variation in fire size, with 25% of the fires being ignited after noon but only 10% finishing at 

18:00 or later, but other variables were also found to be significantly correlated with the area 

of a burn. 

Burn operations tend to be larger in older stands and stands with less abundant 

understorey vegetation, which might reflect the use of more conservative ignition patterns 

where trees are most at risk to suffer damage from fire. An increase in the size of the treated 

areas is advisable and would be achieved by enlarging the duration of the burns when 

possible, but especially by increasing the treatment rate through longer ignition lines; in less 

favourable topographies this would involve additional manpower and fire suppression 

equipment, i.e. vehicles equipped with water pumps. 

Any prescribed fire program is strongly constrained by weather factors. The maritime 

influence that prevails over the study region attenuates diurnal oscillations in temperature and 

humidity, making fire behaviour more predictable and facilitating a burn operation. On the 

other hand, the vegetation growing period is lengthened by such moderating effects and 

curtails the potential season for prescribed fire. But rainfall poses the major climatic 

restriction to prescribed burning in the region, ranging annually from 1500 to 2500 mm 

(among the highest values in Europe) and occurring in more than 40% of the days. 

Mean values of air temperature and relative humidity during the burns varied between 

9.2 
o
C in December to 13.6 

o
C in November, and from 63.1% in April to 74.2% in November. 

Control problems can arise from an excessively strong wind, while lack of wind, a 

more common situation, complicates the conduction of the burn and increases tree canopy 

scorch. Winter dry periods in the study region are often calm, especially when determined by 

an Iberian high-pressure system. Depending on stand structure and topographical position, 

wind speed inside a forest is 2–10 times lower than wind speed in the open. 

Overall, and because the preferred range of the prescription is rarely observed by the 

three variables concurrently, only 8% of the fires qualify as optimal. The sub-optimal burns 

(79% of the total) tend to occur under warmer, calmer, and moister conditions than the ‗ideal‘, 

a deviation that should increase tree crown scorch and decrease fuel reduction. Since two 

thirds of the fires were conducted with dead fuel moisture contents in excess of 21%, fuel 

dampness is undoubtedly the major reason for marginal burning conditions. 

The behaviour and effects of a fire are strongly conditioned by fuel moisture, a 

variable that profoundly affects ease of ignition, combustion velocity, fuel consumption and 

flame temperature. Such importance is even more noteworthy in understorey prescribed 

burning, where the ignition pattern is usually designed to cancel the dynamic influences of 

wind and slope. Moisture content of the fine surface dead fuels was estimated from ambient 

temperature, relative humidity and time since rainfall, and then corrected for the amount of 

solar radiation. 

Simulated fire intensity in 25% of the plots is low enough (<500 kW m
-1

) to assure 

effective fire suppression with minimum resources in a normal summer weather scenario, but 

the same fuel hazard levels require heavy ground equipment to contain wildfires burning 

under severe weather conditions. 

A fire intensity upper limit in the 250–700 kW m
-1

 range is often recommended for 

prescribed burning under tree canopies. Estimated fire intensity exceeds 250 kW m
-1

 for 11% 

of the data base fires, despite the already mentioned conservative prescription for weather. 
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The hazard-reduction effect of a burn was evaluated in terms of fuel modifications, 

and by comparing potential wildfire characteristics before and after the treatment. The fuel 

hazard reduction resulting from a prescribed burn was considered fully effective if the post-

treatment fire behaviour level indicated maximum assistance with the suppression of a 

subsequent wildfire on the site, i.e. the heat release potential of such fire was below 500 kW 

m
-1

 and was within the control capability of crews equipped with hand-tools. 

Prescribed fire in maritime pine stands generally has a strong impact on fine surface 

fuels, albeit some variation can be expected. The upper litter horizon, with a median 

consumption value of 100%, is partially removed on occasions only. The corresponding value 

for understorey vegetation is lower (86%, range of 37–100%), but the most flammable shrub 

components (foliage and very fine twigs) are usually removed by the fire: post-burn terminal 

diameter of shrubs‘ remains is less than 2 mm in only 24% of the burns. 

The modified fuel conditions following the application of prescribed fire indicate an 

average reduction of 96% (with a variation of 59–100%) in the intensity of a wildfire, under 

extreme summer weather. 

Fire severity is the immediate effect of fire on the ecosystem. A general severity rating 

method can be based on flame length and depth of burn. These variables indicate the upward 

and downward heat pulses, respectively, and are combined in a two-dimensional classification 

matrix. This approach was used in the development of a specific method to evaluate the 

ecological severity of prescribed fire in maritime pine stands. 

The potential of flame length (or fire intensity) as a component of a fire severity 

appraisal scheme is somewhat limited, because the post-fire survival and recovery of trees is 

linked to their morphology. It seems therefore advisable to replace flame length with a 

variable related to tissue damage, such as crown scorch ratio (RCs). Damage to needles and 

buds is the prevalent cause of mortality in Pinus species; duff moisture conditions during 

prescribed burning preclude root injury, and stem injury is unlikely in maritime pine, because 

the cambium tissue is effectively protected by a relatively thick bark acquired at an early age. 

Tree injury is not immediately apparent and requires inspection two to three weeks 

after the fire. Crown scorch ratio reveals the severity of foliar damage and was calculated as 

the scorched crown length in proportion of total crown length. 

Higher levels of crown scorch are parallel with growth decreases in Pinus species, but 

most studies agree that pines can sustain one or to two thirds of foliage loss without 

noteworthy detrimental effects on growth. In mature maritime pine stands, prescribed fire 

does not reduce tree vigor or growth when crown scorch is absent or minimal, but growth loss 

can be important if more than half of the crown is scorched in length or volume. In maritime 

pine stands younger than 20 years in northern Portugal, artificially heat injured trees showed 

significant growth improvements for the lower levels of crown scorch; and similar decreases 

for the higher levels. Similar results after experimental fires showed negative effects on tree 

growth for higher RCs and growth increased when the RCs was low. 

Forest floor has an important role in soil fertility and stability, and although the 

desired amount of residual duff can vary by burn objective, the necessity of moderating the 

organic layer removal and minimise humus consumption. Hence, and given the position of 

upper duff (between surface fuels and the humus horizon), its consumption (RFc) is used to 

describe the downward component of fire severity. Similarly to RCs, RFc is expressed as a 

ratio, positioning the impact of fire in relation to the minimum and maximum modifications 

that are physically possible. For lower RFc classes the fermentation layer is moderately 

consumed, but for moderate to high classes can have an excessive reduction of the upper duff 

and so, some humus is eliminated or even the consumption of the upper duff is nearly total. A 

considerable amount of the humus layer will be available to burn and the plant structures 
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below the ground surface can experience lethal heating, depending on their location and 

duration of the combustion. 

Fire severity indicators for the typical prescribed fire indicate minimal impacts on the 

ecosystem, even if a broad range of variation is possible. Duff removal is slight, and thus the 

downward heat pulse is expected to be highly correlated with surface fuel consumption, 

implying minimal smoke production and the absence of negative effects in the soil and root 

system of the trees. 

Pine canopy scorch is restricted to its lower third, and the average tree in a stand will 

not experience a decrease in growth rate and will survive the immediate effect of the 

treatment. The upward component of fire severity is therefore more prominent than its 

downward equivalent, given the generally high fuel accumulation and low tree crown base, 

the previously mentioned tendency to burn under calmer and warmer weather than the 

optimum, and because rainless periods are sufficiently brief to prevent deep duff drying. 

Seventy-nine percent of the fires are within the boundaries of the acceptable impact 

region, but this classification can be deemed excessively conservative. The association of the 

lower classes of crown scorch might as well be considered acceptable (or at least tolerable) 

and will further increase to 90% of the total the number of prescribed fire operations that are 

ecologically sound. As expected from previous findings, burns with severe canopy impacts 

are comparatively more frequent (8.1% of the total) than burns with severe forest floor effects 

(1.5% of the total only). 

The overall impact of a prescribed fire is based on indicators to classify the ecological 

severity of prescribed fire. RFc and RCs express the immediate and direct impacts of the fire, 

the so-called first-order fire effects; the second-order fire effects, are indirect outcomes of the 

fire that interact with other processes, and, on a longer temporal scale, the fire regime. 

The frequency component of the fire regime is expected to play an important role in 

the biodiversity of maritime pine stands. Consecutive burns at interval less than 5 years on a 

given site are not desirable. 

Fires were deemed either severe or non-severe and efficient or inefficient. The severity 

of 89% of the operations is mild while achieving a fuel-complex modification that provides 

adequate protection against a wildfire under normal summer weather, but under extreme 

meteorological conditions such figure is decreased to 59%. 

The environmental conditions are important determinants of the practice and 

achievements of pine underburning. The dominance of sub-optimal - warmer, calmer and 

moister - than the preferred prescription range act to increase the ecological impact of the 

treatment (more scorch in the tree canopy) and decrease its effectiveness (less fuel 

consumption); in addition, the former effect can be exacerbated by fuel accumulation and 

ladder fuels when fire is used for the first time in a young stand. 

Two-stage burning can be recommended to improve the results, and it is sometimes 

used: a first fire conducted under poor burning conditions is followed by a burn under drier 

conditions. The occurrence of marginally high levels of moisture content in surface dead fuels 

is common in the prescribed fire season, due to high relative air humidity and the brevity of 

rainless periods. 

Moisture content is a especially constraining factor, and is a source of difficulty in 

achieving sustained fire propagation, as well as the main reported reason for cancelling a burn 

operation. 

The selection of treatment units is generally well grounded from the perspective of 

pre-burn fuel hazard level and, despite the above mentioned environmental limitations, most 

prescribed fires are successful in achieving the stated objective of hazard reduction without 

harmful effects to the ecosystem. The structural modifications suffered by the fuel-complex 
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dramatically reduce the post treatment fire intensity potential, and practically exclude the 

likelihood of stand-replacement crown fire. 

Observations made during wildfires corroborate this, with prescribed burnt areas 

providing effective assistance to fire suppression. Fuel management is more relevant where 

the coincidence of extremely dry and windy conditions is unusual, such as in northwestern 

Portugal, but it is a matter of conjecture whether the current spatial pattern of prescribed fire 

application, i.e. in relatively small but strategically located strips, contributes to mitigate 

landscape fire spread in the region. In this paper we have characterized hazard-reduction 

burning in the pine stands of northern Portugal, and attempted an objective analysis of its 

results at the operational scale (i.e. the treatment unit). 

 

Finally, from the FIRE PARADOX Web Site the arguments for Prescribed Burning  

FOR 

 Reduces fuel hazard and fire risk 

 Can benefit the carbon balance by decreasing the overall area burned 

 Achieves wildlife habitat maintenance/improvement and agricultural goals 

 Is implemented by highly trained professionals 

 Applies fire behaviour and fire ecology science to management 

 It is implemented according to laws and regulations 

 Supports local and historical uses of fire 

 Is less expensive than alternative treatments 

 Increases knowledge of management techniques 

 Provides training opportunities to fire fighters 

 Low intensity fires have no detrimental effects on soil 

AGAINST 

 Produces smoke, although always significantly less than uncontrolled fires 

 Emmits carbon to the atmosphere 

 Risk of fire escape 

 Aesthetic impacts 

 Possible negative effects on plants and animals 

 Possible adverse effect on soil 
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Introduction 

 

Fire is a global herbivore that shaped the global ecosystems for over 350 million years 

(Bond and Keeley 2005). Fire is also a major earth system process that provides a driving 

force for the evolution and spread of new plants and biomes (Scott and Glasspool 2006). The 

post-fire erosion is a factor that also can determine the geomorphological evolution of the 

landscape (Shakesby and Doerr, 2006).  

The earliest scientific literature about the effects of fire on soil properties dates from 

the 1930s, the same decade Herbert Stoddard and other advocates of fire management were 

actively encouraging the use of prescribed fire to create healthy, productive environments. 

After several decades of fire suppression, land managers, scientists, and policy makers began 

to notice a gradual deterioration of forests and fields. Problematic levels of forest fuels were 

accumulating in some of the areas where prescribed burning had been discontinued, 

environmental integrity was declining, and the threat of catastrophic wildfires was increasing. 

Fire exclusion also led to an abundance of undesirable plant species 

(http://fire.Forestencyclopedia.net). Several scientific publications appeared in the 1930s in 

favor of re-introducing prescribed burning, or the use of fire to manage the land. The benefits 

of  ‗Indian fires‘  for longleaf pine forests were reported by Greene (1931) and Chapman 

(1932) (Stewart 2002). Thus, during the 1930s, prescribed fire was introduced across the 

southern United States as a forest management technique. 

One of the first references on soil effects in literature was provided by Greene (1934). 

He analyzed the annual burning of grass in a virgin longleaf pine forest and the effects of the 

fires, particularly on the organic matter content, but also on other soil properties. Heyward 

(1937) worked on the physical properties of soils in a similar longleaf pine forest and found 

that excluding fire for as little as  10 years resulted in more porous, penetrable soil. Heyward 

(1938) also found that single, low-intensity prescribed burns in the southern United States 

typically did not cause dramatic changes in soil structure and texture. He claimed that the 

higher soil temperatures during these prescribed fires usually lasted for a short period and, as 

a result, did not have dramatic consequences.  

Walhenberg (1935) also worked on these types of forest, although his results were 

more focused on the relationship between fire and soil and the reproduction of pines. He also 

found that infiltration rates were lower in soil from the southern United States that had been 

burned several times (Walhenberg et al. 1939), a fact also reported by Meginnis (1935) and 

Arend (1941). Garren (1943) found that soil organic matter content is usually lower in soils 

that are repeatedly burned, and early researchers noted that burned soils were harder, denser 

and less permeable than unburned soils. 

The impact of forest fire on soil hydrology is the key factor of the post-fire 

ecosystem evolution due to the control the water resources exert on the vegetation recovery 

and due to the effect of the amount of runoff on the sediment yield. After forest fires, 

researchers reported an increase in the surface runoff due to a reduction in soil infiltration and 

water storage capacity (Arend 1941, Anderson 1949). Other studies reported an order of 

magnitude increase in peak flows and surface runoff after fire as compared to little or no 

runoff before the fire due to the reduction of the soil infiltration and surface storage (Wright et 

http://fire.forestencyclopedia.net/Encyclopedia/Fire%20Science/4_fire_people/Encyclopedia_Page.2003-12-22.1208/renderPath?id=2925
http://fire.forestencyclopedia.net/Encyclopedia/Fire%20Science/4_fire_people/Encyclopedia_Page.2003-12-22.1208/Encyclopedia_Page.2004-02-28.2015#3345#3345
http://fire.forestencyclopedia.net/Encyclopedia/Fire%20Science/4_fire_people/Encyclopedia_Page.2003-12-22.1208/Encyclopedia_Page.2004-02-28.2015#3346#3346
http://fire.forestencyclopedia.net/Encyclopedia/Fire%20Science/4_fire_people/Encyclopedia_Page.2003-12-22.1208/Encyclopedia_Page.2004-02-28.2015#8346#8346
http://fire.forestencyclopedia.net/Encyclopedia/Fire%20Science/Encyclopedia_Page.2004-10-20.2326/Encyclopedia_Page.2004-11-10.5122/renderPath?id=6064
http://fire.forestencyclopedia.net/Encyclopedia/Fire%20Science/Encyclopedia_Page.2004-10-20.2326/Encyclopedia_Page.2004-11-10.5122/renderPath?id=9971
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al. 1978, Scott and van Wick 1990). During the 1990‘s and early 2000‘s research continued to 

confirm that fire generally reduces infiltration rates and to determine the factors that influence 

the magnitude of the effect (Robichaud and Waldrop 1994, Martin and Moody 2001). Usually 

infiltration rates are greater on unburned soil and decrease with increasing burn severity on 

burned soil (Cerdà 1995). In a wet Mediterranean environment in Portugal, the lowest 

infiltration rates were found on the recently burned sites and the greatest in the unburned sites 

(Shakesby et al. 1993); Campbell et al. (1977) also demonstrated that the removal of litter by 

fire induce more frequent soil freezing, which may reduce infiltration rates. As the vegetation 

recovers, the infiltration rates return to pre-burn conditions (Cerdà 1998a, 1998b). However, 

because infiltration rates are dependent on rainfall characteristics, infiltration rates can be 

greater after a fire than before. Robichaud et al. (2007) found rainfall intensity was the driving 

factor in post-fire runoff and peak flow responses at six Western U.S. watersheds. Cerdà and 

Lasanta (2005) found a significant difference in the hydrological response of burned plots due 

to the rapid vegetation recovery under wet Mediterranean conditions in the Central Spanish 

Pyrenees.  

Soil burn severity describes the fire-induced changes in the soil properties that impact 

hydrological and biological soil functions. Some fire effects resulting from the consumption 

of organic material near and on the soil surface lead to changes in soil properties that change 

soil infiltration, such as: 1) the formation of or increase in soil water repellency; 2) change in 

soil structure (e.g., consumption of fine roots increases micro- and macro-pores); and 3) 

change in bulk density (e.g., due to collapse of aggregates and clogging of voids by ash) 

(Certini 2005). After prescribed burns in western Montana, Robichaud (2000) compared the 

effects of soil burn severity on infiltration under simulated rainfall. Infiltration rates of 60 to 

80 mm h
-1 

were measured on low soil burn severity plots and decreased as soil burn severity 

increased. Moderate soil burn severity plots had infiltration rates of 30 to 84 mm h
-1

 the 

infiltration on high burn severity plots was only had 23 to 55 mm h
-1

 (Fig. 1). Then fire 

severity is a key factor to control the runoff generation, and this is why prescribed fires can be 

a useful tool to avoid soil damages due to the wild fires. This effect has been shown by the 

protective ash layer developed after forest fires (Cerdà and Doerr, 2008). Ash can be a key 

factor after forest fire as is the unique soil cover for some weeks after the forest fires. Then 

the changes in infiltration are due to changes in ash properties and depth. 

The spatial variability of the infiltration rates observed in many post-fire research 

studies are often due to the patchy distribution of pre-fire vegetation (Seyfred, 1991; Dunkerly 

and Brown 1995; Cerdà 1997b; Reid et al. 1999). When a fire burns a patchy (mosaic or 

tussock) vegetation cover, the bare soil and the soil in the vegetated patch are heated 

differentially. After the Denio Fire in the rangeland of northwestern Nevada, Pierson et al. 

(2001, 2006) used simulated rainfall experiments to determine that the coppice microsites 

(area directly under shrubs) had reduced infiltration rates and increased overland flow due to 

soil water repellency, while the bare soil between the vegetation was not water repellent and 

had greater infiltration rates. This is also related to the micro- and macro-pores caused by the 

vegetation which influences the infiltration capacity of soils. Hubbert et al. (2006) found in 

chaparral landscapes of California, that fire-induced soil water repellency was preferentially 

produced under Ceanothus crassifolius cover, and this would likely result in variable 

infiltration rates under natural rainfall. The post-fire recovery of vegetation corresponds to an 

increase in the heterogeneity of infiltration has been demonstrated in a number of studies 

(Dunkerly and Brown 1995, Cerdà 1997b, Cerdà and Doerr 2005, Cerdà and Doerr 2007). 

The Post-fire Infiltration Rate Recovery—Temporal Variation. After fire occurs and 

the soil is covered with ash, the next change in the soil surface is ash redistribution by 

raindrop splash, surface runoff, and wind. The first rain events easily remove the ash cover, 

clog the pores with small particles of ash and sediment, and seal the soil surface. These 
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changes reduce infiltration rates to the lowest post-fire values. However, the same post-fire 

rainfall events that move ash downslope provide needed moisture for vegetation recovery. As 

vegetation re-establishes, it protects the soil from raindrop impact and begins to develop the 

litter layer. These changes due to increased vegetation increase infiltration and reduce surface 

runoff.  The studies in eastern Spain have shown it takes 2-4 years under dry (summer) 

conditions and 4-6 years in wet (winter) conditions for infiltration to return to pre-fire 

conditions (Cerdà, 1998a, 1998b). In addition, infiltration rates vary seasonally where there is 

large variation in seasonal climatic conditions, such as in the Mediterranean (Cerdà 1996). 

The Pedralba sites were monitored from 1990 (beginning immediately after the August fire) 

until 1995. Infiltration rates were lowest during the first post-fire autumn rains, after the ash 

layer was washed downslope. The recovery of vegetation increased the infiltration rates over 

subsequent post-fire recovery years. The seasonal oscillations of infiltration rates were 

superimposed on the temporal post-fire recovery of infiltration. The same trends in post-fire 

infiltration rates over time were observed at the Bolbens en La Costera District study site in 

eastern Spain following an August 1989 wildfire. Low infiltration rates (45 percent of 

rainfall) occurred during the first post-fire winter with an increase to 95 percent of rainfall 

five years later. The infiltration rates during the summer season, when the soils were dry, 

were greater than in winter with values of 84 to 99 percent of rainfall in the summer of post-

fire year five (Cerda et al. 1995). 
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Figure 1. A comparison between a water repellent versus a hydrophilic infiltration curve 

observed on the Aleppo pine woodland in eastern Spain during summer. The dry and hot soil 

conditions enhance the water repellent response on the Aleppo pine cover. The hydrophobic 

response is removed by the effect of fire as shown the fire affected burned soil. 
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Figure 2. Changes in the mean infiltration rate for Pedralba site, Eastern Spain. 
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Figure 3. Changes in the mean infiltration rate and variation coefficient for olbens sites, 

Eastern Spain. 

 

Soil water repellency is not a stable phenomenon. While the soil is wet, hydrologic 

behavior is normal; however, water repellency often returns as the soil dries (Dekker and 

Ritsema 2000). Consequently, soil water repellency is generally strongest in the drier summer 

months. As the hydrophobic substances responsible for water repellency slowly dissolve, soil 

infiltration and wettability increase. Consequently, as the soil is intermittently exposed to 

water, fire-induced soil water repellency slowly declines (DeBano 1981, Letey 2001). 

Although some researchers have measured persistent water repellency from weeks to years 

(DeBano et al. 1970, Holzhey 1969), fire-induced water repellency is generally broken up 

after one to two years. 
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Fires and soil temperatures 

The transfer of heat to soil is the principal mechanism by which fires affect the 

physical, chemical, and biological properties of soil (Neary et al. 1999). The effects of fire on 

the physical and chemical properties of soil depend on the intensity and severity of the fire, 

and fire intensity is directly proportional to the heat of combustion, amount of fuel consumed, 

and rate of fire spread. Therefore, fuel types, weather, and topography are important in 

determining the rate of heat released by a fire. The fuel properties that directly or indirectly 

affect fire intensity include fuel loading, moisture content, arrangement, chemical 

composition, and size. Wind speed and other weather conditions that affect fuel moisture also 

influence fire intensity (http://fire.Forestencyclopedia.net).  

The literature contains several definitions of fire intensity. For Byram (1959) the 

fireline intensity is the rate of heat energy released per unit time per unit length of fire front, 

regardless of the depth of the flame zone. According to Chandler (1983) and DeBano et al. 

(1998), the reaction intensity is calculated by estimating the amount of fuel burned per 

second, and assuming heat yields for the fuel, is usually expressed in kW/m
2
. In relation to 

fire intensity and soil properties, Úbeda (1998) defined the fire intensity as the maximum 

temperature recorded at a certain point and the time that the temperature remains at a certain 

point, expressed in ºC/s. According to Neary et al. (2005), fire intensity describes the rate at 

which a fire produces thermal energy.  

Burn severity describes the response of ecosystems to fire and can be used to describe 

the effects of fire on the soil (soil burn severity), water system, ecosystem flora and fauna, 

atmosphere, and society. Burn severity, loosely, is a product of fire intensity and residence 

time and is generally considered to be light/low, moderate, or high. Given that burn severity is 

a response to the amount of energy (heat) released by a fire, it usually reflects fire intensity; 

however, the relationship between fire intensity and burn severity remains largely undefined 

because of difficulties encountered in relating resource responses to the burning process 

(Hungerford et al. 1990., Hartford and Frandsen, 1992, Ryan, 2002). Ryan and Noste (1985) 

and DeBano et al. (1998) developed the following criteria to solve this problem: 

 

 Low burn severity—less than 2 percent of the area is severely burned, less than 15 percent 

is moderately burned and the remainder of the area is burned at a low severity or 

unburned. 

 Moderate burn severity—less than 10 percent of the area is severely burned, but more 

than 15 percent is moderately burned and the remainder is burned at low severity or 

unburned. 

 High burn severity—more than 10 percent of the area has spots that are burned at high 

severity, more than 80 percent is severely or moderately burned and the remainder is 

burned at a low severity. 

 

According to Jain and Graham (2003), burn severity (sometimes referred to as fire 

severity) is not a single definition, but rather a concept and its classification is a function of 

the measured units unique to the system of interest. These systems include flora and fauna, 

soil microbiology and hydrological processes, atmospheric inputs, fire management, and 

society; and these system have units of measure relative to the measured responses. For 

example, in fire management the units of measure include the consumption of organic 

material, the flame length, the torching index, and other indicators of risk and fire behavior. In 

terms of the atmosphere, the units of burn severity include particulates and toxic gases as a 

result of smoke and other inputs from fires. For society, units include the number of homes 

damaged, injuries and net value changes. Units of measure covering flora and fauna, soil 

microbiology and hydrological processes would quantify the residual ecosystem structure 

http://fire.forestencyclopedia.net/Encyclopedia/Fire%20Science/Encyclopedia_Page.2004-10-20.2326/Encyclopedia_Page.2004-11-10.5122/renderPath?id=9965
http://fire.forestencyclopedia.net/Encyclopedia/Fire%20Science/Encyclopedia_Page.2004-10-20.2326/Encyclopedia_Page.2004-11-10.5122/renderPath?id=9974
http://fire.forestencyclopedia.net/Encyclopedia/Fire%20Science/Encyclopedia_Page.2004-10-20.2326/Encyclopedia_Page.2004-11-10.5122/renderPath?id=9968
http://fire.forestencyclopedia.net/Encyclopedia/Fire%20Science/Encyclopedia_Page.2004-10-20.2326/Encyclopedia_Page.2004-11-10.5122/Encyclopedia_Page.2005-01-23.2038#9988#9988
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after the fire and subsequent responses in terms of nutrient cycling, erosion, species diversity, 

and recovery rates. The difficulty in the classification of burn severity is to develop consistent 

and meaningful ecological information that can be easily related to secondary fire effects. 

Currently, burn severity classifications are either based on qualitative estimates or include 

detailed information about individual forest components that are difficult to condense into a 

single classification system. In addition, the measured forest structure may have no ecological 

relation to the secondary fire effects. The authors critically evaluate the use of burn severity 

classification in relation to secondary fire effects (erosion, tree mortality, nutrient cycling, and 

vegetation recovery) and its ecological usefulness and ability to quantify and summarize the 

information obtained. 

The measure of fire intensity is vital to understanding changes in soil properties. 

Consequently, several authors have studied the changes in soil properties caused by fire 

(Hungerford et al. 1990, Dimitrakopoulos, et al. 1994, Campbell et al. 1995, DeBano et al. 

1998). However, these evaluations are sometimes made in laboratory assessments and can 

differ widely from prescribed fires and, to a lesser degree, from wildfires. It is difficult to take 

field measurements of fire intensity and it is generally only possible with prescribed fires. 

Although real temperature and duration data is essential to understanding the effects of 

wildfire, the safety risks inherent in obtaining these real-time measurements makes these 

research efforts very challenging. 

 

Determination of temperatures during prescribed fires 
Prescribed fires are used both for research and forest managements purposes. These 

fires provide the easiest means of recording fire temperatures and durations because the time 

and location of the fire is known in advance and the site can be instrumented. Some 

temperature recording methods are only able to register the maximum temperature while 

others take continuous measurements and can be used to classify fire intensity. It is often 

valuable to use different methods to compare results (Odion and Davis 2000). 

 

Paints 

 

The use of temperature sensitive paints is an inexpensive method to record 

temperature maxima within a burned area. A change in paint color indicates the maximum 

temperature range reached (e.g., between 400 and 500ºC). Several different paints may be 

used to obtain more refined data. Evaporation cups 

High heat-resistant porcelain evaporation cups containing the same quantity of water can be 

placed throughout the fire area. The difference in the volume of water remaining in the cups 

will indicate the temperatures reached at each location.  

 

Metal  

 

As the melting point differs for various metals, thin metal sticks can be placed  

throughout the fire. Based on the types of metals that were melted, the maximum temperature 

range in that area can be determined.  

 

Laser thermometer 

 

Although the laser thermometer was not designed to take field temperature 

measurements, it can be used in low fire intensity prescribed fires. This type of thermometer 

can detect differences in surface reflectometry that changes with the temperature. Some laser 

thermometers have data loggers that record all measurements allowing temperature and 

http://fire.forestencyclopedia.net/Encyclopedia/Fire%20Science/Encyclopedia_Page.2004-10-20.2326/Encyclopedia_Page.2004-11-10.5122/Encyclopedia_Page.2005-01-23.2038#9998#9998
http://fire.forestencyclopedia.net/Encyclopedia/Fire%20Science/Encyclopedia_Page.2004-10-20.2326/Encyclopedia_Page.2004-11-10.5122/Encyclopedia_Page.2005-01-23.2038#9999#9999
http://fire.forestencyclopedia.net/Encyclopedia/Fire%20Science/Encyclopedia_Page.2004-10-20.2326/Encyclopedia_Page.2004-11-10.5122/Encyclopedia_Page.2005-01-23.2038#8054#8054
http://fire.forestencyclopedia.net/Encyclopedia/Fire%20Science/Encyclopedia_Page.2004-10-20.2326/Encyclopedia_Page.2004-11-10.5122/Encyclopedia_Page.2005-01-23.2038#8054#8054
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duration to be determined. Although it is possible to take as many measurements as desired, 

only surface temperatures can be measured. 

 

Thermocouples  

 

Thermocouple thermometers can record the temperature at pre-determined intervals 

for periods of more than eight hours. These data allow fire intensity to be accurately 

determined. In addition, thermocouples can be placed on the surface and at different depths 

within the soil, which allows a temperature and heat duration soil profile to be determined.  

 

Prescribed fires in Catalunya 

In Catalunya, what today we know as HIF (High Intensity Fires) started to be known 

during the 80‘s. Despite wildfires were always present along the forest Catalan history, they 

never had such a big magnitude as the wildfire in 1986. 60,000 Ha were burned during that 

year and a big portion in just one fire, the Montserrat forest fire (Figure 4). 
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Figure 4. Number of fires and burnt area in Catalunya 1970-2009. 

 

After that year, the territory did not have many wildfires and burned hectares for at 

least 7 years. Many campaigns addressed to the society from the Spanish and Catalan 

administrations against the fire remind us that wildfires could be a problem, but almost they 

were consider a problem from the past.  

But, in 1994 Catalunya lived one of the most dramatic episodes; the wildfire which 

burned more than 70,000 Ha. 1994 was named ―the year of wildfires in Central Catalunya‖. 

At that time was consider a random episode more than a real problem, but the same 

phenomenon happened again in 1998 with the ―Solsonès fire‖ and it was very obvious that 

they were wrong considering previously a random phenomenon. It was clear that there was a 

management problem with a deep background and it was necessary to find solutions urgently. 

At that time, just to give an idea, the 0.4% of the forest fires was responsible of the 96% of 

the total burnt area (GRAF, oral communication). 

How can we understand or interpret that the extinguishing services could not fight 

against the wildfires? In a certain way, the explanation should be searched in the 

extinguishing service. The efficiency in extinguishing fires reached such a good level that any 
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fuel which is prone to burn, it will burn. If the extinction is so efficient year by year, the 

quantity of fuel is increasing exponentially and it is ready to cause a High Intensity Fire. 

Although now it looks obvious, it was not easy reaching this statement. This is what 

researchers, managers and stakeholders around the world called: The forest fire paradox. The 

Paradox says that: ―as better we are extinguishing fires, more intense they will be in a risk 

situation‖ (Piñol, 2004).  

But, in our opinion there are other important factors to explain the problem. 

Everybody knows that as other places around the world, Catalunya has experienced a rural 

abandonment during the last decades as a consequence in land uses changes, and this means a 

forest regeneration where before there was grass or agricultural fields. But not only this, 

because people who lived in these places they do not use the forest as a source of fuel to be 

consumed for their activities, so every time the amount of fuel prepared to burnt is bigger 

(Piqué, 2004).  

There is another phenomenon to take into account. A wildfire is the consequence of 

the ―fire triangle‖: fuel, oxygen and heat, plus a fire ignition point. Many times this start is 

caused accidentally, intentionally or hazardously. Due to different structural reasons, 

increasingly urban society get closer to the forests and even houses are built in the middle of 

the forest just for living purposes, holidays or as a weekends 2
nd

 residence. This phenomenon 

cause what is named as the rural-urban interface which is in essence a fuzzy and mixed border 

between these two environments. Additionally, wildfires won‘t be a problem if we know how 

to take benefit from the fuel of the forest, but by now, to take a profit from the forest is just an 

occasional fact.  

Managers, stakeholders and authorities once they understood the root of the problem, 

they thought on solutions. Often, the solutions are not considering good ideas for everybody 

standards, but what it is sometimes common is that solutions coming from the administration 

or authorities and even managers or stakeholders are not well considered by the main part of 

the society (Plana, 2004).  

After these HIF‘s happened, it was time to think on solutions, and not only in 

extinction, it means, not only, how to fight against wildfires, but to think in the prevention. In 

1999 the Generalitat de Catalunya (Catalan Administration) created a group of forest 

engineers called GRAF (Group of Support to Forest Actions) to be added to the main 

structure of the fire fighters group of the Administration. This group planned to include fire-

fighters in tasks of prevention, and more importantly during all year round in the line of what 

is a common believe; ―wildfires are to be extinted in winter and not in summer‖. GRAF 

implement the concept within the fire fighters group of before fight the fire you should know 

more about the fire‘s behaviour. The history of wildfires can give us much information on 

how we have to act against a wildfire, because the behaviour of the fire in many places and 

situations is always the same. In this way the extinction can be better (Castellnou et al., 2004).  

But as we have already mentioned, the GRAF team is working also on prevention. 

One of the tools that the team implemented to fight against wildfires was the same ―fire‖. 

Since 1999 the fire is used as a forest manager, a technique named ―prescribed fire‖ or 

―prescribed burning‖. The objectives are several, including some of the following; creation of 

new forest tracks, creation of grass to feed animals, hunting, as well as, the use of the 

prescribed fire itself as training for the firemen of their logistics and working as a team in a 

real situation etc. Using the prescribed fire we can avoid the ignition in dangerous places 

(Galán and Lleonart, 2004).  

The objectives to use a prescribed fire are as different and varied as an ecosystem can 

be and therefore the extinction that should used in every ecosystem. We have to say 

beforehand that a prescribed fire is not a wildfire. The main difference is that the fire intensity 

and how this intensity can affect, damage or favour the environment.  
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The prescribed fires are based in the use of low intensity fire conducted artificially in a 

free way by itself. The prescribed fires are executed following a ―prescribed fire plan‖ prepare 

before and with the approval of all the staff by means of the ―prescribed window‖, where 

there are represented the meteorological conditions, topography, quantity of fuel, etc, to 

obtain a secure prescribed fire and a fire enough intense to achieve the objectives of each 

prescribed fire (Martínez and Larrañaga, 2004). 

Every prescribed fire has a different objective, and depending on this, the prescribed 

window is different. Once decided this ―window‖ they have an ―ignition pattern‖, it means, a 

way to start and conduct the fire. Fire patterns can be different but, mainly they are based on 

the strategies to conduct the fire by means of the head, back or sides of the fire.  

Scientifically, the GRAF team has always invited us to be present in all the prescribed 

fires, and they have been able to use as an experimental plots for research. A prescribed fire is 

a scenario where we can control many variables necessary to accomplish experiments. And 

thanks to this we have been researching on the impact of fire on vegetation, fauna, soils, while 

for technical purposes fire fighters have the chance of necessary training for beginner‘s fire 

fighters to understand fire‘s behaviour before to come across a wildfire. Many research 

groups take profit of this experimental base.  

The prescribed fires are controversial. Many researchers, stakeholders and managers 

are against prescribed fires as a tool to manage Catalan forests. Therefore GRAF team is 

interested in motivate environmental researchers to carry out their specific research in every 

prescribed fire. It is the role of the researcher to study the pros and odds of this kind of 

management. Catalan forests mainly are not any more natural and they have been managed 

for centuries. Humans already interfere on the natural forest, and now is the time to keep them 

alive with their use or sustainable management. In our opinion a big mistake would be leaving 

these forests as an amusement park after so many years of intense activities and impacts. But, 

it is necessary to find equilibrium in forest activities between economical feasibility and 

ecological conservation and restoration.  

 

An example of the effects of prescribed fires in Catalonia:  

 

Recently many researchers have focused their efforts on the effects of prescribed fire 

on soil chemical properties (Mohamed et al., 2007; Brye, 2006; Grady and Hart, 2006; 

Garten, 2006; Trammell et al., 2004; Carter and Foster, 2004; Arocena and Opio, 2003; Korb 

et al., 2004; Gimeno-Garcia et al., 2004; Morley et al., 2003). Not all of these authors 

dedicated efforts to understand soil nutrient availability. Authors studying the effects of 

prescribed fire on soil availability inform important differences on the effects. Some of these 

authors found no significant changes in soil cations after prescribed fire (Trammell et al., 

2004), while others observed important changes on soil Ca
2+

, Mg
2+

 and K
+
 (Arocena and 

Opio, 2003). Also some of them have been studying the effects of experimental fires on 

spatial patterns of soil properties (Gimeno-Garcia et al., 2004). Soil ecosystem is spatially 

complex, which requires special methodologies to characterize it accurately over spatial 

surfaces at different depths. Spatial variability and heterogeneity of soil properties are key to 

understanding the structure and function of soil biodiversity, soil hydrology and soil 

productivity. Once the soil heterogeneity is characterized, we can begin to identify soil 

surface variable processes within a study area. All variables in soil ecosystem show 

heterogeneity at scales ranging from millimeters to hundreds of meters. Geostatistics were 

developed to describe the complex patch (3-dimensional) spatial distribution of geologic 

properties.  It is therefore suited to describe the spatial variability and spatial heterogeneity of 

soil patches, and to provide insight about soil processes and the factors which interact.  
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Prescribed fires do not burn uniformly across the landscape or even at smaller scales 

on a hillslope (Robichaud and Miller, 1999). Thus, micro-scale spatial structures may exist for 

different soil variables such as cations. Moreover, rainfall is an external source of cations 

(Trudgill, 1988; Feller and Kimmins, 1984) so that the concentration of cations is not 

conservative.  Variability indicates changes, over space or time, in the magnitude of a given 

soil property. It can be quantified using standard parametric statistics, such as the coefficient 

of variation, and can be randomly distributed or have a spatial structure.  Variability without a 

spatial structure is called heterogeneity (Ettema and Wardle, 2002) or patchiness and the 

spatial distributions are not uniform nor random, but aggregated or clumped. By quantifying 

the structures and scales of heterogeneity, the controls and consequences can be assessed. For 

soil biotic and abiotic properties, heterogeneity is most often quantified using geostatistics, 

because of its robust characteristics and mapping possibilities (Ettema and Wardle, 2002). 

Geostatistics can determine a 2D or 3D model (called a semivariogram or variogram ) of the 

spatial correlations or structures of the soil properties while deterministic interpolation 

techniques such as inverse distance and triangulation do not take into account the spatial 

structures of soil properties. Semi-variograms are also important because they provide spatial 

information that can be used in an interpolation method for estimating values at locations 

where no data is available.  

 

Soil sampling  

 

The sampling design to know the effects of prescribed fires in the soil is always the 

same:  

 

 

 
Figure 5. Soil sampling design and size of pixels. 

 

Soil samples (Figure 5) were collected during 6 sampling campaigns from plots and 

analyzed for Mg
2+

, K
+
 and Ca

2+
. Samples were collected from the plot: (1) before the PF in 

May 2002, (2) just after the PF in May 2002, and then (3) two months (July 2002), five 

months (October 2002), one year (May 2003), and three years (May 2005) after the PF. The 

plots (6 meters x 18 meters, 108 m2) had 42 sampling points.  Three transects consisting of 10 

points (spaced 2 m apart) ran from north to south across the plot.  These transects were 3 m 
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apart in the east-west direction. An additional 12 intermediate sampling points were arranged 

in 3 rhombus patterns along the center transects. Soil samples (5 cm deep from the surface) 

were collected with a small pick, removed the ashes, air dried in the laboratory, and then 

sieved to obtain the <2mm fraction. Available Ca
2+

, Mg
2+

 and K
+
 were analyzed using an 

ammonium acetate extraction (Knudsen et al., 1982) and Atomic Emission Analysis 

(Whiteside and Milner, 1984). 

 

Summary 

 

We used geostatistics to estimate the evolution of soil cations at fine spatial and 

temporal scales in a 108 m
2
 plot in a complex agricultural landscape after prescribed fire. This 

geostatistical modeling constitutes a first approach to integrate over time the complexity in 

soil evolution after the use of fire to manage larger areas. Further improvements should 

integrate the exhaustive spatial description of vegetation structures.  

The index of response measured the percent change in cations relative to pre-fire 

values. The results suggest that patches on the order of m
2
 developed and disappeared during 

the 3 years of sampling after a prescribed fire. Ca
2+

 was the most sensitive to yield errors in 

spatial modelisation with the soil sampling design used. Further studies on Ca
2+

 spatial 

modelisation should look at a finer scale (Figure 6).  

The rainfall was a key factor modifying the cation concentrations in the soil after the 

PF. This PF has provoked distinctive effect regarding the valence of the cations. On the one 

hand this PF caused on the divalent cations a homogenization effect and on the other hand 

caused on the  monovalent cation a heterogenization effect. The highest rainfall in the spring 

of 2003 produced two different spatial patterns: (1) the divalent cations Ca
2+

 and Mg
2+

 

increased in spatial heterogeneity and decreased the spatial correlation, and (2) the 

monovalent cation K
+
 decreased in spatial heterogeneity and increased in spatial correlation. 

In terms of spatial analysis in a plot scale there is a research need of further studies of 

the effects of fire on soil variables. After the prescribed fire the plot lost progressively 

potassium and gained magnesium and calcium. 
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Figure 6. Maps of index of temporal response for the three cations studied.



57 

 

References 

 

Adams, M. A., J. Iser, A. D. Keleher and D. C. Cheal. 1994. Nitrogen and phosphorus 

availability and the role of fire in heathlands at Wilsons Promontory. Australian Journal of 

Botany, 42: 269-281 

Anderson, H.W. 1949. Does burning increase surface runoff? Journal of Forestry, 47: 54-57. 

Antos, J. A, Halpern, C. B, Miller, R. E, Cromack, K; Halaj, M. G. 2003. Temporal and 

Spatial Changes in soil carbon and nitrogen after clearcutting and burning of an old-growth 

douglas–fir forest. USDA Forest Service Pacific Northwest Research Station. Research 

Paper PNW-RP-552; 1: 1-19 

Arcenegui, V.C., C. Guerrero, J. Mataix-Solera, R. Zornoza, J. Mataix-Beneyto, F. García-

Orenes, J. Morales and A. Martínez-Mayoral. 2007. Near-infrared spectroscopy .NIR. to 

estimate the maximum temperatures reached on burned soils: the presence of ashes as 

interference on the estimation. A: X. Úbeda and L. R. Outeiro [eds] The Proceedings of the 

International Meeting of Fire Effects on Soil Properties, Barcelona, Spain 

Arend, J.L. 1941. Infiltration rates of forest soils in the Missouri Ozarks as affected by 

burning and litter removal. Journal of Forestry, 39: 726-728.  

Arocena, J. M; Opio, C. 2003. Prescribed fire-induced changes in properties of sub-boreal 

forest soils. Geoderma, 113: 1 - 16 

Ballard, T. M. 2000. Impacts of forest management on northern forest soils. Forest Ecology 

and Management 133, 1-2: 37-42 

Beckett P. H. T, Webster R .1971. Soil Variability: A review. Soils and Fertilizers 34, 1-5 

Blair B. C. 2005. Fire effects on the spatial patterns of soil resources in a Nicaraguan wet 

tropical forest. Journal of tropical ecology, 21(4): 435-444 

Bond, R.D; J. R. Harris. 1964. The influence of the microflora on physical properties of soils: 

I. Effects associated with filamentous algae and fungi. Australian Journal of Soil Research, 

2: 111-122 

Bourennane, H; King, D; Couturier, A. 2000. Comparison of kriging with external drift and 

simple linear regression for predicting soil horizon thickness with different sample 

densities.  Geoderma, 97: 255 – 271 

Boyer, W. D; J. H. Miller. 1994. Effect of burning and brush treatments on nutrient and soil 

physical properties in young longleaf pine stands. Forest Ecology and Management, 70: 

311-318 

Brady, J., P.R. Robichaud, and F.B. Pierson. 2001. Infiltration rates after wildfires in the 

Bitterroot Valley. ASAE paper number 01-8003, Presented at the 2001 ASAE Annual 

International Meeting, Technical Session 21: Forest soil erosion and water quality. 

American Society of Agricultural Engineers, St. Joseph, Michigan, USA. 

Bray, R. H; Kurtz L T. 1945. Determination of total, organic and available forms of 

phosphorus in soil. Soil Sci., 59: 39-45 

Brown, J. K; Reinhardt, E. D; Fischer, W. C. 1991. Predicting duff and woody fuel 

consumption in northern Idaho prescribed fires. Forest Science, 37(6): 1550 1566 

Brye, K. R. 2006. Soil physiochemical changes following 12 years of annual burning in a 

humid–subtropical tallgrass prairie: a hypothesis. Acta Oecologica, 30: 407 - 413 

Burgy, R.H. and V.H. Scott. 1952. Some effects of fire and ash on the infiltration capacity of 

soils. Transactions American Geophysical Union, 33: 405-416.  

Busse, M.D., K.R. Hubbert, G.O. Fiddler, C.J. Shestak; R.F. Powers. 2005. Lethal soil 

temperatures during burning of masticated forest residues. International Journal of 

Wildland Fire, 14: 267-276 

Byram, G. M. 1959. Combustion of forest fuels. In K. P. Davis [ed]  Forest Fire: Control and 

Use. McGraw Hill, New York, USA.  



58 

 

Campbell, G. S., J. D. Jungbauer, K. L. Bristow; R. D. Hungerford. 1995. Soil temperature 

and water beneath a surface fire. Soil Science, 159 (6): 363-374 

Campbell, R.E., M.B. Baker, P.F. Ffolliott, F.R. Larson and C.C. Avery. 1977. Wildfire 

effects on a ponderosa pine ecosystem: an Arizona case study, Research Paper RM-191.US 

Department of Agriculture, Forest Service, Rocky Mountain Forest and Range 

Experimental Station, Fort Collins, Colorado, USA.  

Carreira, J. A, Niell, F. X; Lajtha, K.1994. Soil nitrogen availability and nitrification in 

Mediterranean shrublands of varying fire history and successional stage. Biogeochemistry, 

26 (3):189-209 

Carter, M. C; Foster, C. D. 2006. Prescribed burning and productivity in southern pine forests: 

a review. Forest Ecology and Management, 191: 93 - 109 

Carter, M. C; Mason, C.D .2004. Prescribed burning and productivity in southern pine forests: 

a review. Forest Ecology and Management 191: 93–109 

Casals, P, Romanya, J; Vallejo, V. R. 2005. Short-term nitrogen fixation by legume seedlings 

and resprouts after fire in Mediterranean old-fields Biogeochemistry  76: 477–501 

Castellnou, M. 2000. Medidas políticas de prevención de incendios forestales. Congreso 

bérico Fógos Forestais. Livro de Actas. ESA Castelo Branco, 17-19 dezembro: 21-23 

Castellnou, M. Rodríguez, L; Miralles, M. 2004. Replantejant-se el futur de la prevenció i 

extinció d‘incendis forestals‖. A: Xarxa ALINFO [eds.]. Incendis forestals, dimensió 

socioambiental, gestió del risc i ecologia del foc. Solsona,: 44-49. 

Cerdà, A. 1996. Seasonal variability of infiltration rates under contrasting slope conditions in 

Southeast Spain. Geoderma, 69: 217-232.  

Cerdà, A. 1997a. Seasonal changes of the infiltration rates in a Mediterranean scrubland on 

limestones. Journal of Hydrology, 198: 209-225. 

Cerdà, A. 1997b. The effect of patchy distribution of Stipa tenacissima L. on runoff and 

erosion. Journal of Arid Environments, 36: 37-51. 

Cerdà, A. 1998a. Post-fire dynamics of erosional processes under Mediterranean climatic 

conditions. Z. Geomorph. N.F. Suppl.-Bd., 42(3): 373-398. 

Cerdà, A. 1998b. Changes in overland flow and infiltration after a rangeland fire in a 

Mediterranean scrubland. Hydrological Processes, 12: 1031-1042. 

Cerdà, A. 1999a. Parent material and vegetation affect soil erosion in eastern Spain. Soil 

Science Society of America Journal, 63: 362-368 

Cerdà, A. 1999b. Seasonal and spatial variations in infiltration rates in badland surfaces under 

Mediterranean climatic conditions. Water Resources Research, 35: 319-328. 

Cerda, A. 2007. Soil water erosion on road embankments in eastern Spain. Science of the 

Total Environment (in press). 

Cerdà, A. and A. Lasanta. 2005. Long-term erosional responses after fire in the Central 

Spanish Pyrenees: 1. Water and sediment yield. Catena, 60: 59-80. 

Cerda, A. and S.H. Doerr. 2005. Influence of vegetation recovery on soil hydrology and 

erodibility following fire: an eleven-year investigation. International Journal of Wildland 

Fire, 14(4): 423-437. 

Cerdà, A., A.C. Imeson, and A. Calvo. 1995. Fire and aspect induced differences on the 

erodibility and hydrology of soils at la Costera, Valencia, Southeast Spain. Catena, 24: 

289-304. 

Certini, G. 2005. Effects of fire on properties of forest soils: a review. Ocologia, 143: 1-10. 

DOI 10.1007/s00442-004-1788-8 

Chandler, C. 1983. Fire in forestry. V. 1. John Wiley, New York, New York,USA.  

Christensen, N. L. 1973. Fire and the nitrogen cycle in California chaparral. Science 181: 66-

68 



59 

 

Clark, B. 2001. Fire effects guide. National Wildfire Coordinating Group. National 

Interagency Fire Center.  

Covington, W. W; S. S. Sackett. 1986. Effect of periodic burning on soil nitrogen 

concentrations in ponderosa pine. Soil Science Society of America Journal, 50: 452–457 

Covington, W. W; Sackett S .S. 1984. The effect of a prescribed burn in Southwestern 

Ponderosa Pine on Organic Matter  and Nutrients in Woody Debris and Forest Floor. 

Forest Science, 30: 183-192 

DeBano L. F, Dunn P. H, Conrad C. E. 1977. Fires effects on physical and chemical 

properties of Chaparral soils. I. Soil nitrogen. Soil Science American Journal, 43:504-509 

DeBano L.F. 2000. The role of fire and soil heating on water repellency in wildland 

environments: a review. Journal of Hydrology, 231-232: 195-206. 

DeBano, L.F. 1971. The effect of hydrophobic substances on water movement in soil during 

infiltration. Soil Science Society of America Proceedings, 35: 340-343. 

DeBano, L.F. 1981. Water repellent soils: a state of the art. General Technical Report PSW-

46. US Department of Agriculture, Forest Service, Pacific Southwest Forest and Range 

Experiment Station, Berkeley, California, USA.  

DeBano, L.F. 1991. The effect of fire on soil. pp. 32-50. In A. E. Harvey and L. F. 

Neuenschwander [eds] Management and productivity of western-montane forest soils. 

Gen. Tech. Rep. INT-280, U.S. Department of Agriculture, Forest Service, Pacific 

Southwest Forest and Range Experiment Station, Berkeley, California, USA 

DeBano, L.F. and C.E. Conrad. 1978. Effects of fire on nutrients in a chaparral ecosystem. 

Ecology, 59: 489-497 

DeBano, L.F., D.G. Neary, and P.F. Ffolliott. 1998. Fire‘s effects on ecosystems. John Wiley 

& Sons, New York, New York, USA.  

DeBano, L.F., D.G. Neary, and P.F. Ffolliott. 1998. Fire's Effects on Ecosystems. John Wiley, 

New York, New York, USA. 

DeBano, L.F., G.E. Eberlein and P.H. Dunn. 1979. Effects of burning on chaparral soils: I. 

Soil nitrogen. Soil Science Society of American Journal, 43: 504-509 

DeBano, L.F., L.D. Mann, and D.A. Hamilton. 1970. Translocation of hydrophobic 

substances into soil by burning organic litter. Soil Science Society of America Journal, 34: 

130-133.  

DeBano, L.F., R.M. Rice and C.E. Conrad. 1979. Soil heating in chaparral fires: effects on 

soil properties, plant nutrients, erosion and runoff. Res. Pap. PSW-145. U.S. Department of 

Agriculture, Forest Service, Pacific Southwest Research Station, Berkeley, California, 

USA.  

DeBano, L.F., S.M. Savage and D.A. Hamilton. 1976. The transfer of heat and hydrophobic 

substances during burning. Soil Science Society American Journal, 40: 779-782 

DeBusk, WF; Newman, S; Reddy, K. R. 2001. Spatio-temporal patterns of soil phosphorus 

enrichment in Everglades Water Conservation Area 2A. Journal of environmental quality, 

30(4): 1438-1446 

Dekker, L.W., C.J. Ritsema. 2000. Wetting patterns and moisture variability in water repellent 

Dutch soils. Journal of Hydrology, 231-232: 148-164. 

DeLuca, T.H; Zouhar, K. L.2000. Influence of selection harvest and prescribed burning on the 

soil nitrogen status of ponderosa pine forests. Forest Ecology and Management, 138: 263-

271 

Dimitrakopoulos, A.P; R.E. Martin. 1990. Measuring and modeling soil-temperature profiles 

during simulated wildland fire conditions. Int. Conf. Forest Fire Research, b.21: 1-17 

Dunkerly, D.L. and K.L. Brown. 1995. Runoff and runon areas in a patterned chenopod 

shrubland, arid Western New South Wales, Australia: characteristic and origin. Journal of 

Arid Environments, 20: 41-55.  



60 

 

Etchevers, P.; Golaz, G; Habets, F. 2001. Simulation of the water budget and the river flows 

of the Rhone basin from 1981 to 1994. Journal of Hydrology. Volum: 244, Número 1-2: 

60-85 

Feller, M. C; Kimmins J. P; Tsze, K. M. 1983. Nutrient losses to the atmosphere during 

slashburns in southwestern British Columbia. Paper presented at the 7th Conf. on Fire and 

Forest Meteorology. Am. Meteorol. Soc., Boston, Mass. 

Feller, M. C; Kimmins, J. P. 1984. Effects of clearcutting and slashburning on streamwater 

chemistry and watershed nutrient budgets in southwestern British Columbia. Water 

Resour. Res., 20 .1.: 29 - 40 

Ferguson, R. I. 1986. River loads underestimated by rating curves. Water Resources 

Research, 22: 74-76 

Fernández, I,A., C. Cabaneiro and T. Carballas. 1997. Organic matter changes immediately 

after a wildfire in an Atlantic forest soil and comparison with laboratory soil heating. Soil 

Biology and Biochemistry, 29.I.: 1-11 

Ferreira, A.J.D., C.O.A. Coelho, A.K. Boulet, and F.P. Lopes. 2005. Temporal patterns of 

solute loss following wildfires in Central Portugal. International Journal of Wildland Fire, 

14(4): 401-412. 

Ferreira, A.J.D., C.O.A. Coelho, R.P.D Walsh, R.A. Shakesby, A. Ceballos, and S.H. Doerr. 

2000. Hydrological implications of soil water repellency in Eucalyptus globulus and Pinus 

pinaster forests, north-central Portugal. Journal of Hydrology, 213-232, 165-177.  

Fisher, R.F; Binkley, D. 2000. Ecology and management of forest soils. .John Wiley and 

Sons, Inc.  

Frey, B. R; Lieffers, V. J; Munson, A. D; Blenis, P. V. 2003. The influence of partial 

harvesting and forest floor disturbance on nutrient availability and understory vegetation in 

boreal mixedwoods. Can. J. For. Res., 33 .7.: 1180 - 1188 

Galán, M;  Lleonart, S. 2004. Plans de gestió de grans incendis forestals. A: Xarxa ALINFO 

[eds.]. Incendis forestals, dimensió socioambiental, gestió del risc I ecologia del foc. 

Solsona: 50-55. 

Garcia-Corona R., E. Benito, E. de Blas; M.E. Varela. 2004. Effects of heating on some soil 

physical properties related to its hydrological behavior in two north-western Spanish soils. 

International Journal of Wildland Fire, 13: 195-199 

Garren, K. H. 1943. Effects of Fire on Vegetation of the Southeastern United States. Botany 

Research, 9 (9): 617-654 

Garten, Jr. C. T. 2006. Predicted effects of prescribed burning and harvesting on forest 

recovery and sustainability in southwest Georgia, USA. Journal of Environmental 

Management, 81: 323 - 332 

Gázquez, A. 1986. Estudio termopluviométrico y balance hídrico de la zona Besós-Tordera. 

Tesi de llicenciatura. Director: Pedro L. Clavero Paricio. Universitat de Barcelona. 

Gilmour, D. A. 1968. Water repellence of soils related to surface dryness. Australian Forestry, 

32:145-148 

Gimeno-Garcia, E; Andreu, V; Rubio, J. L. 2003. Spatial patterns of soil temperatures during 

experimental fires, 118 (1-2): 17-38   

Gimeno-Garcia, E; Andreu, V; Rubio, J. L. 2004. Spatial patterns of soil temperatures during 

experimental fires. Geoderma, 118: 17–38 

Gimeno-García, E; Andreu, V; Rubio, J. L.2000. Changes in organic matter, Nitrogen and 

Phosphorus and cations in soil as a result of fire and water erosion in a Mediterranean 

landscape. European Journal of Soil Science, 51: 201-210 

Giovannini, G. 1992. The effect of fire on soil quality- Physical and chemical aspects. pp. 

217-249. In P. Balabanis, G. Eftichidis and R. Fantechi [eds] Forest Fire Risk and 



61 

 

Management Proceedings of the European School of Climatology and Natural Hazards 

course in Porto Carras, Halkidiki, Greece. European Commission. 

Giovannini, G. 1994. Effect of fire on soil quality. In M. Sala and J. L. Rubio [eds] Soil 

erosion as a consequence of forest fires. Geoforma ediciones: 15 - 27 

Giovannini, G. 1997. Post fire soil erosion risk: how to predict and how to prevent. pp. 305-

321. In G. Eftichidis, P. Balabanis and A. Ghazi [eds.]. Proceedings of the Advanced Study 

Course on Wildfire Management held in Marathon, Greece. European Commission. 

Giovannini, G; Luchessi, S. 1997. Modifications Induced in Soil Physico-Chemical 

Parameters by Experimental Fires at Different Intensities. Soil Science, 162: 479-486 

Goovaerts, P. 1997. Geoestadistics for Natural Resources Evaluations. Applied Geoestadistics 

Series. Oxford University Press, New York: 483 p.  

Grady, K. C; Hart, S. C. 2006. Influences of thinning, prescribed burning, and wildfire on soil 

processes and properties in southwestern ponderosa pine forests: A retrospective study. 

Forest Ecology and Management, 234: 123-135 

Greene, S.W. 1931. The forest that fire made. American Forests, October: 53-54  

Greene, S.W. 1934. Effect of annual grass fires on the organic matter and other constituents 

of virgin longleaf pine soils. Journal of Agricultural Research, 50: 809-822 

Grier, C. C. 1975. Wildfire effects on nutrient distribution and leaching in a coniferous 

ecosystem. Canadian Journal of Forest Research, 5: 599 – 607 

Grillo, F; Castellnou, M; Molina, D; Martínez, E; Díaz, D. 2008. Análisis del incendio 

forestal: Planificación de la extinción. Aifema ediciones. El Chaparral, Granada, Spain.  

Guerrero, C. 2003. Uso de diferentes residuos orgánicos en la restauración de suelos foretales 

quemados. Ph.D. thesis, University Miguel Hernández. Elche, Alicante. 

Guo, L. B; Gifford, R. M. 2002. Soil carbon stocks and landuse change: a meta analysis. 

Global Change Biology, 8: 345-360 

Harden, J. W; Neff, J. C; Sandberg, D. V. 2004. Chemistry of burning the forest floor during 

the FROSTFIRE experimental burn, interior Alaska, 1999. Global Biochememical Cycles, 

18 .3 

Harrison, K. G; Post, W. M; Richter, D. D. 1995. Soil carbon turnover in a recovering 

temperate forest. Global Biogeochemistry Cycles, 9: 449-454 

Hartford, R.A. and W.H. Frandsen. 1992. When it‘s hot, it‘s hot … or maybe it‘s not surface 

flaming may not portend extensive soil heating.. International Journal of Wildland Fire, 2: 

139-144 

Hatten, J., D. Zabowski, G. Scherer; E. Dolan. 2005. A comparison of soil properties after 

contemporary wildfire and fire suppression. Forest Ecology and Management, 220: 227-

241 

Heyward, F. 1937. The effect of frequent fires on profile development of longleaf forest soils. 

Journal of Forestry, 35: 23-27 

Heyward, F. 1938. Soil temperatures during forest fires in the longleaf pine region. Journal of 

Forestry, 36: 478-491 

Hirobe, M; Tokuchi, N; Wachrinrat, C. 2003. Fire history influences on the spatial 

heterogeneity of soil nitrogen transformations in three adjacent stands in a dry tropical 

forest in Thailand. Plant and soil, 249(2): 309-318 

Holtschlag, D. 2001. Optimal estimations of suspended-sediment concentrations in streams. 

Hydrological Processes, 15: 1133-1155 

Hopmans, P. 2003. Effects of repeated low-intensity fire on carbon, nitrogen and phosphorus 

in the soils of a mixed eucalypt foothill forest in south-eastern Australia. Research Report 

No. 60. Forest Science Centre Department of Sustainability and Environment, Heidelberg, 

Germany. 



62 

 

Hungerford, R. D., M.G. Harrington, W.H. Frandsen, R.C. Ryan; J.G. Niehoff. 1990. 

Influence of fire on factors that affect site productivity. pp. 32-51. In A.E.Harvey, A.E. 

L.F. Neuenschwander, [compilers]. Symposium on Management and Productivity of 

Western-Montana Forest Soils, Boise, Idaho, USA. 

Hungerford, R. D; G.S. Campbell. 1991. Evaluation of models predicting soil heating under 

fires. pp. 186-187. In P. L. Andrews and D. F. Potts. [eds] 1 Conference Proceeding, SAF 

Publication 4-16-1991. Society of American Foresters, Bethesda, Maryland, USA.  

Imeson, A.C. 1971. Heather burning and soil erosion on the North Yorkshire Moors. Journal 

of Applied Ecology, 8: 537-542. 

Imeson, A.C., J.M. Verstraten, E.J. van Mulligen, and J. Sevink. 1992. The effect of fire and 

water repellency on infiltration and runoff under Mediterranean type forest. Catena, 19: 

345-361. 

Inbar, M., L. Wittenberg, and M. Tamir. 1997. Soil erosion and forestry management after 

wildfire in a Mediterranean woodland, Mt. Carmel, Israel. International Journal of 

Wildland Fire, 7: 285-294.  

Jain T.H. and R.T. Graham. 2003. Fire severity classification: uses and abuses. Abstract. The 

5th Symposium on Fire and Forest Meteorology. 2nd International Wildland Fire Ecology 

and Fire Management Congress. Orlando, Florida, USA.  

Johnston, M; Elliott, J. 1998. The effect of fire severity on ash, and plant and soil nutrient 

levels following experimental burning in a boreal mixedwood stand. Can. J. Soil Sci., 78 

(1): 35- 44 

Kang, B.T;  A. Sajjaponse. 1980. Effect of heating on properties of some soil from southern 

Nigeria and growth rice. Plant and Soil, 55: 85-95 

Kauffmann, J. B., D. L. Cummings; D. E. Ward. 1994. Relationships of fire, biomass and 

nutrient dynamics along a vegetation gradient in the Brazilian Cerrado. Journal of Ecology, 

82: 519-531 

Kennard, D. K; Gholz, H. L. 2001. Effects of high- and low-intensity fires on soil properties 

and plant growth in a Bolivian dry forest. Plant and Soil, 234 (1): 119-129  

Khanna, P. K;  R. J. Raison. 1986. Effect of fire intensity on solution chemistry of surface soil 

under a Eucalyptus pauciflora forest. Australian Journal of Soil Research, 24: 423-434 

Kitur, B. K; W. W. Frye. 1983. Effects of heating on soil chemical properties and growth and 

nutrient composition of corn and millet. Soil Science Society of America Journal, 47: 91-

94 

Knight, H. 1966. Loss of nitrogen from the forest floor by burning. Forestry Chronicle, 42: 

149-152 

Knight, R.W., W.H. Blackburn, and C.J. Scifres. 1983. Infiltration rates and sediment 

production following herbicide/fire brush treatments. Journal of Range Management, 36: 

154-157. 

Korb, J. E., Johnson, N. C., Covington, W. W. 2004. Slash Pile Burning Effects on Soil Biotic 

and Chemical Properties and Plant Establishment: Recommendations for Amelioration 

Restoration Ecology, 12 .1.: 52 - 62 

Krige, D. G. 1981. Lognormal-de Wijsian geostatistics for ore evaluation. South African 

Institute of Mining and Metallurgy Monograph Series. Geosta- tistics I. South Africa 

Institute of Mining and Metallurgy, Johannesburg, South Africa. 

Kutiel P, Inbar M .1993. Fire impacts on soil nutrients and soil erosion in a Mediterranean 

pine forests plantation. Catena 20, 129-139.  

Kutiel P, Naveh Z .1987. The effect of fire on nutrients in a pine forests soil. Plant Soil, 104: 

269-274 



63 

 

Kutiel, P;  Z. Naveh. 1987. Soil properties beneath Pinus halepensis and Quercus calliprinos 

trees on burned and unburned mixed forest on Mt. Carmel, Israel. Forest Ecology and 

Management, 20: 11-24 

Lal R. 2004. Soil carbon sequestration impacts on global climate change and food security. 

Science, 304: 16-23 

Lal, R. 2001. World cropland soils as a source or sink for atmospheric carbon. Advances in 

Agronomy, 22: 75-117 

Lam, N. S. N. 1986. Geographical patterns of cancer mortality in China. Social Science and 

Medicine, 23(3): 241-247 

Lark, M. R. 2001. Book review: Geostatistics for environmental scientist. European Journal 

of Soil Science, 52: 521-528 

Lasanta, A. and A. Cerdà. 2005. Long-term erosional responses after fire in the Central 

Spanish Pyrenees: 2. Solute release. Catena, 60: 81-100. 

Lavee, H., P. Kutiel, M. Segev, and Y. Benyamini. 1995. Effect of surface roughness on 

runoff and erosion in a Mediterranean ecosystem: the role of fire. Geomorphology, 11: 

227-234. 

Lewis, W. M. 1974. Effects of fire on nutrient movement in a South Carolina pine forest. 

Ecology, 55: 1120 - 1127 

Li, Z. W; Zhang, YK; Schilling, K. 2006. Cokriging estimation of daily suspended sediment 

loads. Journal of Hydrology, 327 (3-4): 389-398 

Longley, P. A; Batty, M. 1989. Fractal measurement and cartographic line generalization. 

Computers and Geosciences 15: 167-183 

Lousier, J. D; Parkinson, D. 1976. Litter decomposition in a cool temperate deciduous forest. 

In: Weber MG .ed. .1987. Decomposition, litter fall, and forest floor nutrient dynamics in 

relation to fire in eastern Ontario jack pine ecosystems. Canadian Journal Forest Research, 

17: 1496 - 1506 

Maars, R.H., R.D. Roberts, R.A. Skeffinton; A.D. Bradshaw. 1983. Nitrogen in the 

development of ecosystems. pp. 131-137. In J.A.Lee, S. McNeill and I.H. Rorison [eds] 

Nitrogen as an ecological factor. Blackwell Science Publishing, Oxford, England. 

Macadam, A. 1987. Effects of Prescribed Fire on Forest Soils B.C. Min. For. Research Report 

89001-PR. 

Macadam, A. 1989. Effects of prescribed fire on forest soils. Research Report, 89001-PR., 

B.C. Ministry of Forests, Smithers, British Columbia, Canada. 

Marcos, E., R. Tarrega, and E. Luis-Calabuig. 2000. Comparative analysis of runoff and 

sediment yield with a rainfall simulator after experimental fire. Arid Soil Research and 

Rehabilitation 14: 293-307. 

Martin, D.A. and J.A. Moody. 2001. Comparison of soil infiltration rates in burned and 

unburned mountainous watersheds. Hydrological Processes, 15: 2893-2903. 

Martínez, E; Larrañaga, A. 2004. Programa de gestió de cremes prescrites a Catalunya. A: 

Xarxa ALINFO [eds.]. Incendis forestals, dimensió socioambiental, gestió del risc I 

ecologia del foc. Solsona: 71-76. 

Mataix-Solera, J. 1999. Alteraciones físicas, químicas y biológicas en suelos afectados por 

incendios forestales. Contribución a su conservación y regeneración. Ph.D. thesis, 

University of Alicante. Alicante. 

Mataix-Solera, J. 2001. Forest fires in Mediterranean environments and their effects on soils. 

Seminar in the University of Wales Swansea. United Kingdom Department of Geography.  

Mcghie, D. A; Posner, A. M.  1980. Water repellence of a heavy textured Western Australian 

surface soil. Autralian Journal of Soil Research, 18 (3): 309 - 323 



64 

 

McKee, W.H. 1982. Changes in soil fertility following prescribed burning on coastal plains 

pine sites, Res. Paper SE 234. U.S. Department of Agriculture, Forest Service, 

Southeastern Forest Experiment Station, Ashville, North Carolina, USA. 

McNabb, D. H; Cromack, K. Jr. 1990. Effects of prescribed fire on Nutrient and soil 

productivity. In: Natural and Prescribed fire in Pacific Northwest Forest. Eds Walstad JD, 

Radosevich SR, Sandberg DV. pp125-142. Oregon State University Press, Corvallis, 

Oregon. 

Mohamed, A; Hardtle, W; Jirjahn, B; Niemeyer, T; von Oheimb, G. 2007. Effects of 

prescribed burning on plant available nutrients in dry heathland ecosystems. Plant Ecology, 

189: 279 - 289 

Mölders, N.; Haferkorn, U.; Döring, J.; Kramm, G. 2003. ―Long-term investigations on the 

water budget quantities predicted by the hydro-thermodynamic soil vegetation scheme 

HTSVS. Part II: Evaluation, sensitivity, and uncertainty‖. Meteorology and atmospheric 

physics. Volum: 84 Número 1-2: 137-156 

Monleon, V.J; Cromack Jr. K; Landsberg, J. D. 1997. Short and long-term effects of 

prescribed underburning on nitrogen availability in ponderosa pine stands in central 

Oregon. Canadian Journal of Forest Research, 27: 369-378. 

Moody, J.A. and D.A. Martin. 2001a. Initial hydrologic and geomorphic response following a 

wildfire in the Colorado Front Range. Earth Surface Processes and Landforms, 26: 1049-

1070. 

Moody, J.A. and D.A. Martin. 2001b. Post-fire, rainfall intensity-peak discharge relation for 

three mountainous watersheds in the western USA. Hydrological Processes 15: 2981-2993.  

Moreno, J. M; Oechel, W. C. 1989. A simple method for estimating fire intensity after a burn 

in California Chaparral. Acta Oecologica, 10/1: 57-68.  

Morley, S; Grant, C; Hobbs, R., Cramer, V. 2004. Long-term impact of prescribed burning on 

the nutrient status and fuel loads of rehabilitated bauxite mines in Western Australia. 

Forest Ecology and Management, 190: 227 - 239 

Neary, D. G; Klopatek, C. C; DeBano, L. F; Folliott, P. F. 1999. Fire effects on belowground 

sustainability: a review and synthesis. Forest Ecology and Management, 122: 51–71. 

Neary, D.G; Ryan, K. C; DeBano, L. F; Leonard, F. 2005. Wildland fire in ecosystems: 

effects of fire on soils and water. Gen. Tech. Rep. RMRS-GTR-42-vol.4. U.S. Department 

of Agriculture, Forest Service, Rocky Mountain Research Station, Ogden, Utah, USA. 

Newland, J. A; DeLuca, T. H. 2000. Influence of fire on native nitrogen-fixing plant and soil 

nitrogen status in ponderosa pine–Douglas-fir forests in western Montana. Canadian 

Journal of Forestry, 30: 274-282 

Nielsen D.R; Wendroth O. 2003. Spatial and Temporal Statistics. Reiskirchen, Germany: 

CATENA verlag GeoEcology textbook: 398pp. 

Odion, C. D; Davis, F. W. 2000. Fire, soil heating, and the formation of vegetation patterns in 

chaparral. Ecological Monographs, 70 (1): 149-169. 

Outeiro, L., Asperó, F; Úbeda, X. 2008. Geostatistical methods to study spatial variability of 

soil cations after a prescribed fire and rainfall. Catena. Vol. 74, Issue, 3:  310-320.  

Outeiro, L; Úbeda, X; Farguell J. 2007. Sequential simulation with external drift of suspended 

sediment concentration during an extreme rainfall episode in a Mediterranean experimental 

basin. Proceedings on the European Geoscience Union. Vienna, 2007. HS30 Experimental 

river basins. 15-20 April 2007, Vienna 

Pardini, G; Gispert M, Dunjó, G. 2004. Relative influence of wildfire on soil properties and 

erosion processes in different Mediterranean environments in NE Spain. Science of Total 

Environment, 328: 237–246 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VCG-4SP4B41-1&_user=145085&_coverDate=08%2F15%2F2008&_rdoc=18&_fmt=high&_orig=browse&_srch=doc-info(%23toc%235954%232008%23999259996%23695683%23FLA%23display%23Volume)&_cdi=5954&_sort=d&_docanchor=&_ct=19&_acct=C000012098&_version=1&_urlVersion=0&_userid=145085&md5=c8f120c6f37482944ed80e94462185f5
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VCG-4SP4B41-1&_user=145085&_coverDate=08%2F15%2F2008&_rdoc=18&_fmt=high&_orig=browse&_srch=doc-info(%23toc%235954%232008%23999259996%23695683%23FLA%23display%23Volume)&_cdi=5954&_sort=d&_docanchor=&_ct=19&_acct=C000012098&_version=1&_urlVersion=0&_userid=145085&md5=c8f120c6f37482944ed80e94462185f5


65 

 

Pare, D; Bergeron, Y; Longpre, M. H. 2001. Potential productivity of aspen cohorts 

originating from fire, harvesting, and tree-fall gaps, on two deposit types in northwestern 

Quebec. Canadian Journal Forest Research, 31: 1067 - 1073 

Pierson, F.B., P.R. Robichaud, and K.E. Spaeth. 2001. Spatial and temporal effects of wildfire 

on the hydrology of step rangeland watershed. Hydrological Processes 15: 2905-2916. 

Pierson, F.B., P.R. Robichaud, C.A. Moffet, and K.E. Spaeth. 2006. Erosion following fire in 

a sagebrush ecosystem of the northern Great Basin, USA. In International Soil 

Conservation Organization. 2006. Proceedings of the 14th Conference of International Soil 

Conservation, Marrakech, Morocco, CD-ROM. 

Pietikainen, J., Hiukka, R; Fritze, H. 2000. Does short-term heating of forest humus change 

its properties as a substrate for microbes?. Soil Biology and Biochemestry, 32 (2): 277 - 

288 

Piñol, J. 2004. Acumulació de combustiblei la paradoxa de l‘extinció. A: Xarxa ALINFO 

[eds.]. Incendis forestals, dimensió socioambiental, gestió del risc I ecologia del foc. 

Solsona, p. 39-43. 

Piqué, M. 2004. La gestió forestal com a eina per a la prevenció dels grans incendis forestals. 

A: Xarxa ALINFO [eds.]. Incendis forestals, dimensió socioambiental, gestió del risc I 

ecologia del foc. Solsona, p. 28-33. 

Pivello, V. R; Coutinho, L. M. 1992. Transfer of macro-nutrients to the atmosphere during 

experimental burnings in an open cerrado (Brazilian savanna). Journal of Tropical 

Ecology, 8: 487-497. 

Quintana, J. R; Cala, V; Moreno, A. M; Parra, J. G. 2007. Effect of heating on mineral 

components of the soil organic horizon from a Spanish juniper Juniperus thurifera L. 

woodland. Journal of Arid Environments, 71: 45 - 56 

Raison, R.J; Keith, H; Khanna, P. K. 1990. Effects of fire on the nutrient supplying capacity 

of forest soils. pp. 39-54. In W.J.Dyck and C.A. Meeg [eds] Impact of intensive harvesting 

on forest site productivity. Bull. No. 159. Forest Research Institute, Rotorua, New Zealand 

Richter, D. D; Markewitz D. 1996. Carbon changes during the growth of loblolly pine on 

formerly cultivated soil: the Calhoun Experimental Forest, USA. In ‗Evaluation of Soil 

Organic Matter Models‘ .Eds Powlson DS, Smith P, Smith JU. pp397-407 Springer-

Verlag, Berlin. 

Roberts, F.J.; Carbon, B. A. 1972. Water repellence in sandy soils of southwestern Australia. 

Australian Journal of Soil Research, 10: 35-42. 

Robichaud, P. R. 1996. Spatially-varied erosion potential from harvested hillslopes after 

prescribed fire in the Interior Northwest.  Ph.D. dissertation. Moscow, ID: University of 

Idaho. 

Robichaud, P. R. 1997. Geostatistics: a new tool for describing spatially-varied surface 

conditions from timber harvested and burned hillslopes. ASAE Annual International 

Meeting, Minneapolis, MN. Paper No. 97-2092. St. Joseph, MI: American Society of 

Agricultural Engineers: 133-136. 

Robichaud, P. R. and R.D. Hungerford. 2000. Water repellency by laboratory burning of four 

northern Rocky Mountain forest soils. Journal of Hydrology, 231-232(1-4): 207-219.  

Robichaud, P.R. 2000. Fire effects on infiltration rates after prescribed fire in Northern Rocky 

Mountain forests, USA. Journal of Hydrology, 231-232: 220-229. 

Robichaud, P.R. 2005. Measurement of post-fire hillslope erosion to evaluate and model 

rehabilitation treatment effectiveness and recovery. International Journal of Wildland Fire, 

14(4): 475-485. 

Robichaud, P.R. and S.M.  Miller. 1999. Spatial interpolation and simulation of post-burn 

duff thickness after prescribed fire. International Journal of Wildland Fire 9(2): 137-143.  



66 

 

Robichaud, P.R. and T. A. Waldrop. 1994. A comparison of surface runoff and sediment 

yields from low-and-high severity site preparation burns. Water Research Bulletin, 30: 27-

34. 

Robichaud, P.R., F.B. Pierson, and R.E. Brown. 2007b. Runoff and erosion effects after 

prescribed fire and wildfire on volcanic ash-cap soils, pp. 83-94. In Page-Dumroese, D., R. 

Miller, J. Mital, P. Mc Daniel, D. Miller [tech. eds.] 2007. Proceedings of Valcanic-Ash-

Derived Forest Soils of the Inland Northwest: Properties and Implications for Management 

and Restoration, Proceedings RMRS-P-44, US Department of Agriculture, Forest Service, 

Rocky Mountain Research Station, Fort Collins, Colorado, USA.  

Robichaud, P.R., F.B. Pierson, R.E. Brown, and J.W. Wagenbrenner. 2007a. Measuring 

effectiveness of three postfire hillslope erosion barrier treatments. Hydrological Processes 

(in press). 

Rollinger, J. L, Strong T. F, Grigal, D. F.1998. Forested soil carbon storage in landscapes of 

the Northern Great Lakes Region. In ‗Advances in Soil Science: Management of Carbon 

Sequestration in Soil‘ .Eds Lal R, Kimble JM, Follet RF, Stewart BA.. pp.335-350 CRC 

Press, Boca Raton, Florida.  

Romanyà, J, Casals, P; Vallejo, V. R. 2001. Short-term effects on soil nitrogen availability in 

Mediterranean grasslands and shrublands growing in old fields. Forest Ecology and 

Management, 147: 39-53 

Ryan, K. C; Noste, N. V. 1985. Evaluating prescribed fires. pp. 230-238. In J.E.Lotan, B.M. 

Kilgore, W.C. Fischer and R.W. Mutch [eds] Proceedings—symposium and workshop on 

wilderness fire. Gen. Tech. Rep. INT-182. U.S. Department of Agriculture, Forest Service, 

Intermountain Forest and Range Experiment Station, Ogden, Utah, USA.  

Ryan, K.C. 2002. Dynamic interactions between forest structure and fire behavior in boreal 

ecosystems. Silva Fennica, 36 (1): 13-39. 

Saa, A; Trasar-Cepeda, C; Gil-Sotres, F; Carballas, T. 1993. Changes in soil phosphorus and 

acid phosphatase activity immediately following forest fires. Soil Biology and 

Biochemistry, 25: 1223-1230 

Sanscrainte, C.L; Peterson, D. L; McKay, S. 2003. Carbon storage and soil properties in late-

successional and second-growth subalpine forests in the North Cascade Range, 

Washington. Northwest Science, 77 (4): 297 - 307 

Sanz, C. 1982. Estudio termopluviométrico y balance hídrico de la cuenca del río Segre. Tesi 

de llicenciatura. Director: Pedro L. Clavero Paricio. Universitat de Barcelona. 

Savage, S. M; Martin, J. P;  Letey. J. 1969. Contribution of humic acid and a polysocharide to 

water repellency in sand and soil. Soil Science Society of America Proceedings, 33: 149-

151. 

Scheuner, E. T; Makeschin, F; Wells, E. D; Carter, P. Q. 2004. Short-term impacts of 

harvesting and burning disturbances on physical and chemical characteristics of forest soils 

in western Newfoundland, Canada. European Journal Forest Research, 123: 321 - 330. 

Schoch, P; Binkley, D. 1986. Prescribed burning increased nitrogen availability in a mature 

loblolly pine stand. Forest Ecology and Management, 14: 13–22 

Soil Survey Staff. 2006. Keys to Soil Taxonomy. 10th ed. NRCS, Washington, DC  

Soler, M; Sala, M; Gallart, F. 1994. Post-fire evolution of runoff and erosion during an 

eighteen month period. A: M.Sala and J.L. Rubio [eds] Soil erosion as a consequence of 

forest fires. Geoforma ediciones. 149-161. 

Soto, B; Diaz-Fierros, F. 1993. Interactions between plant ash leachates and soil. International 

Journal of Wildland Fire, 3 (4): 207 – 216 

Sparks, D.L. 2005. Environmental Soil Chemistry. Elsevier Academic Press. San Diego, 

California, USA 



67 

 

St. John, T.V; Rundel, P. W. 1976. The role of fire as a mineralizing agent in the Sierran 

coniferous forest. Oecologia, 25: 35-45. 

Stephens, S. L, Meixner, T, Poth, M; McGurk, B; Payne, D .2004. Prescribed fire, soils, and 

stream water chemistry in a watershed in the Lake Tahoe Basin, California. International 

Journal of Wildland Fire, 13 (1): 27–35 

Stevenson, F.J. 1982. Humus Chemistry: Genesis, Composition, Reactions. John Wiley and 

Sons. 

Stewart, O. C. 2002. The effects of burning of grasslands and forests by aborigines the world 

over. pp. 67-354. In O.C.Stewart  [ed]  Forgotten fires: Native Americans and the transient 

wilderness. University of Oklahoma Press, Norman, Oklahoma, USA. 

Sundermeier, A; Reeder, R; Lal, R. 2006. Soil carbon sequestration-Fundamentals Taylor, S. 

W. 1987. Initial effects of slashburning on the nutrient status of two Sub Boreal Spruce 

zone ecosystems. M.Sc. thesis. Univ. B.C., Vancouver, B.C. 

Trammell, T. L. E; Rhoades, C. C; Bukaveckas, P. A.  2004. Effects of Prescribed Fire on 

Nutrient Pools and Losses from Glades Occurring Within Oak-Hickory Forests of Central 

Kentucky. Restoration Ecology, 12 (4): 597 - 604 

Trudgill, S. T. 1988. Soil and Vegetation Systems. 2nd ed. Oxford University Press, New 

York, N.Y.  

Tsutsumi, M; Seya H. 2008. Measuring the impact of large-scale transportation projects on 

land price using spatial statistical models. Papers in regional science 87 (3): 385-402 

Úbeda, X. 1998. Efectes de les diferents intensitats de foc, Durant els incendis forestals, en els 

paràmetres físics i químics del sòl i en l‘increment de l‘escolament i l‘erosió. Ph.D. thesis, 

University of Barcelona, Barcelona, Spain.  

Úbeda, X; Lorca, M; Outeiro R. L; Bernia, S; Castellnou, M. 2005. The effects of prescribed 

fire on soil quality .Prades Mountains, North East Spain. International Journal of Wildland 

Fire, Vol. 14 .(4): 379 – 384 

Valette, J. Rigolot, C; Etienne, M. 1993. Combination de techniques de débrousaillement pour 

l‘aménagement de défense de la fôret contre les incendies. ONF Bullettin Technique, 26: 

21-29 

Viro, P. J. 1974. Effects of forest fire on soil,. In: T. T Kozlowski and C.E. Ahlgren. Editors., 

Fire and ecosystems. Academic Press, New York. p.p. 7-45. 

Wahlenberg, W. G. 1935. Effects of fire and grazing on soil properties and the natural 

reproduction of longleaf pine. Journal of Forestry, 33: 331-337. 

Wahlenberg, W.G; Greens S. W; Reed. H. R. 1939. Effects of fire and grazing on soil 

properties and the natural reproduction of longleaf pine. Journal of Forestry, 33: 331-338. 

Webster R; Oliver, M, A. 1990. Statistical methods in soil and land resource survey. Spatial 

information system, Oxford University Press, New York. USA: 316 p.  

Webster R; Oliver, M, A. 2001. Geostatistics for Environmental Scientists. Chichester, 

England: John Wiley & Sons: 271 pp. 

Wells, C. G; Campbell, R. E; DeBano, L. F; Lewis, C. E; Fredricksen, R. L; Franklin, E. C; 

Frolich R. C; Dunn. P. H. 1979. Effects of fire on Soil: A state-of-knowledge review. 

General Technical Report WO-7. U.S. Department of Agriculture, Forest Service, 

Washington D.C., USA. 

White, E.M; Thompson W. W; Gartner. F. R. 1973. Heat effects on nutrient release from soils 

under ponderosa pine. Journal of Range Management, 26: 22-24. 

Whiteside, P. J; Milner B. A. 1984. Pye Unicm Atomic absorption data book. Pye Unicam 

Ltd, Cambridge, UK. 

Wright, H.A; Bailey, A. W. 1982. Fire ecology, United States and southern Canada. John 

Wiley, New York, New York, USA. 



68 

 

Yallop, A. R, Thacker, J. I, Thomas, G, Stephens M, Clutterbuck B, Brewer T; Sannier CAD. 

2006. The extent and intensity of management burning in the English uplands. Journal of 

Applied Ecology, 43: 1138-1148  

 

WEB 

 

EFI. 2001. http://www.efi.int/portal/efimed.  

http://fire.Forestencyclopedia.net.  

 

http://fire.forestencyclopedia.net/


69 

 

Acknowledgments  

 

The authors thank Dr. Luís Vinha the revision of the English version. 

 

 



Universidade do Minho

Núcleo de Investigação em
Geografia e Planeamento

Organizing Institutions:

Centro de Estudos de Geografia
e Ordenamento do Território

Funded by FCT-MCTES

FIELD TRIP GUIDEBOOK

3rd International Meeting of Fire Effects on Soil
Properties

Editors:
António Bento Gonçalves, António Vieira

Authors:
António Bento Gonçalves, António Vieira,
Flora Ferreira Leite, Luciano Lourenço,
Hermínio Botelho, Paulo Fernandes,
Xavier Úbeda, Artémio Cerdà

 F
IE

LD
 T

RI
P 

G
U

ID
EB

O
O

K 
   

   
 3

rd
 In

te
rn

at
io

na
l M

ee
tin

g 
of

 F
ire

 E
ffe

ct
s o

n 
So

il 
Pr

op
er

tie
s


	Guidebook_K1
	Guidebook_inside
	LivroGuia_06.03.2011_Iniciais.pdf
	LivroGuia_06.03.2011_Corpo

	Guidebook_K2



