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Abstract

In this paper, we consider the kernel estimator of the p-dimensional marginal distribution
function of a stationary, positively associated sequence of random variables. For this
setting, we state results concerning the asymptotic behaviour of this estimator extending
some characterizations available in the literature. In addition, we present a simulation
study about the empirical process constructed from such a estimator illustrating its
asymptotic normality.
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1. Introduction

Estimation of distribution functions has been, in parallel to estimation of density functions,
one of the classical problems in statistics. For a stationary sequence of random variables,
the kernel estimator of its p-dimensional marginal distribution function can be considered,
assuming that the available sample satisfies some kind of positive dependence. Lehmann
(1966) and Esary et al. (1967) introduced a notion of positive dependence. After of these
works, various other types of dependence have also been proposed. These dependence
structures have received some attention in the statistical literature, especially since the
early 1990’s. In what regards the asymptotic behaviour with respect to convergence in
distribution, the dependence structure introduced by Esary et al. (1967), it is completely
characterized by the covariance structure between the variables, as described in Newman
(1984, Theorem 10). Thus, it is natural and convenient to seek sufficient conditions for the
convergence of kernel estimators imposing some adequate decrease rate on the covariances.

For an one-dimensional marginal distribution function, its kernel estimator has been
studied by Roussas (1991, 2000). For this problem, Cai and Roussas (1998) considered
quadrant positive dependence, a type of dependence that is a weaker form of positive
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dependence. Motivated by the need to approximate covariance functions appearing in the
study of empirical processes, the two-dimensional case based on associated samples was
addressed by Azevedo and Oliveira (2000) using the kernel estimator, whereas Henriques
and Oliveira (2003) employed the histogram estimator.

The aims of this work are mainly two. First, to extend to higher dimensions some asymp-
totic results of the kernel estimator of a multivariate marginal distribution function under
the notion positive dependence introduced by Esary et al. (1967) for a sequence of ran-
dom variables. Second, to conduct a simulation study concerning the empirical process of
this estimator. Specifically, we extend to the p-dimensional case the asymptotic normality
characterizations obtained previously by Azevedo and Oliveira (2000) and the almost sure
consistency of the estimator studied by Azevedo and Oliveira (2005). By means of the
simulation study, we illustrate the convergence of the finite dimensional distributions of
the empirical process induced by the estimator, giving some information about the finite
sample behaviour. The simulation model depends on a parameter that may be interpreted
as a measure of how far away the variables can be while remaining dependent. The in-
fluence of this parameter is also illustrated. It is clear that, for sequences that are close
to independence, i.e., for small values of the above mentioned parameter, the asymptotic
normality happens with a quite fast convergence rate.

The paper is organized as follows. Section 2 presents some preliminary aspects for this
study. Section 3 discusses about consistency of the kernel estimator of the distribution
function. Section 4 characterizes the asymptotic behaviour and the convergence rate of the
mean square error (MSE) of this estimator. Section 5 looks at the asymptotic normality
of the finite dimensional distributions of the empirical process constructed from the above
mentioned estimator. Section 6 carries out the simulation study that allows us to describe
the behaviour of the empirical process. Finally, Section 7 sketches some conclusions.

2. Preliminaries

In this section, we present the framework and assumptions for kernel estimation of a
distribution function under positive dependence for the p-dimensional setting.

We recall the definition of association introduced in Esary et al. (1967).

Definition 2.1 The random variables X1, X2, . . . are said to be positively associated if,
for every k ≥ 1 and any real-valued coordinatewise increasing functions G, H: Rk −→ R,

Cov (G(X1, . . . , Xk), H(X1, . . . , Xk)) ≥ 0,

whenever this covariance exists. A sequence of random variables {Xn, n ≥ 1} is said to be
associated if, for every k ∈ N, the random variables X1, . . . , Xk are associated.

Given a stationary sequence of random variables {Xn, n ≥ 1}, denote by Fp its p-
dimensional marginal distribution function. Let U be a p-variate distribution function,
and hn, for n ≥ 1, a sequence of positive real numbers known as bandwidth such that
hn → 0. Taking into account the stationarity, an estimator for Fp is defined by

(̂Fp)n(x) =
1

(n− p)

n−p∑
i=1

U
(

x−Xi,p

hn

)
, (1)

where Xi,p = (Xi, . . . , Xi+p−1) and x = (x1, . . . , xp). We refer to U as the kernel function.
This is the natural extension of the kernel estimator for density functions to distribution
functions.
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For independent samples, Jin and Shao (1999) proved the almost sure consistency of the
MSE of (̂Fp)n(x), deriving that, for every dimension p, the optimal bandwidth rate is of
order n−1/3. For associated samples, it follows from Cai and Roussas (1998) that, under
assumptions on the covariance structure that imply the consistency of the estimator, the
optimal bandwidth rate for the one-dimensional case is of order n−1. This characterization
of the optimal bandwidth rate depends on the decay rate of the covariances as shown in
Cai and Roussas (1998), where strengthening of the assumptions on the covariances the
optimal bandwidth rate of order n−1/3, as for independent sequences, is recovered. Azevedo
and Oliveira (2000) considered the two-dimensional kernel estimation of the distribution
function of (X1, Xk+1), characterizing the optimal bandwidth rate, with results similar to
those given in Cai and Roussas (1998). Next, we list the assumptions that are used in the
sequel. This set of conditions is basically the same as in Cai and Roussas (1998) and Jin
and Shao (1999).

Assumptions

(A1) Let {Xn, n ≥ 1} be a strictly stationary sequence of associated random variables
with bounded density function f ;

(A2) The distribution function Fp of the random vector X = (X1, . . . , Xp) has bounded,
continuous partial derivatives of first and second orders;

(A3) For each j ≥ 1, the distribution function Fp, j of the 2p-dimensional random vector
(X1,p,Xj,p) has bounded, continuous partial derivatives of first and second orders;

(A4) The kernel function U is p times differentiable and u = ∂pU
∂x1...∂xp

satisfies

(i)
∫

Rp

u(x) dx = 1; (ii)
∫

Rp

x u(x) dx = 0; (iii)
∫

Rp

x x> u(x) dx <∞;

(A5) nh2
n → 0;

(A5∗) nh4
n → 0;

(A6)
∞∑
n=1

n (Cov (X1, Xn))1/3 <∞;

(A6∗) There exists τ ∈ (0, 1) such that
∞∑
j=1

(
Cov (X1, Xj+1)

)(1−τ)/3
<∞;

(A7) The function V = ∂pU2

∂x1···∂xp
satisfies∫

Rp

x x>V(x) dx <∞.

Remark 2.1 (A1) and (A6) have been used by Cai and Roussas (1998) for the treatment
of the univariate case. These assumptions state the regularity of the one-dimensional dis-
tribution function and a convenient decrease rate on the covariances. The later assumption
enables the control of pairs of random variables.

Remark 2.2 The strengthened assumptions (A5∗) and (A6∗) have also been used in the
one-dimensional case by Cai and Roussas (1998). The authors obtained optimal bandwidth
characterization with the same rate as for independent sequences of random variables.

Remark 2.3 It is obvious that (A6) implies (A6∗). This later assumption has been shown
to imply the L2[0, 1] weak convergence of the one-dimensional empirical process based on
associated random variables; see Oliveira and Suquet (1996).
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Finally, let us define some auxiliary real valued functions V1, V2, V3 and V4 on Rp as:

• V1(x) =
p∑
i=1

∂2Fp

∂x2
i

(x)
∫

Rp

t2iu(t) dt + 2
p−1∑
j=1

p∑
i=j+1

∂2Fp

∂xj∂xi
(x)
∫

Rp

ti tj u(t) dt;

• V2(x) =
p∑
i=1

∂Fp

∂xi
(x)
∫

Rp

ti V(t) dt;

• V3(x) =
p∑
i=1

∂2Fp

∂x2
i

(x)
∫

Rp

t2i V(t) dt + 2
p−1∑
i=1

p∑
j=i+1

∂2Fp

∂xj∂xi
(x)
∫

Rp

ti tj V(t) dt;

• V4(x) =
2p∑
i=1

∂2Fp, j

∂x2
i

(x,x)
∫

Rp

t2i u(t) dt + 2
2p−1∑
i=1

2p∑
j=i+1

∂2Fp, j

∂xj∂xi
(x,x)

∫
Rp

ti tj u(t) dt,

where t = (t1, . . . , tp).

3. Consistency

In this section, we look at the almost sure consistency of (̂Fp)n(x). This results follows from
an application of a strong law of large numbers (SLLN) to the sequence of random variables
U({x−Xi,p}/hn), for i = 1, . . . , n− p, that appears in the definition of (̂Fp)n(x). Notice
that, as U is a distribution function, thus nondecreasing, these variables are associated.
To prove this SLLN, we characterize the asymptotic behaviour of the covariances between
the corresponding variables. The almost sure consistency then follows from the asymptotic
unbiasedness of (̂Fp)n(x), which is proved in the following theorem.

Theorem 3.1 Assume the sequence of random variables {Xn, n ≥ 1} satisfy (A1). Then,
for each x ∈ Rp,

(i) IE
[
(̂Fp)n(x)

]
→ Fp(x);

(ii) If (A2) and (A4) are also satisfied, IE
[
(̂Fp)n(x)

]
= Fp(x) + V1(x)h2

n/2 + o(h2
n).

Proof Part (i) follows from an application of the dominated convergence theorem. For
part (ii), rewrite (̂Fp)n(x) as

(̂Fp)n(x) =
∫

Rp

U
(

x−s
hn

)
dφ̂n(s), (2)

where φ̂n(x) = 1
(n−p)

∑n−p
i=1 I(−∞,x1]×···×(−∞,xp](Xi,p). It is easily verified that IE(φ̂n(x)) =

Fp(x), so the result follows from Equation (2), applying Fubini’s Theorem, making a
standard change of variable and using a Taylor expansion taking into account (A2) and
(A4). �

As mentioned, the SLLN that gives the almost sure consistency of (̂Fp)n follows from a
convenient control on the covariances between the terms summed in the definition of the
estimator given in Equation (1).
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Lemma 3.2 Assume the sequence of random variables {Xn, n ≥ 1} satisfy (A1)-(A4).
Then, for each x ∈ Rp,

(i) In, j(x) = Ij(x) +O(h2
n) = Fp, j(x,x)− F2

p(x) +O(h2
n), for each j ∈ N;

(ii) There exists a constant M > 0, independent from x, such that, for each j > p− 1,

Ij(x) ≤M
p∑

k=1

(p−k+1)(Cov (X1, Xj+k))1/3 +M

p−1∑
k=1

(p−k)(Cov (X1, Xj−k+1))1/3,

where

In, j(x) = Cov
(
U
(

x−X1,p

hn

)
,U
(

x−Xj,p

hn

))
,

Ij(x) = Cov
(
I(−∞,x](X1,p), I(−∞,x](Xj,p)

)
and IA is the indicator function of the set A.

We first quote a result by Lebowitz (1972) needed to prove Lemma 3.2.

Lemma 3.3 Let A,B ⊂ {1, . . . , n} and, for each i ∈ A ∪ B, let xi ∈ R. Define HA,B =
P(Xi > xi, i ∈ A ∪ B) − P(Xj > xj , j ∈ A) P(Xk > xk, k ∈ B). If the random variables
X1, . . . , Xn are associated then, 0 ≤ HA,B ≤

∑
i∈A, j∈BH{i},{j}.

Proof [Lemma 3.2] To prove part (i), write

In, j =
∫

R2p

U
(

x−s
hn

)
U
(

x−t
hn

)
dFp, j(s, t)−

(∫
Rp

U
(

x−s
hn

)
dFp(s)

)2

.

We only need to take care of the first integral. As U is an integral, we may use Fubini’s
Theorem followed by a standard change of variable, as before. Next, expand Fp, j to the
second order, use (A3) to make the linear terms equal to zero and (A4) to control the
coefficients of h2

n, finding Fp, j(x,x) + O(h2
n). This together with the characterization of

the behaviour of IE[(̂Fp)n(x)], as given in Theorem 3.1, completes the proof of part (i). To
prove part (ii), first use Lemma 3.3 to find

Cov
(
I(−∞,x](X1,p), I(−∞,x](Xj,p)

)
≤

p∑
k=1

p∑
i=1

Cov
(
I(−∞,xk](Xk), I(−∞,xj+i](Xj+i)

)
. (3)

From (A1) and Roussas (1995, Lemma 2.6), there exits a constant M > 0 such that

Cov
(
I(−∞,xk](Xk), I(−∞,xj+i](Xj+i)

)
≤M (Cov (Xk, Xj+i))1/3. (4)

Inserting Equation (4) in Equation (3) and taking into account the stationarity of the
random variables, the proofs follows. �

Remark 3.1 Notice that such as in Cai and Roussas (1998), if we assume that the covari-
ance sequence Cov (X1, Xj+1), for j ≥ 1, is decreasing, then, under the same assumptions
as in Lemma 3.2, the upper bound Ij(x) ≤ p2(Cov (X1, Xj+1))1/3 holds.
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We may finally conclude the almost sure consistency of the estimator (̂Fp)n in the
following theorem.

Theorem 3.4 Assume the sequence of random variables {Xn, n ≥ 1} satisfy (A1)-(A4)
and (A6). Then, for each x ∈ Rp, (̂Fp)n(x)→ Fp(x) almost surely.

Proof As proved in Theorem 3.1, IE[(̂Fp)n(x)]→ Fp(x). Thus, it is enough to verify that
U({x−Xm,p}/hn), for m ≥ 1, satisfy a SLLN. The stationarity of U is obvious. In addition,
as U is a distribution function, it is coordinatewise increasing and so these variables are
also statistically associated. Then, according to Newman (1980), the condition

lim
n→∞

1
(n− p)

n−p∑
j=1

In, j(x) = 0 (5)

implies the SLLN. Now, it follows from Lemma 3.2 that

In, j(x) ≤M
p∑

k=1

(p−k+1)(Cov (X1, Xj+k))1/3+M
p−1∑
k=1

(p−k)(Cov (X1, Xj−k+1))1/3+O(h2
n)

and so Equation (5) is a consequence of (A6) as well as the association of the variables. �

4. Mean Square Error

In this section, we characterize the asymptotic behaviour and convergence rate of the MSE
of (̂Fp)n. From the results obtained below, it follows immediately the optimal bandwidth
convergence rate of order n−1. Thus, we have a different convergence rate than that for
the independent case, such as was already noted in Cai and Roussas (1998) for the one-
dimensional case. The optimal rate for the bandwidth, when dealing with independent
variables, is of order n−1/3 for every dimension, such as shown in Jin and Shao (1999).
Again, strengthening the assumptions on the decay rate of the covariances as done in Cai
and Roussas (1998), we find a different description of the MSE, which gives, for associated
variables,the optimal bandwidth rate of order n−1/3.

As usual, let us to write

MSE
[
(̂Fp)n(x)

]
= Var

[
(̂Fp)n(x)

]
+
(
IE
[
(̂Fp)n(x)

]
− Fp(x)

)2
. (6)

Since the behaviour of IE
[
(̂Fp)n(x)

]
in Equation (6) is known (cf. Theorem 3.1), we need

to describe the asymptotic behaviour and convergence rate for the variance term given in
this equation, which is shown in the following lemma.

Lemma 4.1 Assume the sequence of random variables {Xn, n ≥ 1} satisfy (A1)-(A4) and
(A7). Then, for each x ∈ Rp,

(i) IE
(
U2
(

x−Xi,p

hn

))
= Fp(x)− hnV2(x) +

h2
n

2
V3(x) + o(h2

n);

(ii)
∣∣∣Var

(
U
(

x−Xi,p

hn

))
− Fp(x)(1− Fp(x)) + hnV2(x)

∣∣∣
= h2

n

(
V3(x)−Fp(x)V1(x)

)
+o(h2

n).
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Proof In what concerns part (i), we have, recalling the definition of V,

IE
([

U
(

x−Xi,p

hn

)]2
)

=
∫

Rp

(∫
(−∞, x−s

hn
]
V(a) da

)
dFp(s) =

∫
Rp

V(a)Fp(x− ahn) da,

using Fubini’s Theorem. Expand now Fp(x−ahn) to the second order, recall the definitions
of the auxiliary functions V2 and V3, and take into account (A4) to find the o(h2

n) term.
In order to verify part (ii), decompose the variance in the standard way and apply part
(i) together with Theorem 3.1 to conclude the proof. �

Theorem 4.2 Assume the sequence of random variables {Xn, n ≥ 1} satisfy (A1), (A2),
(A3), (A4), (A5), (A6) and (A7). Then, for each x ∈ Rp,

(n− p)Var
[
(̂Fp)n(x)

]
= σ2(x)− hnV2(x) + (n− p− 1)h2

n (V4(x)− Fp(x)V1(x))

+O(h2
n)− cn(x),

where σ2(x) = Fp(x)− F2
p(x) + 2

∑∞
j=2

(
Fp, j(x,x)− F2

p(x)
)
, for x ∈ Rp, and

cn(x) = 2
∞∑

j=n−p+1

(
Fp, j(x,x)− F2

p(x)
)

+
2

(n− p)

n−p∑
j=2

(j− 1)
(
Fp, j(x,x)− F2

p(x)
)
, x ∈ Rp.

Proof Use the stationarity of the random variables and Lemmas 3.2 and 4.1 to write

(n− p)Var
[
(̂Fp)n(x)

]
= Fp(x)− F2

p(x)−V2(x)hn + (V3(x)− Fp(x)V1(x))h2
n

+2
n−p∑
j=2

(
Fp, j(x,x)− F2

p(x)
)

+ (n− p− 1)h2
n (V4(x)− Fp(x)V1(x))

− 2
(n− p)

n−p∑
j=2

(j − 1)
(
Fp, j(x,x)− F2

p(x)
)

+O(h2
n).

Summing and subtracting terms of the form
(
Fp, j(x,x)− F2

p(x)
)
, the result follows. �

We may now summarize the above results to describe the behaviour of the mean square
error.

Theorem 4.3 Assume the sequence of random variables {Xn, n ≥ 1} satisfy (A1), (A2),
(A3), (A4), (A5), (A6) and (A7). Then, for each x ∈ Rp,

(n− p)MSE
[
(̂Fp)n(x)

]
= σ2(x)− hn V2(x) +O(nh2

n) + o(hn + nh2
n)− cn(x).

Notice that, with the assumptions made, cn → 0 and it is independent of the bandwidth
choice. So, to find the optimal bandwidth rate, it is enough to minimize the term o(·), which
is achieved by choosing hn = O(n−1), for each dimension p. It is possible to give a more
explicit expression to the optimal bandwidth taking into account the characterizations in
Lemma 4.1 and Theorems 4.2 and 4.3. Tracing the coefficients given in the expressions of
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these results, it is possible to check that we should choose

hn(x) =
V2(x)

2(n− p− 1) (V4(x)− Fp(x)V1(x))
.

We now strengthen the assumptions on the covariance decrease rate assuming the stronger
conditions (A5∗) and (A6∗) and showing that this reflects on the optimal bandwidth rate,
recovering the same rate as in the independent case.

Theorem 4.4 Assume Cov (X1, Xj+1) decreases as j increases and the variables {Xn, n ≥
1} satisfy (A1), (A2), (A3), (A4), (A5∗), (A6∗) and (A7). Then, for each x ∈ Rp,

(n− p)MSE
[
(̂Fp)n(x)

]
= σ2(x)− hn V2(x) +O(nh4

n) + o(hn + nh4
n)− cn(x).

Proof Recall that, as shown in Lemma 3.2, In, j(x) − Ij(x) = O(h2
n), and, as noted in

Remark 3.1, when the covariances are decreasing, we have Ij(x) ≤ p2(Cov (X1, Xj+1))1/3,
and the same inequality holds for In, j(x). Then, it follows that, for a constant c > 0,

|In, j(x)− Ij(x)| = |In, j(x)− Ij(x)|τ |In, j(x)− Ij(x)|1−τ ≤ c̃ h2τ
n

∣∣∣(Cov (X1, Xj+1))(1−τ)/3
∣∣∣ ,

where c̃ = cτ p2(1−τ). Let us now write the variance of the estimator (̂Fp)n(x) as

(n− p)Var
[
(̂Fp)n(x)

]
= Var

(
U
(

x−X1,p

hn

))
+

2
(n− p)

n−p∑
j=2

(n−p−j+1) (In, j(x)−Ij(x))

+
n−p∑
j=2

(n−p−j+1)Ij(x).

Using (A6∗), we have that

1
(n− p)

n−p∑
j=2

(n− p− j + 1) |In, j(x)− Ij(x)| ≤
n−p∑
j=2

|In, j(x)− Ij(x)|

≤ c̃ h2τ
n

∞∑
j=2

(
Cov (X1, Xj+1)

)(1−τ)/3= O(h2τ
n ),

The result now follows readily repeating the arguments as in the proof of Theorem 4.2. �

An optimization of the MSE of (̂Fp)n(x) leads now to the choice of a bandwidth of order
n−1/3, the optimal rate for the estimator when dealing with an independent sequence of
random variables.

5. Finite Dimensional Distributions

In this section, we look at the asymptotic behaviour of the finite dimensional distributions
of the empirical process induced by estimator (̂Fp)n.
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The method is based on a decomposition of the sum defining the estimator into several
blocks. These blocks are afterwards replaced by independent variables with the same dis-
tributions as the original blocks, followed by an application of the Lindeberg central limit
theorem (CLT) to these independent copies. The distance between the original blocks and
the replacing variables is controlled via Newman’s characteristic functions inequality; see
Newman (1984).

In order to state our result in a more tractable way, let us define, for each x,y ∈ Rp,

αn(x) =
√
n− p

(
(̂Fp)n(x)− IE

[
(̂Fp)n(x)

])
(7)

and

α̃n(x) =
√
n− p

(
(̂Fp)n(x)− Fp(x)

)
= αn(x) +

√
n− p

(
IE
[
(̂Fp)n(x)

]
− Fp(x)

)
. (8)

The last term on the right hand of Equation (8) converges to zero using Theorem 3.1.
Thus, we need to concentrate our attention on αn(x) given in Equation (7). Define further

ς2(x,y) = Fp(x ∧ y)− Fp(x)Fp(y) +
∞∑
j=2

(Fp, j(x,y) + Fp, j(y,x)− 2Fp(x)Fp(y)) , (9)

where x ∧ y denotes the vector (min{x1, y1}, . . . ,min{xp, yp}). Notice that ς2(x,y) given
in Equation (9) is symmetric in x and y.

Theorem 5.1 Assume the variables {Xn, n ≥ 1} satisfy (A1), (A2), (A3), (A4),
(A5), (A6) and (A7). Then, for x1, . . . ,xs ∈ Rp, with s ≥ 1, the random vector
(α̃n(x1), . . . , α̃n(xs)) converges in distribution to a Gaussian centered random vector with
covariance matrix

Σ =


ς2(x1,x1) ς2(x1,x2) · · · ς2(x1,xs)

ς2(x2,x1) ς2(x2,x2) · · · ς2(x2,xs)

...
...

. . .
...

ς2(xs,x1) ς2(xs,x2) · · · ς2(xs,xs)


The proof of Theorem 5.1 is divided into several lemmas. We start by describing the

asymptotic behaviour of the covariances of the αn at different points. These are needed to
characterize the variance of some auxiliary variables for the proof of Theorem 5.1.

Lemma 5.2 Under the assumptions of Theorem 5.1, it holds that, for every x,y ∈ Rp,
Cov (αn(x), αn(y))→ ς2(x,y).

Proof Using the stationarity of the variables, we may write

Cov (αn(x), αn(y)) = Cov
(
U
(

x−X1,p

hn

)
,U
(

y−X1,p

hn

))
+

1
(n− p)

n−p∑
j=2

(n− p− j + 1)
(

Cov
(
U
(

x−X1,p

hn

)
,U
(

y−Xj,p

hn

))
+Cov

(
U
(

y−X1,p

hn

)
,U
(

x−Xj,p

hn

)))
.
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Repeating the arguments for the proof of Lemma 3.2, it follows that, for j = 1, . . . , n− p,

Cov
(
U
(

x−X1,p

hn

)
,U
(

y−X1,p

hn

))
= Fp, j(x,y)− Fp(x)Fp(y) +O(h2

n).

Inserting this characterization in Equation (10), we find that the sum in this expression is
equal to

n−p∑
j=2

(Fp, j(x,y)− Fp(x)Fp(y))− 1
(n− p)

n−p∑
j=2

(j − 1) (Fp, j(x,y)− Fp(x)Fp(y)) +O(nh2
n).

Now, using Equation (4), it follows that

n−p∑
j=2

(j − 1)
(n− p)

(Fp, j(x,y)− Fp(x)Fp(y)) ≤ 1
(n− p)

n−p∑
j=2

jCov
(
I(−∞,x](X1,p), I(−∞,y](Xj,p)

)

≤ M

(n− p)

n−p∑
j=2

j

(
p∑

k=1

(p− k + 1)(Cov (X1, Xj+k))1/3

+
p−1∑
k=1

(p− k)(Cov (X1, Xj−k+1))1/3

)
.

Taking into account assumption (A6), this converges to zero. �

Define now the decomposition of the sum into several blocks. Given an integer r ≤ n−p,
let m be the largest integer less or equal than (n− p)/r. Denote

Tn,i(x) = U
(

x−Xi,p

hn

)
− IE

(
U
(

x−Xi,p

hn

))
, Y r

j (x) =
1√
r

jr∑
i=(j−1)r+1

Tn,i(x),

W r
j =

s∑
q=1

cqY
r
j (xq), Zn,i =

s∑
q=1

cqTn,i(xq), Zn =
1√
n− p

s∑
q=1

cq

n−p∑
i=1

Tn,i(xq),

where c1, . . . , cq ∈ R. The variable Zn is the linear combination of the coordinates of
(αn(x1), . . . , αn(xs)) needed for the application of the Cramer-Wold Theorem. Define fur-
ther

Z∗mr =
1√
m

s∑
q=1

cq

r∑
j=1

Y r
j (xq) =

1√
m

m∑
j=1

W r
j =

1√
mr

mr∑
j=1

Zn,i,

which replaces the sum up to n− p by a sum with a multiple of r terms. Notice also that,
as follows from Lemma 5.2,

Var (Z∗mr)→ ς2 =
s∑
q=1

c2
qς

2(xq,xq) + 2
s−1∑
q=1

s∑
`=q+1

cqc`ς
2(xq,x`). (10)
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Further, for each r fixed, it follows from Lemma 3.2 (i) that

Var (Y r
1 (x)) =

1
r

r∑
i,i′=1

(
Fp, |i′−i+1|(x,x)− F2

p(x)
)

+O(rh2
n), (11)

Var
(
W r
j

)
=

s∑
q,q′=1

cqcq′
1
r

r∑
i,i′=1

(
Fp, |i′−i+1|(xq,xq′)− Fp(xq)Fp(xq′)

)
+O(rh2

n). (12)

We now proceed with the steps for the proof of Theorem 5.1. First, we show that we may
replace the sum of n − p terms defined by Zn by the sum Z∗mr to get only a sum of the
blocks W r

j .

Lemma 5.3 Under the assumptions of Theorem 5.1, for each r fixed, we have that∣∣IE(eitZn)− IE(eitZ
∗
mr)
∣∣→ 0.

Proof Using Hölder’s inequality, we find∣∣IE (eitZn
)
− IE

(
eitZ

∗
mr

)∣∣ ≤ 2 |t| IE |Zn − Z∗mr| ≤ 2 |t| (Var (Zn − Z∗mr))1/2 (13)

≤ 2
√

2 |t|

( 1√
mr
− 1√

n− p

)2

IE

(
mr∑
i=1

Zn,i

)2

+

1
(n− p)

IE

(
n−p∑

i=mr+1

Zn,i

)2
1/2

.

As |Zn,i| ≤ 2
∑s

q=1 |cq|, it follows that

∣∣IE (eitZn
)
− IE

(
eitZ

∗
mr

)∣∣ ≤ √8 |t|
((

1√
mr
− 1√

n−p

)2
Var (Z∗mr) + 2(n−p−mr)

(n−p)

s∑
q=1

|cq|
)1/2

,

which approaches zero, using Equation (10) and mr/(n − p) approaches one, as follows
from the choice of the integers m. �

Thus, as what convergence in distribution is regarded, we may now replace Zn by Z∗mr.
This last variable is a sum of m blocks. Thus, we are trying to prove a CLT for the sum of
the dependent variables W r

j , for j ≥ 1. Each of these variables is a linear combination of the
Y r
j , which are decreasing functions of the original variables Xn, for n ≥ 1. So, the Y r

j ’s are
statistically associated and we may apply a convenient variation of Newman’s inequality,
to the variables W r

j , for j ≥ 1, as proved in Jacob and Oliveira (1999, Lemma 4.1), when
coupling these variables with the independent ones following the same distribution as that
of each W r

j .

Lemma 5.4 Under the assumptions of Theorem 5.1, for each r fixed, we have that

∣∣∣∣IE(eitZ
∗
mr −

m∏
j=1

IE
(

e
it√
m
W r

j

))∣∣∣∣ ≤ 2t2
(

Var
(

1√
mr

mr∑
j=1

Tn,i

)
−Var (Y r

1 )
) s∑
q,q′=1

cqcq′ .
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Proof Taking into account Jacob and Oliveira (1999, Lemma 4.1), we have

∣∣∣∣IE(eitZ
∗
mr −

m∏
j=1

IE
(

e
it√
m
W r

j

))∣∣∣∣ ≤ 2t2

m

m∑
i,j=1
i 6=j

Cov (W r
i ,W

r
j )

=
2t2

m

m∑
i,j=1
i 6=j

s∑
q,q′=1

cqcq′Cov (Y r
i (xq), Y r

j (xq′))

= 2t2
s∑

q,q′=1

cqcq′
m∑

i,j=1
i 6=j

Cov
(

1√
m
Y r
i (xq),

1√
m
Y r
j (xq′)

)
.

Using now the stationarity of the variables, it follows that∣∣∣∣IE(eitZ
∗
mr −

m∏
j=1

IE
(

e
it√
m
W r

j

))∣∣∣∣ ≤ 2t2
s∑

q,q′=1

cqcq′

(
Var

(
1√
mr

mr∑
j=1

Tn,i

)
−

m∑
j=1

Var
(

1√
m
Y r
j

))

= 2t2
s∑

q,q′=1

cqcq′

(
Var

(
1√
mr

mr∑
j=1

Tn,i

)
−Var (Y r

1 )
)
.

�

The next step is a CLT for the coupling variables. In order to keep the notation simpler,
we denote these variables also by W r

j . On the next lemma, and on this lemma only, we
assume the variables are independent (in order to formally correct, we should introduce a
new family of random variables with the same distribution as that of W r

j ).

Lemma 5.5 Under the assumptions of Theorem 5.1, for each r fixed, we have that∣∣∣∣ m∏
j=1

IE
(
e

it√
m
W r

j
)
− e−

t2ς2r
2

∣∣∣∣→ 0,

where ς2
r =

∑s
q,q′=1 cqcq′

1
r

∑r
i,i′=1

(
Fp, |i′−i+1|(xq,xq′)− Fp(xq)Fp(xq′)

)
.

Proof Apply the Lindeberg condition to the variables m−1/2W r
j , for j = 1, . . . ,m. As

these variables are sums, use Lema 4 in Utev (1990) to separate the variables and the
unbounded of the Tn,i’s to conclude the proof. �

Now, the proof of Theorem 5.1 follows by putting together all these partial results.

Proof [Theorem 5.1] We have

∣∣∣IE (eitZn
)
− e−

t2a

2

∣∣∣ ≤ ∣∣IE (eitZn
)
− IE

(
eitZ

∗
mr

)∣∣+
∣∣∣∣IE (eitZ∗mr

)
−

m∏
j=1

IE
(

e
it√
m
W r

j

) ∣∣∣∣
+
∣∣∣∣IE(e

it√
m
W r

j

)
− e−

t2ς2r
2

∣∣∣∣+
∣∣e− t2ς2r

2 − e−
t2a

2

∣∣,
where a =

∑s
q,q′=1 cqcq′ς

2(xq,xq′). Assuming for the moment that r is fixed, it follows from
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Lemmas 5.2-5.5 that

lim sup
m→+∞

∣∣∣IE (eitZn
)
− e−

t2a

2

∣∣∣ ≤ 2t2
[
Var

( mr∑
j=1

Tn,i√
mr

)
−Var (Y r

1 )
] s∑
q,q′=1

cqcq′ +
∣∣e− t2ς2r

2 − e−
t2a

2

∣∣.
Now, if we let r → +∞, it follows that this upper bound converges to zero taking into
account Equation (11) and the stationarity of the sequence of variables {Xn, n ≥ 1}, thus
proving the theorem. �

6. Simulation Study

In this section, we show some simulation results describing the behaviour of the empirical
process for finite values of n.

In order to obtain associated variables, we fix an integer m ∈ N, simulate Y1, . . . , Yn+m

with a suitable distribution and construct Xi = min(Yi, . . . , Yn+m−1). The distribution
of the variables Yi’s is easily chosen so that the Xi’s are uniformly distributed in [0, 1].
Notice that m may be interpreted as a measure of until how far the variables are dependent.
For each n and each m, we simulate 5000 paths for the empirical process. The first set
of results correspond to the one dimensional case, for which we can produce graphical
representations of the underlying densities. Thus, Figures 1-3 show the approximations,
based on the simulated paths of the density of α̃n(ti) for a fixed set of points t1, . . . , tL ∈
[0, 1]. The simulations were performed using the statistical software R, which can be freely
downloaded at http://www.r-project.org; see R Development Core Team (2009). Notice
that Theorem 5.1 only proves the convergence of the finite dimensional distributions and
not the functional convergence of the empirical process itself. In Figure 1, we graph the
approximations obtained for n = 50, 250, 1000, and for m = 5. These graphs show a nice
behaviour, close to normality, but the basis variables are “almost independent”, so this is
not very surprising. In Figure 2, we show the graphs, for the same values of n, by increasing
the degree of dependence between the variables and considering m = 10. The convergence
to a Gaussian distribution is slower, as expected, but the approximations seem quite good
for larger values of n. For a fixed size of the sample, the effect of the degree of dependence
is dramatic. We illustrate this in Figure 3 for n = 250, allowing m to take the values 20,
50, 100. These graphs do not show much similarity with a Gaussian distribution. It is clear
that the influence of m, measuring the degree of dependence, is by no means negligible.

In order to illustrate the behaviour for higher dimensional cases, we compute the the-
oretical and simulated MSE’s for the two-dimensional and three-dimensional cases for
sample size n = 50, 250, 1000 with m = 5, 10, as above. Table 1 reports the largest ab-
solute deviations between these two functions. As expected, the differences increase with
the dependence parameter. There is a curious effect when going from one-dimensional to
two-dimensional simulations, as the differences consistently decrease. This was unexpected
and seems to be due to border effects on the estimation procedure.

Table 1. Largest deviations between theoretical and simulated MSE’s.

n = 50 n = 250 n = 1000
m 1D 2D 3D 1D 2D 3D 1D 2D 3D
5 0.78727 0.40643 0.52861 0.73905 0.35171 0.48225 0.67744 0.27498 0.41971
10 1.16461 0.73072 0.93648 1.00028 0.61839 0.82205 0.93897 0.50870 0.71263

The R code to perform simulations, create graphics and compute the theoretical and
simulated MSE’s is available from the authors upon request.
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Figure 1. Simulated empirical processes for n = 50, 250, 1000 and m = 5.

Figure 2. Simulated empirical processes for n = 50, 250, 1000 and m = 10.

Figure 3. Simulated empirical processes for n = 250 and m = 20, 50, 100.

7. Conclusions

In this paper, we have considered the kernel estimator of the p-dimensional marginal dis-
tribution function of a stationary, positively associated sequence of random variables. For
this setting, we have stated theoretical results about the asymptotical characterizations
of this estimator. A simulation study has provided information about the behaviour of
the finite dimensional distributions of the empirical process induced by the estimator. The
convergence rates seem to be reasonable and mainly affected the parameter of the simula-
tion model describing the degree of dependence, since this parameter may be interpreted
as a measure of how far away the variables can be while remaining dependent. This should
reflect the fact that the estimation process requires then considering more terms on the
definition of the asymptotic covariance, thus needing a larger amount of information to
find the same quality of approximation. From the point of view of applying the asymptotic
characterizations, the results have indicated that reasonable sample sizes are required to
make a reliable use of the asymptotic normality, unless one can find information regarding
the degree of dependence parameter. Thus, we have established that, for sequences that
are close to independence, i.e., for small values of the mentioned parameter, the asymptotic
normality happens with a quite fast convergence rate.
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