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MYCOBIOTA AND AFLATOXIGENIC PROFILE OF PORTUGUESE ALMONDS AND CHESTNUTS 
FROM PRODUCTION TO COMMERCIALISATION  

 
 
 

ABSTRACT 
 
Aflatoxin (AF) contamination of nuts is an increasing concern to the consumer’s health. Portugal is 
a big producer of almonds and chestnuts, but there is no scientific knowledge on the safety of those 
nuts. AFs B1, B2, G1 and G2 are produced mainly by some species of Aspergillus belonging to 
section Flavi, which is composed of a large number of very closely related species. While these 
species are difficult to differentiate morphologically and even genetically, they differ in a 
characteristic that is of paramount importance for food safety, as only some are responsible for the 
production of the highly toxigenic AFs. Taxonomy and species identification are therefore subject 
of great interest, and the establishment of schemes for species and for aflatoxigenic strains 
identification that are simultaneously accurate, sensitive, robust and expedite is mandatory.  
This work had three major goals: the first was to provide knowledge on the general mycobiota, 
aflatoxigenic fungi and AF contamination of Portuguese almonds and chestnuts, and its evolution 
throughout the various stages of production (field, storage and processing). For this matter, 45 
chestnut samples were collected from orchards from Trás-os-Montes. Forty-seven almond samples 
were collected in Trás-os-Montes at different stages of production: field, storage and processing. 
All fungi belonging to genus Aspergillus were isolated and identified to the section level, and all 
isolates belonging to section Flavi were further tested for their aflatoxigenic ability. Fungi 
representative of other genera were identified to the genus level. Almond samples were tested for 
AF contamination.  
The mycobiota of almonds and chestnut was found to vary in terms of both matrix and stage of 
production. Chestnuts were mainly contaminated with the genera Fusarium, Cladosporium, 
Alternaria and Penicillium, and the genus Aspergillus was only rarely found, whereas almonds 
were more contaminated with Aspergillus. No Aspergillus section Flavi were isolated from 
chestnuts. In almonds, Fusarium, Cladosporium, Alternaria and Penicillium decreased from field 
to the end of processing, whereas Aspergillus increased significantly, including those from section 
Flavi. In total, 352 fungi belonging to section Flavi were isolated from Portuguese almonds, of 
which 231 isolates (66%) were aflatoxigenic. Even so, only one sample from storage was found to 
be contaminated with AFs (4.97 µg/kg) at a level below the maximum levels recently imposed by 
the Commission Regulation (EU) No 165/2010. 
The second goal of this work was to characterise and identify the isolates of Aspergillus section 
Flavi by applying a polyphasic approach including classic phenotypic and molecular methods as 
well as the innovative technology protein spectral analysis Matrix-Assisted Laser 
Desorption/Ionisation-Time of Flight Intact-Cell Mass Spectrometry (MALDI-TOF ICMS), and to 
devise accurate and sensitive schemes for species identification. For the morphological analysis, 
fungi were cultured on different media and were characterised for several macro and micro 
morphological features. Morphological analysis was complemented with biochemical analyses, 
which consisted of determining the extrolite profiles relative to AFs and cyclopiazonic acid. A 
group of selected isolates was identified molecularly based on the sequencing of the ITS region and 
partial calmodulin gene. Spectral analysis was made by MALDI-TOF ICMS to obtain spectra of 
protein masses. Dendrograms of relatedness were obtained for each set of data and used to compare 
sensitivity and accurateness of the different approaches. 
From the preliminary morphological analysis, three morphotypes were identified: as “A. flavus 
morphotype” (36.4% of the isolates), “A. parasiticus morphotype” (55.4%), and “A. tamarii 
morphotype” (8.2%). The 3 morphotypes were then divided into 9 phenotypes based on their 
extrolite profile. Genotypic and spectral analyses clustered the selected isolates into the same 3 
groups created by morphological analysis. Furthermore, all sets of data, including the 
morphological complemented with extrolite profile, were able to further resolve the isolates into 
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more restrictive clusters. They all positioned two of the 9 phenotypes in two unidentified terminal 
clades closely related to A. parasiticus.  
The third goal was to test a molecular method based on multiplex PCR and RT-PCR for the ability 
to differentiate aflatoxigenic and non-aflatoxigenic isolates. Two genes of the AF biosynthetic 
pathway, aflD (= nor1) and aflQ (= ord1= ordA), were tested for presence and expression (by PCR 
and RT-PCR, respectively). The presence of both genes did not correlate with aflatoxigenicity. In 
terms of gene expression, aflD was not considered a good marker for differentiating aflatoxigenic 
from non-aflatoxigenic isolates, but aflQ showed a good correlation between expression and AF-
production ability.  
In conclusion, Portuguese almonds and chestnuts seem to be generally safe in terms of AF 
contamination. Nevertheless, the majority of the isolates of Aspergillus section Flavi obtained from 
Portuguese almonds was found to be aflatoxigenic, which may constitute a problem in terms of 
food safety if storage and processing conditions are not effectively controlled. At present, these 
conditions seem to be guaranteed, since only one almond sample was found to be contaminated. At 
the species identification level, good agreement was obtained between the 3 methods of analysis 
since they all generated similar dendrograms with concordant strain clustering. Morphological 
analysis has shown sensitive and reliable as a preliminary method for species identification only 
when complemented with the extrolite profile. The calmodulin gene showed to be more robust and 
reliable as genomic marker for this group of fungi than the ITS region, providing good DNA 
barcoding potential. MALDI-TOF ICMS results confirmed that this technique is highly reliable for 
fungal identification, and is faster and less expensive in terms of labour and consumables when 
compared with other biological techniques, which is essential whenever there is a paucity of 
characters for defining many fungal species and when high numbers of isolates are involved. 
Expression analysis of the aflQ gene seems to be a good method for the differentiation of 
aflatoxigenic and non-aflatoxigenic isolates. 
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M ICOBIOTA E PERFIL AFLATOXIGÉNICO DE AMÊNDOAS E CASTANHAS PORTU GUESAS  
DA PRODUÇÃO À COMERCIALIZAÇÃO  

 
 
 

SUMÁRIO  
 
A contaminação com aflatoxinas (AFs) dos frutos de casca rija é um problema com interesse 
crescente no que respeita à saúde do consumidor. A castanha e a amêndoa são produtos agrícolas 
de elevado interesse económico para Portugal, no entanto não existe conhecimento científico 
quanto à sua segurança em termos de AFs. As AFs B1, B2, G1 e G2 são micotoxinas de elevado grau 
toxigénico, e são produzidas por algumas espécies de Aspergillus secção Flavi. Esta secção integra 
um elevado número de espécies muito próximas, tanto ao nível morfológico como molecular, mas 
que diferem numa característica de elevado interesse para a segurança alimentar - a sua capacidade 
para produzir AFs. Por esta razão, a taxonomia e identificação de espécies desta secção revestem-se 
de grande interesse, pelo que o estabelecimento de esquemas de identificação simultaneamente 
precisos, sensíveis, robustos e expeditos é imperioso.  
O presente trabalho teve três objectivos principais. O primeiro objectivo foi obter informação sobre 
a incidência de fungos filamentosos, com particular incidência sobre os fungos produtores de AFs, 
e sobre a contaminação com AFs das amêndoas e castanhas portuguesas, e sua evolução ao longo 
das várias fases de produção. Neste sentido, foram analisadas 45 amostras de castanha colhidas em 
soutos de Trás-os-Montes e 47 amostras de amêndoa de Trás-os-Montes e Algarve colhidas em 
diferentes fases de produção (campo, armazenamento e processamento). Todos os fungos do 
género Aspergillus foram isolados e identificados até à secção, e todos os fungos pertencentes à 
secção Flavi foram identificados até à espécie e caracterizados quanto à sua capacidade 
aflatoxigénica. Fungos representativos de outros géneros foram identificados apenas até ao género. 
As amostras de amêndoa foram ainda analisadas quanto à contaminação com AFs. A micobiota das 
amêndoas e castanhas variou em termos de matriz e de fase de produção. As castanhas mostraram 
contaminação dominada pelos géneros Fusarium, Cladosporium, Alternaria e Penicillium, sendo o 
género Aspergillus encontrado com pouca frequência, enquanto nas amêndoas o género Aspergillus 
foi detectado com elevada incidência. Não foi isolado qualquer fungo da secção Flavi de castanhas. 
Nas amêndoas, os géneros Fusarium, Cladosporium, Alternaria e Penicillium diminuiram 
progressivamente desde o campo até ao final do processamento, enquanto a incidência de 
Aspergillus, incluindo a secção Flavi, aumentou. No total das amostras de amêndoa foram isolados 
352 fungos pertencentes à secção Flavi, dos quais 66% eram aflatoxigénicos. No entanto, apenas 
foi identificada uma amostra contaminada com níveis detectáveis de AFs (4,97 µg/kg), mas 
inferiores aos níveis máximos impostos pelo Regulamento (CE) Nº 165/2010 da Comissão 
Europeia. 
O segundo objectivo do presente trabalho foi caracterizar e identificar os isolamentos de 
Aspergillus secção Flavi através de uma abordagem polifásica incluindo a caracterização fenotípica 
clássica e molecular, assim como a inovadora tecnologia de análise espectral de proteínas Matrix-
Assisted Laser Desorption/Ionisation-Time of Flight Intact-Cell Mass Spectrometry (MALDI-TOF 
ICMS), e delinear esquemas robustos e simultaneamente sensíveis de identificação de espécies. A 
análise macro e micromorfológica em diferentes condições de cultura foi complementada com a 
análise de extrólitos, nomeadamente AFs e ácido ciclopiazónico (CPA). Um grupo de 24 fungos foi 
identificado molecularmente pela análise de sequências da região ITS e do gene da calmodulina. A 
análise espectral por MALDI-TOF ICMS foi aplicada a 69 fungos. Foi construído um dendrograma 
de similaridade para cada um dos grupos de dados e os resultados foram comparados em termos de 
precisão, robustez e sensibilidade. 
Na análise morfológica preliminar foram identificados três morfotipos distintos designados 
“morfotipo A. flavus” (36,4% dos isolamentos), “morfotipo A. parasiticus” (55,4%), e “morfotipo 
A. tamarii” (8,2%). Estes morfotipos foram posteriormente divididos em nove fenótipos, com base 
no seu perfil de extrólitos. As análises genotípica e espectral criaram três grupos (clades) 



 

iv 

correspondentes aos obtidos na análise morfológica e posicionaram dois dos nove fenótipos em 
clades terminais relativos a taxa não identificados.  
O terceiro objectivo deste trabalho foi testar um método baseado em PCR multiplex e RT-PCR 
para diferenciação de estirpes aflatoxigénicas e não-aflatoxigénicas. Para tal, foram seleccionados 
dois genes da cadeia biossintética das AFs, aflD (= nor1) e aflQ (= ord1= ordA), para os quais a 
presença e expressão foram testadas por PCR e RT-PCR, respectivamente. A presença de ambos os 
genes não se correlacionou com a capacidade aflatoxigénica dos indivíduos testados. Em termos de 
expressão, apenas o gene aflQ mostrou boa correlação com a produção de AFs, tendo sido 
considerado um bom marcador molecular da capacidade aflatoxigénica.  
Em conclusão, as castanhas e amêndoas com origem em Portugal parecem possuir boa qualidade 
em termos de contaminação com AFs. No entanto, a maioria dos isolamentos de Aspergillus secção 
Flavi provou ser aflatoxigénica, o que pode constituir um problema de segurança alimentar para as 
amêndoas, caso as condições de armazenamento e processamento não sejam devidamente 
controladas.  
Em termos de identificação de espécies, foi obtido um nível de concordância elevado entre as 
diferentes abordagens usadas. A análise morfológica mostrou-se um método fiável e sensível para 
identificação preliminar dos isolamentos apenas se complementada com a análise de extrólitos. O 
gene da calmodulina mostrou-se mais robusto e sensível do que a região ITS, demonstrando maior 
potencial como marcador molecular. Os resultados obtidos por MALDI-TOF ICMS confirmaram 
que esta técnica é altamente fiável na identificação de Aspergillus secção Flavi, tendo como 
principal vantagem o facto de ser significativamente menos dispendioso, tanto em termos de tempo 
como de consumíveis, quando comparado com as restantes metodologias. Esta técnica reveste-se 
de elevada importância nos casos em que estão envolvidos numerosos espécimens com elevada 
proximidade taxonómica.  
Relativamente à diferenciação de isolamentos aflatoxigénicos e não-aflatoxigénicos, a análise da 
expressão do gene aflQ sob condições indutoras da produção de AFs mostrou ser um método 
fiável.   
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THESIS STRUCTURE  
 

 

This thesis is structured in 7 Chapters: 

 

Chapter 1 introduces general aspects such as the background and scope of this work, as 

well as the motivation which led to the proposal of the theme, and attempts to integrate the 

various aspects developed throughout the thesis. The chapter is completed by the 

presentation of the aims of the work. 

Chapter 2 is a Literature Review which aims at introducing the theoretical fundamentals 

and state of the art of the aspects more directly related to the theme. The span of the thesis 

is revealed in this chapter, where three major themes, corresponding to the three major 

goals of the work, are exposed: i) the fungal and mycotoxin contamination of food 

commodities, with special emphasis on AFs and aflatoxigenic fungi on nuts; ii) the 

molecular aspects of aflatoxin production and the ways of efficiently differentiating 

potentially hazardous fungi within section Flavi; and iii) the taxonomy of Aspergillus 

section Flavi, to which the most significant aflatoxigenic fungi belong, with focus on the 

various taxonomic problems and approaches used to elucidate them. 

Chapter 3 describes the materials and methods used to perform this work. This chapter is 

divided in sections corresponding to the three major themes previously exposed: methods 

for the characterisation of mycobiota and AFs of almonds and chestnuts are addressed in 

section 1; methods used in the process of differentiating aflatoxigenic from non-

aflatoxigenic fungi are described in section 2; and section 3 describes the methods for the 

characterisation and identification of isolates of Aspergillus section Flavi.     

Chapter 4 presents the main results obtained in the various stages of the work and the 

subsequent analysis, and Chapter 5 discusses those results. Both these chapters are 

divided in the same three sections described for Chapter 3. 

Chapter 6 summarises the main conclusions withdrawn from the work, and exposes 

perspectives and suggestions for future work.  

Chapter 7 encloses the references used to support the study. 

 

As a supplement to the body of the work, 3 appendices give additional information.  

Appendix 1 shows the details on the statistical analysis. Appendix 2 lists all Aspergillus 

section Flavi isolates used in this study, with a fully detailed list of the corresponding 
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characteristics. Appendix 3 includes molecular dendrograms that complement and 

reinforce those presented in the text.   
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1.1 Framework 

Since the discovery of aflatoxins in the 1960’s and subsequent recognition that 

mycotoxins are of significant health concern to both humans and animals, interest was 

gradually developed for mycotoxins in various foods and feed. In the last years, concerted 

attempts have been made to examine the level of contamination of foods and the potential 

for effective control of mycotoxins from entering the human and animal food chain, 

especially in cereals, nuts and wine. Because controlling the occurrence of mycotoxins in 

finished products is practically impossible, regulatory bodies are continuously assessing 

the occurrence of mycotoxins throughout the various stages of production, from the farm to 

the fork. This type of information is important for the development of Decision Support 

Systems for predicting the level of risk in a particular product of a particular geographic 

origin, and the data obtained are used for the establishment of regulatory levels and of 

control schemes at import.  

So, information on the key components of fungal and mycotoxin contamination in 

the food commodities is mandatory for the various stages of production. Because fungal 

contamination and mycotoxin production vary greatly with the environmental conditions in 

which they develop, pre-harvest conditions, post-harvest storage, transport and processing 

are all important stages in the food chain which need to be monitored. The knowledge on 

the fungal population incidence and diversity and on their mycotoxigenic potential is an 

indication of what the safety of the products might be, given different production, storage 

and processing conditions.  

Aflatoxins are a group of mutagenic, teratogenic and immunosuppressive 

mycotoxins that include the most widely studied aflatoxins B1, B2, G1 and G2. Aflatoxin B1 

is considered the most carcinogenic compounds naturally produced. These mycotoxins are 

produced as secondary metabolites mostly by some species belonging to Aspergillus 

section Flavi when growing on a variety of food products. Tree nuts are among the 

commodities with moderate to high risk of aflatoxin contamination, since they are 

generally produced under environmental conditions which also favour aflatoxigenic fungal 

growth and toxin production. 
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Within the genus Aspergillus, section Flavi is one of the most significant, and is one 

of the best studied among fungi. This section is composed of a large number of very 

closely related species and is usually divided in two groups of species. One includes the 

aflatoxigenic species A. flavus, A. parasiticus and A. nomius, which cause serious problems 

in agricultural commodities, and the other one includes the non-aflatoxigenic species A. 

oryzae, A. sojae and A. tamarii, traditionally used for production of fermented foods. Even 

though these species differ so greatly on their physiological abilities, they are difficult to 

differentiate morphologically and even genetically. As a consequence, taxonomy and 

species identification have been subject of great interest for scientists aiming to clarify the 

species concept and limits within the section.  

The establishment of schemes for species identification and for the rapid 

differentiation of aflatoxigenic and non-aflatoxigenic strains that are simultaneously 

accurate, sensitive, robust and expedite is mandatory. At present, reliable identification 

schemes of section Flavi typically imply the analysis of a wide variety of morphological, 

biochemical and molecular traits. But none of the methods alone has been accepted as 

flawless in recognising species and, as a result, polyphasic approaches are progressively 

given more emphasis in taxonomic decision-making. Recently, Matrix-Assisted Laser 

Desorption/Ionisation Time-Of-Flight Intact Cell Mass Spectrometry (MALDI-TOF 

ICMS) has been used to generate spectra of protein masses which result in a taxon specific 

fingerprint. This technique has already shown high potentialities to discriminate very 

closely related taxa, but has rarely been used in fungal species identification, either on its 

one or as part of a polyphasic scheme of identification. 

1.2 Motivation 

Almonds and chestnuts are of great economic and social impact in Portugal, as they 

constitute the main income of rural populations especially from the portuguese northeast. 

Portugal has a typical Mediterranean climate, generally characterised by long periods of 

high temperatures and moderate to scarce rainfall. Almonds are extremely dry nuts 

produced under highly stressfull environmental conditions, in regions where the maturation 

and harvest period corresponds to a hot and dry summer. On the other hand, chestnuts are 

produced under more cold and humid conditions. Under such conditions, tree nuts, and 
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mostly almonds, are known to be targets of infection for a variety of fungi that can induce 

spoilage or produce toxic metabolites, and they have been associated with aflatoxigenic 

fungi and aflatoxin contamination more than with other known mycotoxins. However, and 

contrasting to what happens for other producing countries, there is no scientific knowledge 

on the fungal incidence and aflatoxigenic safety of nuts originating from Portugal.  

The intention of this work was thus to gather information on the mycobiota 

associated with Portuguese almonds and chestnuts from the field to the end of processing, 

as well as on the environmental and processing conditions. By collating the different sets 

of information, we intended to determine the real as well as the potential mycotoxigenic 

profile of those commodities, especially in what concerns aflatoxins.  

 

The work plan also included the development of a method which could easily and 

consistently differentiate aflatoxigenic from non-aflatoxigenic strains of Aspergillus 

section Flavi. The first approach was to characterise all the isolates belonging to 

Aspergillus section Flavi in terms of morphology and extrolite profile (including their 

aflatoxigenic ability), and from thereafter try to identify them to the species level. But, as 

more and more isolates were being obtained, we were confronted with the extreme 

difficulty of identifying them to the species level based solely on classic phenotypic 

features. At the same time, the Micoteca da Universidade do Minho (MUM) acquired the 

knowledge and the technology of identifying microorganisms by MALDI-TOF MS. This 

technology had already been vastly and successfully applied to the identification and 

characterisation of bacteria, but its application to fungi was still insipid. Since we had, at 

this time point of the work, gathered a significant number of section Flavi isolates and they 

were well characterised at the classic phenotypic level, the work was thereafter directed to 

assess the ability and reliability of MALDI-TOF MS for the identification of closely 

related isolates of section Flavi as well as for the differentiation of aflatoxigenic and non-

aflatoxigenic isolates.  
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1.3 Aims of the Work 

The work developed under the frame of this Thesis had three major goals:  

i) To provide knowledge on the general mycobiota, aflatoxigenic fungi and aflatoxin 

contamination of Portuguese almonds and chestnuts, and on its evolution throughout 

the various stages of production (field, storage and processing).  

 
ii)  To test methods capable of differentiating aflatoxigenic from non-aflatoxigenic 

isolates of Aspergillus section Flavi.  

 
iii)  To characterise and identify the isolates of Aspergillus section Flavi by applying a 

polyphasic approach including classic phenotypic and molecular methods as well as 

the innovative technology of protein spectral analysis Matrix-Assisted Laser 

Desorption/Ionisation-Time of Flight Intact-Cell Mass Spectrometry (MALDI-TOF 

ICMS), and to devise accurate and sensitive schemes for species identification.  

 
 



 

 

2 L ITERATURE REVIEW  
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2.1 Mycobiota and mycotoxins of almonds and chestnuts 

2.1.1 General mycology and mycotoxicology of foods  

Foods, whether they are raw or processed, are usually contaminated with fungal 

spores or even mycelium fragments from the environment. As a result of their growth, 

several kinds of food spoilage may develop: off-flavours, toxin, decolorisation, rotting, 

loss of nutritional quality, and formation of pathogenic or allergenic propagules.  

In fungi, as in all eukaryotes, essential metabolites are produced from intermediate 

metabolic pathways like glycolysis and the citric acid cycle. Secondary metabolism, on the 

other hand, removes products from intermediate metabolic pathways when growth is 

temporarily restricted, which are then directed to highly specific biosynthetic pathways. 

One of the most important groups of such metabolites is mycotoxins. Mycotoxins are 

generally defined as low-molecular-weight natural products produced as secondary 

metabolites by filamentous microfungi, which are toxic to vertebrates in low 

concentrations (Bennett & Klich, 2003; Paterson & Lima, 2010). These metabolites 

constitute a chemically, as well as toxigenically, heterogeneous assemblage produced by a 

wide variety of fungi from different precursors and pathways, being that these are often 

specific for individual genera, species, or even strains (Frisvad, 1989). It is not clear what 

the role of these metabolites is in nature. In general, the most commonly accepted idea is 

that mycotoxin-producing fungi are better protected against other organisms sharing the 

same trophic niche, but other theories have been raised. Several studies (reviewed in 

Reverberi et al., 2010) have implied the biosynthesis of mycotoxins in fungal protection 

against oxidative stress and insect mycophagy, as well as on the reduction of host chemical 

defences against fungal attack. 

Mycotoxins have long been associated with food consumption, but the term 

mycotoxin was only coined in 1962 after a huge problem in England, in which 

approximately 100,000 turkeys died. This mysterious turkey X disease, as it was then 

called, was later linked to a peanut meal contaminated with secondary metabolites from 

Aspergillus flavus – the aflatoxins (van der Zieden et al., 1962). The mycotoxin term was 
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then extended to a number of previously known fungal toxins (e.g. the ergot alkaloids), 

some compounds that had originally been isolated as antibiotics (e.g. patulin), and a 

number of new secondary metabolites revealed in screens targeted at mycotoxin discovery 

(e.g. ochratoxin A - OTA) (Bennett & Klich, 2003). 

Depending on the definition used, and recognising that most fungal toxins occur in 

families of chemically related metabolites, hundreds of compounds are now recognised as 

mycotoxins, of which only a reduced number regularly receives attention as threats to 

human and animal health (Paterson & Lima, 2010). AFs have been the most widely studied 

mycotoxins, but fumonisins, OTA, patulin, zearalenone, trichothecenes and citrinin have 

been subject of increased interest in the last years.  

Mycotoxins occur mostly in temperate and tropical regions of the world, depending 

on the fungal species. Major food commodities affected are cereals, nuts, dried fruit, 

coffee, cocoa, spices, oil seeds, dried peas, beans and fleshy fruits, particularly apples. 

Mycotoxins may also be found in fruit juices, beer and wine resulting from the use of 

contaminated cereals and fruits in their production. They can also enter the human food 

chain via meat or other animal products such as eggs, milk and cheese as the result of 

livestock eating contaminated feed (CAST, 2003; Filtenborg et al., 2004; Venâncio & 

Paterson, 2007; Reddy et al., 2009). 

Mycotoxins are produced by an array of diverse fungal species that are generally 

saprophytic and opportunistic, weak pathogens. Most of the mycotoxins which are 

considered important food contaminants are produced primarily by three genera of fungi, 

namely Aspergillus, Penicillium and Fusarium (CAST, 2003; Filtenborg et al., 2004; 

Frisvad & Thrane, 2004; Venâncio & Paterson, 2007; Reddy et al., 2009; Paterson & 

Lima, 2010). The genus Aspergillus represents a large group of fungi that occupies very 

diverse ecological niches. Although members are distributed worldwide, Aspergillus spp. 

appear most abundant between latitudes 26º to 35º north or south of the equator (Klich, 

2002b). Thus, these fungi are more common in subtropical and warm temperate climates. 

Generally regarded as saprophytes, Aspergillus spp. grow on a large number of substrates 

and are very important in nutrient cycling. Their ability to thrive in high temperatures and 

with relatively low available water makes them well suited to colonise a number of grain 

and nut crops. Mycotoxins associated with Aspergillus species include AFs, ochratoxins, 

versicolorins, sterigmatocystin, gliotoxin, citrinin, CPA, patulin, citreoviridin, 
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cyclopiazonic acid, penicillic acid and tremorgenic mycotoxins (CAST, 2003; Frisvad & 

Thrane, 2004). More recently, fumonisins have been added to this group after they have 

been confirmed to be produced by Aspergillus section Nigri (Nielsen et al., 2009). 

Members of the genus Penicillium generally grow and can produce mycotoxins over 

a wider range of temperatures than those of the genus Aspergillus, but are not generally as 

adapted to hot and dry conditions, being more abundant in temperate climates. Some of the 

most important secondary metabolites produced by these fungi are common to Aspergillus: 

OTA, citrinin, patulin, penicillic acid, penitrem A, cyclopiazonic acid. 

Fusarium is a large complex genus with species adapted to a wide range of habitats. 

They are worldwide in distribution and many are important plant pathogens. However, 

many species are soil borne and exist as saprophytes, and few are significant mycotoxin 

producers. Some of the most important mycotoxins related to this genus are trichothecenes, 

zearalenone and fumonisins. 

There is a vast literature on fungi and mycotoxins associated with different types of 

foods and food commodities, and numerous reviews have been published (e.g. Moss, 1998; 

Bennett & Klich, 2003; CAST, 2003; Magan, 2006; Murphy et al., 2006; Do & Choi, 

2007; Venâncio & Paterson, 2007). The present work will be focusing on the study of 

mycobiota and mycotoxins in Portuguese almonds and chestnuts, with special focus on 

contamination by aflatoxigenic fungi and AFs.  

2.1.2 Ecophysiology of foodborne fungi and mycotoxin production 

Despite all efforts to control fungal contamination, toxigenic fungi are ubiquitous in 

nature and occur regularly in worldwide food supplies. Fungal growth and mycotoxin 

production only occur under favourable conditions, which vary for each species depending 

on adaptability. Food intrinsic parameters associated to extrinsic factors are responsible for 

the spectrum of contaminating and dominating mycobiota. This is mostly related to the 

physiology of fungi and their adaptation to the different matrices and environmental 

conditions. Filtenborg et al. (2004) refer that normally less than 10 species are present in a 

given food commodity, and only 1 to 3 dominate and are responsible for spoilage. Before a 

contaminated sample is analysed for mycotoxins, it is important to know which 

mycotoxins are likely to be present. Since the production of mycotoxins is often species 
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specific, the knowledge of which mycotoxins are likely to be present can be achieved by an 

accurate identification of the contaminating fungi. 

Knowledge on food intrinsic and extrinsic parameters and on the ecophysiological 

characteristics of fungi complemented with evidence on the composition and succession of 

the mycobiota in commodities throughout production chain is an important step towards 

the prediction of possible mycotoxin contamination. The most important factors that 

influence growth and mycotoxin production are environmental temperature, substrate 

water activity (aW), relative humidity, gas composition, substrate composition, inoculum 

concentrations, microbial interactions and mechanical or insect damage (Gqaleni et al., 

1997; Guynot et al., 2003; Giorni et al., 2008). In particular, it is the interaction between 

some or all of these factors that determines whether contamination increases and 

mycotoxins are produced. Interactions between available water and temperature are 

fundamental because they represent the two-dimensional niche in which fungi may be able 

to germinate, grow and actively compete for the allocation of the available resources 

(Marin et al., 1998; Samapundo et al., 2007a, 2007b). It is also generally well agreed that, 

in contrast to bacterial growth, aW is the most significant factor controlling fungal growth 

(Sautour et al., 2002; Samapundo et al., 2007b).  

Fungi contaminating food commodities are traditionally divided into two groups, 

field fungi and storage fungi. Field fungi are typically those that can grow at moisture 

contents in equilibrium with relative humidity of 70 to 90% and temperatures around 20 to 

25 ºC. These fungi usually require aW > 0.85 for active growth, and grow optimally at aW 

near 0.99. Alternaria, Cladosporium, Fusarium, and Helminthosporium are all traditionally 

classified as field fungi. On the other hand, storage fungi are generally adapted to lower 

humidity levels and higher temperatures. Fungi like Aspergillus and Penicillium are major 

representatives of this group. The minimal necessary aW for most Aspergillus and 

Penicillium species is 0.75-0.85, and they generally grow optimally at aW 0.93-0.98. 

Aspergillus requires aW as low as 0.73 for active growth, whereas Penicillium needs at 

least 0.78-0.80 (Rosso & Robinson, 2001; Filtenborg et al., 2004; Magan, 2006). 

Furthermore, Aspergillus spp. are generally more adapted to temperatures of 30-40 ºC, 

whereas Penicillium spp grow optimally at 25-30 ºC (Filtenborg et al., 2004). 

The classification as field or storage fungi has been based on studies done in 

temperate climates (Christensen, 1974; in CAST, 2003). However, under warm, humid 
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subtropical or tropical climates — or even in temperate climates in which the growing 

season is unusually hot and dry — species of Aspergillus and Penicillium can infect seeds 

early in the field. Perhaps the best example of a species that can infect seeds both in the 

field and in storage is A. flavus. In temperate climates, the fungus is predominantly a 

storage fungus, but in some regions of the world grains and nuts are more likely to be 

colonised during pre-harvest than in storage. Many species of Fusarium, as well as some 

species of Penicillium, also infect grain in the field as well as in storage.  

As a consequence of the different ecophysiological adaptation of fungi, mycobiota 

naturally contaminating food commodities follows a typical succession since the early days 

of development in the field until the end of storage. Fusarium, Cladosporium and 

Alternaria are typically the predominant field contaminants, and they establish before 

harvest, and Penicillium and Aspergillus tend to predominate during storage. In fact, it is 

not uncommon to find studies reporting high frequencies of Fusarium isolation in field 

samples, and a trend toward its decrease during storage accompanied by the gradual 

increase in frequencies of Aspergillus and Penicillium (e.g. da Silva et al., 2000; Adebajo 

& Popoola, 2003; Atehnkeng et al., 2008; Nakai et al., 2008; Sanchez-Hervas et al., 2008). 

In dry products (aW = 0.65-0.75), only extreme xerophilic filamentous fungi like A. 

restrictus and Eurotium species are able to grow (Filtenborg et al., 2004).  

Because few fungi grow at aW < 0.70, fungal growth can be prevented by drying 

agricultural products to aW below 0.65 and keeping it under this level. However, if the 

moisture of the stored product increases due to microbial or insect activity, moisture 

migration or increase in environmental relative humidity, other fungal species besides 

extreme xerophiles begin to grow. For example, growth of A. restrictus begins at aW of 

0.70 or slightly higher, the Eurotium group begins at aW 0.80 to 0.85, and many 

Penicillium and Aspergillus species begin to grow at aW above 0.85. A. flavus, for example, 

dominates at aW of 0.94, and A. ochraceus and A. niger are dominant at aW of 0.98 (Marin 

et al., 1998). 
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2.1.3 Almonds and chestnuts in Portugal and in the World 

2.1.3.1 Almonds  

Almond tree, Prunus dulcis (Miller) D.A. Webb, synonym Amygdalus communis L., 

is a cultivated tree originating from wild trees from Central Asia, which is currently 

dispersed throughout the world. The almond tree is adapted to dry and hot climates, and 

that is the reason why it is mainly established in Mediterranean countries (Portugal, Spain, 

Italy, France) and others with similar climatic characteristics, like USA (specifically 

California), Australia, South Africa, Chile and Argentina (Monteiro et al., 2003).  

The almond is not a true nut, but a drupe, which consists of an outer dehiscent hull 

(exocarp) and a hard shell (endocarp) with the edible seed (kernel) inside, involved by a 

brown seed coat (Monteiro et al., 2003). The almond kernel is a very nutritious seed, with 

extremely low water content (4 to 6%), and high levels of protein (18%), fat (54%) and 

carbohydrates (20%) (Wareing et al., 2000). Fat content is almost exclusively constituted 

by unsaturated fatty acids (Sathe et al., 2008; Celik et al., 2010), and the most important 

sugars are saccharose and raffinose (Barreira et al., 2010). It is also rich in a wide variety 

of minerals like calcium, potassium, iron and phosphorus (Wareing et al., 2000).   

The almond is harvested when it reaches complete dryness, during late August and 

September, usually by mechanical shaking of the tree or by shaking the fruits with a wood 

stick. The fruits are collected immediately after fall and dried for a few weeks or months 

until they reach water content of less than 6% (Monteiro et al., 2003). In this way, almonds 

are considered the fruits which withstand the longest storage periods without visible 

depreciation, if adequate environmental conditions (mainly humidity) are maintained 

(Monteiro et al., 2003). As such, almonds’ major problem in term of biological infestation 

is insect damage while still on the tree, and significant fungal contamination is usually 

associated with insect-damaged fruits (Schade et al., 1975; Schatzki & Ong, 2001; 

Campbell et al., 2003; Whitaker et al., 2010). 

Portugal is the eighteenth country in the list of producing countries, and is 

responsible for only 0.5% of worldwide production (Figure 2.1). The major producer is, by 

far, the USA, representing more than 50% of worldwide production, with yields 3 times 

higher than the world average. The other most important countries, Spain and Italy, are 
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from the Mediterranean basin, like Portugal. National production has been suffering 

tremendous reduction of production and yield in the last decade. Throughout a period of 5 

years, from 2001 to 2005, and even if the area of production was maintained near 38,000 

hectares, the production suffered a two-fold reduction, from 27,000 ton to 13,800 ton, with 

yields reducing from 891 to 263 kg/ha (INE, 2005). The yield is, in fact, much lower than 

the world average, and is only one-tenth of the American yield. International trade balance 

pends for exportation of in-shell fruits for Europe (mainly Spain) and importation of 

shelled fruits from Spain and California, USA. Portugal imports six times more than it 

exports (1,600 ton vs. 260 ton; 6 million euros vs. 900,000 euros). 

In Portugal, the northeast region of Trás-os-Montes is the major national producer of 

almonds. Even with low yields, the culture represents significant cultural and economic 

incomes for local populations, since, under the traditional culturing methods, no major 

inputs are made other than harvesting. The region integrates one almond Protected 

Denomination of Origin (Denominação de Origem Protegida, D.O.P), D.O.P. Douro. In 

2005, Trás-os-Montes almond represented 60% of the national almond area (approximately 

22,800 ha) and 90% of the national production (12,000 tons) (INE, 2005). Yields for Trás-

os-Montes production are around 0.5 Ton/ha, which represents 144% of the national yield. 

The rest of the national almond is produced in the south region of Algarve, with yields 

five-fold lower. These numbers reflect mostly the progressive abandonment of the culture 

in the south of the country. 

 

Figure 2.1  Worldwide almond production (A) and area of production (B) of the 3 major 
producers and Portugal, for the year 2008 (http://faostat.fao.org, accessed 16.07.2010). 
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2.1.3.2 Chestnuts 

Chestnuts are produced by a wide variety of species from the genus Castanea. These 

species divide into three major groups that have specific geographical distribution: 

C. crenata and C. molissima predominate in Asia and produce the Asian (Japanese and 

Chinese) chestnuts; C. dentata produces American chestnuts in North America, and 

C. sativa produces the European chestnuts, also known as sweet chestnuts. C. sativa is 

adapted to regions with humid and temperate to cold climate, and does not withstand long 

hot and dry periods (Serrano et al., 2001).  

European chestnuts are the most consumed chestnuts because of their interesting 

nutritional characteristics. They are rich in carbohydrates (around 40%), mostly starch, and 

present minerals, vitamins and appreciable levels of fiber, but low amounts of protein 

(2−4%) and, unlike typical nuts, low amounts of fat (1.5−5%) (Wareing et al., 2000; 

Barreira et al., 2009). They are also an interesting source of essential fatty acids (Barreira 

et al., 2009). 

Chestnuts have approximately 50% water content (Wareing et al., 2000; Barreira et 

al., 2009), and for that reason they are typical seasonal fruits that maintain their optimal 

commercial quality, turgescence and health for only a brief period when compared to other 

nuts. One of the major difficulties is the high perishability of the product. The major 

factors in post-harvest depreciation are moulding or rotting caused by fungi and the larval 

development of insects (Wells & Payne, 1975). Fungal infections often start in the larval 

galleries of insects (Wells & Payne, 1975), and many nuts become infected on the ground 

before picking. Some moulds are considered endophytes that colonise the fruits at various 

stages during their development but do not cause any symptoms of disease until after fruit 

fall (Washington et al., 1997, 1998). In Portugal, the traditional method of harvest is to 

allow the nuts to fall to the ground, and then harvest them manually or mechanically, with 

vacuum equipment. Interception of chestnuts in nets either on the ground or suspended 

above the ground is made in Italy and France mainly to ease and accelerate chestnut 

collection, but it is not a usual harvest method in Portugal.  

Portugal is the fourth country in terms of worldwide European chestnut production 

(Figure 2.2). In 2004, chestnut culture in Trás-os-Montes occupied 85% of the national 

area devoted to chestnut production, and corresponded to 84% of the national production. 
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The region integrates three chestnut D.O.P. - Terra Fria, Padrela and Soutos da Lapa. It is 

the fruit with major significance in the portuguese import/export balance, with ratios of 1:6 

(INE, 2005). There are no known statistics for processed chestnuts, but it is known that 

most of it is exported already processed. 

 

 

Figure 2.2  Worldwide chestnut production (A) and area of production (B) of the 3 major 
producers and Portugal, for the year 2008 (data refer to sweet chestnut only) 
(http://faostat.fao.org, accessed 16.07.2010). 

2.1.4 Fungi and mycotoxins associated with tree nuts 

Some genera, like Botrytis, Cladosporium and Rhizopus, are major spoilage fungi in 

a variety of nuts, but they are not known to produce significant mycotoxins. On the other 

hand, Aspergillus, Fusarium and Penicillium include species capable of producing a wide 

range of mycotoxins (Pitt & Hocking, 1997). These fungi have generally been reported as 

dominant contaminants in various kinds of nuts, like almonds and chestnuts (Wells & 

Payne, 1975; King et al., 1983; King & Schade, 1986; Jimenez et al., 1991; Abdel-Gawad 

& Zohri, 1993; Teviotdale & Hendricks, 1994; Bayman et al., 2002; Overy et al., 2003; 

Jermini et al., 2006; Khosravi et al., 2007), but also pistachios, peanuts, walnuts, hazelnuts 

and Brazil nuts (Abdel-Gawad & Zohri, 1993; Freire et al., 2000; Bayman et al., 2002; 

Khosravi et al., 2007; Sieber et al., 2007; Gonçalez et al., 2008; Nakai et al., 2008; Singh 

& Shukla, 2008). One thing that these studies remark is that there is a different dominating 

mycobiota in each type of nut. Also, the mycobiota is found to vary widely depending on 

the conditions and stage of production, storage and processing, which is related not only to 

technological issues but also to the geographic location from where nuts originate.  
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As mentioned, almonds are mainly produced in California, USA, and these fruits 

play an important role in that country’s markets. For that reason, Californian almonds have 

been largely studied and represent the majority of the studies on fungal and mycotoxin 

contamination in this type of nut. Fungal contamination of almonds is almost always 

dominated by genera Aspergillus, Penicillium, Rhizopus and Eurotium, independently of 

the stage of production (field or storage). In fact, the typical field fungi are usually 

considered minor contaminants in this type of nut even before harvest, due mainly to the 

dryness of the substrate and to the environmental conditions (usually extremely hot and 

dry) at the end of maturation. Sections Flavi and Nigri are the predominant aspergilla, with 

other sections being present only rarely. It can generally be observed that Eurotium spp. 

and Aspergillus sections Flavi and Nigri seem to evolve in a positive way from field to 

storage/market (Purcell et al., 1980; Bayman et al., 2002). None of these studies refer to 

mycotoxin contamination, but fungal evolution makes it clear that, if adequate storage 

conditions are not guaranteed, AFs and OTA are potential threats to these nuts. Almonds 

have not been a frequent subject of survey for mycotoxins other than AFs, but Zaied et al. 

(2010) have searched for OTA in almonds from Tunisian markets and found contamination 

with 61 µg/kg, proving that this may be a potential risk for almonds. 

Fewer studies have been devoted to determining fungal contamination of chestnuts, 

and none has analysed chestnuts originating from the 4 biggest producing countries, 

Turkey, Bolivia, Italy and Portugal. In fact, some of those studies are relative to marketed 

chestnuts with unknown origin. Reports on chestnuts marketed (origin not reported) in cold 

and humid countries, like Canada (Overy et al., 2003) and Switzerland (Sieber et al., 2007) 

refer to contaminations strongly dominated by Penicillium spp., with Aspergillus spp. 

being of no significance, while studies from drier and warmer regions, like Georgia, USA 

(Wells & Payne, 1975) and Ar’Ar, Saudi Arabia (Abdel-Gawad & Zohri, 1993) report 

important incidences of Aspergillus (sections Wentii, Flavi and, to a lesser extent, Nigri).  

Table 2.1 summarises the results of fungal surveys on almonds and chestnuts from 

various studies. 
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Table 2.1  General fungal contamination of almonds and chestnuts (genus Eurotium is included 
as the teleomorph of Aspergillus glaucus group). 

Reference Geographic 
region 

Stage of 
production 

Treatments Most frequent fungi 
(incidence) 

Aspergillus identified 
(incidence) 

 
Almonds 

     

      
Phillips et al., 
1979 

California, 
USA 

Field-
collected 

Non-
disinfected 
kernel 

Aspergillus (100%) 
Eurotium (30%) 
Penicillium (27%) 
Rhizopus (19%) 

Sect. Nigri (99%) 
Sect. Flavi (60%) 
 

      
   Surface-

sterilised 
shell 

Aspergillus (35%) 
Alternaria (19%) 
Rhizopus (8.5%) 
Eurotium (3%) 

Sect. Nigri (35%) 
Sect. Flavi (0.4%) 

      
Purcell et al., 
1980 

California, 
USA 

Field-
collected 

Non-
disinfected 
kernel 

Aspergillus (60%) 
Alternaria/ 
Ulocladium (40%) 
Eurotium (20%) 
Penicillium (15%) 
Rhizopus (5%) 

Sect. Nigri (60%) 
Sect. Flavi (20%) 
Sect. Circumdati (15%) 
Sect. Wentii (10%) 

      
   Surface-

sterilised 
shell 
 

Alternaria/ 
Ulocladium (60%) 
Aspergillus (35%) 
Eurotium (15%) 
Rhizopus (10%) 
Penicillium (5%) 

Sect. Nigri (30%) 
Sect. Circumdati (3%) 
Sect. Flavi (1%) 
Sect. Wentii (1%) 

      
  Storage Non-

disinfected 
kernel 

Aspergillus (80%) 
Eurotium (35%) 
Alternaria/ 
Ulocladium (20%) 
Penicillium (5%) 
Rhizopus (2%) 

Sect. Nigri (80%) 
Sect. Flavi (25%) 
Sect. Circumdati (15%) 
Sect. Wentii (10%) 

      
   Surface-

sterilised 
shell 
 

Aspergillus (45%) 
Alternaria/ 
Ulocladium (30%) 
Eurotium (20%) 
Rhizopus (10%) 
Penicillium (1%) 

Sect. Nigri (45%) 
Sect. Circumdati (2%) 
 

      
Jimenez et al., 
1991 

Spain Market-
bought, 
roasted  
 

Surface-
sterilised 
 

Penicillium (27%), 
Aspergillus (> 25%) 
Eurotium (9.7%) 
Rhizopus (9.7%) 

A. flavus (24.7%) 
A. niger (20.6%) 
 

      
Abdel-Gawad 
& Zohri, 1993 

Saudi 
Arabia 

Market-
bought 

Surface-
sterilised 
 

Aspergillus (100%) 
Rhizopus (100%) 
Penicillium (80%) 
Eurotium (60%) 
Fusarium (20%) 

A. niger (100%) 
A. flavus (100%) 
A. japonicus (60%) 
A. ochraceus (60%) 
A. ustus (40%) 
A. terreus (40%) 
A. sydowii (40%) 
A. versicolor (20%) 
A. tamarii (20%) 

n.d.: not detected                              (continues) 
n.r.: not reported 
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Table 2.1 (continued) 

Reference Geographic 
region 

Stage of 
production 

Treatments Most frequent fungi 
(incidence) 

Aspergillus identified 
(incidence) 

      
Teviotdale & 
Hendricks, 
1994 

California, 
USA 

Field-
collected 

Non-
disinfected 
(CFU 
counts) 

Yeasts  
Cladosporium 
Penicillium 
Aspergillus 

n.r. 

      
Bayman et al., 
2002 

California, 
USA 

Field-
collected 

Non-
disinfected 

Penicillium (91%) 
Aspergillus (> 22%) 
Rhizopus (13%)  
 

A. niger (22%) 
A. melleus (6%) 
A. ochraceus (6%) 
A. flavus (3%) 
A. fumigatus (3%) 

      
   Surface-

sterilised 
 

Rhizopus (17%) 
Aspergillus (6%) 
Penicillium (3%) 

A. niger (6%) 
A. nidulans (2%) 

      
  Market-

bought 
Non-
disinfected 

Aspergillus (> 60%) 
Rhizopus (51%) 
Penicillium (4%) 

A. niger (60%) 
A. flavus (4%) 
A. nidulans (3%) 
A. fumigatus (1%) 
A. tamarii (1%) 

      
   Surface-

sterilised 
 

Rhizopus (79%) 
Aspergillus (> 26%) 
Penicillium (6%) 

A. niger (26%) 
A. ochraceus (4%) 
A. melleus (4%) 
A. flavus (19%) 
A. nidulans (1%) 
A. tamarii (1%) 

      
Khosravi et al., 
2007 

Iran Market-
bought 

Surface-
sterilised 
 

Yeasts (60%) 
Aspergillus (20%) 
Penicillium (20%) 

n.r. 

 
Chestnuts 

     

      
Wells & Payne, 
1975 

Georgia, 
USA 

Field-
collected 

Surface-
sterilised 
 

Penicillium (40.7%) 
Rhizopus (17.5%) 
Alternaria (17.2%) 
Aspergillus (16.8%) 
Fusarium (6.4%) 

A. wentii 
A. flavus 
A. oryzae 
A. niger 

      
Abdel-Gawad 
& Zohri, 1993 

Saudi 
Arabia 

Market-
bought 

Surface-
sterilised 
 

Aspergillus (100%) 
Rhizopus (100%) 
Penicillium (100%) 
Eurotium (100%) 
Fusarium (60%) 
 

A. flavus (100%) 
A. niger (100%) 
A. fumigatus (80%) 
A. parasiticus (80%) 
A. sydowii (60%) 
A. versicolor (40%) 
A. wentii (40%) 
A. terreus (20%) 
A. tamarii (20%) 

      
Overy et al., 
2003 

Canada Market-
bought 

Surface-
sterilised 
 

Penicillium (67.1%) 
Aspergillus (2.0%) 
Trichoderma (0.3%) 

A. ochraceus (2.0%) 
A. japonicas (0.3%) 

      
Jermini et al., 
2006 

Switzerland Market-
bought 

Water-
soaked 
 

Ciboria bastiana 
Penicillium 
Mucor hiemalis 

n.d. 

n.d.: not detected 
n.r.: not reported 
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2.1.5 Aflatoxins 

2.1.5.1 Aflatoxins as a health threat to humans and animals 

AFs are a group of difuranocoumarin derivatives consisting of 5 heterocycles that 

occur in several chemical forms. The four major AFs are AFB1, AFB2, AFG1 and AFG2 

(Figure 2.3), and they are named based on their fluorescence under UV light (B for blue 

and G for green) and relative chromatographic mobility during thin-layer chromatography. 

AFB1 is considered the most potent natural carcinogen known and is usually the major AF 

produced by aflatoxigenic strains. It is therefore the best studied. Numerous other AFs 

have been described, especially as mammalian biotransformation products of the major 

metabolites (Bennett & Klich, 2003). One such example is AFM1, the predominant 

metabolite of AFB1 in milk from lactating humans and animals that consume AFB1-

contaminated food or feed.  

 

 

 

Figure 2.3  Chemical structure of the four major AFs (from: Reiter et al., 2009). 
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AFB1 is metabolised by the liver through the cytochrome P450 enzyme system to the 

major carcinogenic metabolite AFB1-8,9-epoxide (AFBO), or to less mutagenic forms such 

as AFM1, AFQ1, or AFP1 (Shimada & Guengerich, 1989; Crespi et al., 1991). There are 

several pathways that AFBO can take, resulting in cancer, toxicity, and AFBO excretion. 

The exo-form of AFBO readily binds to cellular macromolecules including genetic 

material (proteins and DNA), to form adducts. It is the formation of DNA-adducts that 

leads to gene mutations and cancer. 

AFs are associated with both toxicity and carcinogenicity in human and animal 

populations. The diseases caused by AF consumption are called aflatoxicoses. Acute 

aflatoxicosis occurs when moderate to high levels of AFs are consumed. Acute episodes of 

disease symptoms may include haemorrhage, acute liver damage, oedema, alteration in 

digestion, absorption and/or metabolism of nutrients, and may result in death (Varga et al., 

2009). Chronic aflatoxicosis results in cancer, immune suppression, and other “slow” 

pathological conditions.  

There are substantial differences in species susceptibility. Moreover, within a given 

species, the magnitude of the response is influenced by age, sex, weight, diet, exposure to 

infectious agents, and the presence of other mycotoxins and pharmacologically active 

substances. LD50 for AFB1 ranges from 0.5 mg/kg for the adult dog to 10.2 mg/kg for the 

hamster (Moss, 1996). For humans, LD50 probably falls in the middle of the range (Moss, 

1998). Because of the differences in AF susceptibility in test animals, it has been difficult 

to extrapolate the possible effects of AFs to humans, but according to the International 

Agency for Research on Cancer (IARC), there is sufficient evidence for carcinogenicity of 

naturally occurring mixtures of AFs, mixtures of AFB1, AFG1 and AFM1, and of AFB1 

alone, limited evidence for AFB2 and inadequate evidence for AFG2 and AFM1 (IARC, 

2002). Exposure to AFs in the diet is considered an important risk factor for the 

development of primary hepatocellular carcinoma, particularly in individuals already 

exposed to other liver pathologies such as hepatitis B (Henry et al., 2002). Several studies 

have linked liver cancer incidence to estimated AF consumption in the diet (Li et al., 

2001). The results of these studies have not been entirely consistent, and quantification of 

lifetime individual exposure to AF is extremely difficult. The incidence of liver cancer 

varies widely from country to country, but it is one of the most common cancers in China, 
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the Philippines, Thailand and many African countries (Bennett & Klich, 2003), where 

contaminated maize and rice are the major dietary constituents.  

Also, acute toxicity of AFs in humans has been observed, even if rarely. Acute 

aflatoxicosis epidemics occurred in India in 1974, due to the consumption of maize heavily 

contaminated with AF (Krishnamachari et al., 1975). More than 100 people died. Also, 

three cases of acute aflatoxicosis occurred in Kenya in 1981 (Ngindu et al., 1982), in 2004 

and in 2005, causing more than 150 deaths (CDC, 2004; Azziz-Baumgartner et al., 2005; 

Lewis et al., 2005; Probst et al., 2007). 

2.1.5.2 Risk assessment and Regulatory issues 

AFs have been found to contaminate many crops frequently at nanogram levels, 

although occasionally they can be found at levels of tens to hundreds of ng/g. Commodities 

with a high risk of AF contamination include peanuts, corn, cottonseed, Brazil nuts, 

pistachios, spices, figs and copra. Commodities with an intermediate risk of AF 

contamination include almonds, pecans, and raisins. Walnuts, soybeans, beans, pulses, 

cassava, grain sorghum, millet, wheat, oats, barley, and rice seem to be less susceptible to 

AF contamination (CAST, 2003).  

Because controlling the occurrence of mycotoxins in finished products is practically 

impossible, regulatory bodies are continuously assessing the levels of acceptable exposure 

to humans by using a risk assessment process to establish tolerable daily intakes of selected 

mycotoxins. Monitoring programs assessing the occurrence of mycotoxins along with 

available toxicological data are used to make an assessment of exposure-risk to humans or 

animals. The result is the establishment of regulatory levels for selected mycotoxins where 

sufficient information has been obtained. 

Risk assessment is based on the hazard or toxicity of a mycotoxin and the expected 

degree of exposure of individuals or populations. The hazard of mycotoxins to individuals 

is probably more or less the same all over the world, except for those populations, e.g. 

from Shanghai, Thailand, China, Gambia, Taiwan, with high levels of hepatitis B infection, 

for whom AF potency is significantly enhanced (Henry et al., 2002; CAST, 2003). On the 

other hand, exposure is not the same worldwide, because of different levels of 

contamination as well as dietary habits in the various parts of the world. AFs prevail in less 
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developed tropical and subtropical countries where climate and storage conditions are 

favourable to fungal growth and toxin production. Furthermore, populations from those 

countries rely extensively on some of those crops which have been found more susceptible 

to AF, mostly grains.  

Worldwide regulations exist for mycotoxins and generally are based on toxicological 

data, occurrence and distribution, and epidemiological data. In Europe, current regulations 

are based mostly on scientific opinions of authoritative bodies, as the Joint Expert 

Committee on Food Additives of the United Nations (JECFA - a scientific advisory body 

of the World Health Organization (WHO) and the Food and Agriculture Organization 

(FAO)) and the European Food Safety Authority (EFSA). The EFSA is an independent 

body of the European Commission (EC), established in 2002, and charged, among other 

tasks, with the development of risk assessments on issues of concern in the food and feed 

supply. EFSA publishes its risk assessments in the form of scientific opinions which form 

the main scientific basis for the preparation of EU regulations. Another important EU 

activity is SCOOP (Scientific Cooperation on Questions relating to Food), funded by the 

European Commission, and targeted to make the best estimates of intake of contaminants 

by EU inhabitants. The objectives of SCOOP activity is to provide the scientific basis for 

evaluation and management of risk to public health arising from dietary exposure to 

mycotoxins, taking into account recently available data on occurrence and consumption. 

Special emphasis is placed on evaluation of dietary intake of mycotoxins in each of the EU 

member states and in high-risk sub-groups of the population.  

For the mycotoxins currently considered most significant, JECFA has evaluated their 

hazard in several sessions (see review by van Egmond et al., 2007). In 2001, a JECFA 

session was devoted to mycotoxins. Reports resulting from this session provided detailed 

insight into the process of risk assessment of mycotoxins (FAO, 2001, 2002). The reports 

addressed several concerns about the mycotoxins considered - their properties and 

metabolism, toxicological studies, and final risk evaluation. 

In the early days of mycotoxin regulations, control measures focused mainly on AFs. 

They were established by industrialised countries, and limits often had an advisory or 

guideline character. Over the years, the number of countries with known specific 

mycotoxin regulations has increased from 33 in 1981 (Schuller et al., 1983) to 100 in 2003 
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(FAO, 2004), with specific limits being established for many food and feed commodities 

and products for 13 different mycotoxins or groups of mycotoxins.  

Until the late 1990’s, setting of mycotoxin regulations was mostly a national 

concern. As a consequence, tolerated levels of mycotoxins varied widely between 

countries. The Task Force Report of the Council for Agricultural Science and Technology 

(CAST), USA, collated information on almost 80 countries all over the world and, in 1997, 

for the specific case of AFs, tolerated levels varied from zero (undetectable) to 1000 µg/kg 

(CAST, 2003). Preferably, regulations should be harmonised with those in other countries 

with which trade contacts exist. Unnecessarily strict regulative actions make it difficult for 

importing countries to obtain supplies of essential commodities such as food grains and 

animal feedstuffs. Also, exporting countries may have difficulty finding markets for their 

products. For example, stringent regulations for AFs in the EU (EC, 2006) make it difficult 

for some countries to export food commodities and feed for their European trading 

partners. As a consequence, several economic communities, e.g. EU, Mercado Cómun del 

Sur (MERCOSUR), Australia and New Zealand, have been developing efforts during the 

last decade in order to harmonise their mycotoxin regulations, thus overruling existing 

national regulations.  

In an attempt for harmonisation, EFSA has recently (March 2007) published an 

opinion on the potential increase in the risk to consumer health of a possible increase in 

current maximum levels for AFs in almonds, hazelnuts, pistachios, and derived products 

(http://www.efsa.europa.eu, accessed 15.07.2010). The panel concluded that changing the 

maximum levels for total AFs in almonds, hazelnuts, and pistachios from 4 to 8 or 

10 µg/kg would have minor effects on estimates of dietary exposure and cancer risks. As a 

consequence, EC recently adopted legislation changing their AFs regulatory limits (EC, 

2010a) and sampling plans (EC, 2010b) for tree nuts to more closely conform to that 

developed by the Codex Committee on Contaminants in Foods (CCCF) and adopted by the 

Codex Alimentarius Commission (CAC) in July 2008 (CCCF, 2008). The Codex AF 

sampling plan for tree nuts (almonds, pistachios, and hazelnuts) requires that two 10 kg 

samples both test less than 10 µg/kg for total AFs (AFT) to accept the lot. The EU adopted 

the Codex plan, but added an AFB1 limit of 8 µg/kg. As a result, an almond lot requires 

two 10 kg samples to each test less than both limits (8 µg/kg AFB1 and 10 µg/kg AFT) for 
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the lot to be accepted into the food chain. This revision still does not harmonise with USA 

regulations, which determine maximum levels for total AFs of 20 µg/kg. 

EU food and feed imports are informed in part through the EU’s Rapid Alert System 

for Food and Feed (RASFF). The RASFF is a tool used to exchange information on 

potential risks entering the food and feed system at any point in the EU, so that all EU 

member states may be alerted to take the appropriate measures to assure food and feed 

safety (Wu, 2008). In 2009, RASFF reported a total of 669 alerts or notifications for 

mycotoxins, of which 95% were for AFs, mostly from nuts, nut products and seeds (638, 

81%) (EC, 2010c). A significant part of these notifications (42%) were for peanuts from 

Argentina, China, USA, Brazil, Egypt and South Africa. Pistachio nuts from Iran, Turkey 

and USA originated 136 notifications (21%), 63 notifications (9.9%) on hazelnuts nearly 

all from Turkey, 55 notifications (8.6%) on almonds mainly from USA and a few from 

Australia, and 7 notifications (1%) on Brazil nuts from Brazil and Bolivia. The remaining 

notifications were on figs (10%), spices (3.6%), cereals (2%) and feed (1.4%).  

Although this is circumstantial evidence, it reflects market realities and conforms to 

the position of the industry groups, in which peanut, almond and pistachio producers are 

greatly affected by the economic impact of AF contamination, whereas others (e.g. walnut 

producers) are primarily concerned with spoilage microorganisms such as Rhizopus, 

Penicillium and A. niger.  

2.1.6 Aflatoxigenic fungi and aflatoxins in tree nuts 

2.1.6.1 Aflatoxigenic species 

All known aflatoxigenic species belong to genus Aspergillus. Currently, 14 species 

have been identified as having the ability to produce at least one of the four major naturally 

occurring AFs. Nine of them belong to section Flavi, being A. flavus and A. parasiticus the 

most significant and widespread. A. flavus populations have been found to be extremely 

diverse in terms of toxigenicity, and only about 40% of known isolates produce AFs 

(Frisvad et al., 2006b). The species has been divided into two morphotypes depending on 

the size of sclerotia, L-type strains producing large sclerotia (> 400 µm) and S-type strains 

producing microsclerotia (< 400 µm; Cotty, 1989). S-type strains are usually associated 
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with the production of large amounts of AFBs (SB) or, more atypically, AFBs and AFGs 

(SBG). Some of these atypical SBG strains have been recently ascribed to the new 

aflatoxigenic species A. parvisclerotigenus (Frisvad et al., 2005) and A. minisclerotigenes 

(Pildain et al., 2008). 

A. parasiticus strains are more uniform in their toxigenic abilities: they are usually 

strongly aflatoxigenic, producing both AFBs and AFGs. Non-aflatoxigenic strains have 

rarely been reported (Horn et al., 1996; Tran-Dinh et al., 1999; Vaamonde et al., 2003; 

Razzaghi-Abyaneh et al., 2006). Recently, a new species closely related to A. parasiticus, 

A. arachidicola, has been described (Pildain et al., 2008). A. nomius is also strongly 

aflatoxigenic, having an aflatoxigenic profile similar to A. parasiticus (Kurtzman et al., 

1987). Other aflatoxigenic species of this section have been identified: A. pseudotamarii 

(Ito et al., 2001), a close relative of the non-aflatoxigenic species A. tamarii, and A. 

bombycis (Peterson et al., 2001), closely related to A. nomius. 

Outside section Flavi, five species have also been identified as aflatoxigenic, but, to 

our knowledge, they have not been implicated in food contamination. Two species belong 

to section Ochraceorosei, A. ochraceoroseus and A. rambellii (Frisvad et al., 2005), and 

three belong to section Nidulantes, Emericella astellata (Frisvad et al., 2004), E. olivicola 

(Zalar et al., 2008) and E. venezuelensis (Frisvad & Samson, 2004). Numerous other 

species have been incorrectly indicated as aflatoxigenic, mainly as a result of wrong 

identification or strain contamination. Frisvad et al. (2006a) have collected a list of those 

species, which include A. flavo-fuscus, A. glaucus, A. niger, A. oryzae, A. ostianus, A. 

sulphureus, A. tamarii, A. terreus, A. terricola, A. wentii, Emericella nidulans (as A. 

nidulans), E. rugulosa (as A. rugulosus), Eurotium chevalieri, E. repens, E. rubrum, Mucor 

mucedo, Penicillium citrinum, P. citromyces, P. digitatum, P. frequentans, P. expansum, P. 

glaucum, P. puberulum, P. variabile, Rhizopus sp. and the bacterium Streptomyces sp.  

2.1.6.2 Biodiversity and biogeography of aflatoxigenic species  

Regarding the distribution and economic importance of aflatoxigenic species, only 

species belonging to section Flavi have been found to be of significance in foods and food 

commodities. From those, A. flavus and A. parasiticus remain the most important and 

representative aflatoxigenic species occurring naturally in food commodities all over the 
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world. For many years, researchers did not separate A. flavus from A. parasiticus in field 

studies, which led to some confusion regarding their distribution. Even today, as new 

species are constantly being described, some doubts remain on the true identification of 

some isolates that phenotypically resemble the most common species. As a matter of 

consequence, biodiversity and biogeography of aflatoxigenic species needs to be regarded 

with caution. 

Incidence of the aflatoxigenic species varies with crop and geographic location. A. 

flavus is the most commonly reported species and has been isolated from soils and cultures 

in all of the major biomes (Klich, 2002b). Although A. flavus may be found in all climatic 

zones, it is isolated relatively more frequently in warm temperate zones (latitudes 26–35º) 

than in tropical or cooler temperate zones, and is quite uncommon in latitudes above 45º 

(Klich, 2002b). It is therefore not surprising that chronic AF problems are associated with 

crops in latitudes below 35º and are generally not a major problem in crops raised in 

Europe (Klich, 2007). The atypical SB and SBG strains have been identified from Australia, 

Thailand, West Africa and Argentina (Saito & Tsuruta, 1993; Cotty & Cardwell, 1999; 

Geiser et al., 2000; Vaamonde et al., 2003; Pildain et al., 2008). In North America, only SB 

strains have been reported (Cotty & Cardwell, 1999; Horn & Dorner, 1999).  

The species is widespread in a variety of foods, but is mostly found in oil seeds, nuts, 

cereals and dried fruits. Also, the highly variable aflatoxigenic profile of A. flavus 

populations seems to be dependent as much on the geographic origin as on the substrate. 

For instance, isolates from peanuts seem to be predominantly aflatoxigenic (70-100% of all 

isolates) and in proportions significantly higher than in other crops, independently of the 

geographic origin (Joffe, 1969; Schroeder & Boller, 1973; Lisker et al., 1993; Barros et al., 

2003, 2005; Vaamonde et al., 2003; Pildain et al., 2004; Nakai et al., 2008). Also, Brazil 

nuts (Arrus et al., 2005a), white sultanas and dried figs (Iamanaka et al., 2007) have been 

associated with extremely high proportions of toxigenic isolates. On the other hand, 

populations from crops like maize, wheat, coffee beans and cotton have proportions of 

aflatoxigenic isolates that range from 5 to 50% (Cotty, 1997; Wicklow et al., 1998; 

Vaamonde et al., 2003; Razzaghi-Abyaneh et al., 2006; Atehnkeng et al., 2008). No studies 

on almonds were found referring to the proportions of section Flavi species in this 

substrate. 
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A. parasiticus is apparently less widespread in nature, and it seems to be more 

adapted to survival in the soil and less dependent on crop infection than A. flavus (Horn, 

2007). As a matter of fact, this species is generally isolated quite rarely from the majority 

of foods and was found to be important only in soils and underground foods like peanuts 

(Klich, 2002b; Vaamonde et al., 2003; Horn, 2005). Also, it has been reported to be 

geographically restricted to USA, South America and Australia (Frisvad et al., 2006b), and 

to be rare in Southeast Asia (Pitt et al., 1993). 

Aflatoxigenic species other than A. flavus and A. parasiticus appear to be of minor 

importance to agriculture. A. nomius has rarely been identified in survey studies from 

agricultural soils and commodities (Fiebelman et al., 1998; Ito et al., 1998; Abbas et al., 

2005; Razzaghi-Abyaneh et al., 2006; Ehrlich et al., 2007; Johnsson et al., 2008; Olsen et 

al., 2008). The species has been isolated from diverse regions, but is still considered rare. 

Yet, this can be an artefact resulting from its strong resemblance with A. flavus, since 

recent data indicate that A. nomius may be a major contributor to AF contamination of 

Brazil nuts (Johnsson et al., 2008; Olsen et al., 2008). The significance of the recently 

described species needs further investigation in terms of food and geographic distribution, 

but they are probably less significant from the point of view of AF contamination of foods 

and feeds. They have been reported rarely and with restricted distribution. A. arachidicola 

and A. minisclerotigenes have been reported from an Argentinian uncultivated peanut plant 

(Pildain et al., 2008), whereas A. pseudotamarii and A. caelatus have been isolated from 

tea fields in Japan (Ito & Goto, 1994; Ito et al., 1999).  

The differences in aflatoxigenic fungi community structure are reflected in the 

relative abundance of AFBs and AFGs in crops produced in various regions (Cotty, 1997). 

Furthermore, the average AF-producing potential of fungal communities varies with 

geography with some regions having communities with greater AF-producing potentials 

and, as a result, crops grown in those regions are more vulnerable to contamination (Cotty, 

1997; Jaime-Garcia & Cotty, 2006). For instance, geographical divergence in the strongly 

aflatoxigenic S-strains incidence has been associated with increased crop AF content 

(Jaime-Garcia & Cotty, 2006), and are presumed to be responsible for the major 

contamination problems occurring in Africa. Also, regions and cultures where A. 

parasiticus is more abundant are usually associated with higher levels of contamination 

with AFGs than those richer in A. flavus. 
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The factors responsible for the toxigenic profile of A. flavus populations in a region 

or substrate are not fully understood. It has been suggested that modern agricultural 

management practices may create unique ecological niches which select toxigenic fungi 

and that the extent of these selective forces influences the relative proportion of toxigenic 

and atoxigenic strains in a given area (Bilgrami et al., 1981). Bilgrami et al. (1988) and 

Horn & Dorner (2001) suggest that adverse environmental conditions like those usually 

found in nature (by competition with other microorganisms and by exposure to stressful 

conditions), have a stabilising effect on AF production ability and other wild-type 

characters in A. flavus, and that they are lost in nutritionally rich environments. Perrone et 

al. (2007) further suggest that, since section Flavi isolates are essentially saprophytic, 

polyketide metabolites like AFs may increase fungal survival in soil, but that such benefit 

may be unnecessary in carbon-rich environments, where the ability to produce AFs could 

be a vestigial function. Adaptation of A. flavus to certain crops, namely the carbon-rich 

ones, is perhaps conducive to gene loss, since many of the isolates incapable of AF 

production have multiple mutations in their AF gene cluster (Chang et al., 2005).  

Also, in A. parasiticus, when normal development is thwarted, the resulting isolate 

permanently loses some of its normal development functions, and loss of AF production is 

usually related to loss of conidia formation (Guzman-de-Pena & Ruiz-Herrara, 1997; Kale 

et al., 2003; Wilkinson et al., 2004). Maybe the defects in A. parasiticus isolates are too 

severe and turn them unviable, thus justifying the fact that almost all isolates are 

aflatoxigenic. These theories may be supported by the fact that surveys from soil or from 

soil-growing crops like peanuts usually render higher incidences of A. parasiticus and 

aflatoxigenic A. flavus than surveys on crops that do not contact directly with soil, like 

maize and almonds (Wicklow et al., 1998; Barros et al., 2003, 2005). Also, the levels of A. 

parasiticus are usually higher in soil than would be expected from levels present in the 

corresponding culture (Horn et al., 1995; Doster et al., 1996). 

2.1.6.3 Ecophysiology of aflatoxigenic fungi and aflatoxin production 

Growth of aflatoxigenic fungi and the biosynthesis of AFs is strongly dependent on 

growth conditions such as substrate composition, pH, aW, temperature or modified 

atmospheres. Depending on the particular combination of external growth parameters the 
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biosynthesis of AFs can either be completely inhibited, albeit normal growth is still 

possible, or the biosynthesis pathway can be fully activated. Knowledge about these 

relationships enables an assessment of which parameter combinations can control fungal 

growth and AF biosynthesis or which are conducive to AF production.  

 

Environmental conditions and water availability 

Although some geographical variation might be attributed to isolation and 

divergence (Cotty & Cardwell, 1999), responses of AF producers to climate are important 

influences (Cotty, 1997; Cardwell & Cotty, 2002). AF producing fungi are native to warm 

arid, semi-arid, and tropical regions with changes in climate resulting in large fluctuations 

in the quantity of AF producers (Bock et al., 2004). These fungi compete poorly under cool 

conditions and the quantity of A. flavus in cool areas (temperature minima < 20 °C) is low 

compared to warmer regions (temperature minima > 25 °C) where aflatoxigenic fungi are 

common throughout soils, air, and on crop surfaces. Hence, crops grown in warm climates 

have greater likelihood of infection by AF producers. 

Similarly to what has been described for fungi in general, temperature and the 

equilibrium environmental relative humidity/substrate aW are the factors that more strongly 

affect growth of aflatoxigenic fungi and AF production. Several in vitro studies have been 

developed on the determination of cardinal temperatures and aW for fungal growth and AF 

production. A. flavus and A. parasiticus can grow over a wide range of temperatures (12 to 

48 ºC), but growth is maximised in the range 25 ºC - 37 ºC (Pitt & Hocking, 1997; Marin 

et al., 1998; Sautour et al., 2002; O’Brian et al., 2007; Samapundo et al., 2007a, 2007b; 

Schmidt-Heydt et al., 2009). Reported values for optimal aW for A. flavus and A. 

parasiticus growth vary from 0.97 to 0.99 (Gibson et al., 1994; Marin et al., 1998; Sautour 

et al., 2002), but growth has been reported for minimum aW near 0.80, for temperatures 

around 30 ºC (Pitt & Miscamble, 1995; Rosso & Robinson, 2001; Samapundo et al., 

2007a, 2007b; Johnsson et al., 2008).  

Usually, AFs are produced under temperature and aW ranges that are not as wide as 

those found for growth. AF production has been determined to occur at temperatures 

between 20 and 37 ºC, and for aW > 0.85, but they were found to be optimally produced at 

28-30 ºC and aW > 0.95 (Gqaleni et al., 1997; O’Brian et al., 2007; Schmidt-Heydt et al., 

2009).  
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AF contamination of crops can be divided into two distinct phases, with fungal 

infection of the developing crop in the first phase and increases in contamination after 

maturation in the second phase. Although episodes of contamination are often attributed to 

one phase or the other (e.g. due to poor post-harvest handling or associated with insect 

damage in the field), both phases contribute to many contamination events. Developing 

crops are frequently very resistant to infection by A. flavus and subsequent AF 

contamination due to natural mechanisms of resistance that are onset as response to fungal 

attack. But when crops are exposed to stressful environmental conditions such as drought 

and high temperatures significant infections usually occur (Bircan et al., 2008).  

The roles of high temperature and drought in plant contamination are being 

progressively elucidated. On the one side, these factors directly affect the physiology of the 

plants and the mechanisms of resistance, leaving them particularly susceptible to fungal 

infection and AF production. For instance, drought stress induces a great increase of amino 

acids production in plants, mostly proline, and proline has been reported to stimulate AF 

production (see below). Also, production of phytoalexins (antimicrobial compounds 

produced by plants in response to fungal attack), which have been shown to inhibit spore 

germination and hyphal extension of A. flavus in immature (high aW) peanuts (Wotton & 

Strange, 1985), is inhibited by drought stress (Wotton & Strange, 1987; Dorner et al., 

1989; Strange & Rao, 1994). Another possibility for the higher contamination of crops 

under stress is that the fungi that normally compete with A. flavus do not grow as readily 

under these conditions, giving A. flavus a competitive advantage due to its xerotolerant 

nature, even compared with other Aspergillus species (Klich, 2007). 

The second phase of contamination may occur at any time from crop maturation until 

consumption. During this period, aW of nuts is usually sufficiently low (< 0.70) to inhibit 

fungal growth and AF production. In a study of peanut contamination from sowing to 

harvest, Gonçalez et al. (2008) only found aflatoxigenic fungi and AF contamination in 

pods at full maturity. A. flavus and A. parasiticus were not isolated in the stages of 

maturity with the highest water contents (aW > 0.98), thus confirming that natural 

resistance against fungal invasion is only effective at aW > 0.97, and is lost at the final 

stages of maturity, when aW decreases to values below 0.95 (Dorner et al., 1989). In theory, 

nuts are most susceptible to AF contamination when aW is between 0.95 and 0.85. Above 

0.95, AF production is inhibited by host resistance, and below 0.85 that effect is the result 
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of fungal growth restriction due to reduced water availability. So, adequate conditions of 

relative humidity during storage must be effective at maintaining substrate aW below at 

least 0.85. If, on the other hand, crops are exposed to conditions of higher humidity, dry 

seeds develop water content conducive to contamination (Adebajo & Popoola, 2003; 

Johnsson et al., 2008; Riba et al., 2010). As an example, Johnsson et al. (2008) tested the 

effect of storing Brazil nuts under different aW conditions, and detected that both levels of 

the inoculated fungus and toxin levels increased significantly with time in samples stored 

at aW > 0.85, but not in samples stored at aW below that. When growth has started, colony 

counts and AFs will accumulate as long as aW and nutrient availability allow it. Growth 

will cease after drying of the nuts but fungal spores and AFs that have been formed earlier 

will remain. That is a possible explanation for the finding of AF contamination in stored 

products with aW < 0.70 (da Silva et al., 2000; Gonçalez et al., 2008).  

 

Nutritional requirements 

Many plants and substrates support growth and AF production by aflatoxigenic 

moulds, but AFs are most frequently associated with high-carbohydrate and high-fat food 

and feed like ground nuts and derived products, almonds, pistachios, Brazil nuts, maize, 

rice, figs, cotton seed and spices. In fact, some Aspergillus species, mainly A. flavus and 

related species, seem to hold a unique position in the fungal world. They primarily obtain 

the resources needed for growth in a saprophytic mode and, thus, retain the ability to 

secrete a large diversity of hydrolases to help access nutrients. The most significant 

hydrolytic proteins associated with Aspergillus section Flavi are proteases, lipases, 

amylases and pectinases (Mellon et al., 2007). Lipases play a prominent hydrolytic role in 

A. flavus metabolism when triglycerides are used as a carbon source. In particular, the lipA 

gene, encoding a lipase in A. flavus, has been suggested to promote AF formation in 

lipid-rich environments, for its putative role in capturing carbon nutrients from lipid 

sources (Yu et al., 2003). Furthermore, fatty acids are involved in one of the first 

enzymatic reactions of the aflatoxin pathway (reviewed in Yabe & Nakajima, 2004). The 

effects of lipids on fungal growth and AF production have been studied in A. flavus and A. 

parasiticus by many researchers. Mellon et al. (2000) determined that A. flavus growth was 

enhanced on media with triglycerides as a sole carbon source. In addition, AF production 

levels were 800-fold higher in lipid-rich substrate than in the same substrate extracted from 
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lipids. Fanelli et al. (1983) had already demonstrated that lipophilic epoxy fatty acids 

stimulated AF production in toxigenic fungi. Ergosterol oxidation was also found to induce 

both fungal growth and AF production (de Luca et al., 1995).  

It is also known that carbon and nitrogen sources play a vital role in the regulation of 

AF production (reviewed by Payne & Brown 1998; Wilkinson et al., 2007; Senyuva et al., 

2008). Simple sugars such as glucose, saccharose, maltose and galactose induce AF 

production, while more complex nutrients such as peptone, lactose, oleic acid and starch do 

not. These findings support the fact that fat-rich nuts like almonds, pistachios and peanuts 

are more frequently involved in AF contamination than starch-rich chestnuts. The types 

and concentrations of the nitrogen source in the substrate are equally critical to fungal 

growth and to subsequent AF production. It has been reported that the amino acids proline 

and cystine stimulates AF production more than cysteine, asparagine, tryptophan or 

methionine when A. flavus and A. parasiticus are grown in culture. 

 

Interaction with the host plant  

In vitro experiments with chemical components of tree nuts have shown a significant 

difference in the ability of different tree nuts to support AF production. Walnuts were 

found to contain a series of chemicals (phenols, naphtoquinones, tannins, plumbagin) with 

potent effects against AF biosynthesis (Campbell et al., 2003; Fukuda et al., 2003; 

Mahoney & Molineux, 2004). These compounds were found in the seed coat, not the 

nutmeat itself, and were found only as traces in almonds. On the other hand, various 

chemical compounds with some sort of biological activity shown to occur in high 

concentrations in almonds, like triterpenoids, phenolics and sterols (Mahoney & Molineux, 

2004), failed to show significant anti-aflatoxigenic activity. Studies on this matter have not 

been developed in almonds as intensely as in walnuts, but they will need to be addressed, 

since it is a known fact that, in almonds, AFs usually accumulate in the seed coat, and 

removing this pellicle usually reduces AF in the nutmeat to undetectable levels. 

Besides differences between crops, there are also varietal differences within each 

crop. Various authors detected differences (significant in some cases) between varieties of 

walnuts and almonds in terms of chemical composition as well as resistance to A. flavus 

and AF accumulation (Gradziel & Wang, 1994; Gradziel et al., 2000; Dicenta et al., 2002; 

Mahoney et al., 2003; Mahoney & Molineux, 2004). Dicenta et al. (2002) tested 40 almond 
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cultivars from different geographic origins and, even if at different levels, all showed 

susceptibility to A. flavus. They concluded that there is no relationship between geographic 

origin of the cultivars and degree of susceptibility. However, cultivars from California 

have soft shell, whereas those traditionally cultivated in Europe have hard shell. This 

difference has been correlated with AF contamination (Gradziel & Wang, 1994), where 

soft-shell cultivars showed higher susceptibility. This factor, among others (mostly 

environmental), may constitute the reason why European almonds are seldom 

contaminated with AFs. However, European producers (and particularly those from the 

Portuguese northeast region) are currently converting their orchards into soft cultivars 

which give higher yields and are easier to process. This and the climatic changes in the 

Mediterranean basin into more arid and hot can lead to a change in this paradigm in the 

near future (Paterson & Lima, 2009).  

The speed at which phytoalexins accumulate after challenge and the concentrations 

reached are influenced not only by environmental conditions but also by genotype of the 

plant, and resistant cultivars have been found to accumulate more phytoalexins than the 

susceptible ones (Strange & Rao, 1994). 

 

Physical barriers and damage  

A. flavus is a weak plant pathogen which seems to lack the ability to penetrate the 

shell of nuts (Dickman et al., 1986), being that entry into the edible kernel usually depends 

on breaks caused by abrasions or insects. As a consequence, AFs are rarely found in 

kernels with intact hulls (Sommer et al., 1986; Arrus et al., 2005). Insect-feeding damage is 

a major factor leading to pre-harvest fungal infection of nut kernels of almond, and 

subsequent AF contamination. Wounds to the protective layers surrounding nut kernels 

(hull, shell, seadcoat) provide avenues for infection by wind-borne spores of aflatoxigenic 

fungi (Doster & Michailides, 1995, 1999; Schatzki & Ong, 2001; Campbell et al., 2003). 

The majority of studies on mechanisms of AF contamination in tree nuts are 

dedicated to pistachio (Dickman et al., 1986; Sommer et al., 1986; Doster & Michailides, 

1995, 1999; Mahoney & Rodriguez, 1996; Mahoney & Molyneux, 1998; Campbell et al., 

2003). Less is known for other nuts, particularly almonds (Phillips et al., 1979; Schatzki & 

Ong, 2000, 2001; Campbell et al., 2003) and chestnuts. In a study on pistachio from 

California, Mahoney & Rodriguez (1996) detected that AF was not produced in pistachio 
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shells despite of high shell colonisation by A. flavus, and lower levels of contamination 

were detected on in-shell kernels than on shelled kernels. In pistachios, high levels of AFs 

are associated with early-splitting shells and insect-damaged kernels, in which the kernel 

can be exposed to fungal spores (Sommer et al., 1986; Mahoney & Rodriguez, 1996; 

Campbell et al., 2003). In almonds, the maturation process is different, and hull-splitting 

exposes the hard shell, which remains closed, giving access to insects but usually not 

directly to fungi (Schatzki & Ong, 2001). Either way, insect-damaged nuts are usually 

excluded from downstream processing through visual or mechanical sorting, based on 

external evident damage or decolorisation typical of fungal contamination, thus reducing 

the incidence of contaminated nuts in the final product.  

Alternate routes of infection may occur during development of the kernel or through 

natural breaches which take place as the kernel matures, mainly through the stem-end of 

the nut when the fruit is still soft (Campbell et al., 2003). At this stage, the kernel is 

vulnerable to being pierced by sucking-insects common to pistachio and almonds. This 

route presents a problem, since there are no evident external signs of damage to the nut, 

making it difficult to remove such nuts from the processing stream.  

Mahoney & Rodriguez (1996) observed that the seed coat matrix of pistachio 

appears to be more conducive to adhesion and/or germination of A. flavus spores than the 

shell, but the waxy cuticular layer below the seed coat that exists in tree nuts seems to be 

an effective barrier to A. flavus infection. They analysed pistachios with and without seed 

coat (but with the cuticular layer intact), and detected that none of the blanched nuts 

(without seed coat) suffered A. flavus colonisation or AF contamination, whereas 62% of 

the kernels with seed coat were colonised by the fungus and 44% were contaminated with 

the toxin after 10 days of inoculation. There are no reports on the differential analysis of 

the AF content of the shell, nutmeat and seed coat of almonds, but there is a general 

recognition that removing the seed coat from contaminated kernels is a practice that greatly 

reduces AF contamination. Even if pistachios and almonds differ significantly in their 

maturation process (Schatzki & Ong, 2000), we can assume that the physical and chemical 

barriers between the outer shell and the nutmeat might have a similar effect on fungal 

growth in both pistachios and almonds.  

A major reservoir of aflatoxigenic Aspergillus spores is in the orchard litter 

surrounding tree nuts (Campbell et al., 2003). In general, almond fruits are harvested by 
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shaking them from the tree immediately prior to collection. It is not known whether there is 

direct infection of nuts while still on the tree, but the infected litter may contribute to 

increase the probability of wounded nuts being infected by fungal spores. Also, spores can 

adhere to fallen fruits and infect them during storage, even in non-damaged nuts, if proper 

post-harvest handling and storage conditions are not guaranteed. For other nuts that are 

allowed to fall and stay on the ground for days or weeks, like chestnuts, contamination and 

infection can potentially occur during that stage. 

 

Interaction with other microorganisms 

Antagonism between aflatoxigenic fungi and other microorganisms have been 

reported in several studies. Phillips et al. (1979) analysed pre-harvest almonds naturally 

and artificially infected with various fungi and found that most of the fungi, and mostly 

Rhizopus and Eurotium species, reduced the colonisation of kernels by A. flavus and A. 

parasiticus. Also in almonds, Joffe (1969) observed that fungi with higher aW requirements 

had stronger antagonistic effect over A. flavus than those fungi usually associated with dry 

foods. It is not completely understood if competition is due to antagonistic effects or to the 

physical and chemical environment being more adapted to ones than to the others. Other 

studies have shown a positive correlation between A. flavus and A. niger (Doster et al., 

1996; Bayman et al., 2002). This association is probably due to the fact that sections Flavi 

and Nigri share common habitats and ecophysiological characteristics (Rosso & Robinson, 

2001; Esteban et al., 2006; Magan, 2006; Klich, 2007), so conditions that favour one of 

these fungi probably favour the other. An alternative explanation is that infection by one 

species makes the fruit more susceptible to the other (Bayman et al., 2002). 

Several in vitro studies have shown that the presence of other filamentous fungi, 

namely A. niger, Rhizopus spp., Trichoderma spp. and Penicillium spp., among others, can 

significantly reduce AF accumulation, by AF production inhibition and/or by AF 

degradation (Wicklow et al., 1980; Mislivec et al., 1988; Doster et al., 1996; Aziz & 

Shahin, 1997; Calistru et al., 1997; La Pena et al., 2004). A number of bacteria (Bacillus 

spp., Pseudomonas spp., Ralstonia spp. and Burkholderia spp.; Palumbo et al., 2006; 

Mohadmadipour et al., 2009) and saprophytic yeasts (Pichia spp., Candida spp. and 

Kluyveromyces spp.; Hua et al., 1999; La Penna et al., 2004) have also been shown to 

possess some kind of effect on A. flavus growth and AF production. 
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It has also been shown that non-aflatoxigenic A. flavus have an effect of competitive 

exclusion towards aflatoxigenic isolates (Cotty & Bayman, 1993; Cotty, 1994). 

2.1.6.4 Control measures 

In contrast to many crops, tree nuts undergo minimal or very light processing, such 

as blanching, and the majority of the crop is traded and consumed as whole or shelled nuts. 

Any subsequent processing, such as incorporation into baked goods, is performed by the 

buyer or ultimate consumer after AF analysis has been performed. There is thus little 

opportunity to reduce AF levels by artificial means and natural methods must therefore be 

found. Preventing AF accumulation in crops can be achieved by either controlling the 

fungus or controlling AF production, via the use of any of several measures alone or in 

combination, in pre- or post-harvest stages of production (Campbell et al., 2003; Cleveland 

et al., 2003; Munkvold, 2003; Strosnider et al., 2006).  

 

Pre-harvest control measures 

The general strategy for pre-harvest AF control methods is to alter the conditions 

under which the crop is grown so that infection is avoided. Any management practice to 

maximise plant performance and decrease plant stress will decrease AF contamination 

(Payne, 1998). The most immediate cultural measures include tillage practices, fertilization 

regimes, crop rotation, proper plant density, planting date, and irrigation (Wu et al., 2008). 

None of these apply to the cultural practice of tree nuts, and these measures have mostly 

been applied to annual crops such as maize and peanuts. Since AF contamination in 

almonds has been strongly associated with damage inflicted by specific insects (Schade et 

al., 1975; Schatzki & Ong, 2001; Campbell et al., 2003; Whitaker et al., 2010), insect 

control could also be an effective control measure. Also, AF is a bigger problem in plants 

under stress, and can be reduced by lowering plant stress, mainly by irrigation in drought 

periods. Because irrigation and the application of fungicides and insecticides in almond 

and chestnut orchards is not in equation, cultural strategies are probably reduced to 

harvesting under dry conditions and immediately after nuts have fallen from the tree.   

The nature of tree nut harvesting and processing, which involves considerable 

potential for spreading of fungal spores and AFs throughout the lots, mandates that the 
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most effective method of control would be to prevent AF formation by the nuts 

themselves, through the use of cultivars more resistant to fungal infection or with natural 

products in their composition which confer natural resistance to fungal infection and/or AF 

production.  

Because chemical control procedures for mycotoxin contamination are not 

economically feasible for most crops, interest exists for developing effective biocontrol 

agents to decrease mycotoxin contamination. Efforts on the biological control of 

aflatoxigenic strains of A. flavus and related species are in progress and involve the use of 

atoxigenic strains as biocompetitors of toxigenic strains (competitive exclusion; Cotty, 

1994; Cotty & Bhatnagar, 1994). Inoculating crops with atoxigenic A. flavus strains has 

been found to effectively inhibit AF production in fields of cotton (Cotty, 1994) and corn 

(Abbas et al., 2009). Wu et al. (2008) analysed the relation cost/benefit of using this type 

of biocontrol, and concluded that only in regions and crops with high AF contamination 

levels this control measure is advantageous for the producer. Also, care must be taken 

because A. flavus produces other toxins besides AFs. The strategy of using microorganisms 

native to tree nut orchards as biological control agents has also resulted in the identification 

of a number of already mentioned organisms with effect against aflatoxigenic fungi 

(Calistru et al., 1997; Hua et al., 1999; La Penna et al., 2004; Palumbo et al., 2006; 

Mohadmadipour et al., 2009) but there are no records on the use of such organisms in field 

trials. 

As previously mentioned, different cultivars show different susceptibility to A. flavus 

and AF accumulation. The conversion of orchards into more resistant cultivars is one 

possible measure of control. Breeding for resistance to AF contamination is underway in 

almonds (Campbell et al., 2003).  

 

Post-harvest control measures 

Post-harvest handling of crops offers additional challenges, but also vital chances to 

minimise the ultimate AF levels. Nuts may be attacked by fungi in the field which can then 

rapidly develop and produce mycotoxins during storage when conditions are suitable. 

Contamination with A. flavus and subsequent production of AFs during storage is 

considered one of the most serious safety problems throughout the world, mainly in hot 

and humid regions. 
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To reduce or prevent production of mycotoxins in nuts, drying should take place 

soon after harvest and as rapidly as feasible. The critical water content for safe storage of 

nuts (except chestnuts) corresponds to aW of about 0.7, or relative humidity below 80% 

(Arrus et al., 2005). Problems in maintaining an adequately low aW often occur in the 

tropical and subtropical regions where high ambient humidity makes the control of 

commodity moisture difficult. Fungal control in stored nuts with high perishability 

(resulting from high aW) like chestnuts usually requires a short period of superficial drying 

followed by anti-fungal chemical treatments and controlled atmospheres in terms of 

relative humidity, temperature and CO2 concentration (Mignani & Vercesi, 2003).  

The higher value nut and nut product consists of the shelled kernel, whereas in-shell, 

blanched (seed coat removed), sliced, diced, ground or minced products have reduced 

market value. Highly processed products are only valuable when integrated in high quality 

products and delicatessen. Otherwise, they are usually processed from low quality raw 

material. As an example of this, two surveys on processed Californian almonds (Schade et 

al., 1975; Schatzki, 1996) showed that AFs were found essentially on diced or ground 

material, probably as a result of integrating damaged almonds, either by lack of sorting or 

to hide damages. It has been shown that removing visibly damaged nuts by hand- or 

mechanical-sorting before processing significantly reduces AF contamination of processed 

almonds, by reducing the number of potentially contaminated nuts that enter subsequent 

processing steps (Schade et al., 1975).  

AFs are chemically extractable with solvents, but this method, although effective, is 

not economically practical. Heat treatment, radiation and ammoniation may also reduce, 

but not eliminate, AFs (reviewed in Klich, 2007).   

2.1.6.5 Occurrence of aflatoxigenic fungi and aflatoxins in nuts 

Bayman et al. (2002) report the identification of 93% A. flavus and 7% A. tamarii in 

field-collected and store-bought Californian almonds. In store-bought almonds from Saudi-

Arabia, A. flavus constituted 98% of the Flavi population, the rest being A. tamarii (Abdel-

Gawad & Zohri, 1993). In other substrates, Vaamonde et al. (2003) registered the 

predominance of A. flavus in field-collected peanuts (55%) and wheat (75%), and soybeans 

from local markets (96%) in Argentina. The remaining isolates were A. parasiticus. 
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Similarly, Barros et al. (2003, 2005) analysed peanut-growing soil from Brazil and 

identified 73% A. flavus and 27% A. parasiticus. Razzaghi-Abyaneh et al. (2006) detected 

88% A. flavus, 3% A. parasiticus and 9% A. nomius from Iranian corn fields. From corn 

fields and field-collected corn, Wicklow et al. (1998) detected 72% A. flavus and 28% A. 

parasiticus. Atehnkeng et al. (2008) analysed corn from Nigeria and detected more than 

90% A. flavus and only reduced numbers of A. tamarii and A. parasiticus. In cotton from 

the USA, Cotty (1997) registered that A. flavus and A. tamarii accounted for more than 

95% of all Flavi and that A. parasiticus and A. nomius occurred at very low frequencies. 

Also, a comprehensive study on the distribution of Aspergillus section Flavi from soil and 

litter (Klich, 2002b) has demonstrated that A. flavus was the most commonly isolated 

species worldwide, and that A. parasiticus was reported only rarely for the majority of 

biomes and latitudes. In the same study, A. tamarii was found more frequently than A. 

parasiticus even from cultivated biomes. Other studies have even reported the complete 

absence of A. parasiticus: in Brazil nuts collected from processing plants in Peru (Arrus et 

al, 2005a) and in stored peanuts (Nakai et al., 2008), processed coffee beans (Batista et al., 

2003), and store-bought white sultanas and dried figs (Iamanaka et al., 2007) from Brazil. 

Sánchez-Hervás et al. (2008) detected an incredibly high percentage of A. tamarii isolates 

(44%), being the rest of the isolates A. flavus. 

From the studies on the analysis of AFs on almonds, few have reported AF 

contamination of these nuts. Schade et al. (1975) analysed 74 samples of unsorted, in-shell 

Californian almonds and found that 10 (14%) were contaminated with 14.8 µg/kg (total 

weight, kernel plus shell) total AFs, ranging from 1 to 107 µg/kg. Schatzki (1996) reported 

that 80% of 1547 almonds with different types of processing were contaminated, but at 

very low levels, averaging 0.67 µg/kg. Abdel-Gawad & Zohri (1993) and Abdulkadar et al. 

(2000) analysed various nuts marketed in Saudi Arabia and Qatar (no origin reported), 

respectively, and found that none of the in-shell and shelled almond samples were 

contaminated. AFB1 (95 ng/kg) and AFB2 (15 ng/kg) were found in one sample of almonds 

from Spain by Jiménez & Mateo (2001). Only traces of AFs were associated with whole 

almonds from Morocco (Bottalico & Logrieco, 2001). 

There are few reports on chestnuts contamination with mycotoxins. Abdel-Gawad & 

Zohri (1993) analysed a wide range of mycotoxins in chestnuts strongly contaminated with 

Fusarium, Penicillium and Aspergillus, and detected AFB1 and AFG1 in 3 of the 5 samples 
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analysed, ranging from 20 to 60 µg/kg. On the other hand, Overy et al. (2003) detected 

significant contamination of Canadian chestnuts with 5 mycotoxins, chaetoglobosins A and 

C, emodin, OTA and penitrem A, associated with the most prolific penicillia, but no AFs 

were detected. 

AF contamination of other nuts is usually higher than that of almonds. AFs were 

found in 4 of 11 samples of pistachios from Sicily (up to 45 µg/kg of AFB2 and AFG2), in 

three out of seven samples from Greece (up to 87 µg/kg of AFB1, AFB2, AFG1, and AFG2) 

and in three out of six samples from Turkey (up to 102 µg/kg of AFB1, AFB2, AFG1, and 

AFG2) (Barbagallo & Russo, 1999). Abdulkadar et al. (2000) detected contamination in 

20% of in-shell pistachios, 52% of shelled pistachios and 33% of in-shell peanuts, with 

total AFs ranging from 0.53 to 289 µg/kg. AFBs were detected in all contaminated 

samples, whereas only 7% of the pistachio samples were contaminated with low levels of 

AFGs. In peanuts from Kenya, Mutegi et al. (2009) detected that 36% of the analysed 

samples were contaminated with AFs, but only a small proportion (7.5%) reached levels 

> 20 µg/kg. The highest level detected was 7525 µg/kg.  

2.1.7 Determination of mycobiota in nuts 

2.1.7.1 Detection and enumeration of fungi 

The methods for examination of the mycobiota of foods have been originally based 

on bacteriology or medical mycology. But bacteria and human pathogenic fungi grow 

optimally on media with high aW and low carbohydrate content, whereas foodborne fungi, 

which are typically saprophytic, usually prefer the exact opposite conditions (Samson et 

al., 2004a). For that reason, in the last decades efforts have been put in the development 

and standardisation of techniques for food mycological examination (Hocking & Pitt, 

1980; Beuchat, 1992a, 1992b; Frändberg & Olsen, 1999; Okuda et al., 2000; Frändberg et 

al., 2003; Bueno et al., 2004; Samson et al., 2004a). 

The dilution plating or colony forming units (CFU) method is one of the commonly 

used techniques for the examination of foodborne fungi. Homogenising of the samples, 

preparing 10-fold dilutions and surface spreading on different agar plates are the 

characteristic steps of this method. After incubation, the resulting colonies are counted and 
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analysed. But sensitivity and reproduction of this technique may be restricted by the 

method of homogenisation, by the hydrophobic surface of fungal spores and by the fact 

that mycelium homogenisation is impossible.  

Direct plating is considered the most effective technique for the mycological 

examination of particulate foods such as nuts (Bueno et al., 2004; Samson et al., 2004a). 

The results of this analysis are usually expressed as percentage of infected particles. The 

method does not provide information on the number of propagules infecting each particle, 

but is gives an accurate idea of the level of contamination.  

In the case of cereals and nuts, a surface disinfection with chlorine or ethanol before 

plating is usually recommended, to allow the enumeration of the fungi effectively invading 

the food (Pitt & Hocking, 1997; Bueno et al., 2004; Samson et al., 2004a). The 

differentiation between species which are only present as superficial propagules and those 

which are effectively contaminating the food (in the case of nuts, the edible part of the 

fruit) is considered of major importance, since only the latter are taken as associated 

mycobiota. In general, numerous propagules are present as superficial contaminants, since 

they are part of the normal environmental mycobiota, but only rare fungi are able to infect 

the substrate. Numerous studies have compared the mycobiota from surface disinfected 

and non-disinfected foods, and generally reported a significant decrease of overall fungal 

contamination after treatment (e.g. Joffe, 1969; Bayman et al., 2002; Batista et al., 2003), 

showing that contamination is largely superficial.  

To our understanding, there are some problems related to surface disinfection of 

nuts. One of them is that fungi are not equally sensitive to disinfection treatments. Some 

species of Aspergillus, namely A. flavus and A. parasiticus, appear to be extremely 

resistant to surface disinfection with chlorine (Sauer & Burroughs, 1986; Andrews, 1996). 

On the other hand, extreme conditions of treatment with chlorine and 70% ethanol can lead 

to some inactivation of internal mycobiota (Sauer & Burroughs, 1986). Also, Bayman et al. 

(2002) reported that, in a few cases, incidence of certain fungi increased in almonds after 

disinfection. They concluded that superficial mycobiota probably inhibited growth of those 

fungi on agar in non-treated almonds, and that the removal of surface contaminants 

allowed them to grow out. In fact, surface disinfection necessarily alters the equilibrium 

naturally established between fungi, and some fungi that under natural environmental 
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conditions would not have the competitive ability to grow and produce spoilage may 

become dominant, and apparently problematic, under laboratory conditions. 

Exceptions to generalised surface disinfection are acceptable whenever surface 

contaminants become part of the downstream mycobiota and potentially influence the 

quality of the final product. In such cases, Samson et al. (2004a) recommend that foods are 

investigated with and without surface disinfection. In those cases where the product is 

going to be subject of long term storage or processing, it is wise to contemplate the overall 

fungal contamination of foods, even if they are not infecting the foods at the moment, since 

environmental conditions may evolve to become appropriate for a rare fungus to outgrow 

others and produce spoilage in downstream stages of production. 

Under laboratory conditions, all culture media are selective to some degree, making 

mycological examination of any food matrix highly dependent on the culture media used 

for plating. The general medium recommended for fungal isolation from dry foods with 

aW < 0.90 is Dichloran 18% Glycerol agar (DG18; Hocking & Pitt, 1980), not only because 

of its low aW but also because dichloran controls the colony development of fast growing 

fungi (Eurotium species, Mucorales) with less inhibition of the development of more 

slowly growing species. Other media generally used in fungal surveys from foods are 

Dichloran-Rose Bengal Chloramphenicol (DRBC, King et al., 1979) for less xerophilic 

fungi (foods with aW > 0.90), and Malt Yeast 50% Glucose agar (MY50G; Pitt & Hocking, 

1997), for extremely xerophilic fungi (foods with aW < 0.70).  

Malt Salt Agar (MSA; Christensen, 1946) with varying concentration of salt (usually 

6% to 10%) has also been used in fungal surveys, mainly when Aspergillus and 

Penicillium from low aW substrates were the central interest of the studies (Joffe, 1969; 

Phillips et al., 1979; Hocking & Pitt, 1980; Purcell et al., 1980; Ackermann, 1998; Bayman 

et al., 2002; Samson et al., 2004a; Kaaya & Kyamuhangire, 2006; Medina et al., 2006). 

Hocking & Pitt (1980) tested DG18 and MSA media on fungal surveys from several dried 

foods and, in most cases, DG18 produced slightly higher counts than MSA. In fact, the 

medium used for fungal surveys is determinant for the type and frequencies of fungi 

detected, and this fact should be taken in consideration when results from different studies 

are compared. As an example, Abdel-Gawad & Zohri (1993) counted fungal contaminants 

from 6 different types of nuts using two different media: glucose-Czapek-Dox, with high 

aW, and DG18, with low aW. Besides different counts, these authors also reported that some 
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species were only detected in one of the media, as was the case of the highly xerophilic 

Eurotium species (which correspond to the teleomorphic state of species from section 

Aspergillus), whose detection was limited to DG18.  

2.1.7.2 Fungal isolation and identification 

Having detected or made total counts of fungi in food samples, identification to the 

genus or species level is usually the following step. For that matter, pure cultures must be 

prepared in the appropriate isolation and identification media. Isolation media should be 

adapted to the characteristics of the fungus to be isolated, in order to achieve typical 

growth and sporulation that aid the identification at the group or genus level, but it must 

also support the growth of various species in order to detect contaminants. The inoculation 

must be done by streaking, since point-inoculation will not allow contaminants to clearly 

develop (Samson et al., 2004a). Pure cultures need to be further transferred for specific 

media, usually more than one, for sub-generic identification. Care should be taken in the 

preparation and plating of identification media, since variations in media formulae, 

ingredient quality and poured volume will influence fungal morphology (Okuda et al., 

2000). Table 2.2 summarises the media used for isolation and identification of some of the 

fungal genera usually found in nuts. 

 

 

Table 2.2  List of media used for isolation and identification of some of the fungal genera usually 
found in nuts (Samson et al., 2004a; Klich, 2002a; 
http://www.cbs.knaw.nl/service/foodmedia.aspx, accessed 10.09.2010). 

Genus or group Isolation media Identification media 
Aspergillus spp. DRYES, DYSG, DRBC, DG18 CZ, CYA, MEA, CY20S, CREA 
Penicillium spp. DRYES, DYSG, DRBC, DG18 CZ, CYA, MEA, CREA 
Fusarium spp. CZID, TWA PDA, PSA, SNA 
Xerophilic species (except 
Eurotium spp.) 

DG18, MY50G MY50G 

Eurotium spp. CY20S, M40Y CZ20S, CY20S, MEA20S 
Alternaria spp. MEA MEA (20 ºC) 
Cladosporium spp. MEA MEA (20 ºC) 
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2.1.7.3 Detection and enumeration of aflatoxigenic fungi 

Various media have been developed for the rapid screening of aflatoxigenic fungi. In 

these media, fungi can be directly detected and/or enumerated by dilution plating or direct 

plating of the sample. Aspergillus flavus and parasiticus Agar (AFPA; Pitt et al., 1983) is 

the medium most widely used for the purpose, and has been recommended by Samson et 

al. (2004a). AFPA evolved from the Aspergillus Differential Medium (ADM) developed 

by Bothast & Fennell (1974, in Samson et al., 2004a), and is used for the detection of the 

common aflatoxigenic species (A. flavus, A. parasiticus and some related species), as they 

are easily differentiated from other species by their bright cadmium-orange reverse. AFs 

are not produced in these media, but they are indicated by the production of a Ferri chelate 

of aspergillic acids. Other less common media like RBSAB (Rose Bengal Streptomycin 

Agar with Botran) (=Dichloran) proposed by Bell & Crawford (1967, in Samson et al., 

2004a), M3S1B (Medium with 3% Salt and 1 ppm Botran incubated at 37 ºC) proposed by 

Giffen & Garren (1974, in Samson et al., 2004a) have also been developed based on the 

fact that aflatoxigenic species also produce aspergillic acid (Samson et al., 2004a).  

Since AFs are not produced by all strains of aflatoxigenic species, various simple and 

rapid methods have been developed that detect aflatoxigenic strains by the direct 

visualisation of AFs produced in the culture medium. de Vogel et al. (1965) described a 

complex medium containing saccharose, various salts and aqueous extract of AF-free 

peanuts, in which AFs fluoresced bright blue after exposure to short UV radiation (350 to 

370 nm). Hara et al. (1974) described a similar but less laborious medium containing corn 

steep liquor, named AF-producing-ability (APA) medium. Lin & Dianese (1976) described 

a coconut-based medium (CAM; Coconut Agar Medium), which was later improved by 

others (Davis et al., 1987; Lemke et al., 1989; Dyer & McCammon, 1994), which was 

simpler and faster than the previous. In these media, AFs diffused into the medium and 

fluoresced blue under long UV light. Yabe et al. (1987) reported another simple method 

based on UV photography. Saito & Machida (1999) also reported a rapid method where 

colonies from aflatoxigenic strains cultured for two days on AF-inducing media turned 

pink when exposed to ammonia vapour. Ordaz et al. (2003) described a rapid and reliable 

method where production of AFs in yeast extract agar medium supplemented with 

methylated β-cyclodextrin and sodium desoxycholate was detected after three days by a 
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yellow ring observed under UV light. An innovative analytical methodology based on a 

similar culture medium was presented by Rojas-Durán et al. (2007), but in this case AFs 

were detected by using a fibre-optic luminometer that measured the room temperature 

phosphorescence (RTP) emitted by AFs. 

A different approach involves the isolation of the fungi from general isolation media 

(as described earlier) and their growth under conditions that are known to be inducive of 

AF production, like carbohydrate-rich or fat-rich media (usually Yeast Extract Saccharose 

(YES) or CAM). After a period of incubation, AFs are extracted from the medium using 

appropriate solvents (usually methanol) and are analysed by analytical methods such as 

thin-layer chromatography (TLC) or high performance liquid chromatography (HPLC) 

(Samson et al., 2004a). This approach is more expensive and time-consuming than the 

previous, but is also more accurate. 

2.1.8 Determination of aflatoxins in nuts 

The fact that most mycotoxins are toxic at very low concentrations requires sensitive 

and reliable methods for their detection. Furthermore, as regulations become more and 

more restrictive, requirements for adequate sampling and analytical methods are also 

imposed. As a consequence, mycotoxin analytical methods need to have low limits of 

detection, be specific to avoid analytical interferences, be easily applied in routine 

laboratories, be economical for the laboratory involved and provide a confirmatory test for 

the analyte of interest (Shephard, 2008). Sampling and analysis are of critical importance 

since failure to achieve a satisfactory verified analysis can lead to unacceptable 

consignments being accepted or satisfactory ones being unnecessarily rejected. Due to the 

varied structures of these compounds, it is not possible to use one standard technique to 

detect all mycotoxins in any given matrix, as each binomium mycotoxin/matrix will 

require a different method. Therefore, depending on the physical and chemical properties 

of both mycotoxin and matrix, procedures have to be developed and optimised around 

existing analytical techniques.  

Mycotoxin analysis in food and feed is generally a multistep process comprised of 

sampling, sample preparation, toxin extraction from the matrix, extract cleanup and finally 

detection and quantitative determination. The analytical methods for the determination of 
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mycotoxins, and particularly AFs, in food have been extensively reviewed (e.g. Jaimez et 

al., 2000; Krska et al., 2005; Shephard, 2008, 2009; Reiter et al., 2009; Turner et al., 2009). 

We will briefly address to the various strages of analysis. 

2.1.8.1 Sampling  

Sampling can be taken as the operations that, applied to a lot of an agricultural 

product, lead to a laboratory sample of a workable size (some hundreds of grams to some 

kilograms). This laboratory sample is in turn sub-sampled to a portion that will be assayed. 

It is, therefore, crucial that the final sample from which the assay portion is sampled is 

truly representative of the initial lot. In practice, the overall objective of good sampling is 

to provide samples which represent the true mycotoxin content of an inspected lot. 

Sampling plans are particularly relevant in foods or commodities where it is known 

that the contamination can be heterogeneously distributed. Numerous studies have been 

directed to the optimisation of sampling plans of nuts, cereals and dried fruits, namely AFs 

in peanuts (Whitaker & Dickens, 1989; Whitaker et al., 1994a, 1994b, 1995, 1996), 

almonds (Schade et al., 1975; Schatzki & Ong, 2000, 2001; Whitaker et al., 2010), 

pistachios (Schatzki, 1995a, 1995b; Schatzki & Pan, 1996; Schatzki & Toyofuku, 2003; 

MacArthur et al., 2006), and maize (Whitaker & Dickens, 1983; Jewers et al., 1988). These 

studies conclude that more than 90% of the error associated with mycotoxin assays is 

attributed to sample collection. The AF distribution among individual kernels is found to 

be extremely skewed: a very small percentage of the kernels in the lot is contaminated 

(‘hot spot’), and the concentration on a single kernel can be extremely high (e.g. Schade et 

al., 1975; Schatzki & Toyofuku, 2003; Ozay et al., 2006). Schade et al. (1975) estimated 

that only one in 30,000 almonds are contaminated, but that same almond can develop 

extremely high levels of AF contamination. It is therefore not uncommon to find two 

samples from the same lot giving extremely different results in terms of contamination 

levels, even for big samples (Schatzki & Toyofuku, 2003). Because of this extreme 

mycotoxin distribution among individual kernels in a contaminated lot, it is easy to miss 

the contaminated kernel with a small sample and underestimate the true concentration in 

the lot. But if the test sample contains one or more highly contaminated kernels, then the 

test sample will overestimate the true mycotoxin contamination in the lot. Even with the 
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use of proper sample selection techniques, the variation among test sample concentrations 

is inevitable. On the other hand, when almonds get sliced, diced or ground, potentially 

contaminated nuts can be integrated in this process, and contamination gets dispersed more 

homogenously in the final processed product.  

Because of variability among sample test results, mycotoxin concentrations in lots 

can never be determined with 100% certainty (van Egmond et al., 2007), which means that 

lots cannot be classified unambiguously based upon regulatory limits even when samples 

are taken correctly from a lot. The problem of sampling has been addressed by the 

development of sampling plans, which are based on statistical evaluations to balance 

consumer protection (by not accepting contaminated lots) and producer protection (by not 

rejecting clean lots). Such plans are a compromise between the statistical need for large 

samples and the practicalities and costs of such samples. Based on scientific studies, EU 

has produced the Commission Regulation (EC) No. 401/2006, recently amended by the 

Commission Regulation (EC) No. 178/2010, which establishes sampling plans for nine 

different groups of food commodities. These EU regulations enforce sampling plans that 

mandate sample weights that can go up to 30 kg, depending on the lot size. This raises 

questions on how laboratories should prepare and homogenise such large samples for 

chemical analysis. For that matter, the sample must first be homogenised and then an 

aliquot (or subsample) must be taken for analysis. Here the determining factor for variance 

is the subsample size, as well as the particle size of the grind (Schatzki & Toyofuku, 2003; 

Spanjer et al., 2006). It is generally accepted that particle size plays a major role in the 

expected variance: the smaller the particles, the smaller the variance. The subsampling 

variance may be as much as 10 times that of analysis, depending on the fineness of the 

grind (Schatzki & Toyofuku, 2003).  

2.1.8.2 Aflatoxin extraction from food matrices  

Analytical methods require that AFs be extracted from the solid food into a liquid 

phase. This is done to obtain further isolation of the toxins in sufficient concentration to 

allow their detection. The assumption inherent in an extraction procedure is that the 

mycotoxin will be efficiently extracted from the solid phase of the mixture. The extent to 
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which this assumption is valid will be reflected in the recovery rate of the extraction 

procedure. 

The complexity of food matrices can lead to serious interference during analysis of 

mycotoxins. Therefore, a large number of procedures for the extraction and purification of 

selected classes of mycotoxins from a variety of food matrices has been developed. 

Parameters of importance in mycotoxin extraction are solvent type and composition of a 

mixture, solvent to sample ratio, type of matrix, extraction method and physical 

aggregation of the sample.  

Mycotoxins are polar compounds, so they are potentially extracted by a range of 

polar solvents or mixtures of solvents. In the particular case of AFs, traditional methods 

relied on chloroform extraction, but due to the cost and environmental implications of 

chlorinated solvents, that solvent has been replaced by aqueous mixtures of methanol, 

acetonitrile or acetone (Shephard, 2009). Investigations of optimal extraction solvents for 

AFs from a range of matrices highlighted a series of potential problems which need to be 

considered. As a start, optimum extraction efficiency requires the analytical sample to be 

ground to a fine powder (Schatzki & Toyofuku, 2003; Spanjer et al., 2006). Also, the 

extraction of very dry materials (as is the case of nuts) can lead to a variability associated 

with water uptake by the dry matrix, an effect that depends on factors such as the matrix, 

the organic solvent and its ratio in the aqueous extractant and the solvent-to-sample ratio 

used for the extraction experiment (Shephard, 2009). The most common procedure to 

address water uptake by the matrix is the addition of sodium chloride to an aqueous 

methanol extraction. 

The physical process of extraction is generally achieved by shaking of the matrix and 

extractant or by blending with a homogeniser for a short time period. Other methods have 

been investigated, like pressurised liquid extraction (e.g. Campone et al., 2009; Sheibani & 

Ghaziaskar, 2009), but the results have not justified the cost of adopting this 

instrumentation in place of simple shaking. 

2.1.8.3 Extract cleanup 

The extracts of most matrices are unsuitable for direct analysis due to the large 

number of co-extracted impurities that mask the analytical signal for the target analyte and 
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consequently increase the limit of detection. Therefore, for the majority of the analytical 

methods, the subsequent purification of the extract is also required. For this purpose, 

several methods have been applied. Traditionally, cleanup of extracts is accomplished by 

using solid-phase extraction (SPE) columns pre-packed with various stationary phases like 

silica or Fluorisil (Castro & Varga, 2001; Sobolev, 2007). In some cases, the analyte is 

retained on the columns while impurities pass through and are washed off. The analyte is 

then selectively removed by rinsing with the adequate solvent. In other cases, the SPE 

columns are designed to trap impurities and permit the analyte to pass through. 

The development of antibodies raised against individual mycotoxins led to the 

introduction of immunoaffinity columns (IACs; Trucksess et al., 1991), which is currently 

the most widely used type of SPE column for extract cleanup (e.g. Stroka et al., 2000; 

Schatzki & Toyofuku, 2003; Yang et al., 2005; Castegnaro et al., 2006; Kaaya & 

Kyamuhangire, 2006; Yentür et al., 2006; Muscarella et al., 2009), since IACs have been 

commercially developed for most of the major mycotoxins. In this method, specific 

antibodies are immobilised on a gel contained in a small column. The antibodies on the 

column will recognise and bind the specific mycotoxins(s) and allow impurities to pass 

through the column. The mycotoxin is eluted with a small amount of methanol, which 

denatures the antibody and releases the bound analyte.  

The advantages of the IACs over other cleanup methods are the effective and specific 

extract purification provided, the economic use of organic solvents and the improved 

analytical performance achieved with cleaner samples (Shephard, 2009). The use of these 

columns is, however, not completely devoid of problems: the complex matrices contain 

thousands of compounds, some of which may be able to interfere with the antibodies, thus 

limiting the capacity for the adsorption of the toxin; and the composition of the matrices 

may interfere with the toxin structure making it not extractable and/or not recognisable by 

the antibodies (Castegnaro et al., 2006).  

2.1.8.4 Separation and detection 

AFs are low molecular mass compounds which possess significant UV absorption 

and fluorescent properties. For this reason, liquid separation techniques coupled with 

fluorescence detection have predominated in their analysis. The most disseminated ones 
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include thin layer chromatography (TLC; da Silva et al., 2000; Stroka et al., 2000; 

Castegnaro et al., 2006; Kaaya & Kyamuhangire, 2006; Nakai et al., 2008; Singh & 

Shukla, 2008) and reverse-phased high-performance liquid chromatography (HPLC) 

coupled to fluorescence detector (FLD; e.g. Mahoney & Rodriguez, 1996; Schatzki & 

Toyofuku, 2003; Yentür et al., 2006; Ardic et al., 2008; Sobolev, 2007; Campone et al., 

2009; Muscarella et al., 2009; Shah et al., 2010). Alternative methods based on 

immunodetection, like enzyme linked immunosorbent assays (ELISA), have also found 

widespread application in AF analysis (e.g. Leszczynska et al., 2000; Arrus et al., 2005; 

Mutegi et al., 2009). 

TLC and ELISA are perhaps the simpler and most widely used techniques for both 

qualitative and semi-quantitative monitoring of mycotoxins, and they are useful for 

screening and routine analysis of large numbers of samples. They do not require expensive 

equipment or highly trained handling, but they are also less accurate and sensitive 

techniques. Although ELISA methods are extensively used for rapid qualitative and semi-

quantitative screening of AFs, they are not useful in providing a definitive confirmation of 

the toxins and an accurate quantitative determination (Muscarella et al., 2009), since they 

have not been validated at sufficiently low levels and are limited in the range of matrices 

tested (Gilbert & Anklam, 2002). Still, ELISAs are widely used for mycotoxin diagnosis 

due to the availability of test kits for field use for practically all relevant mycotoxins. On 

the other hand, TLC has been found to result in more precise and consistent data than 

ELISA (see Lin et al., 1998, for a review on TLC methods). Yet, the present trend is the 

use of HPLC for the determination of AFs due to its characteristics of specificity, high 

sensitivity and simplicity of operation. Additionally, chromatographic determination 

allows for the quantification of each toxin individually. This is particularly important for 

food analysis where the determination of AFB1 is required. 

Because AFs are naturally strongly fluorescent, the HPLC detection is most often 

achieved by application of fluorescent detection. But, in the aqueous mixtures used for 

reverse-phased chromatography, the fluorescence of AFB1 and AFG1 are significantly 

quenched (Muscarella et al., 2009), and they are required to be converted into more highly 

fluorescent derivatives, namely their hemiacetals AFB2a and AFG2a. Several derivatisation 

methods are available, including pre-column derivatisation with trifluoroacetic acid (TFA) 

(e.g. Trucksess et al., 1994; Doster et al., 1996; Castegnaro et al., 2006; Yentür et al., 2006; 
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Shah et al., 2010) and post-column derivatisation with iodine (e.g. Yang et al., 2005; 

Waltking & Wilson, 2006) and bromine (Kobra cell; e.g. Freire et al., 2000; Schatzki & 

Toyofuku, 2003; Waltking & Wilson, 2006). However, these methods are laborious and 

present a number of disadvantages, such as handling toxic reagents, instability of the 

derivatives and low reproducibility (Muscarella et al., 2009). In 1993, a photochemical 

derivatisation technique was introduced in AF analysis (Joshua, 1993). This method 

consists of passing the HPLC eluate through a reaction coil wound around a UV light 

(photochemical reactor, PHRED) at ambient temperature, which causes the hydration of 

AFB1 and AFG1 to their respective hemiacetals. Recently, a collaborative study 

demonstrated that the PHRED system is equivalent to the iodination and bromination 

official AOAC procedures (Waltking & Wilson, 2006), with the advantages of being able 

to obtain reproducible results with simple sample preparation and less chemical waste. 

Since then, the technique has been preferentially applied (e.g. Sobolev, 2007; Muscarella et 

al., 2009; Rodrigues et al., 2009; Soares et al., 2010). 

In the last years a variety of multi-mycotoxin methods has been reported, showing 

the special interest for high-throughput multi-mycotoxin routine analysis. These methods 

are mostly liquid chromatography (LC) coupled to mass spectrometry (MS), and they 

allow the simultaneous separation and detection of all relevant mycotoxins in a single run, 

without the need for complex extraction/purification and derivatisation procedures (e.g. 

Sagawa et al., 2006; Ren et al., 2007; Sulyok et al., 2007, 2010; Spanjer et al., 2008; 

Santini et al., 2009). The problem with the multi-mycotoxin methods is the incomplete 

extraction/purification and the high limits of detection of at least some of the analytes, and 

for that reason these are mostly semi-quantitative methods (Köppen et al., 2010). 

The use of matrix-laser assisted laser desorption ionization time-of-flight mass 

spectrometry (MALDI-TOF MS) has also been described for the high throughput of AFs 

(Catharino et al., 2005), by using a UV-absorbing ionic liquid as matrix.  

Table 2.3 lists some of the methods applied to AF analysis in almonds and chestnuts, 

as well as recovery rates, limit of detection (LOD), limit of quantification (LOQ) and 

repetibility standard deviation (RSDr), whenever reported. 
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Table 2.3  List of the methods applied to AF analysis in almonds and chestnuts, as well as recovery rates, limits of detection/quantification 
(LOD/LOQ) and repetibility standard deviation (RSDr). 

Matrix Extraction Cleanup Separation 
Mobil phase 

Detection AFs Spiked levels 
(ng/g) 

LOD 
(ng/g) 

LOQ 
(ng/g) 

Recovery 
(%) 

RSDr (%) Reference 

Almonds Chloroform/ 
Diatomaceous 
earth 

Diatomaceous 
earth 

TLC 
- 

Gold 
fluorescent 
light 

- - - - - - Schade et al., 
1975 

Almonds/ 
/Chestnuts 

Chloroform Chloroform/ 
silica gel 
column/ 
n-hexane/ 
diethyl ether 

TLC 
Chloroform:metanol  
(97:3) 

UV light  - - 5 80 - Abdel-Gawad 
& Zori, 1993 

Almonds Acetonitrile: 
water (9:1) 

Multi-column HPLC/TFA 
- 

FLD Total 
B1 
B2 
G1 
G2 

5-30 
3-15 
1-3 
2-9 
1-3 

- 
- 
- 
- 
- 

- 
- 
- 
- 
- 

116 
91-95 
88-92 
89-103 
98-116 

16 
9 
- 
16 
- 

Trucksess et 
al., 1994 

Almonds Methanol: 
0.1N HCl 

SPE (not 
specified) 

HPLC 
Water:methanol:acetonitrile 
(74:13:13) 

FLD B1  
B2 
G1 
G2 

10 
2.5 
10 
2.5 

- 
- 
- 
- 

- 
- 
- 
- 

87 
95 
93 
89 

6.12 
10.93 
6.97 
8.31 

Abdulkadar et 
al., 2000 

Almonds Methanol: 
0.1N HCl/ 
Methylene 
chloride 

C18 silica gel 
column 

HPLC/TFA FLD - - - - - - García-
Pascual et al., 
2003 

Almonds Dichloromethane Glass column TLC 
Diethyl ether 
Chloroform:acetone (90:10) 

 
UV Light 
H2SO4 

B1 - 0.5 - - - Gürses, 2006 

(continues) 
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Table 2.3 (continued) 

Matrix Extraction Cleanup Separation 
Mobil phase 

Detection AFs Spiked levels 
(ng/g) 

LOD 
(ng/g) 

LOQ 
(ng/g) 

Recovery 
(%) 

RSDr (%) Reference 

Almonds Acetone  
84%  

Chloroform; 
KOH:KCl (1:1) 

TLC 
Chloroform:acetone (1:9) 

UV light - - - - - - Saleemullah 
et al., 2006 

Almonds Methanol  
80%  

Florisil  
column 

HPLC/PHRED 
Water:methanol (63:37) 

FLD B1 
B2 
G1 
G2 

0.5-5 
0.5-5 
0.5-5 
0.5-5 

- 
- 
- 
- 

- 
- 
- 
- 

76.2-84.5 
81.7-88.1 
77.5-83.2 
77.6-93.7 

2.1-1.5 
3.7-2.1 
2.4-2.6 
5.7-1.6 

Sobolev, 
2007 

Almonds Acetonitrile PLE HPLC/ PHRED 
Water:methanol:acetonitrile 
(60:20:20) 

FLD B1 
B2 
G1 
G2 

0.5-4 
0.13-1 
0.5-4 
0.13-1 

0.03 
0.01 
0.06 
0.03 

0.1 
0.04 
0.2 
0.1 

81-88 
83-90 
76-91 
82-87 

2-8 
5-8 
7-12 
3-13 

Campone et 
al., 2009 

Almonds Methanol  
80% 

IAC HPLC/ PHRED 
Water:methanol:acetonitrile 
(55:15:30) 

FLD B1 
B2 
G1 
G2 

- 
- 
- 
- 

0.08 
0.02 
0.16 
0.04 

0.22 
0.08 
0.48 
0.10 

- 
- 
- 
- 

- 
- 
- 
- 

Muscarella et 
al., 2009 
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2.1.8.5 Validation of methods 

In the analysis of contaminants in food commodities, performance criteria are 

important for obtaining reliable results and laboratories that perform mycotoxin testing 

must assure that the methods used are both accurate and precise. The precision associated 

with a mycotoxin test procedure depends on the sampling, sample preparation, and 

analytical frequency used to estimate the mycotoxin concentration of a bulk lot. Even when 

using accepted procedures, random variation is associated with each step of the testing 

procedure. 

The term “validation” is usually applied to the evaluation of newly developed 

methods, or methods that laboratories intend to use as alternatives to reference methods, 

but laboratories applying reference methods should not be exempted of testing their own 

ability to implement them correctly by performing “in-house validation”. The evaluation of 

the validation parameters should be based on the intended use of the analytical method. In 

general different parameters such as specificity, selectivity, precision, accuracy, linearity, 

range, LOD, LOQ, robustness as well as ruggedness are recommended to be determined. 

Methods that are used in routine analyses should be tested in appropriate frequency using 

quality control material or certified reference material to ensure the reliability of analytical 

results. Furthermore every method has to be revalidated if any parameter in the analysis is 

changed. 

For official control and implementation of mycotoxin regulations, a number of 

official methods have been validated by interlaboratory collaborative studies conducted 

under the auspices of international bodies such as AOAC International and the European 

Standardization Committee (CEN). These organisations are responsible for the 

development of rapid and accurate analysis techniques, and for the validation and adoption 

of analytical methods for the enforcement of regulation. The validation process involves 

testing within-laboratory repeatability, between-laboratory reproducibility, analytical 

recovery, and limits of detection and quantification. The official methods for AFs detection 

and quantification in almonds have been reviewed by Gilbert & Anklam (2002).  

Several publications give profound insight on the matter of analytical method 

validation (Thompson, 2000; Gilbert & Anklam, 2002; Chan, 2004; Taverniers et al., 

2004; Ermer & Miller, 2005; Nocentini et al., 2008).  
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2.2 The aflatoxin biosynthesis pathway 

2.2.1 Genetic and molecular aspects of aflatoxin biosynthesis 

After the discovery that the AF biosynthesis was regulated by a gene cluster (Trail et 

al., 1995; Yu et al., 1995; Brown et al., 1996), the biosynthetic pathway of AFs has been 

extensively studied, and most of the enzymes and corresponding genes involved have been 

identified. Also, most of their functions have been elucidated (e.g. Trail et al., 1994; Yu et 

al., 1998, 2000, 2004a, 2004b; Ehrlich et al., 2004; Yabe & Nakajima, 2004; Ehrlich et al., 

2005; Wen et al., 2005; Cary & Ehrlich, 2006), with possible alternative pathways (Detroy 

et al., 1973). AF biosynthesis requires at least 25 enzymes and two regulatory proteins 

encoded by contiguous genes in an 80-kb cluster (reviewed in Yu et al., 2004b). Clustered 

biosynthetic genes for fungal secondary metabolism are not only regulated by specific 

transcription factors, as a global epigenetic control mechanism may be conducted by genes, 

beyond the biosynthetic cluster, which are able to regulate multiple physiological processes 

and the response to environmental and nutritional factors such as temperature, pH, light, 

carbon and nitrogen sources (reviewed by Georgianna & Payne, 2009).  

The genes involved in the major convertion steps from early precursors to AFs and 

their funtions are discussed in Yu et al. (2004b). These authors have proposed the use of a 

three-letter code “afl” to represent AF pathway genes. A capital letter in alphabetical order 

from “A” to “Y” represents each individual gene confirmed to be (or potentially be) 

involved in AF biosynthesis, e.g. aflA to aflY for all of the 25 genes (Figure 2.4). Those 

genes whose pathway involvement has already been characterised and confirmed are 

designated aflA to aflQ from the initial conversion of fatty acids to the final products, AFs. 

aflR and aflS (formerly aflJ) are named for transcription regulators. Those genes whose 

pathway involvements are ambiguous or remain unclear are designated aflT, aflU (= cypA), 

aflV (= cypX), aflW (= moxY), aflX (= ordB), and aflY (= hypA). 
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Figure 2.4  Clustered genes and the AF biosynthetic pathway.  
The gene names proposed by Yu et al. (2004b) are given on the left of the vertical line 
and the old gene names are given on the right. Arrows along the vertical line indicate 
the direction of gene transcription. The ruler at far left indicates the relative sizes of 
these genes in kilobases. Arrows indicate the connections from the genes to the 
enzymes they encode, from the enzymes to the bioconversion steps they are involved 
in, and from the intermediates to the products in the AF bioconversion steps. 
Abbreviations: NOR, norsolorinic acid; AVN, averantin; HAVN, 5-hydroxyaverantin; 
OAVN, oxoaverantin; AVNN, averufanin; AVF, averufin; VHA, versiconal 
hemiacetal acetate; VAL, versiconal; VERB, versicolorin B; VERA, versicolorin A; 
DMST, demethylsterigmatocystin; DHDMST, dihydrodemethylsterigmatocystin; ST, 
sterigmatocystin; DHST, dihydrosterigmatocystin; OMST, O-methylsterigmatocystin; 
DHOMST, dihydro-O-methylsterigmatocystin (Adapted from Yu et al., 2004b). 
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Generally, the AF biosynthesis genes of A. flavus, A. parasiticus and A. nomius are 

highly homologous, the order of the genes within the cluster being the same (Yu et al., 

1995; Ehrlich et al., 2005; Chang et al., 2007). Also, AF genes and gene organisation in A. 

sojae are most similar to those of A. parasiticus (identity 98-99%). A significant 

proportion, but not all, of non-aflatoxigenic A. flavus isolates have been found to contain 

various deletions in the AF gene cluster (Prieto et al., 1996; Ehrlich & Cotty, 2004; Ehrlich 

et al., 2004; Chang et al., 2005, 2006) which are common to some strains of A. oryzae 

(Chang et al., 2005, 2006). Also, additional enzymes are required for AFGs formation in A. 

parasiticus. The loss of the ability to produce AFGs in A. flavus seems to result from a 

deletion in the terminal region of the cluster corresponding to genes aflF (= norB) and aflU 

(= cypA) (Ehrlich et al., 2004). Several studies confirmed that separate pathways lead to 

the formation of AFBs and AFGs (Henderberg et al., 1988; Bhatnagar et al., 1991; Yabe et 

al., 1999; Ehrlich et al., 2004).  

2.2.2 Molecular differentiation of aflatoxigenic and non-aflatoxigenic strains 

Molecular techniques have been widely applied in the attempt to distinguish 

aflatoxigenic and non-aflatoxigenic strains of A. flavus and related species, through the 

correlation of presence/absence of one or several genes involved in the AF biosynthetic 

pathway with the ability/inability to produce AFs. Some studies have been able to 

distinguish these species from other foodborne fungi and, in some cases, they were capable 

of distinguishing aflatoxigenic from non-aflatoxigenic strains.  

The studies by Geisen (1996) and Shapira et al. (1996) can be regarded as the 

starting point for PCR-based diagnosis of aflatoxigenic and non-aflatoxigenic fungi. 

Geisen (1996) used multiplex PCR with three sets of primers specific for three structural 

genes of the AF biosynthetic pathway aflD, aflM and aflO, and was able to differentiate A. 

flavus and A. parasiticus from other food-borne fungi, but not aflatoxigenic and non-

aflatoxigenic strains of the same species. Shapira et al. (1996) used aflatoxigenic strains 

and carried out monomeric PCRs with three different sets of primers for aflR, aflO and 

aflM genes, but they could only discriminate aflatoxigenic strains from other moulds. 

Färber et al. (1997) detected aflatoxigenic strains of A. flavus in contaminated figs by 

performing a monomeric PCR with the same sets of primer used by Geisen (1996). Other 
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multiplex PCR with the AF pathway genes aflR, aflD, aflM and aflO did not produce a 

clear pattern that would allow to accurately differenciate aflatoxigenic from non-

aflatoxigenic strains (Criseo et al., 2001). Lee et al. (2006) detected the differences in the 

aflR gene of A. flavus/A. oryzae and A. parasiticus/A. sojae, but they were not able to 

clearly differentiate the species. Baird et al. (2006) tested a different methodology based on 

DNA fingerprinting with two consecutive amplifications with arbitrary primers, with 

which the majority, but not all, of the aflatoxigenic isolates was differentiated from the 

non-aflatoxigenic.  

AF production ability and aflatoxigenic strains differentiation have also been 

assessed by monitoring AF genes expression in the A. flavus group, using the reverse 

transcription PCR (RT-PCR) methodology. RT-PCR allows the detection of mRNAs 

transcribed by specific genes by PCR amplification of cDNA intermediates synthesised by 

reverse transcription. Such systems have been applied to monitor AF production and AF 

gene expression based on various regulatory and structural AF pathway genes in 

A. parasiticus and/or A. flavus (Sweeney et al., 2000; Mayer et al., 2003a, 2003b; Sherm et 

al., 2005; Degola et al., 2007), and were found to be very rapid and sensitive. Scherm et al. 

(2005) studied 13 strains of both species and found consistency of 3 genes (aflD, aflO and 

aflP) in detecting AF production ability, further indicating them as potential markers. 

But, as said, AF biosynthesis is based on a highly complex pathway. It is thus not 

surprising that genetic protocols that can fully differentiate between AF producers and non-

producers have not yet been successfully established. Furthermore, one has to be aware 

that some genes are not exclusive of the AF biosynthetic pathway, which could create 

false-positives from sterigmatocystin producing fungi (Paterson, 2006). As an example, A. 

nidulans harbours the complete AF biosynthesis pathway except for the final step that 

converts sterigmatocystin to AF (Brown et al., 1996). 
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2.3 Aspergillus section Flavi 

2.3.1 A brief overview of genus Aspergillus 

Aspergillus is one of the most important genera of microfungi, with many species 

having great impact on various fields of interest: as human, animal and plant pathogens, as 

spoilage agents of food, or as producers of toxic metabolites. On the other hand, some of 

the most important microorganisms used in food fermentations and biotechnology are part 

of this genus. It is therefore of major importance that we consider the significance of the 

rigor and stability of its taxonomy, in order to keep the taxonomic system practical and 

reliable for industrial, economic and regulatory reasons.  

Aspergillus is an anamorphic genus belonging to the family Trichocomaceae, order 

Eurotiales, subclass Eurotiomycetidae, class Eurotiomycetes, phylum Ascomycota. It is 

characterised by a distinctive round to elongate aspergilla bearing long chains of conidia, 

which gives the fungus its characteristic morphology. Some members of the genus are 

known to reproduce sexually, producing teleomorphs, which are invariably cleistothecia 

bearing inordinately arranged ascospores in dehiscent asci. 

As with fungi in general, Aspergillus taxonomy is complex and ever evolving. 

Classic systematics of genus Aspergillus and its associated teleomorphs have been based 

primarily on differences in morphological and cultural characteristics (Raper & Fennell, 

1965; Samson, 1979; Klich & Pitt, 1988; Kozakiewicz, 1989). This taxonomic system 

gives mostly a rough delimitation of the taxa. In several sections of the genus much 

morphological variation occurs, resulting in complex taxonomic schemes. In the last 

decades, the taxonomy of the genus has evolved from a simple morphological species 

concept into a polyphasic approach integrating strong biochemical, ecological, genetic and 

molecular characters. As methods become more and more sensitive and accurate, species 

are constantly being added, re-classified or repositioned within the genus (e.g. Peterson, 

2000, 2005, 2008; Rigó et al., 2002; Klich et al., 2003; Samson et al., 2004b; Frisvad et al., 

2005; Hong et al., 2005, 2008; Serra et al., 2006; Houbraken et al., 2007; Varga et al., 

2007a, 2007b; Mares et al., 2008; Peterson et al., 2008; Pildain et al., 2008; Zalar et al., 
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2008). Table 2.4 lists the most important publications released on the taxonomy and 

identification of the genus. 

 

Table 2.4  Important taxonomic treatises and identification manuals for the genus Aspergillus. 

Year Reference 

1926 Thom C & Church M. The Aspergilli (Williams & Wilkins, Baltimore, USA) 

1945  Thom C & Raper KB. A Manual of the Aspergilli (Williams & Wilkins, Baltimore, USA) 

1965 Raper KB & Fennell DI. The Genus Aspergillus (Williams & Wilkins, Baltimore, USA) 

1979 Samson RA. A compilation of the Aspergilli described since 1965 (CBS, Utrecht, The 
Netherlands). 

1985 Samson RA & Pitt JI. Advances in Penicillium and Aspergillus Systematics (Plenum Press, 
New York, USA) 

1988 Klich MA & Pitt JI. A Laboratory Guide to Common Aspergillus Species and Their 
Teleomorphs (Division of Food Processing, North Ryde, Australia). 

1989 Kozakiewicz Z. Aspergillus Species on Stored Products (CAB International, Wallingford, 
UK) 

1990 Samson RA & Pitt JI (eds). Modern Concepts in Penicillium and Aspergillus Classification 
(Plenum Press, New York, USA) 

2000 Samson RA & Pitt JI (eds). Integration of Modern Taxonomic Methods for Penicillium and 
Aspergillus classification (Harwood Academic Publications, Amsterdam, The Netherlands) 

2002 Klich MA. Identification of Common Aspergillus Species (CBS, Utrecht, The Netherlands). 

2008 Varga J & Samson RA (eds). Aspergillus in the genomic era. (Wageningen Academic 
Publishers, Wageningen, The Netherlands) 

 

 

The first complete monograph of Aspergillus was written in 1965, by Raper and 

Fennell, where they recognised 132 species and 18 varieties (Raper & Fennell, 1965). They 

divided the species into 18 informal groups, which does not constitute a nomenclatural 

status under the International Code of Botanical Nomenclature (ICBN) scheme. 

Furthermore, Raper & Fennell (1965) retained the generic name Aspergillus for both 

perfect (teleomorphs) and imperfect (anamorphs) states1. In 1979, Samson listed 90 new 

taxa identified since 1965 and compiled the only 34 accepted ones (following the ICBN 

requisites) according to the group classification proposed by Raper & Fennell (1965). 

In an effort to bring some consistency into the complex taxonomy of the genus, and 

also in line with the ICBN, the groups were revised and given formal taxonomic status as 

                                                           
1 Fungi are the only organisms that depart from one of the basic rules of biological nomenclature, i.e. that each taxonomic group can bear 
only one correct name. Since 1905, the Botanical Code (which governs the naming of plants and fungi) has allowed two different names 
to be applied to the same organism, depending on whether it is viewed in its sexual or asexual stage. Under this system of taxonomic 
governance, Article 59 permits dual nomenclature. When a sexual phase is known, the name for this phase takes precedence. 
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sections, and subgenera were added (Gams et al., 1985). Aspergillus names were then 

typified by Samson & Gams (1986) and Kozakiewicz (1989). In 2000, Pitt and co-workers 

published a list of accepted species and synonyms in the family Trichocomaceae (Pitt et 

al., 2000). This list included 204 species accepted in the Aspergillus genus (anamorphs) 

and associated teleomorphs. In the same year, phylogenetic studies using ribosomal RNA 

from 215 Aspergillus led Peterson to propose an alteration to the previous nomenclature, 

repositioning the species into 3 subgenera and 16 sections (Peterson, 2000).  

In a short period of 7 years, Geiser et al. (2007) listed another 40 newly identified 

species. The latest revision of the genus dates to 2008, when Peterson and co-workers 

(Peterson et al., 2008), based on phylogenetic analysis of multilocus sequence data, 

proposed the division of the genus into 8 subgenera and 18 sections, with 12 associated 

teleomorphic genera (Table 2.5). Since then, numerous other species have been identified 

(e.g. Hong et al., 2008; Mares et al., 2008; Pildain et al., 2008; Zalar et al., 2008), bringing 

the total number of Aspergillus species to more than 260. Considering that probably fewer 

than 5% of fungal species are known and identified (Hawksworth, 1991), the number of 

Aspergillus species may ascend to more than 5000. A quick search in the Index Fungorum 

network site (www.indexfungorum.org) produced, by September 2010, 839 results for the 

Aspergillus query. This number includes not only species, but also subspecies and 

varieties, as well as numerous synonyms (the names for the teleomorphic states are not 

herein included); nevertheless, this number reflects the difficulties in creating a stable, 

workable and reliable taxonomic scheme for the genus. 
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Table 2.5 Taxonomy of Aspergillus at a subgeneric level, as described by various authors. 
Raper & Fennell, 1965 Gams et al., 1985 Peterson, 2000 Peterson et al., 2008 
Subgenus Group Subgenus Section Subgenus Section Subgenus Section Teleomorphs 
Aspergillus A. glaucus 

A. restrictus 
Aspergillus Aspergillus 

Restricti 
Aspergillus Aspergillus 

Restricti 
Cervini  
Terrei  
Flavipedes 
Wentii  
Flavi 
Nigri 
Circumdati 
Candidi 
Cremei 

Aspergillus Aspergillus 
Restricti 
 

Eurotium 
Eurotium 

Circumdati A. wentii 
A. flavus 
A. niger 
A. ochraceus 
A. candidus 
A. cremeus 
A. sarpus 

Circumdati Wentii 
Flavi 
Nigri 
Circumdati 
Candidi 
Cremei 
Sparsi 

--- --- Circumdati Circumdati 
Nigri 
Flavi 
Cremei 

Neopetromyces 
 
Petromyces 
Chaetosartorya 

Clavati A. clavatus Clavati Clavati --- --- --- ---  
Fumigati A. fumigatus 

A. cervinus 
Fumigati Fumigati 

Cervini 
Fumigati Fumigati 

Clavati 
Fumigati Fumigati 

Clavati 
Cervini 

Neosartorya 
Neocarpenteles,Dichotomomyces 

Ornati A. ornatus Ornati Ornati --- --- Ornati Ornati Sclerocleista 
Nidulantes A. nidulans 

A. versicolor 
A. ustus 
A. terreus 
A. flavipes 

Nidulantes Nidulantes 
Versicolores 
Usti 
Terrei 
Flavipedes 

Nidulantes Nidulantes 
Ornati 
Sparsi 

Nidulantes Nidulantes 
Sparsi 
Usti 

Emericella 
 
Emericella 

--- --- --- --- --- --- Candidi Candidi  
--- --- --- --- --- --- Terrei Terrei 

Flavipedes  
 
Fennelia 

--- --- --- --- --- --- Warcupi Warcupi 
Zonati 

Warcupiella 
Penicilliopsis 
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Aspergillus species are traditionally identified by morphologic characters. The genus 

is easily identified by its characteristic conidiophore, but species identification and 

differentiation is rather complex, for it is traditionally based on a wide range of features. In 

fact, the defining characteristic of the genus is the aspergillum-like spore-bearing structure. 

It is the most important microscopic character used in Aspergillus taxonomy. During 

mycelia differentiation certain cells enlarge, develop a heavy cell wall and form ‘T’ or ‘L’ 

shaped ‘foot cells’ that produce a single conidiophore perpendicular to the long axis of the 

cell. This erect hyphal branch enlarges at its apex to form a rounded, elliptical or club 

shaped vesicle. In some species, the fertile area of the vesicle gives rise to a layer of cells 

called phialides that produce long chains of mitotic spores called conidia or conidiospores. 

This type is called uniseriate. In other cases, a layer of cells called metullae is produced 

between the vesicle and the phialides, and the aspergilli are called biseriate.  

The size and arrangement of the conidial heads as well as the colour of the spores 

they bear are important identifying characteristics. Micromorphology characterisation is 

also dependent on stipe morphology, conidia ornamentation, presence of Hülle cells, and 

morphology of cleistothecia and ascospores, when present (Kozakiewicz, 1989, Klich, 

2002a). Cleistothecia are the sexual reproductive stage that contain the meiotic ascospores 

borne within asci. Hülle cells are thickened, often globose, cells that are associated with 

cleistothecia, for which no function is currently known (Z. Kozakiewicz, personal 

communication, 2008).  

The major macromorphological and cultural (physiological) features used in species 

identification are the colour and diameter of the colony, the production of exudates and 

soluble pigments, the growth rate, thermotolerance, and the presence of sclerotia and 

cleistothecia. Sclerotia are rounded masses of mycelium with an outer melanised rind. 

They are believed to serve as resting structures that allow species to survive adverse 

growth conditions. Sclerotia morphological features (colour, shape, dimension) also aid in 

the identification. In addition to these characters, isolates of Aspergillus have also been 

characterised by physiologic responses to various conditions: growth at certain 

temperatures (Samson et al., 2007), water activities and pH, growth on specific culture 

media (e.g. creatine-saccharose agar; Varga et al., 2007a; Samson et al., 2007), 

extracellular enzyme production, profiles of fatty acids (Blomquist et al. 1992; Fraga et al., 

2008), etc. 
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Table 2.6 summarises the major morphological features used in the identification of 

Aspergillus to the section level. The taxonomic scheme presented is that of Gams et al. 

(1985), since it is the most generally accepted in terms of classic phenotypic identification. 

 

Table 2.6  Morphologic characteristics (based on Klich, 2002a) of the various sections of genus 
Aspergillus (taxonomy after Gams et al., 1985). 

Subgenus Main characteristics Section Main characteristics 

Aspergillus Uniseriate, xerophilic, growth 
on CY20S>CYA25, grey-
green conidia, 

Aspergillus 
 

teleomorph Eurotium - yellow 
cleistothecia with 
pseudoparenchymatous cells, hyaline 
ascospores  

 Restricti 
 

Strictly anamorphic, slow growth on all 
media 

Clavati Uniseriate, vesicles 
predominantly clavate, conidia 
grey-green, 

Clavati The same as subgenus 

Circumdati Uniseriate or biseriate, vesicles 
spherical to pyriform 

Candidi Conidia white or nearly white 

 Circumdati 
 

Predominantly biseriate, conidia yellow, 
buff or ochraceus 

 Cremei Conidia brown, yellow or blue-green 

 Flavi 
 

Conidia yellow-green to olive-brown 

 Nigri 
 

Stipes smooth-walled, conidia black or 
near black 

 Sparsi Conidia pale grey to olive-buff 

 Wentii Conidia yellow to brown 

Fumigati Uniseriate, vesicles 
predominantly pyriform, 
conidia grey-green, blue-green 
to orange 

Fumigati Conidia grey-green to blue-green 

 Cervini Conidia light-orange to orange-grey 

Ornati Uniseriate, conidia grey-green, 
yellow-green or olive-brown 

Ornati The same as subgenus 

Nidulantes  Flavipedes Stipes hyaline to pale brown, conidia 
white to buff 

 Nidulantes 
 

Stipes short often brown, conidia green, 
Hülle cells often present, most species 
with Emericella teleomorph. 
Cleistothecia soft-walled, surrounded by 
Hülle cells, ascospores red to purple 

 Terrei Stipes hyaline, conidia buff to orange-
brown 

 Usti Stipes brown, conidia dull red, brown or 
olive 

 Versicolores Stipes hyaline to brown, conidia green, 
grey-green or blue-green 
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2.3.2 The species concept in Aspergillus 

Many different species concepts have been proposed. The most common ones are the 

Morphological Species Concept (MSC), the Biological Species Concept (BSC) and the 

Phylogenetic Species Concept (PSC) (see Taylor et al., 2000 for a review on the various 

species concepts). A biological species is diagnosed as a group of individuals able to 

interbreed freely under natural conditions. This species concept is hard to apply to fungi 

for a number of reasons. Approximately 20% of fungi are not known to reproduce 

sexually. Other fungi are homothallic and will produce sexual spores without a partner. In 

addition, some heterothallic fungi cannot be coaxed into mating in cultivation (Taylor et 

al., 2000). Taking this in consideration, the dominant fungal operational species concept 

has been, until recently, the MSC, which is founded on the similarity of observable 

phenotypic (morphological and physiological) characters. Lately, the PSC has been gaining 

interest among mycologists. A phylogenetic species corresponds to a monophyletic group 

composed of the smallest diagnosable cluster of individual organisms within which there is 

a parental pattern of ancestry and descent.  

Peterson (2008) considers that the PSC as described by Dettman et al (2003a, 2003b, 

2006) is a very attractive option. In this concept, species recognition results from the 

concordance of independent gene trees; branches are categorised as fully congruent when a 

single group of isolates always occurs as a terminal group and there is strong statistical 

support for that grouping. Strong statistical support derived from phylogenetically 

informative data along with the branch being present in each of the single locus trees is 

taken as support for the isolate representing a distinct species (Peterson, 2008). PSC can 

avoid the subjectivity of determining the limits of a species by relying on the concordance 

of more than one gene genealogy – the genealogical concordance concept. The point where 

different gene genealogies become concordant is a useful place to assign a species 

boundary. In practice, this has proven to be a powerful tool in fungi and in the genus 

Aspergillus. Several studies using this genealogical concordance theory resulted in a 

species recognition system that agreed in part with phenotypic studies and revealed the 

presence of many undescribed species not resolved by phenotype.  

But Rieppel (2007) considers that invoking genetic distance as the basis for 

distinguishing species is unreasonable because species occur in different sized measures of 
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time and space. Also, Samson & Varga (2009) consider that, after the introduction of 

powerful molecular techniques, there has been a tendency to overvalue the contribution of 

phylogenetic criteria to the description of species. Whatever concept is applied, the 

question is always put on where to draw the limit of the species. To try to overcome this 

problem, the integration of various kinds of data and information (phenotypic, genotypic, 

phylogenetic) into a polyphasic scheme seems to be the most powerfull approach of 

species identification, as it results in a consensus type of taxonomy (Samson & Varga, 

2009). 

2.3.3 Schemes of species identification in genus Aspergillus – the polyphasic 
approach 

There is no method (morphological, physiological, molecular) that works flawlessly 

in recognising species. That is why taxonomists are currently sustaining their studies in 

polyphasic schemes, involving the highest possible number of characters resulting from 

biological, morphological and phylogenetical approaches. Within these sets of data, 

features currently used to classify and identify Aspergillus isolates are: morphology 

combined with physiological and ecological features; secondary metabolite profiles and 

DNA sequences. The more parameters available, the more stability the classification will 

achieve. In those cases where not all approaches of polyphasic schemes result in a 

consensus, classification should be a compromise containing a minimum of contradictions 

(Samson & Varga, 2009). 

 

Morphologic and physiologic characters 

As said, morphology and physiology have been extensively used in species 

recognition. One drawback associated with this type of characters is that they vary greatly 

within a species. For instance, sclerotia or coloured diffusible metabolites which are 

characteristic of some species are not always present in all isolates of that species 

(Rodrigues et al., 2009). Furthermore, most of these characters are dependent on the 

culture conditions. A variety of subtle effects such as air exchange, light and volume of the 

medium can affect morphology (Okuda et al., 2000). For this reason, it is of major 
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importance that species identification is developed with pure cultures grown on known 

media and under standardised conditions (Klich, 2002a).  

 

Secondary metabolite profiles 

Species of Aspergillus produce a diverse array of secondary metabolites which can 

be used in species recognition, since they are believed to have high species specificity 

(Frisvad 1989; Larsen et al. 2005). Practically all species of Aspergillus produce a unique 

combination of these metabolites. In Aspergillus, genes responsible for secondary 

metabolite biosynthesis are gathered in clusters in the subtelomeric regions of the 

chromosomes, which are often associated with frequent genome rearrangements and 

deletions (Yu et al., 2004a; Galagan et al., 2005b; Machida et al., 2005; Nierman et al., 

2005; Georgianna et al., 2010).  

In various sections of the genus, each species is characterised by a specific profile, 

and the grouping of species based on the extrolite profile usually correlates well with the 

groupings obtained by other approaches (e.g. Hong et al., 2005; Houbraken et al., 2007; 

Samson et al., 2007; Varga et al., 2007a, 2007b).  Samson & Varga (2009) recommend that 

4 to 8 metabolites should be used in the metabolite profiling of a given species.  

 
Molecular characters 

Aspergillus are among the best studied fungi genetically. In fact, the genomes of 

several Aspergillus species are now completed (Nierman et al., 2005; Galagan et al., 

2005a; Machida et al., 2005; Payne et al. 2006, 2007; Pel et al., 2007; Fedorova et al., 

2008; Rokas et al., 2007) and numerous sequences from several strains are available. 

In general, molecular characters provide a big number of variable characters for 

fungal taxonomy, when compared with other approaches. Furthermore, they can be 

generated using a widely available technology that makes use of well-developed 

bioinformatic infrastructures that allow comparison of results, and they produce results that 

generally correlate well with morphological and physiological characters.  

In recent years, molecular tools such as Restriction Fragment Length Polymorphisms 

(RFLP), Random Amplification of Polymorphic DNA (RAPD), Amplified Fragment 

Length Polymorphism (AFLP) and DNA sequencing have been applied to taxonomic 

questions in the genus. Among these, DNA sequence analysis has proven to be a powerful 

tool in the identification of a large number of Aspergillus species. It is a fact that variable 
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DNA sequence characters provide the best means for inferring relationships among 

organisms, because it is possible to sample very large numbers of variable characters. But 

the standard short barcode sequences (ca. 600 bp) were found to be unsuitable for inferring 

accurate phylogenetic relationships among fungi (Min & Hickey, 2007), and they generally 

lack resolution for species identification among very closely related fungi. Taylor et al. 

(2000) stated that the phylogenetic analysis of variable nucleic acid characters currently 

comes closer than the others to recognising species consistent with the Evolutionary 

Species, but this is considered to be true only if several genes are to be analysed. For both 

species description and phylogenetic inference, Samson & Varga (2009) recommend that 

at least 2 gene sequences should be examined, using a Multi Locus Sequence Typing 

(MLST) approach. 

DNA barcoding is a taxonomic method which uses a short genetic marker in an 

organism’s DNA to quickly and easily identify it as belonging to a particular species. A 

DNA sequence should meet several criteria to be used successfully for species 

identification. DNA sequences should be orthologous in the examined organisms, and 

variable enough to allow species identification, with low levels of intraspecific variation 

(Hebert et al., 2003). A DNA barcode should be easily accessible (universally 

amplified/sequenced by standardised primers from a wide set of organisms), relatively 

short (≤ ~ 500–600 bp), simple to sequence and easily alignable.  

A variety of loci have been suggested as DNA barcodes for fungi, including coding 

genes and non-coding spacers in the nuclear genomes, as well as in the mitochondrial 

DNA. The most widely used DNA target regions for discriminating Aspergillus species are 

the ones in the nuclear ribosomal RNA genes (large subunit, internal transcribed spacers) 

(e.g. Kanbe et al., 2002; Hinrikson et al., 2005; Serra et al., 2006; Anzai et al., 2008; 

Peterson et al., 2008; Pildain et al., 2008). Single-copy conserved genes, namely β-tubulin, 

calmodulin and topoisomerase II, have also been extensively used as targets for taxonomic 

studies in the genus, when multi-copy segments from the rDNA complex lack variability 

(e.g. Hong et al., 2005, 2008; Peterson et al., 2008; Pildain et al., 2008). Works on 

mitochondrial genetics of aspergilli indicated that the genes located on the mtDNA of 

aspergilla (namely cox1) do not meet all criteria needed for a DNA barcode, because of 

several problems. In fact, several studies indicated that results obtained from mitochondrial 

and nuclear sequence data are incongruent (Wang et al., 2000; Geiser et al., 2007). 
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Problems may be averted by selecting genes exhibiting appropriate levels of resolving 

power, depending on the genetic proximity of the organisms of interest and on the 

objective of the studies. 

 

Mass Spectra 

Matrix-assisted laser desorption/ionisation with time-of flight mass spectrometry 

(MALDI-TOF MS) is a technique emerged in the late 1980s (Tanaka et al., 1988) that has 

been successfully applied in the last 15 years in microbial identification. The general 

principle of MALDI-TOF MS involves the ionisation of large proteins by the rapid photo-

volatilisation of a sample embedded in a UV-absorbing matrix followed by time-of-flight 

mass spectrum analysis (Marvin et al., 2003). The ability of monitoring ions over a broad 

m/z range (mass spectra) forms the basis of taxonomic identification (Marvin et al., 2003). 

These mass spectra function as “fingerprints” or “spectral signatures”, which are unique 

and representative for individual microorganisms, and unknown sample identification can 

be performed from comparison with previously constructed databases. Holland et al. 

(1996) first demonstrated that the identification of whole bacteria was feasible by MALDI-

TOF MS. Subsequently, new developments and enhancements of this technology were 

done in order to characterise a wide spectrum of microbial cells. 

The advantages of MALDI-TOF MS over other mass spectrometry methodologies 

are that it simplified the mass spectral analysis due to gentle ionisation, reducing the 

number of signals, and the mass range is broader (Kemptner et al., 2009). As a result, very 

complex samples like whole cells can be investigated. Employing unfractionated cell 

materials, organism-specific signal patterns in the mass range of 2000 - 20000 Da can be 

obtained (Kallow et al., 2006). MALDI-TOF MS of intact cells (intact cell mass 

spectrometry - ICMS) has been shown to produce characteristic mass spectral fingerprints 

of moieties desorbed from the cell surface (Bright et al., 2002). It is a rapid and 

reproducible technique, which has been successfully used for the identification and 

discrimination of various microorganisms, and has shown high potentialities to 

discriminate very close related taxa.  

Welham et al. (2000) presented the first paper describing the use of MALDI-TOF 

ICMS to characterise different filamentous fungi, using spores of Penicillium spp., 

Scytalidium dimidiatum and Trychophyton rubrum. Since then, a limited number of reports 
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have discussed the effectiveness of employing the technique to characterise and identify 

fungi (Li et al., 2000; Welham et al., 2000; Amiri-Eliasi & Fenselau, 2001; Valentine et al., 

2002; Chen & Chen, 2005; Schmidt & Kallow 2005; Kallow et al., 2006; Erhard et al., 

2008; Hettick et al., 2008a, 2008b; Qian et al., 2008; Seyfarth et al., 2008; Sulc et al., 

2008; Kemptner et al., 2009; Santos et al., 2010). Furthermore, the majority has been 

devoted to procedure optimisation, where usually a limited number of ex-type strains was 

tested.  

Kallow et al. (2006) report that in filamentous fungi most signals correspond to 

membrane surface proteins, so their highly characteristic masses can be used for 

identification and classification. In fact, the composition of fungal cell walls and also of 

fungal spores exhibits qualitative and quantitative differences within different fungal 

species, but also between different strains of the same fungal species (Kemptner et al., 

2009). Kallow et al. (2006) support that in filamentous fungi most signals correspond to 

membrane surface proteins, so their highly characteristic masses can be used for 

identification and classification.  

Hettick et al. (2008a, 2008b) reported 100% correct identifications, indicating that 

MALDI-TOF MS data are a useful diagnostic tool for the objective identification of 

Penicillium and Aspergillus species. MALDI–TOF MS was also used to generate highly 

reproducible mass spectral fingerprints for 12 species of fungi of the genus Aspergillus and 

5 different strains of A. flavus (Hettick et al., 2008b). In this study, the species A. niger was 

not well resolved from A. chevalieri, because of poor mass spectra, a situation already 

reported by Valentine et al. (2002) for A. niger. Albeit that problem, the authors concluded 

that discriminant analysis of the MALDI–TOF MS data was able to correctly classify each 

Aspergillus species with 100% accuracy and was able to correctly classify strains of 

A. flavus with 95 to 100% accuracy. These data indicate that MALDI–TOF MS data may 

be used for unambiguous objective identification of members of the genus Aspergillus at 

both the species and strain levels. Even though Hettick et al. (2008a, 2008b) report high 

levels of correct identifications, they also refer to differences observed between 

laboratories. Hettick et al. (2008a) refer that Chen & Chen (2005) report MALDI-TOF 

mass spectra of several Penicillium species significantly different from their own. The 

same situation was reported for studies with Aspergillus species and strains (Li et al., 2000; 

Hettick et al., 2008b). The authors attribute the differences in the fingerprint mass spectra 
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to several factors, namely instrumentation, culture conditions, sample preparation and 

MALDI matrix. These differences reflect the importance of using standardised 

methodology for MALDI-TOF.  

The same studies also reflected that the obtainable mass spectrum and its 

reproducibility are essential prerequisites for the successful classification and identification 

of fungal species. Various parameters are reported to influence mass spectral data, such as 

the pre-treatment of the fungal sample (growth media, washing procedure), the applied 

matrix compound and solvent system as well as the MALDI sample preparation technique 

itself. Furthermore, to correctly identify unknown species and strains, a comprehensive 

database of fungal fingerprint mass spectra will need to be established (Hettick et al., 

2008b). Santos et al. (2010) emphasise that a standard reference library of biological mass 

spectra needs to be implemented based on inter-laboratories tests.  

2.3.4 Taxonomy of section Flavi 

The diversity of ecological niches occupied by members of Aspergillus section Flavi 

and the ability of some species to produce AFs make this group one of the most studied 

within the genus. Raper & Fennell (1965) originally included nine species and two 

varieties in the (then called) A. flavus group: A. flavus, A. flavus var. columnaris, 

A. parasiticus, A. oryzae, A. oryzae var. effesus, A. zonatus, A. clavato-flavus, A. tamarii, 

A. flavofurcatus, A. subolivaceus and A. avenaceus. Since then, numerous reports have 

been adding or repositioning species within section Flavi (Kozakiewicz, 1989; Peterson, 

2000, 2005, 2008; Rigó et al., 2002; Frisvad et al., 2005; Pildain et al., 2008). The species 

and varieties that are currently considered to belong to section Flavi are summarised in 

Table 2.7. 

Based on phenotypic and/or molecular data, various authors (Kozakiewicz, 1989; 

Peterson, 2000; Rigó et al., 2002) have suggested that A. zonatus and A. clavatoflavus 

should be excluded from section Flavi. Peterson (2000) considered A. flavofurcatus and A. 

tamarii to be synonyms. Additionaly, Petromyces alliaceus and three fungi formerly 

assigned to section Wentii, A. thomii, A. terricola (synonym of A. tamarii) and A. terricola 

var. americana have been moved to section Flavi (Peterson, 2005). Recent molecular data 

indicate that A. flavus var. columnaris and A. zhaoqingensis are synonyms of A. flavus and 



Chapter 2 Literature Review 
 
 
 

74 

A. nomius, respectively (Pildain et al., 2008). Furthermore, by the time of writing, Index 

Fungorum considered A. toxicarius as a synonym of A. parasiticus, and A. fasciculatus a 

synonym of A. flavus. 

 

Table 2.7  List of species (by chronological order of description) currently positioned in section 
Flavi. 

Species (Current name) Type culture Reference 

A. flavus Link CBS 100927 Link (1809) 

A. oryzae (Ahlb.) E. Cohn CBS 100925 Cohn (1883) 

A. terricola É.J. Marchal CBS 579.65 Marchal (1893) 

A. parasiticus Speare CBS 100926 Speare (1912) 

A. tamarii Kita CBS 104.13 = NRRL20818 Kita (1913) 

A. terricola var. americanus Marchal & É.J. 
Marchal 

CBS 580.65 Thom & Church (1921) 

A. avenaceus G. Sm. CBS 109.46 Smith (1943) 

A. thomii G. Sm. CBS 120.51 Smith (1951) 

A. sojae Sakag. & K. Yamada ex Murak. CBS 100928 Sakaguchi & Yamada (1944) 
Murakami (1971) 

A. alliaceus Thom & Church* IMI 87209 Thom & Church (1945) 

A. flavofurcatus Bat. & H. Maia CBS 484.65 Batista & Maia (1955) 

A. flavus var. columnaris Raper & Fennell CBS 486.65 Raper & Fennell (1965) 

A. subolivaceus Raper & Fennell CBS 501.65 Raper & Fennell (1965) 

A. leporis States & M. Chr. CBS 151.66 States & Christensen (1966) 

A. parasiticus var. globosus Murak. CBS 260.67 Murakami et al. (1966) 

A. kambarensis Sugiy. CBS 542.69 Sugiy (1967) 

A. lanosus Kamal & Bhargava CBS 650.74 Kamal & Bhargava (1969) 

A. coremiiformis Bartoli & Maggi CBS 553.77 Bartoli & Maggi (1978) 

A. robustus M. Chr. & Raper CBS 428.77 Christensen & Raper (1978) 

P. albertensis J.P. Tewari  Tewari (1985) 

A. nomius Kurtzman, B.W. Horn & Hesselt. CBS 260.88 = NRRL 13137 Kurtzman et al. (1987) 

A. caelatus B.W. Horn CBS 763.97 = NRRL 25528 Horn (1997) 

A. beijingensis D.M. Li, Y. Horie, Yu X. 
Wang & R.Y. Li 

 Li et al. (1998) 

A. qizutongii D.M. Li, Y. Horie, Yu X. 
Wang & R.Y. Li 

 Li et al. (1998) 

A. bombycis S.W. Peterson, Yoko Ito, B.W. 
Horn & T. Goto 

CBS 117817 = NRRL 26010 Peterson et al. (2001) 

A. pseudotamarii Yoko Ito, S.W. Peterson, 
Wicklow & T. Goto 

CBS 766.97 = 93MZ2D = 
IMI 86979 = NBRC 100702 = 
NRRL25397 = NRRL25517 

Ito et al. (2001) 

A. parvisclerotigenus (Mich. Saito & 
Tsuruta) Frisvad & Samson** 

CBS 121.62 = NRRL A-11612 = 
IBT 3651 = IBT 3851 

Frisvad et al. (2005) 

A. arachidicola Pildain, Frisvad & Samson CBS 117610 = IBT 25020 Pildain et al. (2008) 

A. minisclerotigenes Vaamonde, Frisvad & 
Samson 

CBS 115635 = IBT 27196 Pildain et al. (2008) 

* Teleomorph P. alliaceus Malloch & Cain (1973) 
** Basionym: A. flavus var. parvisclerotigenus Saito & Tsuruta (1993) 
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Considering the most traditional schemes of identification, Aspergillus section Flavi 

includes six economically important species that are very closely related morphologically 

and phylogenetically: A. flavus, A. parasiticus, A. nomius, A. oryzae, A. sojae and 

A. tamarii. Even though these species share numerous common features, they differ in a 

major attribute: their ability to produce AFs. In fact, section Flavi species are usually 

divided into two groups. Isolates of the so-called domesticated species, namely A. oryzae, 

A. sojae and A. tamarii, are widely used in the fermenting process in Asian countries 

(Kumeda & Asao, 2001). Genetically modified strains of A. oryzae are also used as 

enzyme factories, for industrial production of lactase, pectin-esterase, lipase, protease and 

xylanase (Pariza & Johnson, 2001). On the other hand, a group of aflatoxigenic species, 

which include the widely distributed A. flavus, A. parasiticus and A. nomius, is considered 

a major problem for animal and human health, since those species are able to grow in 

almost any crop or food. 

A. flavus, A. parasiticus, A. oryzae and A. sojae have been shown to possess high 

degrees of DNA relatedness and similar genome size. Based on DNA complementarity, 

A. flavus and A. oryzae, as well as A. parasiticus and A. sojae, were considered virtually 

impossible to discriminate, since their DNA similarity was found to be of 100% and 91%, 

respectively (Kurtzman et al., 1986, 1987). A. oryzae and A. sojae have been considered 

non-toxigenic variants of A. flavus and A. parasiticus, respectively. Phylogenetic studies 

have indicated that A. oryzae may have originated from an ancestral non-aflatoxigenic 

A. flavus (Geiser et al., 1998, 2000; Chang et al., 2006), or that they have lost the ability to 

produce AFs during the domestication process (Samson et al., 2000). Whole genome 

comparison of A. flavus NRRL3357 and A. oryzae RIB40 shows that these two fungi are 

very similar in genome size and number of predicted genes, although each also has unique 

genes (Payne et al., 2006). Rokas et al. (2007) report that, at the genome and proteome 

levels, A. flavus and A. oryzae share 99.5% and 98% of similarity (respectively), more than 

the percent of identity found between two strains of A. niger (99.3% and 96.7%, 

respectively). These results support the theory that A. oryzae may not be a separate species, 

but rather a domesticated ecotype of A. flavus, as previously advocated by Kurtzman et al. 

(1986) and Kozakiewicz (1989).  

Genome sequence information about A. sojae and A. parasiticus is not available, but 

published data showed that genes of A. parasiticus and A. flavus commonly share 97–99% 
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nucleotide identity. Whatever the case might be, Geiser et al. (1998) suggest that both 

A. oryzae and A. sojae should be retained as separate species for practical reasons, to avoid 

confusion in food industry. Frisvad et al (2006b) support the idea that, being domesticated 

forms, A. oryzae and A. sojae are not expected to be isolated other than from production 

plants of oriental foods and enzymes. 

The close relatedness among those four aspergilla as well as the high intra-specific 

genetic diversity are the foremost examples of the challenge posed to the accurate 

classification of Flavi species. Misclassification of isolates of these and other species based 

on morphological characteristics is therefore not uncommon (e.g. Wang et al. 2001; Batista 

et al., 2008). As molecular methods are being progressively introduced in the identification 

of Aspergillus in the last years, section Flavi has suffered extensive developments and 

adjustments. Also, the analysis of more and more isolates of what is considered to be a 

given species has shown great variation in AF production, especially within the most 

common aflatoxigenic species, A. flavus. These findings have prompted considerable 

interest also at the intraspecific level. Many authors have shown evidence that A. flavus 

sensu lato may consist of a paraphyletic group of isolates (Geiser et al., 1998, 2000; Pildain 

et al., 2008), and high intra-specific genetic diversity has been frequently reported for 

A. flavus populations (Wicklow et al., 1998; Batista et al., 2008; Criseo et al., 2008). 

Based on morphological, genetic and physiological criteria, A. flavus can be divided 

into two types of strains (Cotty, 1994). The S-type produces numerous small sclerotia 

(average diameter <400 µm) and high levels of AFBs, while the L-type produces fewer, 

larger sclerotia and, on average, less AFBs (Garber & Cotty, 1997). S-type strains 

producing both AFBs and AFGs, described as A. flavus group II by Geiser et al. (2000), 

together with isolates originating from Argentinian peanuts have been recently described 

as A. minisclerotigenes (Pildain et al., 2008). Also, A. flavus var. parvisclerotigenus, with 

morphology and extrolite profile similar to A. minisclerotigenes, has been raised to species 

level (A. parvisclerotigenus) by Frisvad et al. (2005). Other species like A. kambarensis, 

A. fasciculatus, A. thomii and A. subolivaceus have shown to be synonymous of A. flavus 

(Pildain et al., 2008).  

A. parasiticus and closely related species, although less problematic than A. flavus, 

have also been subject of controversy. Besides A. sojae, A. toxicarius has not been clearly 

distinguished from A. parasiticus (Pildain et al., 2008; Samson & Varga, 2010). Another 
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species closely related to A. parasiticus, also producing AFBs and AFGs but 

morphologically resembling A. flavus has been recently described as A. arachidicola 

(Pildain et al., 2008).  

In a distinct group of species, A. nomius and A. bombycis are two related species 

producing both AFBs and AFGs, but not CPA, like A. parasiticus (Peterson et al., 2001). 

A. bombycis was isolated from silkworm-rearing houses in Japan and Indonesia, whereas 

A. nomius is more widespread: it was originally isolated from mouldy wheat in the USA, 

and later from various substrates in India, Japan and Thailand. Recently, A. nomius has 

been reported as an important contaminant and AF producer in Brazil nuts (Johnsson et al., 

2008; Olsen et al., 2008). 

In the A. tamarii group of species, isolates grow in a shade of olive to bronze brown. 

A. tamarii is traditionally used in oriental food industry, since it is non-aflatoxigenic. Goto 

et al. (1996) reported AF production by one isolate defined as A. tamarii; however, Ito et 

al. (2001) later described this isolate as a new closely related species, A. pseudotamarii. 

P. alliaceus and P. albertensis are the only two sexually reproducing species 

(teleomorphs) classified in section Flavi (Tamura et al., 2000; Frisvad et al., 2005; 

Peterson, 2008). Data on sexual recombination between vegetative compatibility groups 

(VCGs) in members of section Flavi, namely A. flavus and A. parasiticus, have been 

reported (Horn et al., 2009a, 2009b), but sexual stages have not yet been found in nature. 

2.3.5 Identification of species in Aspergillus section Flavi  

Within the genus, the identification of species belonging to section Flavi has been 

strongly based on morphological and biochemical characterisation. Conidial wall 

ornamentation and colony colour on CYA have been regarded as the primary 

morphological diagnostic characters for separation of isolates into groups of species. 

Conidia of A. flavus-like species have relatively thin walls which are finely to moderately 

rough. Their shape can vary from spherical to elliptical. Conidia of A. parasiticus-like 

species are more spherical and noticeably echinulate or spinulose. When grown on 

Czapek-Dox (CZ), colonies of A. flavus are yellow-green and those of A. parasiticus have 

a distinctly darker green (Klich, 2002a; Samson et al., 2004a). A. nomius is 

morphologically similar to A. flavus in colour, but conidia are more roughened (Kurztman 
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et al., 1987). Species of the A. tamarii group are very distinctive from the others. They 

have olive to bronze-brown colonies on CYA and their conidia are thick and echinulate.  

The mycotoxigenic profile regarding AFBs, AFGs and CPA of these strains has also 

been routinely used for identification purposes. A. parasiticus strains are usually strongly 

aflatoxigenic, producing both AFBs and AFGs, but not CPA. Non-aflatoxigenic strains 

have rarely been reported (Horn et al., 1996; Razzaghi-Abyaneh et al., 2006; Tran-Dinh et 

al., 1999; Vaamonde et al., 2003). On the other hand, A. flavus populations have been 

found to be extremely diverse in terms of morphology and toxigenicity, and have thus been 

divided into groups, depending on their toxigenic profile (Vaamonte et al., 2003; 

Razzaghi-Abyaneh et al., 2006; Giorni et al., 2007). Five groups have been proposed 

(Vaamonde et al., 2003): (i) chemotype I for AFBs and CPA producers; (ii) chemotype II 

for AFBs, AFGs and CPA producers; (iii) chemotype III for AFBs producers; (iv) 

chemotype IV for CPA producers; and (v) chemotype V for non-producers. Other 

extrolites like aspergillic acid, kojic acid, parasiticolides, chrysogine and aflatrems have 

also been found useful for species characterisation, but have been used less frequently 

(Samson et al., 2004a; Pildain et al., 2008). 

Table 2.8 compiles the most significant morphological and physiological 

characteristics of species from section Flavi. 
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Table 2.8  Compilation of the major morphological and biochemical characters used in the distinction of species of Aspergillus section Flavi (Tewari, 
1985; Kurtzman et al., 1987; Horn, 1997; Li et al., 1998; Ito et al., 2001; Peterson et al., 2001; Klich, 2002a; Samson et al., 2004, 2006; 
Frisvad et al., 2005; Hedayati et al., 2007; Pildain et al., 2008). 

Species Seriationa,b  Conidia  
texture  

Conidia size 
(µm) 

Sclerotiab Colony colour Reverse on 
AFPAb 

Colony 
diameter (cm) 
on CZ42b 

AFBs c AFGs c CPA c 

A. arachidicola b or u echinulate 4.5-5 no olive to olive-brown Cream good + + - 

A. avenaceus b smooth 4-5 x 3.2-4 elongate yellow to olive n.d. n.d. - - - 

A. beijingensis u verrucose 3.5-6.5 n.d. olive-yellow n.d. n.d. n.d. n.d. n.d. 

A. bombycis b rough 4-7 n.d. green to bronze n.d. n.d. + + - 

A. caelatus u or b coarse 5-6 elongate olive to brown Brown no growth - - - 

A. coremiiformis b encrusted 6.9-9 n.d. cream  to brown n.d. n.d. n.d. n.d. n.d. 

A. flavus b or b/u smooth 3.5-4.5 globose yellow-green Orange 2.4-3.6 + - + 

A. lanosus b smooth 2.2-2.8 n.d. yellow n.d. n.d. - - - 

A. leporis b smooth 3-3.5 elongate olive n.d. n.d. - - - 

A. minisclerotigenes b smooth 3-4 small grayish-green n.d. n.d. + + + 

A. nomius u or u/b echinulate 4.5-6.5 elongate yellow-green to 
olive-green 

Orange 0-1.5 + + - 

A. oryzae variable smooth 4.5-8.0 no brown Cream 1.8-3.2 - - + 

A. parasiticus u or u/b rough 3.5-5.5 elongate dark-green Orange 1.8-3.3 + + - 

A. parvisclerotigenus n.d.     n.d. n.d. + + + 

A. pseudotamarii b or u rough 6.1-7.8 globose bronze to brown Brown n.d. + - + 

A. qizutongii u smooth 5-6.5 n.d. olive-yellow n.d. n.d. n.d. n.d. n.d. 

A. robustus b echinulate 3.5-4.5 x 2.8-
3.4 

irregular n.d. n.d. n.d. n.d. n.d. n.d. 

A. sojae u rough 5-6 n.d. brown-green Orange 1.5-2.7 - - - 
(continues) 
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Table 2.8 (continued) 
 

Species Seriationa  Conidia  
texture  

Conidia size 
(µm) 

Sclerotiab Colony colour Reverse on 
AFPAb 

Colony 
diameter (cm) 
on CZ42b 

AFBs c AFGs c CPA c 

A. subolivaceus b smooth 4 x 3 globose to 
elongate 

olive n.d. n.d. n.d. n.d. n.d. 

A. tamarii u or b echinulate 5-8 no dark-brown Brown 0.2-1.0 - - + 

A. terricola b or u echinulate 4.5-9 n.d. olive to brown n.d. n.d. n.d. n.d. n.d. 

A. thomii b/u rough 3-5.5 n.d. ochraceous n.d. n.d. n.d. n.d. n.d. 

P. albertensis b smooth 2.3-3.5 elongate olive n.d. n.d. - - - 

P. alliaceus b/u smooth 2.5-4 ovoid brown n.d. n.d. - - - 

a u: uniseriate; b: biseriate; u/b: predominantly uniseriate; b/u: predominantly biseriate;  
b n.d.: no data found 
c +: producer; -: non-producer. 
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Because species identification based on morphological and biochemical characters is 

time-consuming and not always straight-forward, several molecular genetic techniques 

have been tested to differentiate and identify species and strains within section Flavi, as 

well as for establishing phylogenetic relationships between species. Since the 1990’s, 

several methods have been applied with aim of producing genetic markers capable of 

distinguishing the closely related species A. flavus, A. oryzae, A. parasiticus, A. sojae and 

A. nomius. Fingerprinting techniques such as AFLP, RFLP, RAPD and inter-simple 

sequence repeats (ISSR) have been applied (Klich & Mullaney, 1987; Moody & Tyler, 

1990a, 1990b; Yuan et al., 1995; Montiel et al., 2003; Baptista et al., 2008; Godet & 

Munaut, 2010). Other methods based on the analysis of PCR amplified DNA fragments 

have also been used: single-strand conformation polymorphism (PCR-SSCP), PCR-RFLP, 

heteroduplex panel analysis (PCR-HPA), single nucleotide polymorphism (SNP) (Chang et 

al., 1995; Kumeda & Asao, 1996, 2001; Somashekar et al., 2004). DNA sequence analysis 

from both nuclear and mitochondrial DNA has also been applied (Wang et al., 2001). 

Other non-genetic, innovative methods based on mass spectrometry and spectroscopy have 

also been used for species differentiation and identification (Li et al., 2000; Garon et al., 

2010). 

Although these studies provided important information about the phylogenetic 

relationships between species, none of them used singly was able to solve problems of 

identification. High similarity between species of section Flavi, as well as a high degree of 

intraspecific variability, has resulted in the inability to produce a unique biological marker 

capable of consistently differentiating the various species.  

Table 2.9 lists some of the studies related to taxonomic issues within section Flavi as 

well as the characteristics and results obtained.  
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Table 2.9  Methods and characters used by various authors in species identification and description within Aspergillus section Flavi, with reference to the 
major achievments. 

Reference Method    Achievements 

Morphological Physiological Molecular Other 

Kurtzman et al., 
1986 

  DNA complementarity  High genetic relatedness between species  A. flavus, 
A. oryzae, A. parasiticus and  A. sojae 

Klich & 
Mullaney, 1987 

  RFLP  Differentiated some A. oryzae  isolates from  A. 
flavus 

Moody & Tyler, 
1990a 

  RFLP of mtDNA  Differentiated  A. flavus, A. parasiticus and  A. 
nomius 

Moody & Tyler, 
1990b 

  RFLP of nuclear DNA  Differentiated  A. flavus, A. parasiticus and  A. 
nomius 

Chang et al.,  
1995 

  SNP of aflR gene  Differentiated  A. parasiticus from A. sojae, and  A. 
flavus from  A. oryzae 

Yuan et al.,  
1995 

  RAPD   Differentiated  A. sojae from  A. parasiticus, and the  A. 
sojae strains were further separated into two groups 

Kumeda & 
Asao, 1996 

  PCR-SSCP and  
PCR-RFLP of  
ITS region 

 Differentiated  A. flavus/A.oryzae,  A. parasiticus/A. 
sojae,  A. nomius and  A. tamarii 

Nikkuni et al., 
1996, 1998 

  DNA sequence analysis 
of ITS region 

 Differentiated  A. flavus/A.oryzae,  A. parasiticus/A. 
sojae,  A. nomius and  A. tamarii 

Li et al.,  
2000 

   MALDI-TOF 
ICMS of spores 

Differentiated  A. parasiticus and  A. flavus  

Kumeda & 
Asao, 2001 

  PCR-HPA of  
ITS region 

 Differentiated  A. flavus/A.oryzae,  A. parasiticus/A. 
sojae,  A. nomius and  A. tamarii 

(continues) 
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Table 2.9 (continued) 

Reference Method    Achievements 

Morphological Physiological Molecular Other 

Peterson,  
2001 

Macro-and 
micromorphology 

Growth on 
various media; 
extrolites 

DNA sequence analysis 
MLST 

 Phylogenetic relationships. Description of A. 
bombycis 

Wang et al.,  
2001 

  DNA sequence analysis 
of cox1 (mtDNA) 

 Differentiated  A. parasiticus from  A. flavus 

Quirk & Kupinski, 
2002 

  RFLP of mtDNA  Differentiated  A. flavus/A. oryzae,  A. parasiticus/A. 
sojae,  A. nomius and  A. tamarii 

Rigó et al.,  
2002 

Colony colour, 
sclerotia 

Ubiquinone 
system 

DNA sequence analysis 
of ITS region 

 Differentiated  A. parasiticus/A. sojae and  A. flavus/A. 
oryzae 

Ehrlich et al., 
2003 

Sclerotia size AF production DNA sequence analysis 
of aflJ and aflR genes 

 Phylogenetic relationships. Differentiated SBG A. flavus 
isolates from other  A. flavus 

Montiel et al.,  
2003 

  AFLP  Differentiated  A. parasiticus/A. sojae and  A. flavus/A. 
oryzae  

Lee et al.,  
2004 

Macro-and 
micromorphology 

 AFLP  Differentiated  A. flavus from  A.oryzae 

Somashekar et al., 
2004 

  RFLP (PvuII) of the aflR 
gene 

 Differentiated  A. flavus from  A. parasiticus 

Frisvad et al., 
2005 

Macro-and 
micromorphology 

Growth on 
various media; 
extrolites 

DNA sequence analysis 
of 
β-tubulin gene 

 Phylogenetic relationships. Description of 
 A. parvisclerotigenus 

Baptista et al.,  
2008  

  RAPD/ ISSR  Demonstrated high inter- and intra-specific genetic 
diversity within section Flavi species that allowed 
species identification 

Peterson, 2008   DNA sequence analysis 
MLST 

 Phylogenetic relationships 

(continues) 
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Table 2.9 (continued) 

Reference Method    Achievements 

Morphological Physiological Molecular Other 

Pildain et al., 
2008 

Macro-and 
micromorphology 

Growth on 
various media; 
extrolites 

DNA sequence 
analysis of ITS region 
and calmodulin/  
β-tubulin genes 

 Phylogenetic relationships. Description of  
A. arachidicola and A. minisclerotigenes 

Garon et al.,  
2010 

 AFs 
production 

 FT-IR 
Spectroscopy 

Differentiated  A. flavus from  A. parasiticus 

Godet & 
Munaut, 2010 

  real-time PCR/ 
RAPD/RFLP 

 Six-step strategy to set up a decision-making tree for 
identification 
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3.1 Mycobiota and mycotoxins of almonds and chestnuts  

3.1.1 Almond and chestnut sampling 

3.1.1.1 Study area 

Samples were collected in the Portuguese northeast District of Bragança, in the 

former Province of Trás-os-Montes e Alto Douro, now called North region, divided in 

several sub-regions. Chestnut samples (which were all from the field) originated from 

Santa Comba de Rossas, council of Bragança.  

Almond samples were collected in the parish of Larinho, council of Torre de 

Moncorvo (Moncorvo; field and storage samples), and in the council of Alfândega da Fé 

(Alfândega; processor samples). Almonds from field and storage samples originated from 

Moncorvo, and almonds from samples collected at the processor originated from 

Moncorvo and Faro. Bragança, Moncorvo and Faro will herein be characterised 

geographically as well as climatically, because of the significance of these characteristics 

to the fungal contamination of chestnuts and almonds. Even though we did not collect Faro 

samples directly at the producer (samples were collected at the processor), we considered it 

important to characterise Faro as well. Alfândega will not be characterised in terms of 

climate, since only processor samples were collected at this study area, which does not 

significantly influence, in terms of environmental conditions, the fungal contamination of 

the almonds. 

3.1.1.2 Geographic characterisation 

Chestnut sampling was conducted in Santa Comba de Rossas, council of Bragança, 

which lies in the utmost north of Bragança District, sub-region Alto Trás-os-Montes, just a 

few kilometres from the border with Spain. It is located at a latitude of 41º49’N, longitude 

of 06º45’W and an altitude of approximately 720 m. This area lies in Terra Fria de 

Planalto, a regional denomination attributed by the prominent local climatologist Prof. 
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Dionísio Gonçalves (Gonçalves, 1991), after profound studies on the orographic and 

climatic conditions of the region. 

Almonds from field and storage, as well as part of those collected at the processor, 

were produced in Moncorvo, which lies in the south of Bragança District, sub-region 

Douro, at a latitude of 41º04’N, longitude of 07º01’W and an altitude of approximately 

410 m. This study area is located in Terra Quente (Gonçalves, 1991), and is naturally 

bordered by the Douro River. Just north from Moncorvo is Alfândega, where the processor 

plant is located. 

Part of the almond samples collected at the processor was produced in Faro. The 

council of Faro is integrated in the District of Faro, the southernmost district of Portugal, 

which coincides with the new region of Faro (former Province of Algarve), positioned at a 

latitude of 37º02’N, longitude of 07º56’W and an altitude of approximately 10 m. It is 

bathed by the Atlantic Ocean, but suffers a strong influence of the Mediterranean Sea. 

Figure 3.1 illustrates the Portuguese country, and marks the areas under study. 

 

 

Figure 3.1  Map of Portugal. Study areas are marked in red. Districts where the study areas are 
integrated are marked in pink. 
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3.1.1.3 Climatic characterisation 

Study areas were characterised in terms of bioclimate using the bioclimatic models 

of Rivas-Martinez (2004). Data used for climatic characterisation of the study areas were 

obtained from the reference values given by the closest weather station of Instituto de 

Meteorologia (INMG, 1991a, 1991b). Table 3.1 lists and characterises the weather stations 

used in this study. Table 3.2 indicates the bioclimatic diagnostic obtained for each study 

area. 

 

Table 3.1 Weather stations used for climate characterisation of the study areas. 

Study area 
Nearest weather station 
Local Lat (N) Long (W) Alt (m) Period 

Bragança Bragança 41º48’ 6º 44’  690 1951-1980 
Moncorvo Mirandela 41º31’ 7º12’ 250 1958-1980 
Faro Faro 37º01’ 7º58’ 8 1964-1980 

 
 
 

Table 3.2  Bioclimatic classification of the study areas, based on Rivas-Martinez (2004). 

Study area Bioclimatic classification 

 Bioclimate Continentality Thermotype Ombrotype 
     
Bragança Mediterranean 

pluviseasonal oceanic 
Euoceanic Lower 

Supramediterranean 
Upper 
subhumid 

     
Moncorvo Mediterranean 

pluviseasonal oceanic 
Semi-continental Upper 

Mesomediterranean 
Upper dry 

     
Faro Mediterranean 

pluviseasonal oceanic 
Semi-hyperoceanic Lower 

Thermomediterranean 
Lower dry 

 

 

Bragança is characterised by a humid climate (yearly rainfall of 741.1 mm/year), 

with moderate water deficit during summer, and great excess in winter, with 86% of the 

rainfall occurring from October to May. The summer is warm, with mean temperatures 

around 21 ºC, and the winter is cold, with temperatures frequently dropping below 0 ºC.  

Moncorvo is characterised by hot summers, with mean temperatures around 24 ºC, 

but 40 ºC being registered with some frequency during July and August. Moncorvo 

registers mean temperatures of 6 ºC in the cold months of December and January, and a 

yearly rainfall of 520.1 mm with 83% concentrated in the period from October to May. 



Chapter 3 Materials and Methods 
 
 
 

90 

Faro has a typical Mediterranean climate, with hot and dry summers and mild 

winters. Summer temperatures follow those of Moncorvo, but winter mean temperatures 

are around 12 ºC. Rainfall assumes big amplitudes throughout the year: 96% of the 

513.6 mm fall from October to May. 

3.1.1.4 Sampling plans 

The sampling plans proposed for this study included the collection of samples of 

both chestnuts and almonds at different stages of production (field, storage and processing) 

for two consecutive crops (2007 and 2008). However, for a number of reasons, which will 

be exposed whenever found necessary, the sampling plans had to be adjusted along the 

course of the work.  

The most significant almond and chestnut producers and processing industries of the 

region were identified, and, from those, one for each matrix was selected. The selected 

processors represent key industries in the northeast region, and are usually responsible for 

processing the majority of the local production. Among the farmers, the one contributing 

the most for the processing industry was selected. 

It is worth noting that the present study is not limited to one single variety. Local 

orchards are a mix of varieties. Furthermore, in the processing industries, almonds and 

chestnuts from local producers are generally processed as mixtures. In fact, they are not 

separated by variety but by size, given that they are similar in quality. This study intended 

to be a survey of fungal and mycotoxin contamination of local almonds and chestnuts. It 

was not our intention to study the vulnerability of the different varieties to fungal growth 

and mycotoxin accumulation. The only discrimination in terms of varieties set in this study 

was for almond samples (field, storage and processor samples), which consisted only of a 

mixture of soft shell varieties, since these are more likely to be damaged by insects and 

fungi.  

Because almond and chestnut productions vary in their characteristics, a general 

workflow from production to commercialisation will be described for each matrix, and 

sampling plans will be described separately.  
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3.1.1.4.1 Chestnuts 

General workflow 

Chestnuts are usually ready to harvest from the beginning of October until the end of 

November. Fruits are collected from the ground, at first by hand into 50 kg bags, on a 

weekly basis. When all fruits have fallen from the trees, collection is made mechanically 

with a suction machine, cleaned from soil, leaves and other dirt, and sacked. Chestnuts are 

then transported to the warehouse, spread on the floor and left to dry for 3 to 4 days. They 

are then put in 50 kg net bags and stored in a controlled atmosphere chamber (controlled 

temperature, relative humidity and CO2) until being processed. 

In the 2007 crop, chestnuts were ready to harvest at the beginning of November, later 

than usual, because of excessive rainfall in the normal harvesting period. The producer 

started to harvest at 01/11/2007 and finished three to four weeks later. Because this year’s 

crop produced very low yields, chestnuts were processed and expedited immediately after 

harvest. Also, in the mycological analysis of field samples a very limited number of 

Aspergillus isolates was detected and none of them belonged to section Flavi, which was 

the main interest of this study. For these reasons, we considered that this matrix was of 

limited interest to our objectives, and, contrary to the proposed sampling plan, samples 

were not taken at storage and processing stages. Furthermore, field samples were only 

collected and analysed for the 2007 crop. 

 

Field samples 

Three chestnut orchards, approximately 500 m apart from each other, where selected 

for field sampling, and were coded Px (where x refers to the number of the orchard). Five 

actively producing trees per orchard (one in each corner and one in the center of the 

orchard) were selected as sampling points, and were coded Cy (where y refers to the 

number of the chestnut tree). In total, we took 15 sampling spots, coded PxCy.  

Three samples were taken from each sampling spot. The first sampling time-point 

coincided with the beginning of the cropping (01/11/2007), when the farmer began to crop 

fallen nuts from the ground. At this time-point, we collected one sample of nuts from the 

ground (coded PxCy/Ch1/07, where Ch1/07 means the first sampling from the ground 

taken in the 2007 crop), and one sample from the tree (coded PxCy/Arv1/07, where Arv1 
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means the first sampling from the tree) (Figure 3.2). The second sampling time-point 

occurred at 20/11/2007, and corresponded to the period when all nuts had fallen from the 

trees and the farmer began to crop them mechanically. From the first to the second 

sampling time-point, the farmer collects the fallen chestnuts erratically, so sampled 

chestnuts from 20/11/2007 had been on the ground between one to 20 days. At this time-

point, only one sample of chestnuts was taken from the ground, and was coded 

PxCy/Ch2/07 (second sampling from the ground). 

 

 

 

Figure 3.2  Chestnut orchard P1 (A), chestnut tree (B) and chestnuts on the ground (C), at the time 
of sample collection. 

 

 

Samples were composed of 50 nuts, randomly collected. Nuts were collected by 

hand, freed from the spiny exocarp and put in a C4 craft paper envelope (229 x 324 mm). 

The envelope was immediately sealed and stored in a portable refrigerator. Hands were 

disinfected with 70% ethanol between each sampling spot. Samples arrived to the 

laboratory no more than 3 hours later. 

Climatic data for the year of 2007 were collected by an agro-climatic station of the 

Polytechnic Institute of Bragança, localised in the same farm as the orchards (Lat. 

41º49’N, Long. 06º45’W, Alt. 720 m). Climatic data were registered daily, and included 

Temperature, Precipitation and Relative Humidity. Information regarding irrigation and 

plant disease treatments was collected from the producer. 

  

A B C 
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3.1.1.4.2 Almonds 

General workflow 

The almond is not a true nut, but a drupe, which consists of an outer dehiscent hull 

(exocarp) and a hard shell (endocarp) with the edible seed (kernel) inside, involved by a 

brown seed coat. Shelling almonds refers to removing the shell to reveal the kernel. 

Almonds are commonly sold shelled, i.e. after the shells have been removed, or in-shell, 

i.e. with the shells still attached. Blanched almonds (or nutmeat) are shelled almonds that 

have been treated with hot water to soften the seed coat, which is then removed to reveal 

the white embryo. 

Almonds are generally ready to harvest from the beginning of September onwards. A 

few almonds naturally fall from the tree and are collected from the ground. However, they 

are predominantly harvested by shaking the tree branches and making nuts fall into a net 

placed on the ground, underneath the tree. Nuts are collected into 50 kg bags and 

transported to the producer’s warehouse. Once in the warehouse, almonds are spread on 

the floor and left to dry naturally. When sufficiently dry (usually 3 to 4 weeks later), they 

are again bagged and piled in the warehouse until expedited to the processor. The product 

is rarely sold immediately, and it is common for it to stay in the warehouse for a large 

number of months, depending on market conditions.  

 

Field samples 

Almond field sampling spots, sample coding and nut collection were identical to 

those previously described for chestnut samples. In sample codes, Cy was replaced by Ay 

to indicate almonds. 

Two samples were taken from each sampling spot, regarding two consecutive crops: 

2007 and 2008. The sampling time-points (06/09/2007 and 12/09/2008) corresponded to 

the day before the beginning of harvesting. Samples were coded as PxAy/07 and PxAy/08, 

respectively. Samples were composed of 50 nuts collected randomly from the tree canopy 

(Figure 3.3).  

Climatic data for the years of 2007 and 2008 were collected from a local data logger 

(agro-climatic station) of the Direcção Regional de Agricultura e Pescas do Norte 

(DRAPN), localised at Quinta de Água D'Alta, Moncorvo (Lat 41º18’N, Long 7º07’W, Alt 
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274 m). Climatic data were registered daily, and included Temperature, Precipitation and 

Relative Humidity. Information regarding irrigation and plant disease treatments was 

collected from the producer. 

 

 

 

Figure 3.3  Almond orchard P3 (A) and almond tree (B), at the time of sample collection. 

 

 

Storage samples 

Sampling during storage took place for the 2008 crop only. From 13/09/2008 

onwards, almonds were continuously collected by the producer, spread in the warehouse 

and left to dry. On 24/10/2008, almonds began to be put in 50 kg bags (by order of arrival) 

and piled (Figure 3.4).  At this time-point (coded Storage 1), two bags from the pile were 

selected, one from the top (Bag A) and one from inside the pile (Bag B), and marked. One 

data logger was put inside each bag. One sample of each bag was collected. Samples were 

collected every 3 months, until the almonds were expedited. So, after the first sampling 

time-point (24/10/2008), two other samples were taken, at days 16/01/2009 (Storage 2) and 

20/03/2009 (Storage 3) from the same bags. The day after Storage 3, almonds were 

expedited, not to our selected industry (contrary to what had happened the previous years), 

but to Spain, so we lost track of them. 
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Figure 3.4  Producer´s warehouse (A) and detail of stored almonds piled in 50 kg bags (B). 

 

 

Approximately 2 kg of in-shell almonds per sample were collected from various 

parts of each selected bag. Samples from the bag at the top of the pile were coded A1, A2 

and A3, and samples from the bag inside the pile were coded B1, B2 and B3, depending on 

the time-point of collection.  Samples were treated as previously described.  

Temperature and Relative Humidity of the warehouse were registered every 3 hours 

with two data loggers Hygrochron coupled to the software Eclo ExpressThermo 2007, one 

placed in the middle of the warehouse and the other near an inexistent wall (open to the 

outside), where almonds began to be distributed and piled. 

 

Processor samples 

The following general categories of almonds were sampled from the processor: i) 

unsorted in-shell nuts, representing incoming almonds as received by the processor; ii) “in-

process” nuts, representing nuts in different processing stages; and iii) processed nutmeats, 

representing a finished product ready to be sold for food consumption. Temperature and 

Relative Humidity of the warehouse were registered as previously mentioned by one data 

logger. Sample details are summarised in Table 3.3. 

Since a significant group of processor samples was relative to almonds originating 

from Faro, climatic data of Faro for the year of 2008 were also collected.  Data were 

retrieved from the official site of DRAPALG (URL: http://www.drapalg.min-

agricultura.pt/; accessed 20.06.2010). They were registered by an agro-climatic station of 

the Direcção Regional de Agricultura e Pescas do Algarve (DRAPALG), localised at 

Patacão, Faro (Lat. 37º02'N, Long. 07º56'W, Alt. 13 m), and included Temperature, 
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Precipitation and Relative Humidity. It was not possible to collect information regarding 

irrigation and plant disease treatments for Faro almonds, since the samples were taken 

from the processor and the farmer was not identified. 

 

 

Table 3.3  List of almond samples and description of conditions on which samples were collected. 

Production 
stage 

Code Collection 
date 

Local of 
collection 

Almonds 
Origin 

Characterisation Size 

2007 crop      

Field P1/A1 
P1/A2 
P1/A3 
P1/A4 
P1/A5 

06.09.2007 Moncorvo Moncorvo Each sample corresponds to one tree. 50 fruits 
50 fruits 
50 fruits 
50 fruits 
50 fruits 

 
P2/A1 
P2/A2 
P2/A3 
P2/A4 
P2/A5 
 

 
50 fruits 
50 fruits 
50 fruits 
50 fruits 
50 fruits 

P3/A1 
P3/A2 
P3/A3 
P3/A4 
P3/A5 

50 fruits 
50 fruits 
50 fruits 
50 fruits 
50 fruits 

Processor A 29.02.2008 Alfândega 
da Fé 

Moncorvo In-shell nuts. 
Received at the processor 10 days 
before sample collection. Stored in 50 kg 
bags, in the warehouse. 

2 kg 

B 29.02.2008 Alfândega 
da Fé 

Moncorvo Shelled nuts. 
The same as A, but shelled the day before 
sample collection: wet in cold water 
�dried at 40 ºC for 5 hours 
�mechanically shelled � stored in the 
warehouse in 50 kg bags. 

700 g 

C1 20.03.2009 Alfândega 
da Fé 

Moncorvo Shelled nuts. Nuts from the 2007 crop. 
Received and shelled by the processor in 
October 2008.  
Stored in 50 kg bags. 

700 g 

C2 22.05.2009 700 g 

(continues) 
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Table 3.3 (continued) 

Production 
stage 

Code Collection 
date 

Local of 
collection 

Almonds 
Origin 

Characterisation Size 

2008 crop      

Field P1/A1 
P1/A2 
P1/A3 
P1/A4 
P1/A5 

12.09.2008 Moncorvo Moncorvo Each sample corresponds to one tree. 50 fruits 
50 fruits 
50 fruits 
50 fruits 
50 fruits 

 
P2/A1 
P2/A2 
P2/A3 
P2/A4 
P2/A5 
 

 
50 fruits 
50 fruits 
50 fruits 
50 fruits 
50 fruits 

P3/A1 
P3/A2 
P3/A3 
P3/A4 
P3/A5 

50 fruits 
50 fruits 
50 fruits 
50 fruits 
50 fruits 

Storage A1 24.10.2008 Moncorvo Moncorvo In-shell nuts. Harvested at 15.09.2008. 
Spread in the warehouse to dry, bagged 
and piled. Sample from the top of the pile. 
(Climatic data logger No 39) 

2 kg 

A2 16.01.2009 2 kg 

A3 20.03.2009 2 kg 

 B1 24.10.2008 Moncorvo Moncorvo In-shell nuts. Harvested at 15.09.2008. 
Spread in the warehouse to dry, bagged 
and piled. Sample from inside the pile. 
(Climatic data logger No 61) 

2 kg 

B2 16.01.2009 2 kg 

B3 20.03.2009 2 kg 

Processor D1 20.03.2009 Alfândega 
da Fé 

Moncorvo Shelled nuts. Shelled in January and stored 
in the warehouse in 50 kg bags. 

700 g 

D2 22.05.2009 700 g 

F1 20.03.2009 Alfândega 
da Fé 

Faro In-shell nuts. Just received and stored in 
the silo. 
 

2 kg 

F2/kernel 22.05.2009 Shelled nuts (nutmeat with seed coat). 
Nuts from the silo being shelled at the 
moment of sample collection. 
 

700 g 

F2/shell 22.05.2009 Shell corresponding to sample F2/M.  

F3/nutmeat 26.05.2009 Nutmeat from nuts shelled at 22.05.2009. 
Seed coat was being removed at the 
moment of sample collection. 
 

700 g 

F3/seed coat 26.05.2009 Seed coat corresponding to sample F3/M 100 g 

 

  



Chapter 3 Materials and Methods 
 
 
 

98 

Determination of water activity 

Water activity was measured for storage and processor samples. As soon as the 

samples arrived to the laboratory, they were left at room temperature for 2 hours and water 

activity was measured at approximately 22 ºC, in triplicate, using Rotronic Hygropalm 

AW1 equipment. 

3.1.2 Mycological analysis 

3.1.2.1 Implementation of the procedures for fruit plating 

Some tests were made to determine the best procedure for fruit plating. For this 

matter, we tested the necessity and efficacy of fruit superficial disinfection, as well as the 

selectivity of various culture media towards Aspergillus fungi. 

3.1.2.1.1 Superficial disinfection 

The following superficial disinfection methods were tested:  
 

Method 1 
Fruits were submerged in 0.5% sodium hypochloride for 2 minutes, washed twice in sterile tap 
water and plated. 
 

Method 2 
Fruits were submerged in 95% ethanol for 30 seconds, washed twice in sterile tap water and plated. 
 

Method 3 
Fruits were submerged in 95% ethanol for 30 seconds, flamed to eliminate the ethanol and plated. 
 

Method 4 
Fruits were briefly flamed (3 to 4 seconds) and plated. 

 

 

For each disinfection method, 5 fruits were plated with the shell (in-shell), and 5 

other fruits were plated without the shell (shelled). The same number of fruits was used as 

control (no treatment). Each fruit was plated in a 9 cm Petri dish containing 15 to 20 mL of 

Dichloran Glycerol 18% (DG18; Oxoid). Given the size of in-shell fruits (for both almonds 

and chestnuts) and of shelled chestnuts, they had to be cut in order for them to fit the Petri 
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dish. In-shell chestnuts were cut alongside with a sterile kitchen knife and the two halves 

were directly plated; for shelled chestnuts, the shell was cut off, the fruit was cut alongside 

and the two halves were plated (Figure 3.5). Almonds were put in a sterile plastic bag and 

shells were broken with a nutcraker. For in-shell fruit analysis, the kernel and the broken 

shell were plated, and for shelled fruits shell was discarded and only the kernel was plated 

(Figure 3.6).  

 

Figure 3.5 Chestnuts plated in-shell (A) and shelled (B). 
 

 

Figure 3.6 Almonds plated in-shell (A) and de-shelled (B). 

 

Results were analysed by a qualitative appreciation of the fruits, for both number and 

type of fungi. Superficial disinfection by methods 1 to 3 was considered inadequate for 

almonds, because, given the porosity of the shell, the fruit would get completely soaked 

and rotten. For chestnuts, the 4 methods were considered similar. In terms of fungal 

growth, we did not detect differences between methods. In-shell treated fruits showed little 

or no fungal growth, whereas untreated fruits showed a high level of shell contamination. 

Considering shelled fruits, both treated and untreated fruits showed little fungal growth. 

Superficial disinfection almost completely eliminated the shell contaminants. 

Bearing in mind that our goal was to detect and quantify fungi from Aspergillus genus and 
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particularly potentially aflatoxigenic fungi (Aspergillus section Flavi), we considered that 

it would be of interest to detect not only those fungi effectively colonising the edible part 

of the fruit at that moment, but also those that were present on the shell as environmental 

contaminants, and that could colonise the fruits at a posterior stage, if inductive 

environmental conditions were met. 

Taking this into account, we chose to plate both in-shell and shelled fruits (for 

almonds and chestnuts). In-shell fruits were not submitted to any superficial disinfection 

treatment. Shelled fruits were superficially disinfected by method 4 (for both almonds and 

chestnuts) before being shelled, in order to eliminate the possibility of contamination of the 

kernel by the fungi present on the shell.  

3.1.2.1.2 Culture medium 

There is a wide variety of culture media available for fungi isolation from food 

commodities. As previously mentioned in the Literature Review, the medium 

recommended for low water activity foodstuffs is DG18 (Hocking & Pitt, 1980; ISO 

21527-2:2008), but Dichloran Red Bengal Chloramphenicol (DRBC; King et al., 1979) is 

also available, even though it is used preferably for high water activity foodstuffs (ISO 

21527-1:2008). Malt Salt Agar (MSA; Malt Extract Agar (MEA) supplemented with 6 to 

10% of NaCl) has also been used for this purpose, especially when the goal was to reduce 

the variety of fungi to some genera of interest, namely Aspergillus and Penicillium (Joffe, 

1969; Phillips et al., 1979; Hocking & Pitt, 1980; Purcell et al., 1980; Ackermann, 1998; 

Bayman et al., 2002; Samson et al., 2004a; Kaaya & Kyamuhangire, 2006; Medina et al., 

2006).  

In order to determine the most appropriate culture media for our study, three media 

were tested: DRBC (Oxoid), DG18 (Oxoid) and MEA (Malt Extract 20 g/L, Glucose 

20 g/L, Peptone 1 g/L, Agar 20 g/L) supplemented with 10% NaCl (MSA10) - by direct 

plating of 3 in-shell almonds and 3 in-shell chestnuts on each media. The fruits were plated 

individually on 9 cm Petri dishes containing 15 mL of culture media and incubated in the 

dark for 7 days at 25-28 ºC. After the first test, we observed that the parts of the fruits that 

were not in direct contact with the medium would get very dry, and no fungi would grow 

on that area. So, we further tested the effect of covering the fruit with a thin layer of the 
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same medium, in order to allow medium selectivity and fungal growth to occur all over the 

fruit. For this test, we plated the fruits as previously described, and covered them with a 

thin layer of liquefied medium (near 45 ºC) with the aid of a pipette. 

Figure 3.7 shows the results obtained for almonds plated on, and covered with, the 

three media, after 7 days of incubation. Contrary to the expectations, fruits plated on 

DRBC and on DG18 were completely invaded by rapid growing fungi (Mucorales). On the 

other hand, on MSA10 the growth of these fungi was restrained and various other fungi 

were able to grow and be detected. We also observed that covering the fruits with a 

medium layer resulted in a larger variety of fungi present at the upper part of the fruit 

(Figures 3.8 and 3.9). 

 

 

 

Figure 3.7  In-shell almonds plated on DRBC (A), DG18 (B) and MSA10 (C), covered with a thin 
layer of the same medium. Growth corresponds to 7 days of incubation. 

 

 

 
Figure 3.8  In-shell almonds plated on DG18 (A) and MSA10 (B), not covered with a thin layer of 

the same medium. Growth corresponds to 7 days of incubation. 
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Figure 3.9 Detail of almond not covered (A) and covered (B) with MSA10 after 7 days of 
incubation. Only Eurotium grows on not-covered fruit. On covered fruit, we can detect 
the presence of various colonies of Aspergillus sections Nigri and Flavi.  

 

3.1.2.2 Fungal isolation from samples 

From each sample, fruits were taken randomly from the bags using a sterile forceps. 

For field samples, 3 in-shell fruits and 3 shelled fruits per sample were plated, in a total of 

45 in-shell fruits and 45 shelled fruits for each sampling time-point. For storage samples 

and processor in-shell samples, 10 in-shell fruits and 10 shelled fruits per sample were 

plated. For shelled processor samples, 20 shelled fruits per sample were plated. For sample 

F3 (see Table 3.3), 20 blanched nuts (nutmeat) and seed coats corresponding to 20 nuts 

were plated. 

Fungal isolation followed the method of direct plating on MSA10 without surface 

disinfection and with medium covering that was previously established and described. 

Chestnuts and in-shell almonds were plated individually. For shelled almonds, 4 kernels 

were directly plated in each 9 cm Petri dish containing. Petri dishes were incubated in the 

dark, at 25-28 ºC, for 7 to 10 days. 

All plates were inspected after 3, 5 and 7 days of incubation, using a 

stereomicroscope (Nikon SMZ-U), to accompany fungal growth. After 7 days of 

incubation, all fungi belonging to genus Aspergillus and some fungi representative of other 

genera were transferred into 9 cm Petri dishes containing 15 mL of MEA with an 

inoculation needle previously wet in a sterile solution of 0.1% Tween80. The inoculum 

was selected with the aid of a stereomicroscope, to avoid contaminations from adjacent 

colonies. The inoculation was preferentially made by 3 point inoculation but, whenever 
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considered necessary (i.e., in cases where there were colony juxtapositions), the inoculum 

was distributed on the Petri dish by a continuous streak. Cultures were incubated at room 

temperature (approximately 25 ºC) for 7 days and sub-cultured in 6 cm plates by single 

point inoculation the number of times necessary to obtain pure cultures. 

All isolates were attributed a code yyXZn, where yy means the year of isolation (e.g. 

07 for 2007), X refers to the commodity (A for almond; C for chestnut), Z refers to the first 

3 letters of the genus (Asp for Aspergillus, Pen for Penicillium, etc) and, n to the isolate 

number. 

3.1.2.3 Conservation of fungal isolates 

All isolates were stored at -20 ºC immediately after being isolated as pure cultures. 

After identification, all isolates considered of interest were also stored at -80 ºC. 

Conservation procedures were as follows: 

 
Conservation at -20 ºC  
Cultures were prepared in 6 cm diameter Petri dishes containing 10 mL of MEA and incubated at 
27 ºC until being well sporulated. The purity of the culture was confirmed with the aid of a 
stereomicroscope. 1.5 mL of 20% glycerol [v/v] were dropped on the colony and the spores were 
suspended by reflux with a plastic Pasteur pipette. This suspension was transferred to a 2.0 mL 
criovial and left for 1 hour at room temperature and then at 4 ºC over-night to allow glycerol to 
diffuse into the cells. The criovials were then stored at -20 ºC. 
 

Conservation at -80 ºC  
Cultures were prepared in 6 cm diameter Petri dishes containing 10 mL of MEA and incubated at 
27 ºC until being well sporulated. The purity of the culture was confirmed with the aid of a 
stereomicroscope. 1.5 mL of 20% glycerol [v/v] were dropped on the colony and the spores were 
suspended by reflux with a plastic Pasteur pipette. This suspension was transferred to a 2.0 mL 
criovial and left for 1 hour at room temperature to allow glycerol to diffuse into the cells. The 
criovials were then put in a CryoFreezer Container containing isopropanol and stored at -80 ºC. 
This way, the temperature would decrease at a controlled rate of 1 ºC/min. After 4 hours, the 
criovials were then removed from the CryoFreezer Container and stored at -80 ºC. 
 
 

 

Isolates ahead mentioned by the code MUM were further cultured in duplicate on 

15 mL tubes containing 3 mL of MEA (slants) for 7 days at 25 ºC and deposited in the 

fungal culture collection Micoteca da Universidade do Minho (MUM), Braga, Portugal 

(www.micoteca.deb.uminho.pt), following the internally established procedures. 
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3.1.2.4 Identification of filamentous fungi from genus Aspergillus  

All fungi belonging to genus Aspergillus were identified morphologically, based on 

various macro and micro morphological characters.  

3.1.2.4.1 Culture conditions 

Before identification, isolates were grown on MEA in the dark for 7 days at 25 ºC. 

From this culture, a loop full of spores was suspended in 500 µL of 0.2% agar with 0.05% 

Tween 80, and this suspension was used for three-point inoculations on 9 cm diameter 

Petri dishes containing MEA, Czapek Yeast Autolysate (CYA: Saccharose 30 g/L, Powder 

Yeast Extract 5 g/L, K2HPO4 1 g/L, NaNO3 2 g/L, KCl 0.5 g/L, MgSO4.7H2O 0.5 g/L, 

FeSO4.7H2O 0.01 g/L, ZnSO4.7H2O 0.01 g/L, CuSO4.5H2O 0.005 g/L, Agar 20 g/L) and 

CY20S (CYA but with 200 g/L saccharose). Cultures were incubated in the dark at 25 ºC. 

Some isolates were also cultured on Czapek-Dox Agar (CZ: the same as CYA, but 

without the Yeast Extract) at 25 ºC and CYA at 37 ºC (CYA37). Culturing on CZ helps in 

the differentiation of colony colour for similar species of section Flavi and culturing on 

CYA37 is essential when identifying some species of section Nigri. The volume of plated 

media was kept constant (approximately 20 mL per plate), since media depth or head space 

differences can lead to morphological changes (Okuda et al., 2000). Also, chemicals used 

were brand-fixed and of analytical grade, to maintain media consistence (Klich, 2002a). 

All media were sterilized by autoclaving at 121 ºC for 15 minutes. 

3.1.2.4.2 Monosporic culture 

Whenever necessary for accurate fungal identification, the purity of the fungal 

cultures was confirmed by a monosporic culture. From a sporulating culture, a spore 

suspension was prepared in a 0.05% Tween 80 solution. This suspension was thoroughly 

homogenised by vortexing for a few minutes and diluted by successive 10-fold dilutions. 

The diluted suspensions were also vortexed and the spore dispersion and dilution was 

confirmed on the microscope with the aid of a Neubauer counting chamber. The 

suspension showing a reduced number of spores per microliter and, most importantly, 
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fewer spore clusters, was used to inoculate 3 Petri dishes (6 cm diameter) containing a very 

thin layer (approximately 3 mL) of MEA with 2% agar. These dishes were inoculated with 

15 µL of spore suspension on 5 equidistant points. The cultures were incubated at 28 ºC 

over night, just the time necessary to allow spore germination. After incubation, 

germination was checked at the stereomicroscope. Four germinated well isolated spores 

were collected with the aid of an inoculation needle and individually transferred to a new 

Petri dish with 10 mL of MEA, in order to obtain 4 monosporic cultures. Each of these 

cultures would garanty genetic purity of the culture, necessary to obtain reliable results in 

further studies.  

3.1.2.4.3 Macroscopic analysis 

Cultures from all media were analysed after 7 days of incubation. Analysed 

characters are listed in the Identification Sheet represented in Figure 3.10. Cultures on 

CYA were kept for two more weeks to confirm colony colour and, when teleomorphs were 

identified, to obtain mature ascospores. Whenever necessary, the stereomicroscope was 

used to aid macroscopic examination. Colony colour and surface texture was compared 

with those presented in the taxonomic guides. Sclerotia were measured at the 

stereomicroscope, using the Measuring command of a previously calibrated Nikon Control 

Unit DS-LI/DS Camera. Photographs were taken with the same system. The mean of 50 

sclerotia (when present) was used to score them as > 400 nm (L-type) or ≤ 400 nm 

(S-type). 

3.1.2.4.4 Microscopic analysis 

Microscopic examination of spores and reproductive structures was made on actively 

sporulating material from cultures grown on CYA and MEA. Slides were prepared as wet 

mounts on distilled water (for pigmented fungi) or cotton blue (for hyaline fungi). Strongly 

sporulated material was previously washed with a drop of 96% ethanol and gently teased 

with the needle, to remove excessive conidia. Ethanol was removed with absorbent paper 

and only then a drop of distilled water or stain was added. This procedure was essential for 

a good microscopic examination, since we were dealing with Aspergillus spp., which have 
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numerous hydrophobic conidia. Slides were examined with a compound light microscope 

(Leitz Labourlux 12) under bright field and Nomarski contrast. Stipes, vesicles, conidia 

and, when present, ascospores and cleistothecia were measured with the system previously 

mentioned. Stipe, conidia and ascospore surface textures as well as head seriation were 

observed with 1000x magnitude amplification. 

3.1.2.4.5 Section/Species Identification 

The various macro and micro morphological characters of each isolate were 

registered on an Identification Sheet (Figure 3.10) adapted from Klich (2002a). 

Identification followed the taxonomic keys and guides available for genus Aspergillus 

(Klich, 2002a; Samson et al., 2004a). Some isolates were identified to the species level, 

while others were identified only to the section or aggregate levels. The taxonomic scheme 

proposed by Gams et al. (1985) was followed, since it is the one generally followed in the 

reference guides herein used for identification. 
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Figure 3.10 Identification Sheet used in the identification of Aspergillus isolates.  

IDE NT IFICATION SHEE T  
 

Isolate Code: ________________   ID: ________________________________ 

Incubation time: _____________________ 

 

Macromorphology (colony characteristics): 

 
 MEA25 CYA25 CY20S25 CZ25 CYA37 
Diameter 
(7 days) 

     

Color 
 

     

Conidia 
color 

     

Mycelium 
 

     

Exudate 
 

     

Reverse 
color 

     

Soluble 
pigment 

     

Cleistothecia  
 

     

Sclerotia 
 

     

 
 

Micromorphology: 
 

Stipe:  Length   ____________________ 
 Width  _____________________ 
 Surface Texture ______________ 
 
Vesicle: Diameter  _____________________ 
 Shape  ______________________ 
 
Seriation: Uniseriate / Biseriate 
 
Conidia:  Length ______________________ 
 Shape _______________________ 
 Color _______________________ 
 Surface Texture _______________ 
 
 

Sclerotia: Length  _________________ 
 Shape ___________________ 
 Color ___________________ 
 

Cleistothecia Length  _________________ 
 Shape ___________________ 
 Color ___________________ 
 Surface cells: hyphae / parenchyma 
 

Ascospores: Days to maturation  __________ 
 Length  ___________________ 
 Width  ____________________ 
 Surface texture ______________ 
 Furrows /Flanges ____________ 

 
Observations:  
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3.1.3 Identification of aflatoxigenic fungi 

3.1.3.1 Morphological identification 

Besides the morphological characterisation described in Section 3.1.2.4 all isolates of 

Aspergillus identified as belonging to section Flavi were cultured on Aspergillus flavus 

and parasiticus Agar (AFPA; Oxoid, Basingstoke, United Kingdom) for 3 to 5 days at 

25 ºC, in the dark, to confirm identification at the section level by colony reverse colour.  

3.1.3.2 Aflatoxigenic profile 

Two approaches were followed to verify AFs production: fluorescence on Coconut 

Agar Medium (CAM) and HPLC analysis.  

3.1.3.2.1 Fluorescence on Coconut Agar Medium  

Isolates were tested for AFs production ability by culturing on CAM. This medium 

was chosen because it is inductive of AFs production (Dyer & McCammon, 1994), and, 

because of the reaction with coconut fats, producer isolates can be identified by 

fluorescence in the reverse side of the culture (Lin & Dianese, 1976; Davis et al., 1987). 

CAM was prepared as described by Davies et al. (1987): 100 g of shredded coconut 

were thoroughly mixed with 300 mL of hot water for 5 minutes, filtered through cheese 

cloth and 20 g/L of agar were added; the medium was autoclaved for 15 minutes at 121 ºC. 

Strains were inoculated at a central point on a 6 cm diameter Petri dish containing 10 mL 

of CAM and incubated for 7 days in the dark at 25 ºC. Cultures were observed for 

fluorescence under long-wave UV light (365 nm) after 3, 5 and 7 days. Isolates were 

scored by presence/absence of fluorescence and by fluorescence colour. 

3.1.3.2.2 HPLC analysis 

All isolates were tested for AFs production in AF-inducing Yeast Extract Saccharose 

medium (YES: Yeast Extract 20 g/L, Saccharose 150 g/L, Agar 15 g/L). Some isolates 
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(MUM92.01, MUM92.02, 07AAsp05, MUM 10.204 and 08AAsp68) were also tested for 

AFs production in the non-inducing Yeast Extract Peptone medium (YEP: Yeast Extract 

20 g/L, Peptone 200 g/L, Agar 15 g/L). Strains were inoculated on 6 cm diameter Petri 

dishes and incubated at 25-27 °C for 7 days, in the dark. Then the methodology of Bragulat 

et al. (2001) was employed: 3 agar plugs were removed from one colony, placed into a 

4 mL ambar vial, and 1 mL of methanol was added. After 60 minutes, the extract was 

filtered by 0.45 µm syringe filters, diluted 20 times in mobile phase and analysed by 

HPLC.  

Chromatographic separations were performed on an HPLC system equipped with: an 

autosampler (Spark Basic Marathon); a pump (Varian 9002); a reverse phase C18 column 

(Waters Spherisorb ODS2, 4.6 mm x 250 mm, 5 µm), fitted with a precolumn with the 

same stationary phase; and a fluorescence detector (Jasco FP-920). On-line photochemical 

derivatisation was performed using a photochemical post-column derivatisation reactor 

(PHRED unit - Aura Industries, USA) placed between the separation column and the 

fluorescence detector, which consisted of a 254-nm low-pressure mercury lamp and a 

knitted reaction coil fitted around the UV lamp.  

The mobile phase consisted of an isocratic programme of water:acetonitrile:methanol 

(3:1:1, v/v/v) and was pumped at 1.0 mL/min for a total run time of 28 minutes. The 

injection volume was 100 µL. The fluorescence detection was carried out at excitation and 

emission wavelengths of 365 nm and 435 nm, respectively. The gain was set to 1000 and 

the attenuation to 16. 

Instrumentation control, data acquisition and processing were computed via 

chromatographic software Varian 850-MIB Data System Interface. Samples were taken as 

positive for each of the toxins when yielding a peak at a retention time similar to each 

standard, with a height five times higher than the baseline noise. A standard solution of 

AFB1, AFB2, AFG1 and AFG2 (Biopure, Austria) was used. 
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3.1.4 Aflatoxins detection in almonds 

3.1.4.1 Chemicals and materials 

The standard solution of AFB1, AFB2, AFG1 and AFG2 used (Biopure, Austria) had a 

total concentration of 5 mg/mL (in acetonitrile) corresponding to a concentration of 

2.0 mg/mL each for AFB1 and AFG1 and of 0.5 mg/mL each for AFB2 and AFG2. From 

this (standard stock solution), standard working solutions were prepared by 100-fold 

dilution in methanol, corresponding to 20 ng/mL of AFB1 and AFG1, and 5 ng/mL of 

AFB2 and AFG2, and stored in ambar flasks at -20 ºC when not in use.  

HPLC grade solvents (methanol and acetonitrile) were used in the preparation of AF 

standards, in sample extraction, and in the preparation of mobile phase. For extracts 

purification, AflaTest WB immunoaffinity columns (IACs) were obtained from VICAM 

(Watertown, MA, USA). Phosphate buffer saline (PBS) 0.1M pH 7.0 was prepared by 

adding 500 mL of 0.1M NaH2PO4 and 500 mL of 0.1M Na2HPO4.12H2O and pH was 

corrected with NaOH.  

3.1.4.2 Safety considerations 

Due to the toxicity of AFs, all the necessary safety considerations were taken into 

account when handling this substance, as recommended by Castegnaro et al. (1980). 

Solutions were handled with protective gear; all disposable materials were decontaminated 

by autoclaving before being disposed; reusable materials were decontaminated by 

immersion in 10% bleach over-night, immersion in 5% acetone for one hour and washed 

with distilled water several times. 

3.1.4.3 In-house method validation 

AFs from almond samples were extracted and purified by IACs, and were detected 

and quantified by HPLC. Before sample analysis, the extraction and quantification 

methods were submitted to in-house validation. Method validation is based on various 
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parameters, namely linearity, accuracy and precision (Chan, 2004). These parameters were 

determined for our method and are herein described.  

In consequence of the EU legal limits for AFs in almonds (2 µg/kg of AFB1 and 

4 µg/kg for total AFs, by the time of these analyses; Commission Regulation 

No 1881/2006), different sets of standard solutions and of spiked samples (one time and 

three times the legal limits) were used for the validation of the AFs extraction method. 

3.1.4.3.1 Linearity 

The linearity of an analytical procedure can be defined as the ability (within a given 

range) to obtain test results of variable data which are directly proportional to the 

concentration of the analyte in the sample. The calibration parameters evaluated for each 

AF were LOD and LOQ, which reflect the linearity of the equipment. LOD can be defined 

as the lowest amount of an analyte in a sample which can be detected but not necessarily 

quantified as an exact value; LOQ corresponds to the analyte concentration which is 

measurable within a certain level of confidence (Taverniers et al., 2004). Below LOD and 

LOQ, determination and quantification are possible, but become unreliable as the 

uncertainty associated with it at these lower levels is higher than the measurement value 

itself (Taverniers et al., 2004). 

The linearity of the method was determined by two series of analyses (on two 

different days), by injecting four standard solutions of AFB1 and AFG1 each at 

concentrations of 0.2, 0.4, 1.0 and 2.0 ng/mL, and AFB2 and AFG2 each at concentrations 

of 0.05, 0.1, 0.25 and 0.5 ng/mL. These analyses were used to obtain a calibration curve 

and to determine LOD and LOQ of the method. The data variable used for quantitation of 

the analyte was the peak area. 

3.1.4.3.2 Accuracy (recovery) and precision 

The accuracy, or recovery, of an analytical procedure is the closeness of agreement 

between the values that are accepted either as conventional true values or an accepted 

reference value and the value found (Chan, 2004). Accuracy is usually reported as percent 
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recovery by assay, using the proposed analytical procedure, of known amount of analyte 

added to the matrix (spiking). 

The precision of an analytical procedure expresses the closeness of agreement 

between a series of measurements obtained from multiple samples of the same 

homogeneous sample under prescribed conditions. Precision is usually investigated at three 

levels: repeatability, intermediate precision, and reproducibility (Chan, 2004).  

Repeatability is a measure of the precision under the same operating conditions over 

a short interval of time. Intermediate precision is defined as the variation within the same 

laboratory (e.g., day-to-day variation, analyst variation, equipment variation). 

Reproducibility measures the precision between laboratories as in collaborative studies. 

This parameter is not applied to our study. The standard deviation (SD) and relative 

standard deviation (RSD) are usually reported for the referred parameters (Chan, 2004). 

 

Spiking 

Precision and recovery tests were made by sample fortification (spiking) with known 

amounts of the 4 AFs. For this matter, 2 kg of blanched ground almond were bought from 

a local industry. This sample was thoroughly homogenised and stored at -20 ºC until use. 

Tests were performed on three sets of almond blank samples, six replicates each, tested in 

two different days (three replicates each day). Two of these sets were spiked with different 

concentrations of AFs (corresponding to 3 times and 1 time the legal limits allowed for 

AFB1) and the third set was left unspiked, to serve as blank.  

A working standard solution with a concentration of 2 ng/mL of AFB1 and AFG1, 

and 0.5 ng/mL of AFB2 and AFG2 was used for spiking purposes. In the first day, 9 sample 

units of 25 g were weighted into 250 mL conical flasks. Three were spiked with 7.5 mL of 

the working solution (corresponding to spiking concentrations of 6 µg/kg of AFB1 and 

AFG1 and 1.5 µg/kg of AFB2 and AFG2); three were spiked with 7.5 mL of a three-fold 

dilution of the working solution (corresponding to spiking concentrations of 2 µg/kg of 

AFB1 and AFG1 and 0.5 µg/kg of AFB2 and AFG2), and three other units with 7.5 mL of 

methanol (blank). These sample units were coded as AM_Sx_n, where AM sets for matrix; 

S for spiked; x corresponds to the spiking concentration of AFB1; and n is the number of 

the replica. The flasks were involved (but left uncovered) with aluminum foil and left over 



Chapter 3 Materials and Methods 
 
 
 

113 

night, for the methanol to evaporate, before being submitted to the extraction protocol. 

This procedure was repeated the following day. 

 

Aflatoxins extraction 

The extraction method described by VICAM for this matrix was applied, with some 

modifications, on sample preparation and extraction.  

Five grams of NaCl and 125 mL of methanol:water (60:40) were added to the spiked 

samples (25 g). The flask was covered and the mixture was stirred in a magnetic plate for 

30 min. The extract was then poured into fluted filter paper and 20 mL were collected in a 

clean vessel. This filtrate was diluted with 20 ml of 0.1M PBS pH 7.0 and further filtered 

through a glass microfibre filter. The extract was then purified with an AflaTest WB 

immunoaffinity column (IAC) containing immobilised antibodies against the four AFs. 

The IAC was adapted to a 10 mL syringe set on a hose clamp. Ten mL of the extract were 

poured into the syringe and passed through the IAC by gravity, at a rate of about 

1-2 drops/sec. As soon as air came through the column, the column was washed twice with 

10 mL of purified water, at a rate of about 2 drops/sec. The AFs were then eluted from the 

affinity column by passing 2.0 mL of HPLC grade methanol through the column at a rate 

of 1-2 drops/sec and the sample eluate was collected into an amber vial. By eluting the AFs 

in 2.0 mL of methanol, the concentration of the eluate corresponded to a 2-fold dilution of 

the level of spiking (e.g., the spiking level of 6 ng of AFB1 per gram of almond sample 

corresponded to a concentration of 3 ng/mL of methanolic eluate). 

The stability of purified extracts was high enough to allow autosampler overnight 

injections. No significant change in concentration or purity of AFs within 12 hours of 

analysis was observed. 

 

Aflatoxins detection and quantification 

AF detection and quantification were performed by HPLC as described in 

Section 3.1.3.2.2. 
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3.1.4.4 Aflatoxins extraction and quantification in almond samples  

3.1.4.4.1 Sample preparation 

Samples from the 5 trees (A1 to A5) of each orchard (P1 to P3) collected in 2007 and 

2008 were gathered in a single sample, resulting in samples P1/2007 to P3/2007, and 

P1/2008 to P3/2008. The fruits left over after mycological analysis were shelled by hand 

with a hammer and blanched by rapid immersion in hot water. Kernels were dried on a 

drying oven, ground with a coffee mill, homogenised and stored at -20 ºC until use. 

3.1.4.4.2 Aflatoxins extraction 

AFs were extracted from almond samples following the same procedure as that 

described for validation tests (cf. Section 3.1.4.3.2). 

3.1.4.4.3 Aflatoxins detection and quantification 

AF detection and quantification were performed by HPLC as described in 

Section 3.1.3.2.2. 

3.1.5 Data analysis 

3.1.5.1 Mycological data 

Samples were compared for overall distributions of fungi. Contingency tables were 

produced with fungal frequencies of infection, which were then compared by two-tailed 

Fisher’s exact test. Fisher’s exact test and Qui-square test are the tests most commonly 

used to compare proportions between independent samples when testing dichotomous 

variables (Maroco, 2003). In our specific case, Chi-square test could not be used because 

the premises for its application were not always met (in many cases, more than 20% of  the 
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cross-tabulation cells showed count values of observed frequencies ≤ 5) (Maroco, 2003). In 

all cases, the mean differences were significant at P < 0.05. 

For the comparison of means of quantitative variables, samples were first tested for 

normal distribution by Shapiro-Wilk test (for n < 30) or Kolmogorov-Smirnov test (for 

n ≥ 30), and for homogeneity of variances by Levene’s test. Whenever samples followed 

these criteria, variances were analysed by one-way ANOVA, and Multiple Comparisons 

between samples pairs were made by Bonferroni’s test (for n < 30) or Tukey’s test (for 

n ≥ 30). For samples failing the premise of homogeneity of variances, Tamhane’s T2 test 

was applied. Whenever samples failed the two premises, normality and homogeneity of 

variances, samples were analysed pairwise by the non-parametric Mann-Whitney test 

(Maroco, 2003; Pestana & Gageiro, 2005). In all cases, the mean differences were 

significant at P < 0.05.  

In order to determine the fungal diversity in our samples, the indices Richness and 

Simpson Diversity Index (SDI) were calculated based on Zak & Willig (2004). Richness 

corresponds to the number of species identified in each sample. Because in our study 

identification only reached the section level, this index was adapted to the number of 

Aspergillus sections present in each sample. SDI takes into consideration the number of 

species (sections) present in the sample, as well as the abundance of each species (section). 

This index was calculated as the reciprocal form of Simpson’s Index (1/D), as follows: 

 

SDI = 1 / ∑(Pi/Pn) 

 

where: 

∑(Pi/Pn) corresponds to D (Simpson’s Index) 

Pi is number of individuals of a given section 

Pn is the total number of individuals 

 

SDI is preferably used because it is more easily interpreted than D, for two major 

reasons: i) the reciprocal form of Simpson’s Index ensure that the index increases with 

increasing diversity; ii)  the resulting value can be taken as the number of species (section) 

which effectively contribute to diversity.  

Associations among fungi were tested pairwise by comparing observed values (the 

number of nuts infected by both fungi) with expected values (the product of the 
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frequencies of each fungus alone), and by using Phi coefficient as measure of nominal 

association. Phi is used to assess association between two dichotomous variables (2 x 2 

table). Associations between fungal contamination and nominal non-dichotomous variables 

(origin, type of collection, stage of processing; 2 x n table) were tested by using Cramer’s 

V as measure of nominal association (Maroco, 2003). In both tests, association is 

calculated by first calculating chi-square. Chi-square determines if there is a significant 

relationship between variables, but it does not measure the level of this association. Phi 

coefficient and Cramer’s V measures of association are post-tests that give this additional 

information.  

Both Phi coefficient and Cramer’s V vary between 0 and 1. Close to 0 there is little 

association between variables. Close to 1, it indicates a strong association. Association 

values were interpreted as follows: very association 0.00 ≤ Phi (or Cramer’s V) < 0.30; low 

0.30 ≤ Phi (or Cramer’s V) < 0.50; moderate 0.50 ≤ Phi (or Cramer’s V) < 0.70; high 

0.70 ≤ Phi (or Cramer’s V) < 0.90; and very high 0.90 ≤ Phi (or Cramer’s V) ≤ 1.00 

(adapted from low http://www.westgard.com/lesson42.htm, accessed 20.09.2010). The 

Statistical Package for Social Science SPSS Statistics version 17.0 was used for all 

statistical analyses. 

3.1.5.2 Aflatoxins extraction and quantification 

Method validation was carried out taking into account the harmonised guidelines for 

in-house method validation presented in the Commission Regulation (EC) No 401/2006. 

Linearity, limits of detection (LOD), limits of quantification (LOQ), accuracy (recovery) 

and precision were the parameters used to test the performance of the HPLC procedure for 

AFB1, AFB2, AFG1 and AFG2 quantification.  

LOD and LOQ were calculated according to the following equations (Taverniers et 

al., 2004): LOD=3sa/b and LOQ=10 sa/b, where sa is the standard deviation of the intercept 

of the regression line obtained from the calibration curve and b is the slope of the line. The 

calibration curve used for quantification was calculated by the least-squares method in 

Excel 2007. 

The recovery rates of each AF were calculated for the 6 replicates of the two spiking 

levels, by the ratio of recovered AF concentration relative to the known spiked 
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concentration. Precision was calculated in terms of intra-day repeatability (n = 3) and 

intermediate precision (inter-day within-laboratory reproducibility; 2 different days) for 

each AF at the two contamination levels in spiked almond samples. Intra-day repeatability 

(RSDr) is a measurement of the variation obtained within the replicates tested each day, 

and is given by the corresponding relative standard deviation. Intermediate precision 

(RSDint) is a measurement of the variation obtained between days, and is given by the 

corresponding relative standard deviation.  

Definitions for the performance criteria are as follows (Commission Regulation (EC) 

No 401/2006; Taverniers et al., 2004): 

 

SDr = Standard deviation, calculated from results generated under repeatability 
conditions. 
 
RSDr (%) = Relative standard deviation, calculated from results generated under 
repeatability conditions [(SDr/mean) × 100]. 
 
SDint = Standard deviation, calculated from results under intermediate precision 
conditions. 
 
RSDint (%) = Relative standard deviation calculated from results generated 
under intermediate precision conditions [(SDint /mean) × 100]. 
 

 

Commission Regulation (EC) No. 401/2006 and the Codex Committee on 

Contaminants in Foods (CCCF, 2008), based on the equations determined by Thompson 

(2000) and Horwitz & Albert (2006), issued that the recommended values of experimental 

RSDr for each concentration level must be lower than, or equal to, two-thirds of the value 

derived by Horwitz equation (which determines the value for reproducibility RSD, RSDR). 

The theoretical RSD% is calculated on the basis of the analyte concentration, 

independently of the matrix and analytical method used. The Horwitz equation is as 

follows: 

 

RSDR = 2(1-0.5logC) 

 

where: 

C corresponds to the analyte concentration rate (e.g. 6 x 10-9 for a spiked 
concentration of 6 µg/kg). 
 

 



Chapter 3 Materials and Methods 
 
 
 

118 

In the absence of reference values for intermediate precision, our experimental data 

for intermediate precision were compared with the value recommended for reproducibility. 

In our case, because there are only two values for mean recovery to calculate Intermediate 

Precision, Mean Deviation (MD) and Relative Mean Deviation (RMD) substitute the 

commonly used Standard Deviation (SD) and Relative Standard Deviation (RSD). 

 

Peak identification was achieved with the retention times obtained after injection of 

an AF standard solution under the same conditions. AFs quantification was determined by 

following a linear equation, as suggested by Miller & Miller (1993):  

 

y = bx + a 

where:  
y is the peak area  
b is the curve slope 
x is AF concentration in the sample 
a is the intercept on the y-axis 

 

 

Since extracted AFs were eluted in 2 mL of methanol instead of 1 mL, the AF 

concentrations measured from the calibration graph (in ng/mL) were multiplied by 2 (in 

ng/g).
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3.2 Molecular differentiation of aflatoxigenic and non-aflatoxigenic isolates 

For the differentiation of aflatoxigenic and non-aflatoxigenic isolates, two molecular 

approaches were followed. In both cases, two genes involved in the AF production 

pathway, aflD and aflQ, were subject of analysis. One approach consisted of detecting the 

presence of the two genes by PCR amplification of genomic DNA; the other consisted of 

analysing their expression, under AF inductive conditions, by RT-PCR of total RNA. The 

nomenclature of genes adopted in this study followed that proposed by Yu et al. (2004b). 

Gene aflD is synonymous to nor1, and gene aflQ is synonymous to ordA and ord1. 

3.2.1 Detection of aflatoxin biosynthetic pathway genes 

3.2.1.1 Materials and Reagents 

All reagents, solutions and disposable material were previously autoclaved at 121 ºC 

for 15 minutes, except for chloroform, isoamil alcohol, isopropanol and ethanol. 

3.2.1.2 Selection of genomic DNA extraction protocol 

The development of a sensitive extraction protocol for nucleic acids from pure 

cultures was one important basic demand for the application of PCR in this work. Simple 

handling and the use of non-toxic reagents were desired for this extraction method. 

Furthermore, optimisation of the mechanical disruption process for fungal mycelia was 

additionally necessary. The disruption of fungal cell walls is a requirement and a major 

challenge during nucleic acid extraction. Problems during the extraction of nucleic acids 

from filamentous fungi are basically caused by the compact cell wall structures from 

chitin, cellulose, s-1-3-glucan, chitosan, and mannan.  

Usually, grinding with mortar and pestle in liquid nitrogen (N2) is the most efficient 

method for disruption of the rigid fungal cell walls of hyphae and conidia. Unfortunately, 

this handling was not suitable for the present study, since N2 is not always available in our 
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laboratory. In the DNA purification steps, the use of phenol/chloroform generally improves 

the purity of the extracted nucleic acids, but it is toxic and not suitable in routine handling. 

So, we aimed at implementing a protocol that would be user friendly (fast and non-toxic), 

economic and non-dependable on irregular supplies, but producing genomic DNA of good 

quality for PCR purposes. For this matter, we tested two types of biological material 

(mycelium and conidia) and two protocols for DNA extraction (Sodium Dodecyl Sulfate 

[SDS] protocol and Cetyl Trimethyl Ammonium Bromide [CTAB] protocol), using 

glassbeads for mechanical disruption of cell walls. In total, four protocols were tested: 

Mycelium/SDS, Mycelium/CTAB, Conidia/SDS and Conidia/CTAB. These tests were run 

on 5 isolates of section Flavi.  

3.2.1.2.1 Biological material  

DNA extraction was tested using two types of biological material: mycelium and 

conidia. Both types of material have disadvantages for this purpose: conidia are heavily 

pigmented and have hard walls, which can result on low DNA purity and concentration; on 

the other hand, young mycelium walls are not as hard, but they can form a mesh around 

glass beads, turning cell disruption difficult to accomplish. On this matter, the aim was not 

to obtain exclusively conidia and mycelium, but rather obtain predominantly one or the 

other. The biological materials tested for DNA extraction were prepared as follows: 

 

Mycelium                                                                                                                                   
Ten mL of Malt Extract Broth (MEB: Malt Extract 20 g/L, Glucose 20 g/L, Peptone 1 g/L) (in a 
50 mL Falcon tube) were inoculated with a loop full of spores and incubated for 72 h at 25 ºC, in 
the dark, with agitation. Mycelium was collected by centrifugation at 14,000 x g for 10 min, 
washed twice with 10 mL of 0.85% NaCl and centrifuged at 14,000 x g for 10 min. The mycelium 
was collected and used for DNA extraction. 
 

Conidia 
A 6 cm Petri dish containing 10 mL of MEA was inoculated with a small number of spores and 
incubated for 7 days at 25 ºC in the dark. Conidia were used directly for DNA extraction. 
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3.2.1.2.2 DNA extraction 

The two methods tested for genomic DNA extraction were as follows: 

 

SDS (Adapted from Santos, 2004) 
The biological material (mycelium or loop full of spores) was transferred to a 15 mL tube 
containing 1.5 mL of Lysis Buffer SDS (200 mM Tris-HCl pH 8.5; 250 mM NaCl; 25 mM EDTA; 
0.5% [w/v] SDS) and approximately 1 g of sterile 0.4- to 0.6-mm diameter glass beads (Sigma, St. 
Louis, MO, USA), previously washed with nitric acid. The mixture was vortexed for 5 min at 
maximum speed. Polysaccharides and proteins were precipitated by adding 750 µL of cold 3 M 
sodium acetate, pH 5.5. This was gently mixed by inversion, placed at -20 ºC for 10 min and 
centrifuged twice at 14,000 x g for 10 min (4 ºC). Clean supernatant was then transferred to a new 
tube and precipitated with one volume of cold isopropanol (-20 ºC). This solution was gently mixed 
by inversion for a few minutes, incubated at -20 ºC for one hour and centrifuged at 14,000 x g for 
10 min (4 ºC). DNA pellet was washed twice with 1.0 mL of cold 70% ethanol, centrifuged at 
6,000 x g for 7 min (4 ºC) and air dried. DNA was dissolved in 50 to 100 µL of ultra-pure water, 
depending on the yield, and stored at -20 ºC. 
 

CTAB  (Adapted from http://www.aspergillus.org/protocols/, accessed 13.03.2007) 
The biological material (mycelium or loop full of spores) was transferred to a 15 mL tube 
containing 1.5 mL of Lysis Buffer CTAB (100 mM Tris-HCl pH 8.0; 1.4 M NaCl; 20 mM EDTA 
pH 8.0; 2% CTAB [p/v]; 0.4% polyvinylpyrrolidone (PVP) [p/v]; 0.05% β-mercaptoethanol [v/v]) 
and 1 g of 0.4- to 0.6-mm-diameter glass beads (Sigma, St. Louis, MO, USA), previously washed 
with nitric acid, vortexed for 5 min at maximum speed and incubated at 65 ºC for 15 min. 
Vortexing and incubation were repeated and 1.5 mL of 24:1 chloroform:isoamil alcohol were 
added. The mixture was thoroughly homogenized by agitation and centrifuged for 10 min at 
14,000 x g. 1.2 mL of the aqueous phase were transferred into a tube containing 0.7 mL of 
isopropanol and 0.1 mL of 7.5 M NH4OAc. The mixture thoroughly homogenized by agitation and 
centrifuged for 10 min at 14,000 x g. The supernatant was discarded and the pellet (DNA) was 
washed with 1.5 mL of cold 70% ethanol (-20 ºC), followed by a centrifugation for 10 min at 
14,000 x g. The supernatant was discarded and the pellet was air-dried until all the ethanol had 
evaporated. DNA was dissolved in 50 to 100 µL of ultra-pure water and stored at -20 ºC. 

 

 

 

Quality and concentration of genomic DNAs obtained from the different protocols 

were determined by horizontal gel electrophoresis and by spectrophotometry. 

Electrophoretic analysis was done on 1% agarose gels with Tris-Acetate-EDTA buffer 

(TAE: 40 mM Tris-HCl; 40 mM acetic acid; 1.0 mM EDTA, pH 8.0) stained with GelRed 

(VWR). Runs were made in TAE buffer, at constant voltage of 5 V/cm for approximately 

one hour. Five µL of genomic DNA and one µL of Orange Blue Loading Buffer (Promega) 

were loaded on the gel. DNA was visualised under UV light and images were obtained by 

the image analysis system Eagle Eye II (Stratagene). For the spectrophotometric analysis, 
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absorbance readings were made at 230 nm (A230), 260 nm (A260) and 280 nm (A280) in 

quartz cuvettes. DNA concentration was calculated as follows: 

 

[DNA] µg/mL = A260 x Dilution Factor x 50 

 

DNA purity relative to protein contamination is given by the ratio A260/A280, which 

should render between 1.8 and 2.1. Lower values denote high protein contamination, and 

DNA should be further treated with proteinase K for protein digestion. The ratio A260/A230 

indicates salt and amino acid contamination. If outside the range 1.8-2.1, DNA should be 

further washed with ethanol. Figures 3.11 and 3.12 represent the results for the 

spectrophotometric analysis of the genomic DNA obtained by the 4 extraction protocols. 

Gel electrophoresis results are given in Figure 3.13. 

 

 

 

 

 

 

 

 

 
 

Figure 3.11  Spectrophotometric results of the levels of purity for the genomic DNA obtained by 
the 4 extraction protocols (n=5): A) A260/A280; B) A260/A230 ratios. Horizontal 
bar indicates reference value. 

 

 
Figure 3.12 DNA concentration obtained by spectrophotometry (n=5). Vertical bars indicate 

maximum and minimum values.  

A B 
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Figure 3.13 Electrophoresis results for the genomic DNAs obtained by the four protocols tested. A: 
Mycelium/SDS; B: Mycelium/CTAB; C: Conidia/SDS; D: Conidia/CTAB. Lanes 1 to 5 
in each gel correspond to the 5 isolates tested. 

 

 

Considering the results of spectrophotometric and electrophoretic analyses, DNAs 

extracted from mycelium, independently of the extraction protocol, were considered 

unsuitable for genomic DNA extraction of Aspergillus section Flavi. These results denote 

that mycelium is not suitable for mechanical disruption with glass beads. On the other 

hand, DNAs obtained from protocols using conidia seemed to have good quality and were 

selected for further testing.  

Genomic DNAs obtained by the selected methods Conidia/SDS and Conidia/CTAB 

were further tested for purity and concentration by PCR. The universal primers ITS1-F 

(5’-CTTGGTCATTTAGAGGAAGTAA-3’) and ITS4 (5’-TCCTCCGCTTATTGATATGC-3’) 

(White et al., 1990; Gardes & Bruns, 1993), which amplify a 600 bp segment of the 

ITS1/5.8S/ITS2 region of the rRNA gene, were used for this purpose. PCRs were run on 

25 µL reaction mixtures in a BioRad Mycycler thermalcycler. Table 3.4 summarises the 

PCR mix and programme used. 
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Table 3.4 PCR conditions used for the amplification of the ITS region. 

Reaction Mix (25 µL) ITS (ITS1-F/ITS4) 
GoTaq Flexi Colourless Buffer without MgCl2 1x 
MgCl2 1.5 mM 

GoTaq Flexi DNA Polymerase (Promega, #M8305) 1.25 U 
dNTPs (dNTP Mix, Promega, #U1511) 0.2 mM 
Primer Forward 0.2 µM 
Primer Reverse 0.2 µM 
Genomic DNA 50 ng 
  
Amplification Programme  
Initial denaturation 94 ºC, 3 min 
Denaturation 94 ºC, 30 sec 

35x Annealing 55 ºC, 30 sec 
Extension 72 ºC, 2 min 
Final extension 72 ºC, 10 min 

 

 

PCR products were separated on a 1.5% agarose/TAE gel, stained with GelRed and 

compared to the DNA size marker 100 bp DNA Ladder (Promega, #G2101). 

Electrophoretic runs and image acquisition were as previously described.   

Figure 3.14 illustrates the results of the ITS region amplification. As can be 

observed, genomic DNAs obtained by both methods were found to be equally suitable for 

PCR analysis. Since protocol conidia/SDS is more economic and user-friendly (faster and 

non-toxic), it was elected as the best method and was therefore adopted for further DNA 

extractions. 

 

 

Figure 3.14  Electrophoretic results of the ITS region amplification. Lanes: 1 to 5 – Samples 
obtained by the protocol Conidia/SDS; 6 to 10 – Samples obtained by the protocol 
Conidia/CTAB; M – 100 bp DNA ladder. 
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3.2.1.3 Detection of aflD and aflQ genes 

3.2.1.3.1 Isolates tested 

Thirty-five isolates previously identified and characterised for their aflatoxigenic 

ability were tested for the presence of aflD and aflQ. The list of isolates is given in 

Table 4.27 (Chapter 4). 

3.2.1.3.2 Genomic DNA extraction 

Genomic DNA for the detection of aflD and aflQ genes was extracted with the 

protocol conidia/SDS, as described in Section 3.2.1.2. 

3.2.1.3.3 Multiplex-PCR amplification  

Genes aflD and aflQ were amplified simultaneously in a single PCR amplification 

(multiplex-PCR), using the primer pairs nor1-F/nor1-R and ord1-gF/ord1-gR, respectively. 

aflD primers were specifically designed in this study; aflQ primers were selected from 

previous studies. Table 3.5 shows a list of primers and details. Table 3.6 summarises the 

multiplex-PCR conditions. 

The housekeeping gene tub1 coding for β-tubulin (primer pair tub1-F/tub1-R) was 

used as internal amplification control. PCR products were visualised by electrophoresis in 

agarose gel as previously described. 

 
 

Table 3.5  Details of the target genes, primer sequences and expected product length in base pairs 
(bp) for PCR and RT-PCR. 

Primer 
pair Gene Primer sequence (5�́���3’) 

PCR 
product size 
(bp) 

RT-PCR 
product 
size (bp) Reference 

Tub1-F 
Tub1-R tub1 

GCT TTC TGG CAA ACC ATC TC 
GGT CGT TCA TGT TGC TCT CA 1406 1198 

Scherm et al., 2005 
Scherm et al., 2005 

Nor1-F 
Nor1-R 

aflD 
 

ACC GCT ACG CCG GCA CTC TCG GCA C 
GTT GGC CGC CAG CTT CGA CAC TCC G 400 400 

This study 
This study 

Ord1-gF 
Ord1-gR 
Ord1-cR aflQ 

TTA AGG CAG CGG AAT ACA AG 
GAC GCC CAA AGC CGA ACA CAA A 
GAATATCTGGACGTTTACCC 

 
719 
---- 

 
599 
487 

Sweeney et al., 2000 
Sweeney et al., 2000 
Degola et al., 2007 
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Table 3.6  PCR conditions used for the multiplex amplification of genes tub1, aflD and aflQ. 

Reaction Mix   
GoTaq Flexi Colourless Buffer without MgCl2 1x 
MgCl2 1.5 mM 

GoTaq Flexi DNA Polymerase (Promega, #M8305) 1.25 U 
dNTPs (dNTP Mix, Promega, #U1511) 0.2 mM 
Each primer Forward 0.2 µM 
Each primer Reverse 0.2 µM 
Genomic DNA 25 ng 
  
Amplification Programme  
Initial denaturation 94 ºC, 3 min 
Denaturation 94 ºC, 1 min 

30x Annealing 55 ºC, 1 min 
Extension 72 ºC, 1 min 
Final extensión 72 ºC, 10 min 

3.2.2 Analysis of aflatoxin gene expression 

3.2.2.1 Materials and reagents 

All non-plastic materials used for RNA extraction (spatulae, filter paper, mortar and 

pestle) were sterilised in a sterilisation oven at 160 ºC, over-night, and refrigerated (-20 ºC) 

before use. Plastic material (eppendorf tubes, PCR tubes) was sterilised by autoclaving at 

121 ºC for 1 hour. RNase-free filter pipette tips were used. Water was treated with 

0.1% diethyl pyrocarbonate (DEPC), left over night and autoclaved at 121 ºC for 1 hour to 

eliminate DEPC. All the solutions were prepared with DEPC-treated water. The 

electrophoresis equipment (tank, trays and combs) was used exclusively for RNA analysis, 

and was regularly washed with 10% SDS and DEPC-treated water. 

3.2.2.2 Biological material preparation 

Biological material for total RNA extraction was prepared by growing the isolates 

under both AF inducive and non-inducive conditions. Twenty five mL of YES (AF 

inducive) and YEP (non-inducive) broths (in a 50 mL Falcon tubes) were inoculated with a 

loop full of spores. This culture was incubated horizontally for 4 days at 25-28 ºC, in the 

dark, with slight agitation. The mycelia were collected with a sterile spatula, dried in sterile 
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absorbent paper and rapidly divided into aliquots of 100 mg. Mycelia were immediately 

used for RNA extraction. All RNA extractions were performed on freshly produced 

material. 

3.2.2.3 Selection of total RNA extraction protocol 

As for DNA extraction, we aimed at establishing a protocol for total RNA extraction 

that would be economic, fast, user-friendly and not dependable on irregular supplies 

(namely liquid nitrogen). For that matter, we tested 3 protocols of biological material 

maceration and 2 protocols of total RNA extraction. 

3.2.2.3.1 Maceration of biological material  

The maceration of the biological material used for RNA extraction is probably the 

most important step of the procedure when it comes to keeping RNA integrity. Maceration 

with liquid N2 is the most feasible method for fungal material, but requires extra cares and 

skills to avoid RNA contamination and degradation, as is dependent on regular supply. In 

this study, we attempted to implement a maceration protocol that would substitute this 

procedure. The protocols tested, maceration with N2, glass beads and the mechanical 

homogeniser TissueRuptor (Qiagen), are herein described.  

 

Liquid Nitrogen 
One hundred mg of mycelium were ground to a fine powder with N2 in a cold mortar and pestle. 
The powder was transferred with a residual amount of N2 into a 2.0 mL eppendorf tube previously 
refrigerated in N2. Immediately after the N2 had completely evaporated, the extraction buffer 
(dependent on the extraction protocol) was added. The mixture was homogenised by inversion and 
used for RNA extraction. 
 

Glass beads 
One hundred mg of mycelium were placed in a 2.0 mL eppendorf tube containing the extraction 
buffer and 0.5 g of glass beads (previously washed with nitric acid and DEPC-treated water). The 
mixture was vortexed for 5 min and directly used for RNA extraction. 
 

TissueRuptor 
One hundred mg of mycelium were placed in a 2.0 mL eppendorf tube containing the extraction 
buffer. The mixture was homogenised for 5 min with the TissueRuptor and directly used for RNA 
extraction. 
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3.2.2.3.2 Total RNA Extraction  

After mycelium maceration, two RNA extraction protocols were tested. The RNeasy 

Plant MiniKit (Qiagen) is one of the most cited methods of RNA extraction, and gives 

good results for filamentous fungi. The disadvantage is that it is very expensive, and 

therefore not suitable for a large number of samples. So, we tried to establish an alternative 

protocol with the TRIzol reagent (Invirogen). The procedures followed the protocols 

described by the manufacturers, with minor adaptations.  

 

RNeasy Plant Mini Kit (Qiagen) 
Mycelium was homogenised in 450 µL of RLT or RLC buffer containing 10 µL/mL of β-
mercaptoethanol as described ahead and vortexed vigorously. The lysate was transferred to a 
QIAshredder spin column (lilac) placed in a 2 ml collection tube, and centrifuged at 12000 g for 
2 min. The supernatant of the flow-through was carefully transferred to a new microcentrifuge tube 
without disturbing the cell-debris pellet in the collection tube. 0.5 volumes of 96% ethanol were 
added to the cleared lysate, and mixed immediately by pipetting. The sample was transferred to an 
RNeasy spin column (pink) placed in a 2 mL collection tube and centrifuged for 15 sec at 
8,000 x g. The flow-through was discarded and 700 µL of Buffer RW1 were added to the RNeasy 
spin column. The lid was gently closed and the sample was centrifuged for 15 sec at 8,000 x g. The 
flow-through was discarded and 80 µL of DNase I mix (Qiagen) were placed directly on the 
membrane. The sample was incubated for 15 min at room temperature and 350 µL of Buffer RW1 
were added. The lid was gently closed and the sample was centrifuged for 15 sec at 10,000 x g. The 
flow-through was discarded and 500 µL of Buffer RPE were added to the RNeasy spin column to 
wash the column membrane. The sample was centrifuged for 15 sec at 8,000 x g and the flow-
through was discarded. The washing procedure was repeated. The sample was centrifuged for 
1 min at 12,000 x g. The RNeasy spin column was placed in a new 1.5 mL collection tube and 
40 µL of RNase-free water was added directly to the spin column membrane. The RNA was eluted 
by centrifugation for 1 min at 8000 g, and stored at -80 ºC. 
 
TRIzol (Invitrogen) 
Mycelium was homogenised in 1 mL of TRIzol as described ahead and then incubated for 5 min at 
room temperature. 200 µL of chloroform were added and the tube was securely capped. The tube 
was vigorously shaken by hand for 15 sec and incubated at 15 to 30 °C for 2 to 3 min. Samples 
were centrifuged at 12,000 x g for 15 min at 4 °C. Following centrifugation, the mixture separated 
into a lower red, phenol-chloroform phase, an interphase, and a colourless upper aqueous phase.  
The aqueous phase was transferred into a fresh tube and 500 µL of isopropanol were added to 
precipitate the RNA. Samples were incubated for 10 min at room temperature and centrifuged at 
12,000 x g for 10 min at 4 °C. Supernantant was removed and the pellet (RNA) was washed once 
with 1 mL of cold 75% ethanol. The sample was mixed by vortexing and centrifuged at 7500 g for 
5 min at 4 °C. The RNA pellet was air-dried for 5 to 10 min, redissolved in 40 µL of RNase-free 
water and stored at -80 °C. 
 

 

Total RNA samples were visualised by horizontal electrophoresis in 1.5% agarose 

gels, under the conditions described for DNA analysis. Considering the electrophoresis 
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results shown in Figure 3.15, we rejected maceration with glass beads and extraction with 

TRIzol. The next step was to determine the suitability of the samples for reverse-

transcription PCR (RT-PCR), in terms of RNA quality and DNA contamination. RT-PCR 

was tested on samples obtained by N2 and TissueRuptor maceration and extraction with 

RNeasy Plant MiniKit. 

 

 
 

Figure 3.15  Electrophoresis of total RNA samples obtained by different protocols. 1 - N2, RNeasy 
Plant Mini Kit (RLT buffer); 2 - N2, RNeasy Plant Mini Kit (RLC buffer); 3 and 4 - 
N2, Trizol; 5 and 6 - Glass Beads, Trizol; 7 and 8 - Glass Beads, RNeasy Plant Mini 
Kit (RLC buffer); 9 to 11 - TissueRuptor, RNeasy Plant Mini Kit (RLC buffer); 12 to 
14 - N2, RNeasy Plant Mini Kit (RLC buffer). 

 
 

RT-PCR was performed in 20 µL reaction One-Step RT-PCR Pre-Mix kit (INTRON 

Biotechnology, Gyeonggi-do, South-Korea). RT-PCR details are described in Table 3.7. 

The PCR amplification parameters followed those reported by Degola et al. (2007). 

 

Table 3.7  RT-PCR conditions used for the multiplex amplification of genes tub1, aflD and aflQ. 

Reaction Mix (20 µL)  
One-Step RT-PCR Pre-Mix 8 µL 
Each primer Forward 0.2 µM 
Each primer Reverse 0.2 µM 
Total RNA 1 µg 
  
Amplification Programme  
Reverse Transcription 45 ºC, 30 min 
  
Initial denaturation 94 ºC, 4 min 
Denaturation 94 ºC, 1 min 

5x Annealing 60 ºC, 1 min 
Extension 72 ºC, 1 min 
   
Denaturation 94 ºC, 1 min 

30x Annealing 55 ºC, 1 min 
Extension 72 ºC, 1 min 
Final extension 72 ºC, 6 min 
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To check for the presence of genomic DNA contamination in the RNA samples, PCR 

was carried out as described for the amplification step of RT-PCR, using the same sets of 

primers and 1 µg of total RNA as template. The primers used for gene expression detection 

included those previously mentioned (see Table 3.5). The housekeeping gene tub1 was 

used as IAC in both PCR and RT-PCR amplifications. The amplification results are shown 

in Figure 3.16. 

 

 

Figure 3.16 RT-PCR and PCR amplifications of total RNA for genes tub1, aflD and aflQ. M - 100 
bp DNA ladder (Promega); 1, 3 and 5 – RT-PCR for TissueRuptor macerated samples; 
2, 4 and 6 – PCR for TissueRuptor macerated samples; 7, 9 and 11 - RT-PCR for N2 
macerated samples; 8, 10 and 12 - PCR for N2 macerated samples. 

 

 

As can be observed in Figure 3.16, RNA obtained with TissueRuptor maceration was 

not suitable for RT-PCR under the tested conditions. On the other hand, N2 maceration 

produced total RNA with quality and concentration adequate to RT-PCR, and no genomic 

DNA contamination was detected. Given these results, we found that, for RNA extraction, 

we could not eliminate the use of N2 for biological material maceration. Furthermore, the 

TRIzol extraction protocol was found to be inadequate for our samples. Consequently, 

RNA samples used in subsequent analysis were obtained by N2 mycelium maceration 

followed by extraction with the Qiagen RNeasy Plant MiniKit. 
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3.2.2.4 Detection of aflD and aflQ gene expression 

3.2.2.4.1 Isolates tested 

All isolates were produced under AF inductive conditions (YES broth). In order to 

confirm that the AF genes were not expressed under non-inductive conditions, 5 of them 

were also grown on YEP broth. Even though all these isolates had already been 

characterised for their aflatoxigenic ability, after mycelium collection both YEP and YES 

broths were analysed by HPLC, to confirm the correlation between gene expression and 

AF production. This test is important because AF production is extremely dependent on 

growth conditions, so it was important to determine aflatoxigenic ability under the current 

test conditions. 

3.2.2.4.2 Total RNA extraction 

Total RNA was extracted with the protocol described in Section 3.2.2.3. 

3.2.2.4.3 Reverse-Transcription PCR (RT-PCR) 

RT-PCR was performed as described in Section 3.2.2.3.2. (Table 3.7). RT-PCR 

products were visualised by electrophoresis in agarose gels as previously described. 
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3.3 Aspergillus section Flavi 

3.3.1 Identification and characterisation of strains from Aspergillus section Flavi  

After general morphological identification, isolates identified as belonging to section 

Flavi were subject of further analysis. This Section of the thesis describes the various 

methods - phenotypic, genetic and spectral – that were applied to the isolates for 

taxonomic purposes. 

Classic phenotypic analysis included several macro- and micromorphological 

features and the extrolite profile relative to AFs and CPA. A group of selected isolates was 

identified based on DNA sequence analysis of two genomic DNA regions – the ITS region 

and the calmodulin gene. Spectral analysis was based on protein mass spectra by MALDI-

TOF ICMS. 

3.3.1.1 Phenotypic analysis 

3.3.1.1.1 Morphological characterisation 

Besides the morphological characterisation described in Section 3.1.2.4 and 

Section 3.1.3, isolates were also cultured on CZ at 42 ºC, and colony diameter was 

measured after 7 days of incubation (Kurtzman et al., 1987).  

3.3.1.1.2 Mycotoxigenic profile 

Production and analysis of aflatoxins 

All isolates were tested for aflatoxigenic ability by fluorescence on CAM and HPLC 

analysis, as described in Section 3.1.3.2.  
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Production and analysis of cyclopiazonic acid 

The strains were tested for cyclopiazonic acid in CYA. All strains were inoculated on 

6 cm diameter Petri dishes and incubated at 25 °C for 14 days, in the dark (Gqaleni et al., 

1997). Then the methodology of Bragulat et al. (2001) was employed, as already described 

for AF analysis (Section 3.1.3.2.2).  

Samples were analysed using a HPLC equiped with the same autosampler and pump 

previously mentioned, and with a Varian 2050 UV detector set to 285 nm. 

Chromatographic separations were performed on a EuroSpher 100 NH2 column (Knauer, 

4.6 mm x 250 mm, 5 µm), fitted with a precolumn with the same stationary phase. The 

mobile phase consisted of an isocratic program of acetonitrile:50 mM ammonium acetate 

(3:1, v/v), pH 5, and was pumped at 1.0 mL/min. The injection volume was 100 µL. 

Cyclopiazonic acid standard was supplied by Sigma (St. Louis, MO, USA). Samples 

were taken as positive when yielding a peak at a retention time similar to the CPA 

standard, with a height five times higher than the baseline noise. 

3.3.1.1.3 Data analysis 

Twenty-four isolates spanning the various phenotypes were selected for phenotypic 

cluster analysis. From these isolates, four of them were used as laboratory reference strains 

(MUM 92.01 and MUM 10.220 for A. flavus, MUM 92.02 for A. parasiticus and MUM 

09.03 for A. tamarii). The remaining 20 isolates were field isolates obtained in this study 

and were divided in two groups: one group of eight isolates with consistent phenotypic 

characterisation that were easily assigned to one of the previously mentioned species 

(MUM 10.200, MUM 10.202, MUM 10.207, MUM 10.209 and MUM 10.218 identified as 

A. flavus; MUM 10.201 and MUM 10.216 identified as A. parasiticus; and MUM 10.217 

identified as A. tamarii), and another group of 12 isolates with problematic phenotypic 

characterisation that could not be assigned to any of the main species (MUM 10.203, 

MUM 10.204 MUM 10.205, MUM 10.206, MUM 10.208, MUM 10.210, MUM 10.211, 

MUM 10.212, MUM 10.213, MUM 10.214, MUM 10.215 and MUM 10.219). 

A cluster analysis was made to create homogeneous clusters of strains based on 8 

phenotypic characters: colony colour on CYA; conidia surface; reverse on AFPA; AFBs 

production; AFGs production; CPA production; chromatographic pattern of AFs; and 
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chromatographic pattern of CPA. Twenty-four isolates spanning the various phenotypes 

were selected for phenotypic cluster analysis. From these isolates, four of them were used 

as laboratory reference strains (MUM 92.01 and MUM 10.220 for A. flavus, MUM 92.02 

for A. parasiticus and MUM 09.03 for A. tamarii). The remaining 20 isolates were field 

isolates obtained in this study and were divided in two groups: one group of eight isolates 

with consistent phenotypic characterisation that were easily assigned to one of the 

previously mentioned species (MUM 10.200, MUM 10.202, MUM 10.207, MUM 10.209 

and MUM 10.218 identified as A. flavus; MUM 10.201 and MUM 10.216 identified as A. 

parasiticus; and MUM 10.217 identified as A. tamarii), and another group of 12 isolates 

with problematic phenotypic characterisation that could not be assigned to any of the main 

species (MUM 10.203, MUM 10.204 MUM 10.205, MUM 10.206, MUM 10.208, MUM 

10.210, MUM 10.211, MUM 10.212, MUM 10.213, MUM 10.214, MUM 10.215 and 

MUM 10.219). 

The cluster analysis and the dendrogram of relatedness were performed with the 

statistical package JMP 8.0.2 (SAS Institute Inc). The Complete Linkage method with 

Euclidean distance was used as the distance index, after variable normalisation as z-scores, 

to yield equal metrics and equal weighting. 

3.3.1.2 Genetic analysis 

3.3.1.2.1 Isolates tested 

The isolates submitted to genetic analysis were the same as those used for phenotypic 

cluster analysis (Section 3.3.1.1.3).  

3.3.1.2.2 DNA extraction  

DNA extraction for sequence analysis followed the protocol Conidia/SDS previously 

described (Section 3.2.1.2). 
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3.3.1.2.3 PCR amplification 

Genotypic analysis was done for two DNA segments generally used for taxonomic 

purposes of fungi: a portion of the rRNA gene (spanning part of the 18S ribosomal RNA 

gene, the internal transcribed spacer 1, the 5.8S ribosomal RNA gene, the internal 

transcribed spacer 2, and part of the 28S ribosomal RNA gene), and a portion of the 

calmodulin gene (cmd; comprising part of exon 2, exons 3 to 5, part of exon 6 and introns 

2 to 5). Primer pairs used for this analysis were V9D-LS266 and CL1-CL2A, respectively. 

Primer details are listed in Table 3.8. PCR amplifications were run on 50 µL reaction 

mixtures in a thermal cycler BioRad Mycycler. PCR amplification details are presented in 

Table 3.9. 

 

Table 3.8  Primers used in this study, target gene, sequence and expected PCR product size. 

 
 

Table 3.9 PCR conditions used for the amplification of the ITS region and partial calmodulin gene. 

Reaction Mix (50 µL) ITS Calmodulin 

GoTaq Flexi Colourless Buffer without MgCl2 1x 1x 

MgCl2 1.5 mM 1.5 mM 

GoTaq Flexi DNA Polymerase (Promega, #M8305) 1.25 U 1.25 U 

dNTPs (dNTP Mix, Promega, #U1511) 0.2 mM 0.2 mM 

Primer Forward 0.4 µM 0.4 µM 

Primer Reverse 0.4 µM 0.4 µM 

Genomic DNA 50 ng 100 ng 
   

Amplification Programme   

Initial denaturation 95 ºC, 5 min 95 ºC, 10 min 

Denaturation 95 ºC, 30 sec 

30x 

95 ºC, 50 sec 

35x Annealing 62 ºC, 1 min 55 ºC, 50 sec 

Extension 72 ºC, 2 min 72 ºC, 1 min 

Final extension 72 ºC, 5 min 72 ºC, 7 min 

   
Reference Gerrits van den Ende  

& de Hoog, 1999 
O’Donnell et al., 2000 

Primers Gene Primer sequence (5�́���3’) PCR product size (bp) Reference 

V9D 

LS266 

ITS 

region 

TTAAGTCCCTGCCCTTTGTA 

GTAGTCATATGCTTGTCTC 
950 

Gerrits van den Ende 

& de Hoog, 1999 

CL1 

CL2A 
cmd 

GARTWCAAGGAGGCCTTCTC 

TTTTGCATCATGAGTTGGAC 
730 

O’Donnell et al., 

2000 
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PCR products were visualised as previously described. Concentration was compared 

to that of the nearest band of the 100 bp DNA ladder. When PCR product concentration 

was lower than 10 ng/µL, the PCR reaction was repeated, in order to obtain sufficient 

amount for sequencing. 

3.3.1.2.4 PCR product purification 

Before sequencing, the PCR products previously obtained were purified from 

excessive dNTPs and primers with the commercial kit PCR Product Purification Genomed 

JetQuick, according to the instructions of the manufacturer. The protocol is herein 

described. After the purification step, purified PCR product concentration was confirmed 

by electrophoresis as previously described and sent for sequencing. 

 
 
Protocol for PCR Product Purification (Genomed JETQUICK) 

Four hundred µL of H1 solution were added to the PCR product and thoroughly mixed. This 
mixture was loaded on a JETQUICK spin column placed in a 2 mL receiver tube and centrifuged at 
12,000 x g for 1 min. The flowthrough was discarded. The column was again loaded with 500 µL 
of solution H2 and centrifuged at 12,000 x g for 1 min. The flowthrough was discarded and 
centrifugation was repeated. The JETQUICK spin column was transferred to a 1.5 mL eppendorf, 
loaded with 50 µL of sterile ultra-pure water and centrifuged at 12,000 x g for 2 min. The column 
was discarded and the collected DNA was stored at -20 ºC. 

3.3.1.2.5 DNA sequencing 

Sequence analyses were performed on an ABI 3730xl DNA Analyser (Applied 

Biosystems), by outsourcing. PCR products were sequenced in both directions.  

3.3.1.2.6 Sequence analysis  

Sequence analysis was done on the 24 sequences obtained in the present study plus 

22 sequences retrieved from GenBank. The GenBank sequences corresponded to the 

reference strains for the most important species currently identified in section Flavi. All 

strains and the corresponding accession numbers are listed in Table 3.10. 
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Table 3.10  Aspergillus section Flavi included in this study (T designates a culture ex-type).  

Strain number Source GenBank accession 
number 

Calmodulin 

GenBank 
accession 
number 

ITS 

Species name 

MUM 10.238T 
(CBS 117610) 

Arachis glabrata leaf; 
Argentina 

EF202049 
 

 A. arachidicola 

CBS 117187T Frass in a silkworm rearing 
house; Japan 

EF202029 
 

 A. bombycis 

CBS 763.97T Soil; USA EF202035  A. caelatus 
MUM 10.234T (CBS 110.55) Air contaminant; Brazil EF202056  A. fasciculatus 
CBS 484.65T Air contaminant; Brazil EF202032  A. flavofurcatus 
MUM 10.237T (CBS 
100927) 

Cellophane; South pacific 
Islands 

EF202063 
 

 A. flavus 

CBS 485.65T Butter, Japan EF202053 
 

 A. flavus var. columnaris 

MUM 10.236T (CBS 542.69) Stratigraphic core sample; 
Japan 

EF202069 
 

 A. kambarensis 

MUM 10.239T (CBS 151.66) Dung of Lepus townsendii; 
USA 

EF202078 
 

 A. leporis 

MUM 10.240T (CBS 
117635) 

Arachis hypogea seed; 
Argentina 

EF202072 
 

 A. minisclerotigenes 

MUM 09.02T (NRRL 13137) Wheat; USA EF202028  A. nomius 
MUM 10.242T (CBS 
100925) 

Unknown source; Japan EF202055  A. oryzae 

CBS 100926T Pseudococcus calceolariae, 
sugar cane mealy bug; 
Hawaii, USA 

EF202043 
 

 A. parasiticus 

CBS 260.67T Unknown source; Japan EF202042  A. parasiticus var. globosus 
MUM 10.235T (CBS 121.62) Arachis hypogea; Nigeria EF202077  A. parvisclerotigenus 
CBS 766.97T  EF202030  A. pseudotamarii 
MUM 10.241T (CBS 
100928) 

Soy sauce; Japan EF202041  A. sojae 

CBS 501.65T Cotton lintafelt; UK EF202064  A. subolivaceus 
CBS 104.13T Activated carbon; EF202034  A. tamarii 
CBS 580.65T Soil; USA EF202047  A. terricola var. americanus 
CBS 120.51T Culture contaminant; UK EF202070  A. thomii 
CBS 822.72T Arachis hypogea; Uganda EF202046  A. toxicarius 
MUM 92.01 (NRRL 6412)  HQ340098 HQ340109 A. flavus 
MUM 92.02 (NRRL 3386)  HQ340099 HQ340110 A. parasiticus 
MUM 09.03 (NRRL 427)  HQ340100 HQ340111 A. tamarii 
MUM 10.200 (07AAsp37) Prunus dulcis nut; Portugal HQ340078 HQ340101 A. flavus 
MUM 10.201 (07AAsp43) Prunus dulcis nut; Portugal HQ340079 HQ340102 A. parasiticus 
MUM 10.202 (08AAsp35) Prunus dulcis nut; Portugal HQ340080 HQ340103 A. flavus 
MUM 10.203 (08AAsp37) Prunus dulcis nut; Portugal HQ340081  A. flavus 
MUM 10.204 (08AAsp42) Prunus dulcis nut; Portugal HQ340082 HQ340104 A. flavus 
MUM 10.205 (08AAsp67) Prunus dulcis nut; Portugal HQ340083 HQ340105 Aspergillus sp. 
MUM 10.206 (08AAsp116) Prunus dulcis nut; Portugal HQ340084 HQ340106 A. flavus 
MUM 10.207 (08AAsp179) Prunus dulcis nut; Portugal HQ340085  A. flavus 
MUM 10.208 (08AAsp183) Prunus dulcis nut; Portugal HQ340086  Aspergillus sp. 
MUM 10.209 (08AAsp225) Prunus dulcis nut; Portugal HQ340087 HQ340107 A. flavus 
MUM 10.210 (08AAsp252) Prunus dulcis nut; Portugal HQ340088  A. parasiticus 
MUM 10.211 (09AAsp146) Prunus dulcis nut; Portugal HQ340089  Aspergillus sp. 
MUM 10.212 (09AAsp187) Prunus dulcis nut; Portugal HQ340090  A. parasiticus 
MUM 10.213 (09AAsp240) Prunus dulcis nut; Portugal HQ340091  A. parasiticus 
MUM 10.214 (09AAsp260) Prunus dulcis nut; Portugal HQ340092  Aspergillus sp.  
MUM 10.215 (09AAsp266) Prunus dulcis nut; Portugal HQ340093  A. parasiticus 
MUM 10.216 (09AAsp304) Prunus dulcis nut; Portugal HQ340094  A. parasiticus 
MUM 10.217 (09AAsp392) Prunus dulcis nut; Portugal HQ340095  A. tamarii 
MUM 10.218 (09AAsp478) Prunus dulcis nut; Portugal HQ340096  A. flavus 
MUM 10.219 (09AAsp494) Prunus dulcis nut; Portugal HQ340097  Aspergillus sp. 
MUM 10.220 (05UasBr01) Grapes; Brazil HQ340077 HQ340108 A. flavus 
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3.3.1.2.7 Sequence editing and alignment 

For the sequences obtained in this study, a consensus sequence was created from the 

assembly of the forward and backward sequences using the package Sequencher 4.9 (Gene 

Codes, Ann Arbor Michigan). The consensus sequences were manually adjusted by 

chromatogram comparison.  

Sequence alignments were made with CLUSTAL W (Thompson et al., 1994). 

Distance matrices were produced and analysed with the package MEGA version 4 (Tamura 

et al., 2007).  

3.3.1.2.8 Phylogenetic analysis 

The phylogenetic analysis was used for taxonomic purposes. Our data were analysed 

by four different methods of phylogenetic inference: Distances (Neighbour-Joining, NJ), 

Maximum Parsimony (MP), Maximum Likelihood (ML) and Bayesian Inference (BI). Each 

of these methods is herein briefly explained, based on Hall (2008). NJ is a distance 

method. It converts aligned sequences into a distance matrix of pairwise differences 

(distances) between the sequences, and uses the matrix as the data for phylogenetic tree 

construction. MP, ML and BI are character-based methods, and use multiple alignment 

directly by comparing characters within each column (site) in the alignment. MP looks for 

the tree or trees with the minimum number of changes. It can happen that there are several 

trees only slightly different with the same number of changes, and that are therefore 

equally parsimonious. ML looks for the tree that, under some model of evolution, 

maximises the likelihood of observing the data. It almost always recovers a single tree. 

One advantage of ML is that the likelihood of the resulting tree is known. The confidence 

in the structure of the trees obtained with these three methods needs to be assessed by 

bootstrapping for a number of replicates. BI is a variant of ML. Instead of seeking the tree 

that maximises the likelihood of observing the data, it seeks those trees with the greatest 

likelihoods given the data. Instead of producing a single tree, Bayesian analysis produces a 

set of trees with roughly equal likelihoods. The frequency of a given clade in any set of 

trees is virtually identical to the probability of that clade. In this case, no bootstrapping is 

necessary. 
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Trees are generally rooted by using an outgroup representative of a different species 

or section. For our study, A. leporis was used as outgroup. This species belongs to the same 

section as test strains, but is somewhat distant from the other species of the section, so we 

considered that it could be successfully used as outgroup on phylogenetic analysis of our 

isolates, which are very closely related. Monophyly was imposed for all taxa. Phylogenetic 

trees were edited using the program TreeView (Page, 1996). 

 

Nucleotide Substitution Model 

For NJ, ML and BI analysis, the sequence alignments representing raw data need to 

be corrected by a Nucleotide Substitution (Evolutionary) Model. The appropriate 

evolutionary model is dependent on the type of data under analysis, and has to be 

determined by specific software. The optimal evolutionary correction model was found 

with the jModeltest 0.1.1 package (Posada, 2008), using the Akaike Information Criterion 

(AIC) (Akaike, 1973). The GTR+G (general time-reversible; Tavaré, 1986) model with 

gamma-distribution was selected to correct raw data. 

 

Neighbour-Joining 

Corrected distance matrices were used to construct the NJ tree using MEGA 4. Gaps 

were treated as 5th character and all sites were included. To determine the support of each 

clade, a bootstrap analysis was performed with 1000 replications. 

 

Maximum Parsimony 

The MP analysis was done with PAUP* (Swofford, 2003), using raw data. All sites 

were included in the analysis, and were unordered and of equal weight. Maximum 

parsimony analysis was performed for all data sets using the heuristic search option with 

100 random taxa additions and tree bisection and reconstruction (TBR) as the branch-

swapping algorithm. Branches of zero length were collapsed and all equally parsimonious 

trees were saved. A consensus tree was generated. The robustness of the trees obtained was 

evaluated by 1000 bootstrap replications. 
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Maximum Likelihood 

ML trees were created with PAUP* using corrected data. Gaps were treated as 5th 

character and all sites were included. To determine the support of each clade, a bootstrap 

analysis was performed with 1000 replications. 

 

Bayesian Inference 

The phylogenetic inference using a Bayesian approach was tested with the program 

MrBayes 3.1.2 (Huelsenbeck & Ronquist, 2003). Commands obtained with jModeltest for 

distance correction were adapted to MrBayes. The Monte Carlo Markov Chain (MCMC) 

analysis was run for a number of generations enough to reach convergence (standard 

deviation of split frequencies < 0.01), usually 5 x 105. Every 100 generations, a tree was 

sampled, and the first 25% trees were discarded as burn-in. Branches whose support was 

< 50% were collapsed into a polytomy (Cut-off Value for Consensus Tree = 50%). The 

consensus tree with the posterior probability of each internal node was calculated from 

75% of the obtained trees.  

3.3.1.3 Spectral analysis by MALDI-TOF ICMS 

3.3.1.3.1 Isolates tested  

One-hundred and nineteen isolates were included in this analysis. Ten of these 

isolates correspond to type-strains or reference strains for the most significant species: A. 

flavus (MUM 92.01 and MUM 00.06), A. parasiticus (MUM 92.02), A. tamarii (MUM 

09.03 and MUM 09.04), A. arachidicola (MUM 10.238), A. minisclerotigenes 

(MUM 10.240), A. oryzae (MUM 10.242), A. parvisclerotigenus (MUM 10.235) and A. 

sojae (MUM 10.242). The remaining isolates were field isolates selected on a way that 

they would be representative of all phenotypes identified, with major incidence on those 

phenotypes that could not be assigned to any known species. From each phenotype, typical 

and atypical isolates were submitted to analysis. Atypical isolates were those bearing one 

or more features found atypical for that phenotype, e.g. cream, instead of orange, reverse 

on AFPA; green, instead of blue, fluorescence on CAM; different shade of green. 

A. leporis (MUM 10.239) was used as outgroup. 
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3.3.1.3.2 Growth conditions  

For the analysis of the Aspergillus isolates, a small number of spores was transferred 

from 7 day old cultures to 6 cm Petri dishes containing 10 mL of MEA. Cultures were 

incubated in the dark for 5 days at 28 ºC. Escherichia coli strain DH5α, used as control 

(external calibration), was obtained from the Micoteca da Universidade do Minho. E. coli 

cells were grown on Luria-Bertani medium agar (LB; 10 g/L bacto-tryptone, 5 g/L bacto-

yeast extract, 10 g/L NaCl) at 37 °C for 20 hours.  

3.3.1.3.3 Flex target plate preparation  

Approximately 50 µg of spores and young mycelium of each microorganism were 

transferred directly from the culture plate to the 48-well MALDI-TOF plate. Immediately, 

0.5 µL of matrix solution (75 mg/mL 2,5-dihydroxybenzoic acid in 

ethanol/water/acetonitrile [1:1:1] with 0.03% trifluoroacetic acid) were added to fungi and 

mixed gently. To the calibrant E. coli, the same procedure was used. The sample mixtures 

were air dried at room temperature. Each sample was spotted in duplicate to test 

reproducibility. During the analyses all solutions were prepared and stored at 5 °C. 

3.3.1.3.4 Data acquisition  

The analyses were performed in the Laboratory of Mycology and Molecular Biology 

of MUM on an Axima LNR system (Kratos Analytical, Shimadzu, Manchester, UK) 

equipped with a nitrogen laser (337 nm), where the laser intensity was set just above the 

threshold for ion production. E. coli DH5α strain with known mass values of ribosomal 

proteins was used as external calibration. The mass range from m/z = 2,000 to 20,000 Da 

was recorded using the linear mode. The mass spectrometer was used in the linear mode 

with a delay of 104 ns and using an acceleration voltage of +20 kV. Final spectra were 

generated by summing 20 laser shots accumulated per profile and 50 profiles produced per 

sample, leading to a total of up to 10,800 laser shots per summed spectrum. The resulting 

peak lists were exported to the SARAMIS™ software package (Spectral Archiving and 
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Microbial Identification System, AnagnosTec, Postdam-Golm, Germany, 

www.anagnostec.eu).  

In SARAMIS™, peak lists of individual samples were compared with the 

SuperSpectra database generating a ranked list of matching spectra. SARAMIS™ uses a 

point system based on peak list with mass signals weighted according to their specificity. 

The weighting is based on empirical data from multiple samples of the reference strains. 

SuperSpectra are consensus spectra containing a pattern of mass signals which are specific 

for each species or other taxonomic units. These SuperSpectra are characteristic for 

individual microbial taxa and allow the identification of specimens as well as cluster 

analyses of spectra of multiple samples. The similarity between individual spectra is 

expressed as the relative or absolute number of matching mass signals after subjecting the 

data to a single link agglomerative clustering algorithm. Dendrograms of spectral 

proximity between isolates were created. 

 



 
 
 

 

4 RESULTS 
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4.1 Mycobiota and aflatoxigenic profile of almonds and chestnuts 

4.1.1 Environmental conditions 

Field 

For the year 2007, chestnuts’ maturation occurred from August to October, and 

harvest took place during November. For almonds, maturation occurred from June to 

September, and they were harvested in the middle of September, in both 2007 and 2008. 

As such, these were probably the periods that mostly influenced the final characteristics of 

the nuts. Table 4.1 lists the climatic conditions of Bragança for the period August-

November of 2007, as registered by a local agro-climatic station. Table 4.2 lists the 

climatic conditions of Moncorvo locally registered for the periods June-September of 2007 

and 2008, and of Faro for the period June-September 2008. Anomalies to Normal values 

are also described. 

 

 

Table 4.1  Climatic conditions of Bragança for the months before and during chestnut harvest for 
the 2007 crop, and anomalies relative to Normal values. 

 Total Rainfall (mm)  Mean Temperature (ºC)  Relative Humidity (%) 
 Registereda Anomalyb  Registereda Anomalyc  Registereda Anomalyc 

Aug 45.0 312.5%  18.0 -2.4  60.8 +8.1 
Sept 48.2 147.5%  16.5 -1.2  60.6 +0.3 
Oct 38.2 58.2%  11.9 -0.9  73.6 +0.9 
Nov 56.2 64.5%  6.8 -1.0  64.9 -5.1 
Total 187.6 93.8%  13.3 -1.4  65.0 -1.2 

a values registered by a local agro-climatic station. 
b Percentage of registered values relative to Normal values for the period 1951-1980 
(INMG, 1991a). 
c Difference between registered values and Normal values for the period 1951-1980 
(INMG, 1991a). 
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Table 4.2  Climatic conditions of Moncorvo and Faro for the months before and during almond 
harvest, and anomalies relative to Normal values. 

 Total Rainfall (mm)  Mean Temperature (ºC)  Relative Humidity (%) 
 Registereda Anomalyb  Registereda Anomalyc  Registereda Anomalyc 
Moncorvo 2007        

June 26.8 73.2%  19.8 -0.6  63.2 -22.3 
July 1.8 18.9%  23.1 -0.5  52.7 -28.3 
Aug 10.6 101.0%  23.0 +0.1  51.2 -22.3 
Sept 0.0 0.0%  22.8 +2.8  47.3 -19.2 
Total 39.2 46.0%  22.2 +0.5  53.6 -23.0 

Moncorvo 2008        
June 1.6 4.4%  22.0 +1.6  56.1 -29.4 
July 0.0 0.0%  24.0 +0.4  46.3 -34.7 
Aug 4.0 38.1%  24.0 +1.1  49.1 -24.4 
Sept 5.8 20.2%  20.3 +0.3  61.9 -4.6 
Total 11.4 13.4%  22.6 +0.9  53.4 -23.2 

Faro 2008        
June 0.01 0.5%  23.3 +2.8  55 -10.0 
July 0.01 3.0%  24.6 +1.4  53 -7.0 
Aug 0.4 8.3%  24.2 +1.0  56 -3.0 
Sept 101.4 709%  21.1 +0.2  69 +4.3 
Total 101.8 323%  23.3 +1.3  58.3  

a values registered by local agro-climatic stations. 
b Percentage of registered values relative to Normal values for the period 1951-1980 (INMG, 1991a, 
1991b). 
c Difference between registered values and Normal values for the period 1951-1980 (INMG, 1991a, 
1991b). 

 
 

Moncorvo and Faro are similar in climate, even though Faro is warmer, but Bragança 

represents a totally different climatic reality, with more rain and milder temperatures in late 

summer.  

In Bragança, for the referred period, the year of 2007 was slightly colder and drier 

than usual. Even though total rainfall in October was only 44% of the Normal values, the 

preceding months had been extremely wet and it rained strongly for a few days in middle 

October, which led to the postponing of harvest from October to November. 

In Moncorvo, 2007 had an extremely dry and hot summer, with September 

registering no rain and temperatures almost 3 ºC higher than normal. These conditions 

allowed the almond harvest to occur early in September. September 2008 was not as dry 

and hot as the previous year. Faro was, in general, slightly warmer than usual. September 

was extremely wet, with 709% more rainfall than normal, but this rainfall was 

concentrated in the last days of the month, after almond harvest.  
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Storage (producer’s warehouse) 

The environmental conditions (temperature and relative humidity) inside the 

producer´s warehouse were registered by two data loggers (A and B; placed in different 

parts of the warehouse) from the first day of almond harvest (13.09.2008) until the 

almonds were expedited (20.03.2009). When almonds started to be bagged (24.10.2008), 

two other data loggers (C and D) registered the environmental conditions inside the bags. 

Table 4.3 shows the mean values of temperature (T) and relative humidity (RH) for each 

data logger. Figure 4.1 represents the evolution of those conditions, taken as the average of 

the two data loggers. 

 
 

Table 4.3  Mean Temperature (T) and Relative Humidity (RH) registered at the warehouse 
(environment) and inside the bags, relative to the months of almond storage. 

  Environment   Bags 
T (ºC) RH (%) T (ºC) RH (%) 

  Aa Bb Mean   A B Mean   Cc Dd Mean   C De Mean 
Sep'08 18.7 17.9 18.3 57.2 58.3 57.8 - - - - - - 
Oct 14.2 13.7 14.0 67.0 67.8 67.4 10.6 11.5 11.1 72.9 - 72.9 
Nov 7.7 7.1 7.4 81.8 83.5 82.7 7.9 8.5 8.2 78.7 - 78.7 
Dec 5.9 5.2 5.6 83.9 91.5 87.7 6.0 6.5 6.3 83,0 - 83.0 
Jan'09 6.1 5.3 5.7 85.6 90.7 88.2 6.0 6.4 6.2 85.6 - 85.6 
Feb 7.8 7.2 7.5 72.9 75.5 74.2 6.5 7.4 7.0 84.9 - 84.9 
Mar 13.0 12.3 12.7   55.5 57.3 56.4   12.3 13.5 12.9   67.8 - 67.8 

a Logger A – back of the warehouse, near an open wall 
b Logger B – middle of the warehouse 
c Logger C – top of the pile 
d Logger D – inside the pile 
e A problem with the logger occurred, RH was not logged. 

 

 
 

 
Figure 4.1  Mean Temperature (T) and Relative Humidity (RH) of the warehouse environment 

and inside the bags, relative to the months of almond storage (mean of two data 
loggers for each condition except Bags RH). 
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4.1.2 Water activity 

Storage samples 

Water activity (aW) of storage samples is presented in Table 4.4. The significance of 

differences (P-value) between samples A (top of the pile) and B (inside the pile) for each 

time of collection is also shown. 

 

Table 4.4  Water activity of storage samples throughout the storage period (n=3, mean ± standard 
deviation).  

Storage 1 Storage 2  Storage 3  
A1a B1a Meanb P c A2a B2a Meanb P c A3a B3a Meanb P c 

In-shell 0.672 0.589 0.630 0.000 0.717 0.726 0.721 1.000 0.416 0.396 0.406 0.661 
± 0.003 ± 0.006 ± 0.046  ± 0.012 ± 0.019 ± 0.015  ± 0.009 ± 0.010 ± 0.014  

Shelled 0.696 0.645 0.671 0.092 0.710 0.720 0.715 0.491 0.452 0.399 0.426 0.300 
± 0.012 ± 0.007 ± 0.029  ± 0.005 ± 0.003 ± 0.006  ± 0.020 ± 0.014 ± 0.033  

 

a mean ± standard deviation, n=3. 
b mean ± standard deviation, n=6. 
c difference significance, as determined by Tamhane’s T2 test for P < 0.05. 
 

Samples A and B were collected from different bags, to test if there were significant 

differences between nuts stored inside the pile or on the top of the pile of bags. In terms of 

aW, no significant differences were detected between samples A and B throughout the 

storage period, except for in-shell almonds on the first time-point of collection. For this 

reason, we considered it reasonable to treat samples A and B as one sample only in the 

following analyses. From this point onwards, whenever the analyses result from the 

conjugation of data of samples A and B, samples will be referred to as Storage 1 (A1 + B1), 

Storage 2 (A2 + B2) and Storage 3 (A3 + B3). Figure 4.2 represents the evolution of aW in 

storage samples. 

 

 

Figure 4.2  Water activity of storage samples (mean of samples A and B) throughout the storage 
period.  
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Between Storage 1 and Storage 2, aW increased, but not significantly, for both in-

shell and shelled almonds (P = 0.537 and P = 0.950, respectively; Table AI.1, Appendix I), 

and then significantly decreased between Storage 2 and Storage 3 (P < 0.001 in both 

cases). This trend correlated directly with Relative Humidity and inversely with Mean 

Temperature registered inside the warehouse.  

 

Processor samples 

Water activity of processor samples is presented in Table 4.5. The significance of 

differences (P-value) between samples, as determined by the Tamhane’s T2 test, is shown 

in Table AI.1 of Appendix I. 

 
 

Table 4.5  Water activity registered for the processor samples (n=3, mean ± standard deviation). 

Processor samples 
 C  D  F 

C1 C2 D1 D2 F1 F2 F3 
In-shell - - - - 0.428 - - 

± 0.010 
Shelled - - - - 0.461 - - 

± 0.027 
Shell - - - - - 0.561 - 

± 0.012 
Kernel 0.425 0.534 0.521 0.520 - 0.502 - 

± 0.006 ± 0.009 ± 0.039 ± 0.002 ± 0.004 
Seed coat - - - - - - 0.877 

± 0.008 
Nutmeat - - - - - 0.370 

± 0.009 

 
 

Regarding processor samples, sample C1 had lower aW than samples C2, D1 and D2, 

but the difference was only significant between C1 and C2 (P = 0.045). In fact, almonds 

from lot C had been harvested in 2007, a year before arriving to the processor, and that 

storage period as well as the extremely dry and hot conditions in September 2007 may be 

the reasons for the extremely low aW of sample C1. Throughout the storage period in the 

processor’s warehouse, sample C1 levelled with the other samples.  

Sample F1 had an extremely low aW, similar to sample C1 (P = 1.000). We did not 

follow Faro’s warehouse climatic conditions during storage, but February and March 2009 

were very dry, possibly allowing almonds to get well dry before being expedited to the 

processor. The aW of Faro’s samples significantly increased from F1 to F2 (P = 0.030). By 
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22.05.2009, when samples C2, D2 and F2 were collected, differences between samples’ aW 

had become insignificant (P > 0.753). This evolution in almonds aW towards a common 

level could mean that the environmental conditions inside the processor’s warehouse allow 

the aW to increase in extremely dry samples, but apparently to levels that still refrain the 

development of fungi. 

Samples F3/nutmeat and F3/seed coat had extremely low and high values of aW, 

respectively. These values resulted from the processing they were submitted to: F2/kernel 

was wet to promote the peeling, the seed coat was peeled off and discarded still wet, and 

the nutmeat was oven-dried before being packed. 

4.1.3 Fungal contamination of almonds and chestnuts  

This section describes the results regarding the monitoring of mycobiota in field, 

storage and processor samples of almonds and chestnuts. In all cases, total fungal 

incidence was assessed, but contaminating fungi other than those belonging to the genera 

Aspergillus and Penicillium were analysed only qualitatively. The frequency of 

contamination with Penicillium species was determined only at the genus level. The 

isolates of Aspergillus genus, which were the main interest of the study, were identified to 

the section level, for both frequency of infection and number of individuals. Diversity was 

also assessed for the Aspergillus sections, through the Richness index, which in this case 

corresponds to the number of sections identified, and the Simpson Diversity Index (SDI), 

which reflects how many of those sections have significant impact on the diversity level of 

the samples. 

Even though the majority of the isolates was identified to the species level, this 

identification was based solely on morphological and physiological characters (except for 

section Flavi, which will be discussed later), which we considered limited for an accurate 

identification in a number of cases. For this reason, we opted to analyse the results at the 

section and not at the species level, in order to minimise identification errors.  



Chapter 4 Results 
 
 
 

151 

4.1.3.1 Fungal incidence and diversity  

4.1.3.1.1 General overview 

Samples under study represent different types of nuts sampled under different 

conditions. As much as we understand that they cannot be analysed in bulk, a general 

overview of the fungal contamination observed in the different samples can be of 

significance in order to better understand the more refined analyses that follow. Figures 4.3 

and 4.4 show, respectively, the percentage of nuts infected by the different fungi and the 

percentage of Aspergillus propagules isolated (by section).  

More than eighty percent of the nuts analysed in this study were contaminated with 

some kind of fungi. The most common fungi were identified as belonging to the genera 

Alternaria, Aspergillus, Botrytis, Cladosporium, Fusarium and Penicillium. From these, 

only Aspergillus and Penicillium incidences were quantified. As to genus Aspergillus, only 

48% of the nuts were contaminated, from which 1959 propagules were isolated and 

identified. They were grouped into 9 different sections: Aspergillus (represented by the 

highly xerophylic species belonging to the teleomorphic genus Eurotium) was the most 

disseminated section, with the highest number of isolates (998 isolates), followed by Flavi 

(352 isolates), Nigri (228 isolates), Wentii (174 isolates) and Versicolores (165 isolates). 

Four of the nine sections were only rarely isolated: Circumdati (27 isolates), Flavipedes 

(12 isolates), Fumigati (2 isolates) and Nidulantes (1 isolate). The maximum number of 

propagules and sections isolated from an individual nut was obtained for in-shell almonds 

from Faro, with as much as 24 isolates from 6 different sections. 
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Figure 4.3  Percentage of nuts infected by the different fungi. 

 
 
 
 

 

Figure 4.4  Percentage of Aspergillus propagules isolated, by section. 
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storage/processor samples. In fact, the latter were contaminated almost exclusively by the 

genera Aspergillus and Penicillium, whereas those fungi reported as major contaminants in 

field samples were extremely rare.  

From the total number of Aspergillus isolates, 1944 (99.2%) were isolated from 

almonds, and only 15 (0.8%) from chestnuts. Even though these figures correspond to 

different sized samples (total of 270 chestnuts and 500 almonds) with different 

characteristics (field, storage and different processing stages), we can state that chestnuts 

have contributed with a very limited number of isolates to the present study. 

4.1.3.1.2 Field samples 

Three chestnut field samples were taken on the year 2007, one from the tree 

(Arv/07), and two from the ground, at two different time points (Ch1/07 and Ch2/07). 

Almonds were sampled from the tree in two consecutive years, 2007 and 2008 (Arv/07 and 

Arv/08, respectively). In all cases, an equal number of nuts was plated with and without the 

shell (in-shell and shelled, respectively), without surface disinfection. 

Table 4.6 lists the fungal incidence observed in chestnut and almond field samples, 

for both in-shell and shelled nuts, by genus and, in case of Aspergillus, by section. The 

number of Aspergillus isolated from these samples and the diversity indices Richness and 

Simpson Diversity Index (SDI) (relative to sections) are given in Table 4.7 and Figure 4.5. 

 

Table 4.6  Percentage of mold-infected nuts for chestnut and almond field samples. 

  Chestnut   Almond 
  Arv/07   Ch1/07   Ch2/07   Mean   Arv/07   Arv/08   Mean 

  In-shell Shelled   In-shell Shelled   In-shell Shelled   In-shell Shelled   In-shell Shelled   In-shell Shelled   In-shell Shelled 
                    
# nuts 45 45  45 45  45 45  135 135 45 45  45 45  90 90 
 
Genus 

                  

Total 100 71 
 

100 42 
 

100 89 
 

100 67 
 

100 64 
 

100 69 
 

100 67 
Penicillium 40 9 

 
38 11 

 
56 13 

 
45 11 

 
73 7 

 
100 18 

 
87 13 

Aspergillus 11 9 
 

11 2 
 

- - 
 

7 4 
 

53 - 
 

80 - 
 

67 - 
 
Section                     

Aspergillus - 2 
 

7 - 
 

- - 
 

2 1 
 

24 - 
 

38 - 
 

31 - 
Circumdati  - - 

 
- - 

 
- - 

 
- - 

 
2 - 

 
7 - 

 
5 - 

Flavi  - - 
 

- - 
 

- - 
 

- - 
 

7 - 
 

27 - 
 

17 - 
Flavipedes - - 

 
- - 

 
- - 

 
- - 

 
4 - 

 
4 - 

 
4 - 

Nidulantes - - 
 

- - 
 

- - 
 

- - 
 

- - 
 

2 - 
 

1 - 
Nigri 11 7 

 
- 2 

 
- - 

 
4 3 

 
13 - 

 
44 - 

 
29 - 

Versicolores  - - 
 

- - 
 

- - 
 

- - 
 

18 - 
 

7 - 
 

13 - 
Wentii - -   4 -   - -   1 -   7 -   20 -   14 - 
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Table 4.7  Number of Aspergillus isolates and diversity indices in chestnut and almond field 
samples. 

  Chestnut   Almond 
  Arv/07     Ch1/07   Ch2/07   Total   Arv/07   Arv/08   Total 

  In-shell Shelled   In-shell Shelled   In-shell Shelled   In-shell Shelled   In-shell Shelled   In-shell Shelled   In-shell Shelled 
# nuts 45 45 

 
45 45 

 
45 45 

 
135 135 

 
45 45 

 
45 45 

 
90 90 

 
Section                     
Aspergillus - 1 

 
3 - 

 
- - 

 
3 1 

 
19 - 

 
21 - 

 
40 - 

Circumdati  - - 
 

- - 
 

- - 
 

- - 
 

1 - 
 

3 - 
 

4 - 
Flavi  - - 

 
- - 

 
- - 

 
- - 

 
3 - 

 
14 - 

 
17 - 

Flavipedes - - 
 

- - 
 

- - 
 

- - 
 

2 - 
 

2 - 
 

4 - 
Nidulantes - - 

 
- - 

 
- - 

 
- - 

 
- - 

 
1 - 

 
1 - 

Nigri 5 3 
 

- 1 
 

- - 
 

5 4 
 

11 - 
 

25 - 
 

36 - 
Versicolores - - 

 
- - 

 
- - 

 
- - 

 
8 - 

 
3 - 

 
11 - 

Wentii - -   2 -   - -   2 -   3 -   9 -   12 - 

                     Total 5 4 
 

5 1 
 

- - 
 

10 5 
 

47 - 
 

78 - 
 

125 - 
Mean/nut 0.11 0.09 

 
0.11 0.02 

 
- - 

 
0.07 0.04 

 
1.04 - 

 
1.73 - 

 
1.39 - 

 
Diversity Indices                    
Richnessa 1 2 

 
2 1 

 
- - 

 
3 2 

 
7 - 

 
8 - 

 
8 - 

SDIb 1 1.6   1.92 1   - -   2.63 1.47   3.88 -   4.45 -   4.49 - 

a Corresponds to number of sections 
b Simpson Diversity Index relative to sections (SDI = 1/Ʃ(Pi/Pn), where Pi is the number of individuals of a 

given section and Pn is the total number of individuals). 
 

 
 

 
 

Figure 4.5  Diversity indices (Richness and SDI) and average number of Aspergillus per nut, for 
in-shell and shelled nuts of field samples.  
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generally more frequent than the latter (Table 4.5). In fact, genus Aspergillus was very 
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weakly represented in chestnuts, in terms of frequency of contamination as well as in 

number and variety of fungi (Tables 4.6 and 4.7; Figure 4.5). Chestnuts contamination with 

Aspergillus included only 3 sections: Nigri (60% of the isolates), Aspergillus (26.6%) and 

Wentii (13.3%). Chestnuts showed a mean number of Aspergillus per nut (taken as the 

average of the three samples) of 0.07 and 0.04 for in-shell and shell nuts, respectively. 

Richness and SDI, which varied from 0 to 2, reflect the extremely low diversity of these 

samples relative to genus Aspergillus. 

Chestnut samples Arv1/07, Ch1/07 and Ch2/07 were pairwise compared in order to 

determine the influence of the time and method of chestnut collection on fungal 

contamination. In general, chestnuts that had been on the ground for up to 3 weeks (sample 

Ch2/07) showed higher levels of contamination with overall fungi and Penicillium than the 

other samples, but were less contaminated with Aspergillus spp.  

In-shell nuts were 100% contaminated, regardless of the sample. Contamination with 

Penicillium spp. was higher, but not significantly, in sample Ch2/07 than in samples 

Arv1/07 and Ch1/07 (P = 0.205 and P = 0.139, respectively; Table AI.2). As opposed to 

that, Aspergillus spp. were less frequent in sample Ch2/07 (0% incidence). In this 

particular case, Penicillium and Aspergillus incidences seem to have an opposite trend of 

evolution. Considering Aspergillus sections, contamination was very low, and no 

significant differences were registered between samples. 

In shelled nuts, sample Ch1/07 showed significantly less overall contamination than 

samples Arv1/07 and Ch2/07 (P < 0.001), but no other significant differences were 

registered (P > 0.117). When comparing in-shell with shelled nuts, shelled nuts had 

significantly less contamination with general fungi and Penicillium than in-shell nuts, for 

all samples (P < 0.026, Table AI.3). On the other hand, contamination with Aspergillus 

was not significantly different between in-shell and shelled nuts (P > 0.361). 

 

Almond samples 

The fungal genera predominantly found in almonds’ field samples were generally the 

same as those found in chestnuts, namely Alternaria, Botrytis, Cladosporium and 

Fusarium. But in almonds the genera Penicillium and Aspergillus were also important 

contaminants (Tables 4.6 and 4.7; Figure 4.5). As for Aspergillus genus, the most common 

sections found in almonds were Aspergillus (32% of the isolates), Nigri (28.8%), Flavi 
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(13.6%), Wentii (9.6%) and Versicolores (8.8%). Sections Circumdati, Flavipedes and 

Nidulantes were rarely found. 

All in-shell nuts showed contamination with overall fungi. Contamination levels with 

Penicillium and Aspergillus were of 87% and 67%, respectively, with almonds having a 

mean of 1.39 Aspergillus per nut. Maximum values of Richness and SDI were 8 and 4.49, 

respectively. Contrary to the high in-shell contamination levels, shelled nuts showed 

significantly lower levels of contamination with overall fungi and Penicillium spp. 

(P < 0.001), with rare colonies developing on infected fruits. None of the shelled nuts was 

found to be contaminated with Aspergillus.  

By comparing in-shell samples from 2007 and 2008 crops, no differences were 

detected in total contamination (100% contamination in both samples), but Penicillium and 

Aspergillus were significantly more frequent in 2008 than in 2007 samples (P < 0.001 and 

P = 0.013, respectively; Table AI.4). When considering Aspergillus sections, 2008 nuts had 

higher contamination levels for all sections except for section Versicolores, but only 

sections Flavi and Nigri showed significant differences between years (P = 0.011 and 

P = 0.002, respectively). 

4.1.3.1.3 Storage samples 

Storage samples were taken from the warehouse of the almond producer, at 3 time-

points along the storage period: one month of storage (Storage 1, 24.10.2008), four months 

(Storage 2, 16.01.2009) and six months (Storage 3, 20.03.2009). Table 4.8 lists the fungal 

incidence observed in storage samples, for both in-shell and shelled nuts, by genus and, in 

the case of Aspergillus, by section. The number of Aspergillus isolated from these samples 

and the diversity indices Richness and SDI are given in Table 4.9. 
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Table 4.8  Frequency (%) of mold-infected nuts in almond storage samples.  

 
Storage 1 Storage 2 

 
Storage 3 

 
A1 

 
B1 

 
A2 

 
B2 

 
A3 

 
B3 

 
In-shell Shelled 

 
In-shell Shelled 

 
In-shell Shelled 

 
In-shell Shelled 

 
In-shell Shelled 

 
In-shell Shelled 

# nuts 10 10 
 

10 10 
 

10 10 
 

10 10 
 

10 10 
 

10 10 
 
Genus                  

Total 100 50 
 

100 60 
 

100 50 
 

100 20 
 

100 40 
 

100 50 
Penicillium 100 20 

 
100 30 

 
100 40 

 
100 20 

 
100 20 

 
100 30 

Aspergillus 100 30 
 

100 30 
 

100 40 
 

100 10 
 

100 30 
 

100 40 
 
Section                  

Aspergillus 100 10 
 

100 10 
 

100 30 
 

100 10 
 

100 20 
 

100 40 
Circumdati - - 

 
20 - 

 
10 - 

 
20 - 

 
- - 

 
- - 

Flavi 20 - 
 

10 - 
 

20 10 
 

70 - 
 

30 - 
 

10 - 
Flavipedes 10 - 

 
10 - 

 
- - 

 
10 - 

 
- - 

 
- - 

Fumigati - 10 
 

- - 
 

- - 
 

- - 
 

- - 
 

- - 
Nigri - - 

 
- - 

 
40 - 

 
30 - 

 
- - 

 
10 - 

Versicolores 90 10 
 

90 - 
 

90 - 
 

60 - 
 

70 10 
 

30 - 
Wentii 50 - 

 
60 20 

 
70 - 

 
80 - 

 
70 - 

 
60 - 

 

 

Table 4.9  Number of Aspergillus isolates and diversity indices in almond storage samples. 

 
Storage 1 Storage 2 

 
Storage 3 

 
A1 

 
B1 

 
A2 

 
B2 

 
A3 

 
B3 

 
In-shell Shelled 

 
In-shell Shelled 

 
In-shell Shelled 

 
In-shell Shelled 

 
In-shell Shelled 

 
In-shell Shelled 

# nuts 10 10 
 

10 10 
 

10 10 
 

10 10 
 

10 10 
 

10 10 
 
Section                  

Aspergillus 17 1 
 

20 1 
 

26 3 
 

29 1 
 

23 3 
 

37 5 
Circumdati - - 

 
2 - 

 
1 - 

 
3 - 

 
- - 

 
- - 

Flavi 2 - 
 

1 - 
 

2 1 
 

9 - 
 

4 - 
 

1 - 
Flavipedes 1 - 

 
1 - 

 
- - 

 
1 - 

 
- - 

 
- - 

Fumigati - 1 
 

- - 
 

- - 
 

- - 
 

- - 
 

- - 
Nigri - - 

 
- - 

 
4 - 

 
6 - 

 
- - 

 
1 - 

Versicolores 24 2 
 

22 - 
 

19 - 
 

11 - 
 

9 1 
 

3 - 
Wentii 8 - 

 
9 2 

 
13 - 

 
13 - 

 
9 - 

 
6 - 

                  Total 52 4 
 

55 3 
 

65 4 
 

72 1 
 

45 4 
 

48 5 
Mean/Nut 5.2 0.4 

 
5.5 0.3 

 
6.5 0.4 

 
7.2 0.1 

 
4.5 0.4 

 
4.8 0.5 

                   
Diversity Index                 

 Richnessa 5 3 
 

6 2 
 

6 2 
 

7 1 
 

4 2 
 

5 1 
 SDI

 b
 2.9 2.7 

 
3.1 1.8 

 
3.44 1.6 

 
4.12 1 

 
2.86 1.6 

 
1.63 1 

a Corresponds to number of Sections 
b Simpson Diversity Index 
 

 

Samples A and B were collected from different bags, to test if there were significant 

differences between nuts stored inside the pile or on the top of the pile of bags. No 

significant differences in fungal incidence were detected between samples A and B along 

the storage period for any of the taxa considered (P > 0.070 for all cases; Table AI.6). For 

this reason, we considered it reasonable to treat samples A and B as one sample only in 

further analysis. 
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In the next Figures of this section, data refer to the mean incidences of samples A and 

B for each storage sampling time-point. Since storage samples relate to each other 

chronologically, results of fungal incidences and diversity are represented as trend lines.  

Figure 4.6 shows the frequencies of in-shell almonds contamination with the various 

taxa identified throughout the storage period. Incidences of total fungi and Penicillium spp. 

showed to be homogeneous between samples (100% in all samples). Infection with 

Sections Flavi and Nigri increased throughout the first stage of storage (Field to 

Storage 1), and decreased again in the following period, but only section Nigri varied 

significantly (P < 0.001 and P = 0.008, respectively; Table AI.7). In January, a new period 

of climatic changes occurred. From January to March, environmental conditions began to 

invert relative to the last three months: temperature began to rise and RH decreased. Under 

these conditions, samples got substantially drier. The trend at this stage was for general 

reduction of Aspergillus incidence, but only section Nigri suffered a significant reduction 

(P = 0.044). Aspergillus diversity in in-shell almonds followed the trend of aW and 

environmental RH: during periods of higher RH, Aspergillus Richness and SDI increased, 

and vice-versa (Figure 4.8). 

 

 

Figure 4.6  Evolution of in-shell almonds infection for the various taxa under study, from the field 
until the end of storage. Frequency of infection corresponds to the number of nuts 
infected by fungi from a given taxon. 

 

 

Shelled almonds generally followed a different trend from in-shell nuts in terms of 

fungal infection (Figure 4.7). Total infection decreased from Field to Storage 2, but 

infection with Penicillium increased over that period. Aspergillus spp. significantly 
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increased during the first period of storage (P < 0.001), but then slightly decreased from 

Storage 1 to Storage 2. No significant differences were observed for each section alone in 

the overall period of storage, probably due to the extremely low levels of incidence, but 

they generally slightly increased from Field to Storage 1, decreased from Storage 1 to 

Storage 2 and increased again from Storage 2 to Storage 3. The only exception to this 

trend was section Flavi, whose incidence was higher in Storage 2 than in the other 

samples. In fact, this was the only storage sample where section Flavi was detected as a 

kernel contaminant. Shelled nuts’ Richness and SDI slightly decreased during storage 

(Figure 4.8). In spite of the analyses that have just been done for shelled nuts, we have to 

consider that the extremely low level of Aspergillus isolated from shelled almonds (21 

from a total of 150 almonds analysed) restricts the conclusions that can be drawn. 

 

 

Figure 4.7  Evolution of shelled almonds infection for the various taxa under study, from the field 
until the end of storage. Frequency of infection relates to the number of nuts infected 
by fungi from a given taxon. 

 
 

 

Figure 4.8  Diversity indices (Richness and SDI) and average number of Aspergillus per nut for 
in-shell and shelled almonds from the field until the end of storage.  
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4.1.3.1.4 Processor samples 

Frequencies of fungal infection of processor samples are shown in Table 4.10. 

Number of Aspergillus and diversity indices are presented in Table 4.11 and Figure 4.9. 

 

Table 4.10  Frequency (%) of mold-infected nuts of almond processor samples. 

 A  C  D  F 
Sample A B C1 C2 D1 D2 F1 F2 F3 

In-shell Shelled Kernel Kernel Kernel Kernel Kernel In-shell Shelled Shell  Kernel Nutmeat Seed coat 
# nuts 10 10 10 20 20 20 20 10 10 10 20 20 20 

Genus 
Total 100 100 100 100 100 100 100 100 100 100 100 100 100 
Penicillium 100 100 100 100 100 100 100 100 100 100 100 100 100 
Aspergillus 100 100 100 100 100 100 100 100 100 100 100 90 100 

Section 
Aspergillus 100 100 100 100 100 100 100 100 100 100 100 90 100 
Circumdati 30 - 10 - - - - 15 - 30 25 - - 
Flavi 50 30 40 70 50 85 85 100 40 100 95 - 15 
Flavipedes - - - 5 - - - 30 - - 5 - - 
Fumigati - 10 - - - - - - - - - - - 
Nigri 30 10 - 65 65 90 100 100 10 100 85 5 5 
Versicolores 20 20 100 30 - 25 20 40 10 70 55 5 15 
Wentii 80 20 30 45 10 80 15 90 10 80 40 - 5 

 
 
 
 

Table 4.11  Number of Aspergillus isolates and diversity indices in almond processor samples. 

Sample A B C1 C2 D1 D2 F1 F2 F3 
In-shell Shelled Kernel Kernel Kernel Kernel Kernel In-shell Shelled Shell  Kernel Nutmeat Seed coat 

# nuts 10 10 10 20 20 20 20 10 10 10 20 20 20 

Section 
Aspergillus 50 10 50 100 100 100 100 53 13 50 100 20 32 
Circumdati 3 - 1 - - - - 5 - 3 5 - - 
Flavi 19 6 7 17 15 36 50 63 4 45 50 - 3 
Flavipedes - - - 1 - - - 3 - - 1 - - 
Fumigati - 1 - - - - - - - - - - - 
Nigri 4 1 - 15 19 27 35 17 1 25 26 1 1 
Versicolores 4 2 13 6 - 5 4 4 1 8 12 1 3 
Wentii 12 2 3 10 2 25 3 18 1 14 9 - 1 

Total 92 22 74 149 136 193 192 163 20 145 203 22 40 
Mean 9.2 2.2 7.4 7.5 6.8 9.7 9.6 16.3 2.0 14.5 10.2 1.1 2.0 

Diversity Index 
Richness 6 6 5 6 4 5 5 7 4 6 7 3 5 
SDIa 2.6 3.3 2.0 2.1 1.7 2.9 2.7 3.6 2.0 3.7 1.5 1.2 1.5 

a Corresponds to number of Sections 
b Simpson Diversity Index 
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Figure 4.9  Diversity indices (Richness and SDI) and average number of Aspergillus per nut for 
processor samples.  

 

 

Samples A and B 

Samples A and B originated from the same lot of almonds, from the 2007 crop. These 

almonds were stored at the farmer’s warehouse for 5 months before being delivered to the 

processor and shelled. Samples were collected simultaneously: sample A was still in-shell, 

whereas sample B had been shelled by the processor the day before sample collection. 

These samples were taken with the aim of determining the effect of shelling at the 

processor on the fungal infection of kernels. Samples A and B were strongly contaminated 

with both genera Penicillium and Aspergillus, whereas fungi from other genera were 

almost absent (data not quantified). In-shell nuts of sample A were also highly 

contaminated with section Wentii, but those fungi significantly decreased after shelling 

(P = 0.023; Table AI.8). Besides section Aspergillus, section Flavi was the most significant 

section contaminating shelled nuts of sample A. This section decreased after shelling, but 

not in a significant way (P = 0.370). 

Fungal incidence of sample B kernels was, in general, similar to sample A (for both 

in-shell and shelled nuts), differing from sample A only for section Versicolores, which 

was significantly higher (P = 0.001 for both in-shell and shelled nuts). 

 

Samples C and D 

Samples C and D were collected simultaneously from different lots of almonds. 

Samples C originated from a lot of almonds cropped in 2007, whereas samples D 
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originated from almonds cropped in 2008. Lot C was stored at the producer for one year 

and delivered to the processor in October 2008. Lot D was stored at the producer for 4 

months and delivered to the processor in January 2009. They had both been shelled by the 

processor a few months before the first sample collection.  

The genera Penicillium and Aspergillus were present in all almonds. Section 

Aspergillus was the most representative of the genus, but sections Flavi and Nigri were 

also key contaminants. Samples D were generally more contaminated than samples C, but 

differences were only significant for sections Flavi, Nigri and Wentii (Tables 4.12 and 

AI.9). Throughout the 2 months that separated the 2 time-points of sample collection - 

20.03.2009 (samples C1 + D1) and 22.05.2009 (samples C2 + D2) -, section Wentii was 

the only one that significantly decreased. 

 

 

Table 4.12  Differences in mold-incidence between samples C and D. 

  Genus   Section         
  Total Penicillium Aspergillus  Aspergillus Flavi Nigri Versicolores  Wentii 
C1 vs D1 n.s. n.s. n.s. n.s. n.s. n.s. n.s. - 
C2 vs D2 n.s. n.s. n.s. n.s. - - n.s. n.s. 
C vs D n.s. n.s. n.s. n.s. - -- n.s. n.s. 

C1 vs C2 n.s. n.s. n.s.  n.s. n.s. n.s. + + 
D1 vs D2 n.s. n.s. n.s. n.s. n.s. n.s. n.s. ++ 
1 vs 2 n.s. n.s. n.s. n.s. n.s. n.s. n.s. ++ 

n.s., differences not significant at the P = 0.05 level (as determined by two-tailed Fisher’s exact 
test) 
+, the fungus was significantly more frequent on the first than on the latter, 0.001 < P < 0.05 
++, P < 0.001 
-, the fungus was significantly less frequent on the first than on the latter, 0.001 < P < 0.05 
--, P < 0.001 

 

 

Samples F 

Samples F were collected from a lot of almonds originated from Faro. They were 

harvested in September 2008 and stored at the producer until March 2009. Lot F had just 

arrived to the processor at the time of sample F1 collection, and was stored in the silo until 

processing. Samples F2 (kernel and shell) were collected on the first stage of processing, 

as nuts were being shelled, after 2 months of storage in the silo. Samples F3 (nutmeat and 

seed coat) were collected 4 days later, when shelled kernels were further processed to 
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bleached  (pealed) nutmeat. At this processing stage, kernels were soaked in hot water, the 

seed coat was removed and discarded, and the nutmeat was oven-dried.  

All samples F were highly contaminated with Penicillium spp. and Aspergillus spp., 

as well as with Aspergillus section Aspergillus, even those samples that suffered 

processing. Contamination with fungi from other genera was found only rarely. In-shell F1 

nuts were also strongly contaminated with sections Flavi, Nigri and Versicolores, but that 

contamination was reduced in a significant way for Flavi and Nigri when nuts were plated 

shelled (F1 shelled), meaning that only a small part of the contaminating fungi were 

infecting the kernel. But in the case where almonds were shelled by the processor, the 

resulting kernel (F2 kernel) was nearly as contaminated as in-shell almonds (F1 in-shell).  

By comparing the evolution of kernel contamination along the stages of processing 

(Figure 4.10), it is evident the increase of fungal incidence after shelling at the processor 

(F1 in-shell vs. F2 shelled), which reflects that, during the shelling process, fungi are 

transferred from the shell (and probably the environment) to the kernel. At this stage, the 

increase of sections Flavi and Nigri incidence was highly significant (Tables 4.13 and 

AI.10). For nuts that were further processed, i.e, bleached, contamination was almost 

exclusively reduced to Penicillium spp. and Aspergillus section Aspergillus, since the 

contamination with other sections of Aspergillus was significantly reduced to a small 

proportion of the F3 nutmeats. 

 

 

 
 

Figure 4.10  Frequency (%) of mold-infected kernels on processor samples F before and after 
shelling. 
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Table 4.13  Differences in fungal contamination between samples F. 

  Genus   Section            

  Total Penicillium Aspergillus  Aspergillus Circumdati Flavi Flavipedes Nigri Versicolores Wentii 

In-shell F1 vs shelled F1 n.s. n.s. n.s. n.s. n.s. + n.s. ++ n.s.  ++ 

In-shell F1 vs shell F2 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
In-shell F1 vs kernel F2 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. + 

Shelled F1 vs kernel F2 n.s. n.s. n.s. n.s. n.s. - - n.s. - - - n.s. 
Kernel F2 vs shell F2 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. - 

Kernel F2 vs nutmeat F3 n.s. n.s. n.s. n.s. + ++ n.s. ++ ++ + 

n.s., differences not significant at the P = 0.05 level (as determined by two-tailed Fisher’s exact test) 
+, the fungus was significantly more frequent on the first than on the latter, 0.001 < P < 0.05 
++, P < 0.001 
-, the fungus was significantly less frequent on the first than on the latter, 0.001 < P < 0.05 
- -, P < 0.001 
 

4.1.3.1.5 Differences between in-shell and shelled nuts 

Incidence of fungi was compared between in-shell and shelled nuts to determine if 

fungal inoculum was superficial or internal. Table 4.14 lists the differences found between 

in-shell and shelled nuts contamination. More detailed data can be found in Table AI.3. 

In chestnuts, in-shell nuts had significantly more contamination with total fungi and 

Penicillium spp. than shelled nuts, independently of chestnuts being collected from the tree 

of from the ground, or even from being on the ground for 3 weeks, meaning that 

contamination was mostly superficial. Contamination with Aspergillus spp. was very low 

or absent in both in-shell and shelled fruits, so differences were not significant for any of 

the sections.  
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Table 4.14  Differences in frequency of fungi between in-shell and shelled nuts. 

  Genus   Section 
Sample Total Penicillium Aspergillus   Aspergillus Circumdati Flavi Flavipedes Nigri Versicolores Wentii 

Chestnut, field  
Arv/07 ++ + n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
Ch1/07 ++ + n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
Ch2/07 + ++ n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 
All ++ ++ n.s.   n.s. n.s.  n.s. n.s. n.s. n.s. n.s. 

Almond, field 

Arv/07 ++ ++ ++ ++ n.s. n.s. n.s. + + n.s. 
Arv/08 ++ ++ ++ ++ n.s. ++ n.s. ++ n.s. + 

All ++ ++ ++ ++ n.s. ++ n.s. ++ ++ ++ 

Almond, storage 

Storage 1 ++ ++ ++ ++ n.s. n.s. n.s. n.s. ++ + 

Storage 2 ++ ++ ++ ++ n.s. + n.s. + ++ ++ 

Storage 3 ++ ++ ++ ++ n.s. n.s. n.s. n.s. + ++ 

All ++ ++ ++ ++ + ++ + ++ ++ ++ 

Almond, processor 

A n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. + 

F n.s. n.s. n.s. n.s. n.s. + n.s. ++ n.s. ++ 

All n.s. n.s.  n.s.   n.s.  + +  n.s. ++ n.s. ++ 

n.s., differences not significant at the P = 0.05 level (as determined by two-tailed Fisher’s exact test) 
+, the fungus was significantly more frequent on in-shell than on shelled nuts, 0.001 < P < 0.05 
++, P < 0.001 
-, the fungus was significantly less frequent on in-shell than on shelled nuts, 0.001 < P < 0.05 
--, P < 0.001 
 

 

In almonds, we considered only data of samples collected in-shell, i.e, all field and 

storage samples, and processor samples A and F. We found significantly more 

contamination with total fungi, Penicillium spp., Aspergillus spp. and section Aspergillus 

on in-shell nuts (P < 0.001) in all field and storage samples, but the differences were 

eliminated in processor samples, where shelling the fruits had no significant effect on 

removing these fungi. We can perceive a tendency for the aforementioned taxa to transpose 

the shell barrier and progressively infect the fruit as storage time goes by. For the 

remaining Aspergillus sections analysed, shelling generally resulted in a significant 

reduction of inocula for sections Flavi, Nigri, Versicolores and Wentii.  



Chapter 4 Results 
 
 
 

166 

4.1.3.1.6 Differences between nuts 

To compare fungal contamination of almonds and chestnuts, we analysed only data 

from tree samples from 2007 crop, because these were the only samples with common 

characteristics.  

While total contamination of in-shell chestnuts and almonds reached 100%, 

contamination levels with Penicillium and Aspergillus were always higher in almonds than 

in chestnuts, with significant differences observed for genera Penicillium (P = 0.001; Table 

AI.5) and Aspergillus (P < 0.001), and for sections Aspergillus (P < 0.001) and 

Versicolores (P = 0.006). Almonds showed a mean of 1.04 Aspergillus per nut, while 

chestnuts had a mean contamination level of 0.07 per nut. From the 56 Aspergillus isolated 

in 2007 from in-shell field samples, 84% originated from almonds, while only 9 (16%) 

originated from chestnuts. If we consider all samples, the difference is even more acute, 

with 92.6% of the 135 isolates resulting from almonds. 

For shelled nuts, there were no significant differences between chestnuts and 

almonds (P > 0.117). In both nuts, fungal contamination with Penicillium spp. and 

Aspergillus spp. was extremely low or null. In fact, when considering field samples, 

shelled chestnuts showed higher contamination with Aspergillus spp. than shelled almonds. 

4.1.3.1.7 Differences among almond origin 

Almonds analysed in the present study had 2 different origins: Moncorvo and Faro. 

In order to analyse differences in fungal incidence between Faro and Moncorvo almonds, 

we only compared sample Storage 3 from Moncorvo with sample F1 from Faro, since they 

corresponded to almonds collected in September 2008, and both samples were collected at 

the same time-point (20.03.2009), after approximately 6 months of storage at the producer.  

Figures 4.11 and 4.12 make a comparative analysis of fungal incidence of both 

samples for in-shell and shelled nuts, respectively. 
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Figure 4.11  Frequency (%) of mold-infected in-shell almonds for Moncorvo and Faro samples. 

 
 

 
Figure 4.12  Frequency (%) of mold-infected shelled almonds for Moncorvo and Faro samples. 

 

 

Samples from Faro were generally more contaminated than those from Moncorvo. While 

in-shell almonds from both origins showed no differences in total fungi, Penicillium spp., 

Aspergillus spp. and section Aspergillus incidences, Faro samples were significantly more 

contaminated with sections Circumdati, Flavi, Flavipedes and Nigri (Tables 4.15 and 

AI.11). On the other hand, internal contamination (shelled almonds) was significantly 

higher in Faro’s samples, since the majority of the fungi of Moncorvo´s almonds was 

eliminated by removing the shell. 
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Table 4.15  Differences in frequency of fungi of almonds relative to origin. 

  Genus       Section            

Faro vs Moncorvo Total Penicillium Aspergillus   Aspergillus Circumdati Flavi Flavipedes Nigri Versicolores Wentii 

In-shell n.s. n.s. n.s.  n.s. + ++ + ++ n.s. n.s. 
Shelled + ++ ++ ++ n.s. + n.s. n.s. n.s. n.s. 
All + ++ +   + + ++ + ++ n.s. n.s. 

n.s., differences not significant at the P = 0.05 level (as determined by two-tailed Fisher’s exact test) 
+, the fungus was significantly more frequent on Faro than on Moncorvo nuts, 0.001 < P < 0.05 
++, P < 0.001 
-, the fungus was significantly less frequent on Faro than on Moncorvo nuts, 0.001 < P < 0.05 
--, P < 0.001 
 

4.1.3.1.8 Differences between field, storage and processor samples 

In order to study the evolution of fungal contamination from production until 

processing, we compared samples with the same background. For this matter, only samples 

from Moncorvo and from crop 2008 were used (Arv/08, Storage 1, Storage 2, Storage 3 

and D1). Because sample D1 had already been shelled by the processor, we compared that 

sample with both in-shell and shelled nuts from field and storage. By comparing processed 

almonds (almonds shelled by the processor) with in-shell field and storage samples 

(Figure 4.13), we can determine the evolution of environmental contamination, but 

comparing processed almonds with shelled field and storage samples (Figure 4.14), allows 

us to determine how many of those propagules really contact with the edible part of the 

fruit on each stage of production. The significances of fungal differences are presented in 

Table AI.12. 

As can be concluded by the analysis of Figures 4.13 and 4.14, fungal contamination 

of almonds was mainly superficial, since kernels only suffered a big increase in 

contamination after being shelled at the processor (sample D1). On both in-shell and 

shelled nuts, contamination generally tended to increase significantly from field to 

processing, but that effect on shelled nuts is almost restricted to the final stage of shelling.  
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Figure 4.13  Evolution of fungal incidence from field to processing (in-shell Field and Storage 
samples). 

 
 
 

 

Figure 4.14  Evolution of fungal incidence from field to processing (shelled Field and Storage 
samples). 

 
 

4.1.3.1.9 Associations among fungi 

Associations among fungi were tested pairwise by comparing observed values (the 

number of nuts infected by both fungi) with expected values (the product of the 

frequencies of each fungus alone) using Phi correlation as measure of nominal association.  

Because samples were so heterogeneous in their characteristics, which reflected 

strongly in fungal incidence, we opted to analyse fungal associations by dividing samples 

in two groups: i) “unprocessed” samples, which included those samples without any 

processing (in-shell samples) but also those that, after being processed, maintained high 

levels of contamination (kernel and shell samples); ii) “processed” samples, which 
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included those resulting from shelling at the lab (shelled samples) and samples for which 

processing greatly altered contamination level (nutmeat and seed coat samples). This 

division was necessary because, if samples were analysed in bulk, levels of association 

between fungi would be biased by the fact that almost all “unprocessed” nuts were 

contaminated by a given group of fungi and almost none of the “processed” were 

contaminated with that same fungi. This would result in levels of association higher than 

those obtained if samples were analysed in groups with more homogeneous characteristics. 

Tables 4.16 and 4.17 list the association between fungi (Phi coefficient), and the 

corresponding significance (P-value), for “processed” and “unprocessed” samples. In the 

crosstabulations where at least one of the fungi contaminated 100% of the nuts, measures 

of association were not computed. On the other hand, associations between fungi with low 

or null incidence, namely those involving chestnut samples and sections Circumdati, 

Flavipedes, Fumigati and Nidulantes of almond samples, all resulted in extremely low Phi 

values and generally high P-values, meaning that no association could be established 

between those fungi. For that reason, those results are not shown. Also, association 

between a pair of intertwined variables is not valid, i.e., association cannot be established if 

one of the variables (e.g. Penicillium spp. or Aspergillus spp. contamination) is a 

component of the other variable (Total contamination). Consequently, associations 

between the referred taxa were not determined. 
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Table 4.16  Association between fungi in chestnuts and almonds on “unprocessed” samples (in-
shell, kernel), as determined by Qui-square test and Phi coefficient, based on 
differences between observed and predicted co-infection frequencies. 

 
Fungi Observed Predicted Phi P 

Almonds 

Penicillium spp. & Aspergillus spp. 253 250.1 0.170 0.004 

Penicillium spp. & Sec. Aspergillus 225 218.4 0.289 0.000 

Penicillium spp. & Sec. Flavi 139 133.7 0.191 0.001 

Penicillium spp. & Sec. Nigri  137 132.8 0.153 0.009 

Penicillium spp. & Sec. Versicolores 100 99.1 0.034 0.560 

Penicillium spp. & Sec. Wentii 117 112.6 0.163 0.005 

Sec. Flavi & Sec. Aspergillus 130 108.8 0.355 0.000 

Sec. Flavi & Sec. Nigri 97 66.1 0.426 0.000 

Sec. Flavi & Sec. Versicolores 56 49.4 0.096 0.103 

Sec. Flavi & Sec. Wentii 75 56.1 0.266 0.000 

Sec. Nigri & Sec. Aspergillus 122 108 0.234 0.000 

Sec. Nigri & Sec. Versicolores 44 49.0 -0.072 0.218 

Sec. Nigri & Sec. Wentii 62 55.7 0.089 0.130 

Sec. Versicolores & Sec. Aspergillus 95 80.6 0.251 0.000 

Sec. Versicolores & Sec. Wentii 54 41.6 0.183 0.002 

Sec. Wentii & Sec. Aspergillus 110 91.6 0.314 0.000 

 
 

Table 4.17  Association between fungi in chestnuts and almonds on “processed” samples (all 
samples except in-shell and kernel), as determined by Qui-square test and Phi 
coefficient, based on differences between observed and predicted co-infection 
frequencies. 

 

Fungi Observed Predicted Phi P 

Almonds 

Penicillium spp. & Aspergillus spp. 69 31.8 0.746 0.000 

Penicillium spp. & Sec. Aspergillus 64 29.3 0.710 0.000 

Penicillium spp. & Sec. Flavi 12 5.0 0.290 0.000 

Penicillium spp. & Sec. Nigri  4 1.7 0.164 0.017 

Penicillium spp. & Sec. Versicolores 12 5.0 0.201 0.004 

Penicillium spp. & Sec. Wentii 6 2.5 0.202 0.003 

Sec. Flavi & Sec. Aspergillus 11 4.0 0.304 0.000 

Sec. Flavi & Sec. Nigri 1 0.2 0.116 0.093 

Sec. Flavi & Sec. Versicolores 3 0.5 0.252 0.000 

Sec. Flavi & Sec. Wentii 2 0.3 0.204 0.003 

Sec. Nigri & Sec. Aspergillus 4 1.3 0.197 0.004 

Sec. Nigri & Sec. Versicolores 0 0.2 -0.029 0.669 

Sec. Nigri & Sec. Wentii 0 0.1 -0.024 0.729 

Sec. Versicolores & Sec. Aspergillus 7 3.0 0.200 0.004 

Sec. Versicolores & Sec. Wentii 1 0.3 0.105 0.129 

Sec. Wentii & Sec. Aspergillus 4 2.0 0.121 0.079 
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4.1.3.2 Aflatoxigenic fungi 

Even though five species outside section Flavi have been identified as AF producers 

(AF+), only fungi belonging to Aspergillus section Flavi have been previously implicated 

in the production of AFs in food and food commodities. Therefore only isolates of section 

Flavi were considered for this Section. The identification of these isolates was based on 

various phenotypic characters, involving morphological and physiological features, as well 

as the extrolite profile. For the purpose of this analysis, isolates were grouped in 3 

morphotypes – Aspergillus flavus, A. parasiticus and A. tamarii – depending on their 

morphological resemblance with these 3 species, and characterised by their AF pattern. 

Results on isolate identification to the species level will be discussed in Section 4.3. 

 

Three-hundred and fifty two isolates were identified as belonging to section Flavi: 

128 (36.4%) were grouped in the A. flavus morphotype, 195 (55.4%) as A. parasiticus 

morphotype and 29 (8.2%) as A. tamarii morphotype. Table 4.18 shows a detailed list of 

the number of Flavi isolates by sample. 

The highest number of isolates originated from processor samples (315 isolates, 

89.5%), which also had the highest average number of Flavi per nut (Figure 4.15A). Only 

17 (4.8%) and 20 (5.7%) isolates originated from field and storage samples, respectively. 

Field, storage and processor samples were more strongly contaminated with A. parasiticus 

than with A. flavus, and A. tamarii was only rarely isolated (Figure 4.15B). A. flavus and A. 

tamarii were isolated more often in processor samples. These samples differed 

significantly from field and storage samples for all morphotypes (P < 0.001; Table AI.13), 

whereas that difference was not significant between field and storage samples (P > 0.060). 
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Table 4.18  Number of Aspergillus section Flavi isolates, grouped by morphotype, isolated from 
the various samples, percentage of each morphotype relative to total Flavi, and 
average number of Flavi per nut. 

 

    Morphotypes   Total 
A. flavus A. parasiticus A. tamarii 

Sample   # % Flavi   # % Flavi   # % Flavi   # Flavi/nut 
Field 
Arv/07 in-shell 1 33.3 2 66.7 0 3 0.07 

shelled 0 0 0 0 
Arv/08 in-shell 2 14.3 11 78.6 1 7.1 14 0.31 

shelled 0 0 0 0 

Storage 
Storage 1 in-shell 0 0.0 3 100.0 0 3 0.15 

shelled 0 0 0 0 
Storage 2 in-shell 3 27.3 8 72.7 0 11 0.20 

shelled 0 0.0 1 100.0 0 1 0.10 
Storage 3 in-shell 1 20.0 4 80.0 0 5 0.25 

shelled 0 0 0 0 

Processor  
A in-shell 8 42.1 11 57.9 0 19 0.95 

shelled 2 33.3 3 50.0 1 16.7 6 0.30 
B kernel 5 71.4 2 28.6 0 7 0.70 
C1 kernel 7 41.2 9 52.9 1 5.9 17 0.85 
C2 kernel 10 66.7 3 20.0 2 13.3 15 0.75 
D1 kernel 11 30.6  20 55.6  5 13.9  36 1.80 
D2 kernel 27 54.0 16 32.0 7 14.0 50 2.50 
F1 in-shell 17 27.0 43 68.3 3 4.8 63 6.30 

shelled 0 0.0 4 100.0 0 4 0.40 
F2 shell 16 35.6  22 48.9  7 15.6  45 4.50 
 kernel 17 34.0  32 64.0  1 2.0  50 2.50 
F3 nutmeat 0 0 0 0 0.00 

seedcoat 1 33.3 1 33.3 1 33.3 3 0.15 

Total 128 36.4   195 55.4   29 8.2   352 0.68 

 

 

 

 

 
 
 

 
 

 
 

Figure 4.15  Average number of isolates (A) and percentage of isolates of each morphotype (B) by 
stage of production. 
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In order to study the evolution of average Aspergillus section Flavi per nut from 

production to processing, we compared samples with the same background. For this 

matter, only samples from Moncorvo and from crop 2008 were used (Arv/08, Storage 1, 

Storage 2, Storage 3, D1 and D2). Figures 4.16 and 4.17 illustrate the fungal evolution 

throughout the stages of production, for in-shell and shelled nuts respectively. The 

comparison of these data allows us to determine how many of the contaminating fungi are 

effectively in contact with the edible part of the fruit on each stage of production. 

As can be observed, both superficial (in-shell) and internal (shelled) contamination 

were extremely low or null during field production and storage. As the almonds got shelled 

by the processor, the number of section Flavi isolates significantly increased (P < 0.001; 

Table AI.13).  

 
 

 

Figure 4.16  Average number of isolates of each morphotype throughout production, for Moncorvo 
2008 samples. Field and storage samples refer to in-shell almonds only.  

 
 

 
 

Figure 4.17  Average number of isolates of each morphotype throughout production, for Moncorvo 
2008 samples. Field and storage samples refer to shelled almonds only. 
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Relative to almond’s origin, we compared samples Storage 3 (Moncorvo In-shell and 

shelled) and D (Moncorvo kernel) from Moncorvo with samples F1 (Faro in-shell and 

shelled) and F2 (Faro kernel) from Faro, because of their common characteristics. Figures 

4.18 and 4.19 show the difference between Moncorvo and Faro samples, in terms of 

percentage of isolates of each morphotype and average number of Flavi isolates per nut, 

respectively. In terms of morphotype distribution, A. parasiticus morphotype is more 

frequent than the other morphotypes in samples from both Moncorvo and Faro, except for 

kernels originating from Moncorvo. It is worthnoting that A. tamarii is almost exclusive of 

samples collected at the processor; it is absent from storage samples and only one isolate 

was detected from field samples (not included in this analysis). This fact may indicate that 

this is a rare morphotype in almonds from Moncorvo, and it has probably been 

disseminated in the processor’s plant by almonds originationg from Faro or from 

California, United States of America, resulting in cross-contamination of Moncorvo’s 

almonds. 

Samples from Faro were significantly more contaminated than those from Moncorvo 

(P < 0.001, Table AI.13). In fact, storage samples from Moncorvo were almost free of 

Aspergillus section Flavi, but almonds shelled at the processor were significantly more 

contaminated (P < 0.001). Once again, this may have to do with cross-contamination from 

the environment.  

 

 

Figure 4.18  Percentage of isolates of each morphotype by almond’s origin. 
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Figure 4.19  Average number of isolates by almonds’ origin. 

 

Figures 4.20 and 4.21 illustrate the percentage of each morphotype and the average 

number of isolates per nut in Faro samples for the various stages of processing. For 

almonds that are originally strongly contaminated by Aspergillus Flavi, processing can 

have an important role on the final level of contamination. By shelling at the processor, a 

significant contamination of the kernel occurred (shelled vs. kernel; P < 0.001; Table 

AI.13), i.e, propagules present at the shell or at the environmet entered in direct contact 

with the kernel. But, by submitting those kernels to oven-drying, those fungi were 

eliminated, rendering this final product a high quality in terms of fungal contamination. 

 

 

Figure 4.20  Percentage of isolates of each morphotype by type of processing, for Faro samples. 

 

 

Figure 4.21  Average number of isolates of each morphotype by type of processing, for Faro 
samples. 
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4.1.3.2.1 Frequency of aflatoxigenic and non-aflatoxigenic strains 

Table 4.19 lists the number and percentage of aflatoxigenic (AF+) isolates by sample. 

 

Table 4.19  Number of isolates and percentage of AF producers of each morphotype, by sample. 

    Morphotypes         

A. flavus   A. parasiticus   A. tamarii Total 

Sample   # AF+ % AF+   # AF+ % AF+   # AF+ % AF+   # AF+ % AF+ 

Field 

Arv/07 in-shell 1 1 100.0 2 2 100.0 0 3 3 100.0 

shelled 0 0 0 

Arv/08 in-shell 2 2 100.0 11 11 100.0 1 0 0.0 14 13 92.9 

shelled 0 0 0 

Storage 

A1 in-shell 0 2 2 100.0 0 2 2 100.0 

shelled 0 0 0 

A2 in-shell 0 2 2 100.0 0 2 2 100.0 

shelled 0 1 1 100.0 0 1 1 100.0 

A3 in-shell 0 4 4 100.0 0 4 4 100.0 

shelled 0 0 0 

B1 in-shell 0 1 1 100.0 0 1 1 100.0 

shelled 0 0 0 

B2 in-shell 3 1 33.3 6 6 100.0 0 9 7 77.8 

shelled 0 0 0 

B3 in-shell 1 0 0.0 0 1 0 0.0 

shelled 0 0 0 

Processor 

A in-shell 8 0 0.0 11 11 100.0 0 19 11 57.9 

shelled 2 0 0.0 3 3 100.0 1 0 0.0 6 3 50.0 

B kernel 5 5 100.0 2 2 100.0 0 7 7 100.0 

C1 kernel 7 1 14.3 9 9 100.0 1 0 0.0 17 10 58.8 

C2 kernel 10 3 30.0 3 3 100.0 2 0 0.0 15 6 40.0 

D1 kernel 11 3 27.3 20 20 100.0 5 0 0.0 36 23 63.9 

D2 kernel 27 4 18.5 16 16 100.0 7 0 0.0 50 21 42.0 

F1 in-shell 17 2 11.8 43 43 100.0 3 0 0.0 63 45 71.4 

shelled 0 4 4 100.0 0 4 4 100.0 

F2 shell 16 6 37.5  22 22 100.0  7 0 0.0  45 28 62.2 

 kernel 17 8 41.2  32 32 100.0  1 0 0.0  50 39 78.0 

F3 nutmeat 0 0 0 0 

seed coat 1 0 0.0 1 1 100.0 1 0 0.0 3 1 33.3 

Total   128 36 28.1   195 195 100.0   29 0 0.0   352 231 65.6 

 

 

AF production was detected in 65.6% (231 of the 352) of the isolates. The majority 

of the AF producing isolates belonged to the A. parasiticus morphotype, for which 100% 

of the isolates tested positive for aflatoxigenic ability. For the A. flavus morphotype, only 

28.1% of the isolates (10.2% of total A. Flavi) were considered AF+, whereas none of the 

isolates of the A. tamarii morphotype was identified as AF+. 
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Relative to almonds’ origin, the isolates were predominantly AF+ in both Faro and 

Moncorvo (Table 4.20) samples, but there were significantly more AF+ isolates in Faro 

samples (P < 0.001; Table AI.13).  

 

Table 4.20  Number of isolates and percentage of AF producers of each morphotype, grouped by 
origin, stage of production and type of processing. 

  Morphotypes    Total       
A. flavus A. parasiticus A. tamarii 
# AF+ % AF+   # AF+ % AF+   # AF+ % AF+   # AF+ % AF+ AF+/nut 

Origin 
Moncorvo 77 20 26.0 93 93 100.0 17 0 0.0 187 113 60.4 0.27 
Faro 51 16 31.4 102 102 100.0 11 0 0.0 165 118 71.5 1.31 

Stage of production 
Field 3 3 100.0 13 13 100.0 1 0 0.0 17 16 94.1 0.09 
Storage 4 1 25.0 16 16 100.0 0 - - 20 17 85.0 0.14 
Processor 121 32 26.4 166 166 100.0 28 0 0.0 315 198 62.9 0.90 

Type of processing 
In-shell 32 6 18.8 82 82 100.0 4 0 0.0 118 88 74.6 0.49 
Shelled 2 0 0.0 8 8 100.0 1 0 0.0 11 8 72.7 0.04 
Shell 16 6 37.5 22 22 100.0 7 0 0.0 45 28 62.2 2.90 
Kernel 77 24 31.2  82 82 100.0  16 0 0.0  175 106 60.6 0.96 
Nutmeat 0 - - 0 - 0 - - 0 - - 0.00 
Seed coat 1 0 0.0 1 1 100.0 1 0 0.0 3 1 33.3 0.05 

Total 128 36 28.1   195 195 100.0   29 0 0.0   352 231 65.6 0.45 

 

 
Field and Storage samples were contaminated by a small number of Aspergillus 

section Flavi, which were mainly AF+. On the other hand, isolates from processor samples 

were significantly more numerous (P < 0.001), but a smaller percentage of them was AF+. 

The population of A. flavus from Field samples was 100% AF+, but we have to consider 

the small number of isolates (3). 

When considering samples by type of processing, in-shell and shelled almonds, 

which corresponded mainly to Field and Storage stages of production, were the ones with 

the highest percentage of AF+ isolates, but they were weakly contaminated. The sample 

with the highest number of Flavi isolates per nut was the shell of Faro almonds (after being 

shelled by the processor), but the kernels resulting from this processing also had high 

levels of contamination. These were also the samples where the percentage of AF+ A. 

flavus isolates was higher, but the difference relative to in-shell almonds was not 

significant (P > 0.266). 
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4.1.3.2.2 Associations among fungi 

Associations between Aspergillus section Flavi contaminating almond samples is 

presented inTable 4.21. The association among the 3 morphotypes is low. Also, 

contamination with aflatoxigenic A. flavus does not seem to be associated to contamination 

with A. parasiticus and A. tamarii morphotypes. 

 

 

Table 4.21  Associations between fungi, as determined by Phi coefficient. 

 

Fungi Observed Predicted Phi P 
A. flavus AF+ vs A. parasiticus 14 6.0 0.165 0.001 
A. flavus AF+ vs A. tamarii 5 1.5 0.136 0.011 
 

A. flavus vs A. parasiticus 44 17 0.352 0.000 
A. flavus vs A. tamarii 16 4.1 0.287 0.000 
A. parasiticus vs A. tamarii 17 5.8 0.236 0.000 

 

 

The results presented in Table 4.21 correspond to the analysis of all samples in bulk. 

When considering the analysis using uniform groups of samples (by origin, by stage of 

production and by type of processing), Phi coefficients and P-values showed to be within 

the same magnitude (data not shown). The major exception was that the association 

between A. flavus and A. parasiticus in Faro samples was higher than for general analysis 

(Phi = 0.614, P < 0.001).  

4.1.3.2.3 Associations between fungi and other variables 

Tables 4.22 and 4.23 list the associations of Aspergillus section Flavi isolates (in 

terms of morphotypes and aflatoxigenicity) with the origin of the almonds and with the 

stage of production, respectively. All groups of isolates considered were more common on 

Faro samples than expected (and less common in Moncorvo), but the levels of association 

of the almonds’ origin with the aflatoxigenicity of the isolates, or even with any of the 

morphotypes, were low to very low. On the other hand, the associations with the stage of 

production ranged between low to moderate (always determined with extremely high 

statistical certainty). In all cases, almonds collected at the processor were more 
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contaminated than expected, and the opposite was verified for field and storage samples. 

Isolates from section Flavi and aflatoxigenic isolates were only moderately associated with 

the stage of production. 

 

Table 4.22  Associations between Aspergillus section Flavi and almond’s origin, as determined by 
Cramer’s V.  

Moncorvo Faro 
Fungi Observed Predicted   Observed Predicted Cramer's V P 
AF+ 82 104.2 44 21.8 0.263 0.000 
AF+ A. flavus 15 23.2 13 4.8 0.184 0.000 
Total Flavi 108 127.3 46 26.7 0.215 0.000 
A. flavus 49 65.3 30 13.7 0.231 0.000 
A. parasiticus 70 92.6 42 19.4 0.280 0.000 
A. tamarii 16 22.3 11 4.7 0.145 0.001 

 

 

Table 4.23  Associations between Aspergillus section Flavi and almond’s stage of production, as 
determined by Cramer’s V.  

Field Storage Processing 
Fungi Observed Predicted   Observed Predicted   Observed Predicted Cramer's V P 
AF+ 14 43.6 15 29.1 97 53.3 0.399 0.000 
AF+ A. flavus 3 9.7 1 6.5 24 11.8 0.210 0.000 
Total Flavi 15 53.3 17 35.5 122 65.2 0.487 0.000 
A. flavus 3 27.3 3 18.3 73 33.4 0.429 0.000 
A. parasiticus 11 38.8 15 25.8 86 47.4 0.370 0.000 
A. tamarii 1 9.3 0 6.2 26 11.4 0.256 0.000 
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4.1.4 Aflatoxin contamination of almond samples 

4.1.4.1 Method validation  

Instrumental precision was assessed by analysing 4 standard solutions over 2 

consecutive days. The HPLC conditions allowed the determination of the 4 AFs with 

retention times of approximately 15.5, 18, 20.5 and 24.5 minutes for AFG2, AFG1, AFB2 

and AFB1, respectively (Figure 4.22).  

 

 

Figure 4.22  HPLC chromatogram for a standard solution of mixed AFs (3 µg/mL of AFB1 and 
AFG1, and 0.75 µg/mL of AFB2 and AFG2). 

 
 

Calibration parameters are presented in Table 4.24. To evaluate the precision and 

recovery of the extraction method, blank samples were spiked at two different AFs 

concentrations; AFs were extracted and analysed in triplicate over 2 consecutive days. 

Clean chromatograms, with well resolved peaks corresponding to the 4 AFs, were obtained 

with spiked almonds (Figure 4.23). Chromatograms of AF-free almond samples showed no 

background interference from other substances. Results for Recovery, Relative Standard 

Deviation (RSDr and RSDint), LOD and LOQ are expressed in Table 4.25.  

 

Table 4.24  Calibration parameters of instrumentation. 

AF Calibration curve r 2 LOD (ng/mL)  LOQ  (ng/mL) 
B1 y = 6E-07x + 3E-05 0.998 0.133 0.384 

B2 y = 2E-07x + 5E-06 0.998 0.028 0.083 

G1 y = 1E-06x + 2E-05 0.991 0.230 0.725 

G2 y = 7E-07x + 1E-05 0.993 0.059 0.175 
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Figure 4.23  Chromatogram of AFs extracted from almonds spiked with 6 µg/kg of AFB1 and 
AFG1, and 1.5 µg/kg of AFB2 and AFG2. 

 

Table 4.25 Performance and precision of AFs extraction method, for each AF. 

  B1 B2 G1 G2 

  
6 

µg/kg 
2 

µg/kg 
1.5 

µg/kg 
0.5 

µg/kg 
6 

µg/kg 
2 

µg/kg 
1.5 

µg/kg 
0.5 

µg/kg 
 
Day 1  

Recovery (%) 
Replicate 1 96.0 92.2 98.7 101.8 88.4 106.9 97.8 105.9 
Replicate 2 90.6 91.4 95.2 112.7 80.4 108.5 94.8 112.8 
Replicate 3 85.3 92.7 90.3 93.7 77.7 96.5 94.3 95.7 
Mean 90.6 92.1 94.7 102.7 82.2 104.0 95.6 104.8 

SD 5.35 0.66 4.22 9.5 5.58 6.53 1.91 8.57 
RSDr (%) 5.9 0.7 4.5 9.3 6.8 6.3 2.0 8.2 

Day 2 
Recovery (%) 

Replicate 1 91.1 114.7 98.0 96.5 88.6 102.0 89.5 103.9 
Replicate 2 98.7 96.0 100.2 91.3 91.3 104.7 95.2 103.2 
Replicate 3 100.4 93.7 95.9 85.6 89.9 99.0 85.7 112.0 
Mean 96.7 101.5 98.0 91.1 89.9 101.9 90.1 106.4 

SD 5.0 11.5 2.1 5.5 1.4 2.9 4.7 4.9 
RSDr (%) 5.1 11.3 2.2 6.0 1.5 2.8 5.3 4.6 

Mean Recovery (%) 93.7 96.8 96.4 96.9 86.0 103.0 92.9 105.6 
MD int* 4.3 6.6 2.3 8.2 5.4 1.5 3.9 1.1 
RMDint* (%) 4.6 6.9 2.4 8.5 6.3 1.4 4.2 1.1 
 
LOD  (µg/kg) 0.266 0.057 0.461 0.119 
LOQ  (µg/kg) 0.768 0.166 1.451 0.350 
 
Recommended range 
Recovery (%) 70-110 50-120 70-110 50-120 
RSDr (%) 22 27  28 33  22 27  28 33 
RSDR(%) 34 41  42 47  34 41  42 47 

* Because there are only two values for mean recovery to calculate Intermediate 
Precision, mean deviation (MD) and relative mean deviation (RMD) substitute the 
commonly used standard deviation (SD) and relative standard deviation (RSD). 

** As recommended by the Codex Committee on Contaminants in Foods (CCCF, 
2008), based on the equations determined by Thompson (2000) and Horwitz & Albert 
(2006), and adopted by the European Regulation No 178/2010. 
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4.1.4.2 Sample analysis 

Results of AFs detection and quantification on Portuguese almonds, which were 

undertaken on nutmeat only, are listed in Table 4.26. Figure 4.24 shows AFs 

chromatograms of naturally contaminated samples. AFs were only detected on sample A1 

from storage. The level of contamination with AFB1 and total AFs did not reach the current 

maximum levels legally set either for almonds to be sorted and processed or for ready to 

eat almonds. 

 

Table 4.26  Aflatoxin contamination of almond samples. 

 AFs (µg/kg)  
Sample  B1 B2 G1 G2 Total 

Field      
P1/2007 < LOD < LOD < LOD < LOD < LOD 
P2/2007 < LOD < LOD < LOD < LOD < LOD 
P3/2007 < LOD < LOD < LOD < LOD < LOD 
P1/2008 < LOD < LOD < LOD < LOD < LOD 
P2/2008 < LOD < LOD < LOD < LOD < LOD 
P3/2008 < LOD < LOD < LOD < LOD < LOD 

      
Storage      

A1 4.8 0.17 < LOD < LOD 4.97 
A2 < LOD < LOD < LOD < LOD < LOD 
A3 < LOD < LOD < LOD < LOD < LOD 
B1 < LOD < LOD < LOD < LOD < LOD 
B2 < LOD < LOD < LOD < LOD < LOD 
B3 < LOD < LOD < LOD < LOD < LOD 

      
Processor      

A < LOD < LOD < LOD < LOD < LOD 
B < LOD < LOD < LOD < LOD < LOD 
C1 < LOD < LOD < LOD < LOD < LOD 
C2 < LOD < LOD < LOD < LOD < LOD 
D1 < LOD < LOD < LOD < LOD < LOD 
D2 < LOD < LOD < LOD < LOD < LOD 
F1 < LOD < LOD < LOD < LOD < LOD 
F2 < LOD < LOD < LOD < LOD < LOD 
F3 < LOD < LOD < LOD < LOD < LOD 

Maximum levels*  

To be processed 12 - - - 15 
Ready to eat 8 - - - 10 

 
* Commission Regulation (EU) No 165/2010 of 26 February 2010, setting maximum levels for 
certain contaminants in foodstuffs as regards AFs 
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Figure 4.24  Chromatogram of AFs extracted from almonds naturally contaminated with AFB1 and 
AFB2 (storage sample A1). 
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4.2 Molecular differentiation of aflatoxigenic and non-aflatoxigenic isolates 

Thirty-five isolates were analysed for the presence of genes aflD and aflQ (PCR), as 

well as for their expression (RT-PCR) under conditions that where inducive and non-

inducive of AFs production. Multiplex PCR was developed on genomic DNA with 3 

primer pairs: tub1-F/tub1-R for the tub1 gene (internal amplification control); ord1-

gF/ord1-gR for aflQ; and nor1-F/nor1-R for aflD. PCR on cDNA (RT-PCR) involved an 

extra pair of primers for aflQ, ord1-cF/ord1-cR. Figure 4.25 illustrates the expected results 

for each primer pair amplification, for RT-PCR (uniplex amplification on 2 isolates) and 

for PCR (multiplex amplification on one isolate).  

 

 

Figure 4.25  Band sizes expected from PCR and RT-PCR reactions. M - 100 bp DNA ladder 
(Promega); 1 and 2 - RT-PCR with tub1-F/tub1-R (MUM 10.202 [AF-] and MUM 
10.225 [AF+], respectively); 3 and 4 - RT-PCR with ord1-gF/ord1-gR; 5 and 6 - RT-
PCR with ord1-cF/ord1-cR; 7 and 8 - RT-PCR with nor1-F/nor1-R; 9 - PCR with 
tub1-F/tub1-R, ord1-gF/ord1-gR and nor1-F/nor1-R (MUM 10.225 [AF+]). 

 

When using the primer pair ord1-gF/ord1-gR proposed by Sherm et al. (2005) for the 

amplification from RNA, we detected a band corresponding to the size of the expected 

amplification from DNA (719 bp) in all isolates and another band corresponding to the 

expected amplification from RNA (599 bp) in the AF+ isolates. To exclude the possibility 

of DNA contamination of the RNA, we ran a PCR for various RNA samples and no 

amplification occured (data not shown), confirming the efficacy of the DNase treatment. 

Furthermore, if any DNA contamination was to be present, two bands for the tub1 gene 

would appear at sizes 1406 bp (DNA) and 1198 bp (RNA). Only the smaller band was 

present, further confirming the purity of the RNA samples. The primer pair 
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ord1-gF/ord1-cR proposed by Degola et al. (2007) did not produce any amplicon, even 

when tested in a wider number of isolates. We later came to the knowledge that these 

primers’s sequences were wrongly published, thus justifying the inexistence of 

amplification. 

Figures 4.26 and 4.27 illustrate the multiplex PCR and RT-PCR results for various 

AF+ and AF- isolates, indicating the expected band sizes. PCR and RT-PCR results for all 

isolates tested are presented in Table 4.27. 

. 

 

 
 

Figure 4.26  Agarose gel electrophoretic pattern of PCR products. M - 100 bp DNA ladder 
(Promega); 1 - 07AAsp05 (AF+); 2 - MUM 10.200 (AF+); 3 - MUM 10.201 (AF+); 
4 - 08AAsp34 (AF+); 5 - MUM 10.202 (AF-); 6 - MUM 10.225 (AF+); 7 - MUM 
10.203 (AF+); 8 - 08AAsp38 (AF+); 9 - 08AAsp39 (AF+); 10 - 08AAsp72 (AF+); 11 -
08AAsp76 (AF-);  12 - 08AAsp77 (AF-); 13 - 08AAsp83 (AF+); 14 - MUM 10.220 
(AF-). 

 

 

 

Figure 4.27  Agarose gel electrophoretic pattern of RT-PCR products. M - 100 bp DNA ladder 
(Promega); 1 - MUM 10.202 (AF-); 2 - MUM 10.225 (AF+);3 -  08AAsp72 (AF+); 
4 - 08AAsp76 (AF-); 5 - 08AAsp77 (AF-); 6 - 08AAsp83 (AF+); 7 - MUM 10.220 
(AF-); 8 - DNA-PCR control.  
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Table 4.27  Presence of genes aflD and aflQ (PCR) and their expression (RT-PCR) in Aspergillus 
section Flavi isolates. 

   Gene presence (PCR)  Gene expression (RT-PCR) 
Isolate code Classification AFB1 aflD aflQ  aflD aflQ 
07AAsp05 A. parasiticus + + +  + + 

MUM 10.200 A. flavus + + +  + +/- 

MUM 10.201 A. parasiticus + + +  + + 

08AAsp34 A. parasiticus ++ + +  + + 

MUM 10.202 A. flavus - - +  - - 

MUM 10.225 A. parasiticus ++ + +  n.d. + 

MUM 10.203 A. flavus +/- + +  + - 

08AAsp38 A. parasiticus ++ + +  + + 

08AAsp39 A. parasiticus ++ + +  + + 

MUM 10.204 A. flavus +/- + +  + - 

08AAsp43 A. flavus - + +  + - 

08AAsp66 A. parasiticus ++ + +  + + 

MUM 10.205 A. parasiticus + + +  n.d. +/- 

08AAsp68 A. parasiticus ++ + +  n.d. + 

08AAsp72 A. parasiticus ++ + +  n.d. + 

08AAsp76 A. flavus - + +  n.d. - 

08AAsp77 A. flavus - + +  n.d. - 

08AAsp83 A. parasiticus ++ + +  n.d. + 

08AAsp101 A. parasiticus ++ + +  n.d. + 

08AAsp103 A. parasiticus ++ + +  n.d. + 

08AAsp105 A. flavus - + +  n.d. - 

08AAsp108 A. parasiticus ++ + +  n.d. + 

08AAsp109 A. flavus - + +  n.d. - 

08AAsp110 A. parasiticus ++ + +  n.d. + 

08AAsp111 A. parasiticus ++ + +  n.d. + 

08AAsp112 A. flavus - + +  n.d. - 

08AAsp113 A. flavus - + +  n.d. - 

08AAsp115 A. flavus - + +  n.d. - 

MUM 10.206 A. flavus +/- + +  n.d. - 

08AAsp117 A. parasiticus ++ + +  n.d. + 

08AAsp158 A. parasiticus +++ + +  n.d. + 

        

Controls        

MUM  92.01 A. flavus +/- + +  + - 

MUM 92.02 A. parasiticus ++ + +  + + 

MUM 10.220 A. flavus - - -  - - 

01UAs55 A. flavus - - -  - - 
n.d. not determined 
+: strong signal; +/-: weak signal; -: no signal detected 

 

 

From Portuguese almond isolates (field isolates), and considering the presence of 

both genes under study (aflD and aflQ), only MUM 10.202 (AF-) was negative for the aflD 

amplicon, whereas 01UAs55 (AF-) and MUM 10.220 (AF-), herein used as negative 

controls (lab strains), showed no amplification for both aflD and aflQ.  
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RT-PCR for aflQ showed a confusing, but consistent, band pattern. All isolates tested 

for aflD expression gave a positive result, even for AF- isolates. The only exceptions were, 

as expected, the isolates negative for aflD presence (MUM 10.202, 01UAs55 and MUM 

10.220). aflQ expression was tested for all isolates. All strong AFB1 producers showed an 

amplicon near 600 bp, corresponding to the expected aflQ mRNA. This fragment was not 

detected in AF- isolates. Among the weak producers of AFB1, isolates MUM 10.200 and 

MUM 10.205 showed a weak expression signal, and isolates MUM 10.203, MUM 10.204, 

MUM 10.206 and MUM92.01 showed no signal for aflQ expression.  
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4.3 Aspergillus section Flavi 

4.3.1 Isolates characterisation and identification 

Since species identification within section Flavi is very difficult to attain, our isolates 

were characterised using a polyphasic approach. This approach involved a preliminary 

morphological identification, which resulted in the separation of the isolates into 

morphotypes, followed by the characterisation of their extrolite profile in respect to AFs 

(B1, B2, G1 and G2) and CPA production (chemotypes). The combination of morphological 

features and extrolite profile resulted in the phenotypic identification of the isolates. A 

restricted group of isolates, selected from the different phenotypes identified, were further 

characterised by genetic sequence analysis and protein mass spectral analysis. 

Isolates were characterised by comparison to ex-type and authentic strains of species 

belonging to the section.  

4.3.1.1 Phenotypic analysis 

In our survey, we isolated 352 fungi belonging to section Flavi. All isolates showing 

colony colour on CYA in a shade of green or bronze/brown were tested on AFPA. Those 

isolates simultaneously showing green colony on CYA and cadmium orange (and, in rare 

cases, cream) on AFPA, or brown colony on CYA and brown reverse on AFPA were 

confirmed as Aspergillus section Flavi. Isolates were subjected to a batch of morphological 

and physiological analysis for species identification: colony colour and diameter on CYA, 

MEA, CY20S and CYA at 42 ºC; conidia morphology and ornamentation; aspergilli head 

seriation; sclerotia morphology and size, fluorescence on CAM; and production of CPA 

and AFs. Results for all isolates are shown in detail in Appendix AII.  

As a result of preliminary morphological characterisation, isolates were divided into 

three morphotypes, based on colony colour on CYA, conidia ornamentation and colony 

reverse colour on AFPA. Figure 4.28 shows the characteristics typical of each of the 

morphotypes. One group of 29 isolates (8.2%) was very distinctive from the others, and 
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was characterised by bronze to dark-brown velvety colonies on CYA with conspicuously 

roughened thick walls, and colonies with a dark-brown reverse on AFPA (Figure 4.28A). 

Because they were very similar to A. tamarii, they were grouped as ‘A. tamarii 

morphotype’. The remaining isolates were less distinctive between each other. They had 

yellow–green to dark-green colonies on CYA and smooth to rough conidia. They also had 

a cadmium orange- or, less frequently, cream-coloured reverse on AFPA. These isolates 

were further divided into 2 morphotypes: 127 isolates (36.1%) resembled A. flavus, with 

yellow-green colonies and smooth conidia, and were included in the ‘A. flavus 

morphotype’ (Figure 4.28B). All these isolates had orange reverse on AFPA. Isolates 

similar to A. parasiticus, with olive-green to dark-green colonies and rough conidia were 

included in the ‘A. parasiticus morphotype’ (196 isolates, 55.7%; Figure 4.28C). Almost 

all isolates showed the typical orange reverse on AFPA, but six isolates showed cream 

reverse, a characteristic that has been associated with A. oryzae and A. arachidicola, but 

not to A. parasiticus.  

 

 

Figure 4.28  Morphological characteristics used for morphotype differentiation. A) morphotype 
A. tamarii; B) morphotype A. flavus; and C) morphotype A. parasitius. From left to 
right: colony colour on CYA; colony reverse on AFPA; conidia ornamentation.  
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Albeit this separation, isolates within morphotypes showed some morphological 

variance when cultured under the same conditions. In both A. flavus and A. parasiticus 

morphotypes we could observe velvety and floccose colonies, as well as sclerotia 

producers and non-producers. Also, colony colour on CYA showed various shades of 

green within A. flavus and A. parasiticus morphotypes (Figure 4.29), as well as various 

degrees of brown in the A. tamarii morphotype. Parallel to that, each isolate also showed 

high plasticity depending on culture conditions (Figure 4.30).  

 

 

 
 

Figure 4.29  Isolates 09AAsp01 (A), 09AAsp04 (B) and 09AAsp06 (C) identified as A. parasiticus 
morphotype, showing different textures and different shades of dark-green. 

 
 

 

Figure 4.30  Different morphologies shown by the isolate MUM 10.209 (A. flavus morphotype), 
when grown under different culture conditions. From top left to bottom right: growth 
on CY20S, CYA, MEA, CYA42, CYA37. 
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All isolates showed good growth on the various media at 25 ºC, consistently reaching 

diameters > 7 cm after 7 days of incubation. Sclerotia were all of the L-type (> 400 µm), 

round to elongate, and were present in 80.7% of the A. flavus isolates and in 52.6% of the 

A. parasiticus isolates. Thirty-five per cent of the A. tamarii isolates showed rare white 

elongate sclerotia. As to conidial head seriation, 63% of the A. flavus morphotype isolates 

were predominantly biseriate, whereas 94.1% of the A. parasiticus morphotype were 

predominantly uniseriate.  

Isolates were characterised on the basis of mycotoxigenic profile, namely AFBs, 

AFGs and CPA production ability. By associating morphotypes to chemotypes, isolates 

were grouped into phenotypes (Table 4.28). Interestingly, we observed that each phenotype 

was associated to a characteristic chromatographic pattern for both AFs and CPA, and that 

the chromatograms were helpful in phenotype determination. So, chromatographic patterns 

for AFs and CPA were included in the analysis as extra features. Figures 4.31 and 4.32 

show, respectively, examples of CPA and AFs chromatograms characteristic of the 

different chemotypes. 

 

Table 4.28  Morphotypes, chemotypes and phenotypes (resulting from the association between 
morphotype and chemotype) of the Aspergillus Flavi isolates. 

 

Morphotype Chemotype Phenotype # isolates 

  CPA AFBs AFGs    

A. flavus - - - A. flavus I 23 

+ - - A. flavus II 69 

+ + - A. flavus III 32 

+ +/- +/- A. flavus IV 2 

 

A. parasiticus - ++ + A. parasiticus I 169 

(?) + ++ A. parasiticus II 14 

+ ++ + A. parasiticus III 5 

- + - A. parasiticus IV 8 

 

A. tamarii + - - A. tamarii 29 
 

-: not detected 
+: detected 
++: detected in high levels 
+/-: detected in very low levels 
(?): unable to determine 
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Figure 4.31  HPLC chromatograms of CPA production analysis. A) CPA standard; B) A. flavus I 
and A. parasiticus I phenotypes (CPA-); C) A. flavus II, A. flavus III, A. flavus IV and 
A. parasiticus III phenotypes (CPA+); D) A. parasiticus II phenotype (CPA-). 
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Figure 4.32  HPLC chromatograms of AFs production analysis. A) Standard solution of mixed 
AFG2, AFG1, AFB2 and AFB1; B) A. flavus III and A. parasiticus IV phenotypes 
(AFB+ and AFG-); C) A. flavus IV phenotype (AFB+/- and AFG+/-); D) A. parasiticus I 
and A. parasiticus III phenotypes (AFB+ and AFG+); E) A. parasiticus II phenotype 
(AFB+ and AFG++). 
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The A. tamarii morphotype showed a highly consistent profile, with all isolates 

producing CPA but not AFs and exhibiting similar HPLC chromatograms. On the other 

hand, the A. flavus morphotype was more variable and four chemotypes were identified: 

18% of the isolates were found to be non-toxigenic for both AFs and CPA under the tested 

conditions, 54% produced CPA only and 26% produced AFBs and CPA. Two isolates had 

the unusual characteristic of producing CPA and small amounts of AFBs and AFGs.  

The A. parasiticus morphotype also varied in terms of extrolite profile, with four 

chemotypes identified. The majority of the isolates (86%) had the typical profile of A. 

parasiticus, i.e, were strong producers of AFBs and AFGs and did not produce CPA. 

Unexpectedly, 8 isolates (4%) were found to be AFGs negative, showing AFs 

chromatograms similar to those from aflatoxigenic A. flavus. Another group of isolates 

(7%) showed the atypical characteristic of producing more AFGs than AFBs. These 

isolates also showed a particularly different CPA chromatogram where the determination 

of CPA production was dubious due to various peaks near the CPA retention time (Figure 

4.31D). 

AFs production was also tested on CAM, for which fluorescence production and 

colour were recorded. Presence of fluorescence was correlated with AFs production at a 

very high level (Cramer’s V = 0.988, P = 0.000), since only two isolates producing AFs 

did not show fluorescence on CAM. These two isolates, MUM 10.203 and 08AAsp41, 

showed to be weak AFs producers, as determined by HPLC. Whenever present, 

fluorescence assumed different colours: blue, violet or green. Isolates producing AFBs 

only (AFB+) also produced a violet fluorescence on CAM; isolates AFB+ and AFG+ 

generally produced a blue fluorescence, the exception being those isolates producing 

higher levels of AFGs than AFBs, which in some cases produced a green fluorescence. 

Twenty-four of the 352 isolates characterised phenotypically (4 lab strains and 20 

field isolates) were selected to construct a dendrogram based on phenotypic similarity. 

These isolates were representative of the various phenotypes and, in some cases, even if 

belonging to the same phenotype, they were selected because of a special characteristic 

that differentiated them from the reference strain (e.g. different shade of green or floccose 

texture of colony on CYA). Only colony colour on CYA, conidia ornamentation, colony 

reverse on AFPA and mycotoxigenic profile (including chromatographic patterns) were 

considered for the phenotypic cluster analysis. Table 4.29 lists the 24 isolates used in this 
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analysis and the corresponding phenotypic features. The phenotypic dendrogram is 

presented in Figure 4.33. 

 
 

Table 4.29  List of strains used for analysis of phenotypic similarity, with details on the features 
used for the analysis. 

Code 
Conidia 
on CYA 

Colony colour 
on CYA 

Reverse on 
AFPA 

AFGs 
on YES 

AFBs 
on YES 

CPA 
on CYA Phenotypic ID 

Control strains 

MUM 92.01 smooth yellow-green orange - +/- + A. flavus III  
MUM 92.02 rough dark-green orange + + - A. parasiticus I 
MUM 09.03 rough brown brown - - + A. tamarii 
MUM 10.220 smooth yellow-green orange - - - A. flavus I 

Field isolates 
MUM 10.200 smooth yellow-green orange - ++ + A. flavus III  
MUM 10.201 rough dark-green orange + + - A. parasiticus I 
MUM 10.202 smooth yellow-green orange - - - A. flavus I 
MUM 10.203 smooth yellow-green orange -/+ +/- + A. flavus IV  
MUM 10.204 smooth yellow-green orange - +/- + A. flavus III  
MUM 10.205 rough dark-green orange ++ + (?) A. parasiticus II 

MUM 10.206 smooth yellow-green orange - + + A. flavus III  
MUM 10.207 rough yellow-green orange - ++ + A. flavus III  
MUM 10.208 rough dark-green orange ++ ++ + A. parasiticus III  
MUM 10.209 smooth yellow-green orange - ++ + A. flavus III  
MUM 10.210 rough dark-green cream ++ ++ - A. parasiticus I 
MUM 10.211 rough dark-green cream ++ + (?) A. parasiticus II 
MUM 10.212 rough dark-green orange - ++ - A. parasiticus IV  
MUM 10.213 rough dark-green cream ++ ++ - A. parasiticus I 
MUM 10.214 rough dark-green orange ++ + (?) A. parasiticus II 

MUM 10.215 rough dark-green cream + ++ - A. parasiticus I 
MUM 10.216 rough dark-green orange + ++ - A. parasiticus I 
MUM 10.217 rough brown brown - - + A. tamarii 
MUM 10.218 smooth yellow-green orange - + + A. flavus III  
MUM 10.219 rough dark-green orange ++ ++ + A. parasiticus III  
 

-: not detected 
+: detected 
++: detected in high levels 
+/-: detected in very low levels 
(?): unable to determine 
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Figure 4.33  Dendrogram of relatedness between section Flavi isolates based on the analysis of 8 
phenotypic characters: colony colour on CYA; conidia surface; reverse on AFPA; 
AFB production; AFG production; CPA production; chromatographic pattern of AFs; 
and chromatographic pattern of CPA. The colour map indicates the differences 
between isolates for each of the features. 

 
 

 

As expected, three major clusters corresponding to the three morphotypes were 

created, with A. tamarii being more distantly related to A. flavus and A. parasiticus. Within 

each major cluster, sub-clusters are easily related to the various phenotypes. It is 

noteworthy that isolates MUM 10.204 and MUM 10.206, although included in the 

A. flavus III phenotype, grouped closer to MUM 10.203 than to the other A. flavus III 

isolates, mostly because they share common CPA chromatograms. 
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4.3.1.2 Molecular analysis 

For the molecular analysis, two regions of the genome were analysed, namely part of 

the rRNA gene and part of the calmodulin gene, in order to determine which was more 

informative for the phylogenetic analysis. For this matter, 11 of the previously referred 24 

isolates were submitted to sequence analysis of both regions. These 11 isolates included 

individuals from A. flavus I, A. flavus III, A. flavus IV, A. parasiticus I, A. parasiticus II 

and A. tamarii phenotypes. 

The phylogenetic relationship among our isolates was analysed by various inference 

methods: Neighbour-Joining (NJ), Maximum Parsimony (MP), Maximum Likelihood 

(ML) and Bayesian Inference (BI). For the different methods, various analytical 

parameters were tested. The analyses resulted in trees with similar topologies and similar 

confidence levels (bootstrap values for NJ, MP and ML, and posterior probabilities for BI). 

Hall (2005) and Ogden & Rosenberg (2006) have stated that BI is slightly more accurate 

than ML, that MP is next, and that NJ is the least accurate approach. For that reason, 

results presented in this section are those obtained by Bayesian Inference. Trees obtained 

by the other methods are presented in Appendix III.  

Figures 4.34 and 4.35 represent the consensus trees obtained by Bayesian Inference 

for the ITS region and the calmodulin gene, respectively. The values on the branches 

correspond to the posterior probabilities of each internal node, which reflect the level of 

confidence for each clade. No outgroup was defined in these analyses. 
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Figure 4.34  Consensus tree for the ITS region obtained by Bayesian Inference. Node labels 
represent the posterior probabilities of each internal node. 

 
 
 

 

Figure 4.35  Consensus tree for the calmodulin gene obtained by Bayesian Inference. Node labels 
represent the posterior probabilities of each internal node. 

 
 

For the analysis of the calmodulin gene, 730 sites were analysed, of which 16 (2.2%) 

were phylogenetically informative. The ITS dataset included 908 sites, with 6 (0.66%) 

sites being considered informative. Because of the limited number of isolates tested and the 

significant proximity between them, the observed extremely low number of informative 
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sites was expectable. The ITS region allowed to discriminate only to a level matching that 

of the morphotypes, and created 3 clades corresponding to the A. flavus, A. parasiticus and 

A. tamarii morphotypes. On the other hand, the calmodulin gene showed higher level of 

resolution, and resulted in clades matching the phenotypes previously identified in the 

phenotypic dendrogram.  

Considering these results, we concluded that the ITS region did not have a sufficient 

level of resolution for the identification of our field isolates. On the other hand, the 

calmodulin gene showed to be a good genetic marker for the identification of our isolates. 

Taking this into consideration, the genetic analysis of the remaining 13 field isolates was 

developed with the calmodulin gene only. The phylogenetic relationship between the 24 

isolates under study is presented inFigure 4.36. In order to clarify the identification of these 

isolates, we compared the calmodulin sequences of our 24 isolates with the sequences of 

22 type strains of section Flavi available in GenBank. In this analysis, the sequences 

corresponding to the Portuguese isolates included 730 sites, whereas GenBank sequences 

were shorter, and included around 550 sites. The approximately 180 sites in excess in the 

Portuguese isolates were maintained in the analysis in order to sustain a higher level of 

resolution. In these analyses, 82 sites were considered informative for the phylogenetic 

inference.  
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Figure 4.36  Consensus tree for the calmodulin gene obtained by Bayesian Inference. Node labels 
represent the posterior probabilities of each internal node. 
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4.3.1.3 MALDI-TOF ICMS spectral analysis 

Concomitantly to the phenotypic and genetic analyses, section Flavi isolates were 

also analysed based on their protein mass spectra by MALDI-TOF ICMS. Figure 4.37 

shows a dendrogram of relatedness between 69 isolates out of the 119 isolates tested 

(58%). Besides the 11 type-strains, the 58 field isolates included in the dendrogram herein 

presented were selected as representative of all the clusters obtained in the complete 

analysis, and were distributed as follows: 4 A. flavus I (18% of all A. flavus I isolates), 9 A. 

flavus II (13%), 8 A. flavus III (24%), 2 A. flavus IV (100%), 11 A. parasiticus I (7%), 11 

A. parasiticus II (79%), 3 A. parasiticus III (60%), 8 A. parasiticus IV (89%) and 2 A. 

tamarii (7%). A. leporis type strain was used as out-group. 
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Figure 4.37  Dendrogram of relatedness between isolates of section Flavi based on MALDI-TOF 
ICMS analysis. 
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4.3.1.4 Identification of key taxonomic characters for species identification 

The association between phenotypic features and species identification was also 

determined. For this matter, species identification was based on the conjugation of 

phenotypic, molecular and spectral analysis. The four phenotypes of A. parasiticus were 

considered as being different species, whereas all A. flavus phenotypes were identified as 

A. flavus. Results are shown inTable 4.30. 

 

 

Table 4.30  Association between the various morphological and chemical features and the isolate 
classification in terms of phenotypic identification and species identification based on 
the consensus of the three data sets, as determined by Qui-square and Cramer’s V. 

 
 Phenotypic ID   Species 

Characteristic Cramer's V P   Cramer’s V P 

Reverse on AFPA 0.726 < 0.001   0.726 < 0.001 
Colour on CYA 0.994 < 0.001   0.994 < 0.001 

Sclerotia production 0.368 < 0.001   0.336 < 0.001 

Conidia ornamentation 1.000 < 0.001   1.000 < 0.001 

Seriation 0.691 < 0.001   0.679 < 0.001 

Fluorescence on CAM 0.860 < 0.001   0.689 < 0.001 

CPA 1.000 < 0.001   0.943 < 0.001 

AFBs 1.000 < 0.001   0.821 < 0.001 

AFGs 0.994 < 0.001   0.983 < 0.001 
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5.1 Mycobiota of almonds and chestnuts 

5.1.1 Fungal contamination of samples 

In a general overview, more than eighty percent of the nuts analysed in this study 

were contaminated with some kind of fungi. The most common fungi were identified as 

belonging to the genera Alternaria, Aspergillus, Botrytis, Cladosporium, Fusarium and 

Penicillium. Filtenborg et al. (2004) refer that normally less than 10 species are present in a 

given food commodity, and only 1 to 3 dominate and are responsible for spoilage. Our 

study was not intended to be an extensive survey on all contaminating fungi, and results 

are not presented at the species level, but they somewhat reflect that assumption. Even 

though mycobiota varied in terms of nuts and stage of production, we observed that, from 

among all fungi identified, few had significant impact on nuts contamination under each 

variable situation. For instance, whenever Alternaria, Botrytis, Cladosporium and 

Fusarium were widely distributed, Penicillium and Aspergillus were less significant, and 

vice-versa. And even in those samples where Aspergillus became the major contaminant, 

less than 5 sections (SDI) from the entire Aspergillus population (maximum Richness of 8) 

were of significance for the overall mycobiota. 

5.1.1.1 Chestnuts 

Field-collected chestnuts showed to be highly contaminated by unidentified yeasts 

and by filamentous fungi mainly belonging to the genera Alternaria, Botrytis, 

Cladosporium and Fusarium. Penicillium represented an incidence of 45% in in-shelled 

nuts, whereas aspergilla were identified in only 7% of the analysed nuts. From the 

Aspergillus genus, sections Nigri, Aspergillus and Wentii were the only ones present. The 

low representativeness of Aspergillus when compared to total fungal contamination reveals 

that probably this matrix and the environmental conditions in which chestnuts are produced 

are not suitable for Aspergillus establishment in the presence of other fungi. Chestnuts 

have high starch and moisture contents (Wareing et al., 2000; Barreira et al., 2009), which 

give them the potential to support the growth of a large spectrum of fungi. On the other 
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hand, during the period of chestnut maturation and harvest of 2007, Bragança registered 

mean temperatures that dropped from 18 ºC to 6.8 ºC from August to November, and the 

RH varied from 60.8% to 64.9%. During this period of 2007, to which these data refer, the 

temperature was only slightly lower than usual, but the rain was more abundant. Because 

we only have data for one crop year, we cannot clearly establish a correlation between 

mycological contamination and environmental conditions, but we can withdraw some 

conclusions on the basis of the physiological characteristics of the different fungi 

contaminating chestnuts from Trás-os-Montes. As previously mentioned, field fungi such 

as Alternaria, Cladosporium and Fusarium have ecophysiological conditions clearly 

different from those of Aspergillus and Penicillium. The first group of fungi is adapted to 

colder and more humid conditions and the latter have a more xerophilic and thermophilic 

nature (Rosso & Robinson, 2001; Filtenborg et al., 2004; Magan, 2006). Under the 

environment of chestnut production and the matrix characteristics, field fungi are notably 

more competitive in the presence of other fungi. 

In our samples, aspergilla belonging to section Flavi were completely absence. 

Besides the inadequate environmental conditions, there is also the possibility that yeasts, 

which were present abundantly, exerted some kind of antagonism over these aspergilla 

(Wicklow et al., 1980; La Pena et al., 2004).       

Few studies have been devoted to determining fungal contamination of chestnuts, 

and none has analysed chestnuts originating from the major producing countries. In fact, 

some of those studies are relative to marketed chestnuts with unknown origin. In a survey 

on commercial chestnuts collected from Canadian markets, Overy et al. (2003) detected 

twelve species, predominantly from genus Penicillium, and only two species of 

Aspergillus, A. ochraceus (section Circumdati) and A. japonicus (section Nigri), were 

isolated at very low frequencies. Sieber et al. (2007) found that chestnuts from Switzerland 

orchards were colonised predominantly by Penicillium spp. and Mucor spp., while 

Aspergillus spp. had little or no significance. On the other hand, Wells & Payne (1975) 

analysed freshly collected chestnuts from Georgia, USA, and reported strong 

contamination with Penicillium, Rhizopus, Alternaria, Fusarium and Aspergillus spp., 

mainly those from sections Wentii, Flavi and, to a lesser extent, Nigri. Abdel-Gawad & 

Zohri (1993) reported 100% contamination with Eurotium, Aspergillus and Penicillium in 

a survey on chestnuts from Saudi Arabia markets (province of Ar’Ar). In this case, sections 
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Flavi and Nigri were present in all chestnuts. Even if none of these studies refer to the 

origin of the analysed chestnuts, we can consider the hypothesis that they had been stored 

under different environmental conditions, since Georgia, USA, and Ar’Ar, Saudi Arabia, 

are hot and dry whereas Canada and Switzerland are cold and wet (URL: 

http://worldweather.wmo.int/, accessed 01.09.2010). These studies confirm that 

Aspergillus spp. are significantly more relevant in surveys from hot and dry places than 

from cold and wet places. Our environmental conditions as well as our results compare 

mostly with the latter. 

Chestnuts from Trás-os-Montes are always collected from the ground. They are 

allowed to drop from trees and they usually rest for several days or weeks on wet ground 

until gathered. Sieber et al. (2007) analysed nuts collected from the ground 2 and 7 days 

after falling and nuts collected from nets fixed below the tree canopy and they did not 

register significant differences in fungal contamination between harvest methods. In our 

study, 3 harvest methods were tested: from the tree, from the ground at the beginning of 

harvest, and from the ground 3 weeks after the beginning of harvest. Results showed that 

harvest method had no significant influence on superficial contamination, but internal total 

contamination varied significantly. Chestnuts collected after up to 3 weeks on the ground 

were significantly more contaminated internally with overall fungi than the samples that 

were collected from the tree or from the ground at the beginning of the harvest period. This 

result can be explained by the fact that the contact of nuts with the wet soil leads to an 

increased contact with fungal propagules and, under high humidity, fungi can more easily 

grow and reach the kernel. On the other hand, the fact that aspergilla were found less 

frequently in nuts collected from the ground reflects the lower competitiveness of these 

fungi under high humidity, when in the presence of other fungi. 

5.1.1.2 Almonds 

5.1.1.2.1 Field-collected samples 

Field-collected almonds showed strong contamination with the same fungi identified 

in chestnuts, mainly Cladosporium, but, besides those, Aspergillus species were also found 

to be important superficial contaminants of almonds. Eight different Aspergillus sections 
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were identified, with the most common being sections Aspergillus, Nigri and Flavi. 

Nevertheless, no internal contamination was associated with aspergilla.  

Similar results had been reported for field-collected Californian almonds (Phillips et 

al., 1979; Purcell et al., 1980; Teviotdale & Hendricks, 1994; Bayman et al., 2002). In 

these studies, Cladosporium and/or Alternaria were also considered major contaminants, 

and Mucor spp. or Rhizopus spp. were also reported. In our case, these two genera were 

also found but not at significant frequencies. That might be due to different culture 

conditions, namely the salt concentration on the culture medium being higher in our study 

(10% against 6 to 7.5% in the other studies). Phillips et al. (1979), Purcell et al. (1980) and 

Bayman et al. (2002) had also referred to Aspergillus spp. at significant frequencies, and 

reported section Nigri as the major Aspergillus contaminant, whereas other sections like 

Circumdati, Flavi, Fumigati and Nidulantes were only rarely isolated. A negligible internal 

contamination at this stage of almond production has also been reported by these authors.  

Contrary to our data, Phillips et al. (1979) and Purcell et al. (1980) mentioned the 

detection of section Aspergillus at much lesser frequencies than section Nigri. Teviotdale 

& Hendricks (1994) and Bayman et al. (2002) do not even refer to any Eurotium species 

(or any of their anamorphic counterparts) in their surveys. This was, to some extent, 

expected in the case of Teviotdale & Hendricks (1994), where culture medium used for 

fungal isolation (Potato Dextrose Agar) was not adequate for xerophilic fungi, but not in 

the others, where mycobiota was analysed in a culture medium very similar to ours (6% or 

7.5% salt agar). It is possible that the higher salt concentration in our culture medium 

(10%) gave selective advantage to Eurotium species. Other possible explanation, even if 

less probable, is that the difference might be the result of different environmental 

conditions and almonds’ aW during maturation and harvest. In neither case the almonds’ aW 

was determined, but other almonds from Trás-os-Montes produced under similar 

conditions showed aW near 0.7.  

Considering climatic data, almonds from both Trás-os-Montes and California are 

produced under similar stressful conditions. During maturation and harvest, mean 

temperatures in Moncorvo are around 20-24 ºC, but maximum temperatures are around 

31 ºC, frequently reaching 40 ºC. Relative humidity varies between 40 and 50%. California 

temperatures vary from 23 to 27 ºC, with even less rainfall than Moncorvo 

(http://worldweather.wmo.int/, accessed 01.09.2010). It is not likely, but it is possible, that 
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Californian almonds analysed in those studies were produced under more humid conditions 

than usual. Whatever the case might be, our results are supported by King et al. (1983), 

which analysed field-collected almonds with different water activity and observed that A. 

glaucus (anamorph for E. herbariorum) was the major contaminant of almonds with low 

aW (0.75-0.80), whereas A. niger was the most frequent species isolated from almonds with 

aW > 0.9. 

Penicillium and Aspergillus, and sections Nigri and Flavi specifically, were 

significantly more frequent in 2008 than in 2007. And, even though Richness and Diversity 

were not considerably different, the average number of Aspergillus isolates per nut 

increased. In fact, the climatic conditions of Moncorvo during the period of June to 

September of those two years were very different. During the maturation period of 2007 

(June to August), temperatures rounded 23 ºC, and rainfall was normally distributed, but 

the harvest period (early September) was extremely hot and dry. These conditions probably 

allowed less xerophilic fungi to preferably establish in almonds during maturation, with 

their development being further hampered by extreme dryness at the end of the harvest 

period. On the other hand, 2008 was very dry and hot during almond maturation period. 

The rainfall was almost inexistent, and mean temperatures reached 24 ºC. This period was 

probably more suitable for the establishment of more xerophilic Aspergillus spp. and 

Penicillium spp. during maturation, and less adequate for the usually predominant field 

fungi. Almonds were then harvested under more humid conditions, which may have 

favoured the growth of the already established fungi.  

5.1.1.2.2 Storage-collected samples 

When considering storage-collected almonds, Penicillium and Aspergillus were the 

predominant contaminants, both externally (in-shell) and internally (shelled). In fact, other 

genera like Cladosporium and Fusarium were still present, but were considerably less 

frequent than in field-collected nuts. Even though total contamination was not significantly 

different from field samples (100% in most cases), Aspergillus became significantly more 

important as a contaminant. This was evidenced by the average number of Aspergillus per 

nut in almonds harvested in 2008. External contamination with Aspergillus increased from 

1.7 in the field to 5.6 in storage, and internal contamination increased from 0 to 0.4.  
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On the other hand, Richness suffered a reduction from 8 to 5.5 (with only 3 sections 

being representative) on in-shell nuts, but increased from 0 to 2 on shelled nuts. This seems 

to be a reflex of the effect of extreme environmental conditions on fungal distribution. At 

the end of this period, almonds registered aW of approximately 0.63, which is too low for 

the majority of species to grow or even survive. Under these conditions, the most 

xerophilic sections Aspergillus, Versicolores and Wentii (Filtenborg et al., 2004; Hoekstra 

et al., 2004) were responsible for almost all the contamination. Without the 

competitiveness of other fungi, a few propagules of these sections were able transpose the 

shell barrier and contaminate the kernel. 

Similar results in terms of mycobiota evolution throughout storage periods had been 

observed by others. The mycobiota of sorghum grains (da Silva et al., 2000) and peanuts 

(Nakai et al., 2008) from Brazil, and kolanuts from Nigeria (Adebajo & Popoola, 2003) 

was analysed throughout storage periods of up to 12 months  and, in all cases, progressive 

increase of Aspergillus and Penicillium incidences was detected along with the decrease of 

other genera like Cladosporium and Fusarium.   

In our survey, sections Aspergillus, Versicolores and Wentii became strong 

contaminants in storage almonds, and accounted for the majority of fungal contamination. 

Section Flavi also became significant, whereas other sections like Circumdati, Flavipedes 

and Nigri were only rarely isolated. It is noteworthy that section Nigri, which was an 

important Aspergillus contaminant in the field, almost disappeared during the storage 

period. This was not expected, since almost all reports on mycobiota of almonds and other 

similar substrates during storage periods refer to this section as one of the major 

contaminants under storage conditions, alongside with section Flavi, with evident increases 

being registered throughout the storage period (e.g. Purcell et al., 1980; Adebajo & 

Popoola, 2003; Kaaya & Kyamuhangire, 2006). But a few studies (da Silva et al., 2000; 

Nakai et al., 2008) have reported results more close to ours, where section Nigri was 

isolated only rarely from long-term storage samples. Studies on unprocessed almonds 

marketed in California, USA (Joffe, 1969; King & Schade, 1986; Bayman et al., 2002), 

Spain (Jiménez et al., 1991) and Saudi Arabia (Abdel-Gawad & Zohri, 1993) have also 

identified remarkably high contamination with both sections Flavi and Nigri.  

Section Aspergillus was, by far, the predominant contaminant in our study. Other 

studies have reported the presence of these fungi, but never at incidence levels as high as 
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ours (Joffe, 1969; Purcell et al., 1980; Jiménez et al., 1991; Abdel-Gawad & Zohri, 1993). 

As previously referred for field-collected almonds, King et al. (1983) observed that 

Eurotium spp. were more associated with low aW almonds, whereas section Nigri was more 

frequently isolated from almonds with higher aW. If we transpose these results to stored 

almonds, we can hypothesise that the higher incidence of section Nigri and absence of 

section Aspergillus reported in the previously mentioned studies may be due to storage 

under higher RH than in our case or, as previously mentioned, to different culture 

conditions during fungal isolation. Storage conditions of almonds from Trás-os-Montes 

seem to be adequate and effective in the control of the problematic sections Nigri and 

Flavi. 

Our results also showed that section Nigri was only present during the storage stage 

where RH was higher, and decreased greatly in drier periods. These results point to a 

correlation between storage environmental conditions and mycobiota, since fungal 

contaminants varied throughout the 6 months of storage. The storage period to which our 

samples were subjected could be divided into 3 different stages. In the first stage (mid 

September to late October) mean temperatures and RH were still mild and therefore 

adequate for almond drying. At the end of this period in-shell almonds registered aW of 

0.63, and the mycobiota evolved in a way that accompanied the increased dryness of the 

substrate. Contamination with Aspergillus spp. significantly increased, due mainly to 

sections Aspergillus, Versicolores and Wentii, which are recognised as the most xerophilic 

of the genus (Filtenborg et al., 2004; Hoekstra et al., 2004). On the contrary, sections Flavi 

and Nigri, slightly less xerophilic (Filtenborg et al., 2004), decreased.  

During the second period of storage (late October to late January), mean 

temperatures dropped drastically to 5.7 ºC and RH increased to almost 90%. As a result, 

almonds’ aW increased to 0.72, and sections Flavi and Nigri also increased, despite the 

extremely low temperatures. This was also the stage with the highest Richness index, with 

seven sections identified, even if only four were of significance to the overall population. 

With the third stage (late February to late March) came a new increase of temperature and 

decrease of RH, and almonds’ aW was strongly reduced to 0.43. Once again, the less 

xerophilic sections reduced their incidence. These results are in accordance with the 

principle that relative humidity and matrix aW are more important in governing fungal 

growth than temperature (Samapundo et al., 2007b). 
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5.1.1.2.3 Processor-collected samples 

The majority of the Portuguese almonds is submitted to further processing after a 

period of storage at the producer. In that case, they are received in-shell by the industrial 

processor and are shelled by mechanical cracking after being water-soaked. Kernels can at 

that point be directly expedited as final product or further processed to obtain a blanched 

nutmeat. This nutmeat can also be expedited as final product, or it can be sliced or minced 

to be sold as food ingredient. Following the fate of a single batch of nuts from field to the 

end of processing is difficult, because it strongly depends on producer’s offer and market 

conditions. In our study, processor samples originated from both Moncorvo and Faro, as 

well as from 2007 and 2008 crops. None originated from the selected producer, and so we 

could not directly compare field and storage samples with processor samples, but other 

conclusions could be withdrawn. 

In a general overview, all processor-collected nuts (including those not yet 

processed) were strongly contaminated by Aspergillus and Penicillium, only rarely 

showing any other kind of fungi. Almonds suffered strong contamination with section 

Aspergillus, but sections Flavi, Nigri, Versicolores and Wentii were also present at high 

frequencies and with numerous propagules. In fact, with the exception of the ubiquitous 

section Aspergillus, sections Flavi and Nigri were the predominant fungi on these samples, 

while sections Circumdati, Flavipedes and Fumigati remained, as in previous samples, 

minor contaminants. In those samples where internal and superficial contaminations were 

independently determined, we could generally register that internal contamination was 

significantly lower that superficial contamination. Internal contaminants were mainly those 

from sections Aspergillus and Flavi.  

In-shell almonds from both Moncorvo and Faro gave some information on the effect 

of industrial shelling on kernel’s mycobiota. The average number of Aspergillus per nut 

contacting the kernel before industrial shelling, as determined by aseptically removing the 

shell in the laboratory, was limited to 2, whereas that number increased to 10 in 

industrially shelled kernels. These data suggest that mechanical shelling under industrial 

conditions leads to the contact of the kernel with a high number of fungi that would 

otherwise be limited to the shell. In fact, besides those fungi that were already highly 
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frequent superficially, other less frequent fungi like sections Circumdati and Versicolores 

became strong contaminants of the kernel after shelling.  

In a survey on Brazil nuts, Arrus et al. (2005) also found that whole in-shell nuts 

were not contaminated with section Flavi, but that contamination was present in processed 

nuts, both in-shell and shelled. These results might be due to various factors. Fungi in 

particulate foods have the characteristic of being heterogeneously distributed, i.e. a given 

fungus can strongly contaminate some nuts but not the others, so processing can result in 

its dissemination into a wider number of nuts. This dissemination is aggravated by the fact 

that fungal contamination is usually not evident in foods such as nuts, and those almonds 

that are visibly damaged are usually discarded by hand sorting only after shelling, so 

strongly contaminated in-shell nuts might be incorporated in the shelling processing stage 

and contaminate equipments and environment. Also, fungi easily disseminate in industrial 

environments through a number of different propagules, namely conidia, ascospores, 

hyphae and sclerotia, so cross-contamination from other samples via industrial 

environment constitutes a real problem.  

Some processor samples in our study had already been shelled a few months before 

sample collection. These almonds, which originated from Moncorvo, showed superficial 

contamination levels with sections Flavi and Nigri that were significantly higher than in-

shell storage- and processor-collected almonds with the same origin. Despite the fact that 

in this case superficial and internal contaminants were not differentiated, the high 

incidence of these sections in short-term stored kernels suggests that these are the fungi 

which are best fitted to the substrate and will probably cause injury in the edible part of the 

almond during storage, given appropriate conditions. 

These data suggest that, in the cases where no further processing exists, these fungi 

will remain as strong contaminants until being consumed. Sections Flavi and Nigri, 

although not necessarily producing evident deterioration of almonds, have been implicated 

in the adulteration of chemical features of various nuts (almonds, walnuts, cashewnuts, 

coconuts, peanuts; Bilgrami et al., 1983; Saleemullah et al., 2006; Singh & Shukla, 2008), 

and, more than that, are responsible for the production of mycotoxins such as AFs, CPA 

and OTA. So, they constitute real problems in terms of nuts’ safety and nutritional quality. 

Almonds from Faro were followed from the moment they arrived at the processor as 

in-shell nuts until the moment they were packed as blanched nutmeat (final product). 
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Processing involved the storage in silo for 2 months, mechanical cracking, blanching after 

being water-soaked and oven-drying. In-shell samples were highly contaminated mainly 

with sections Aspergillus, Flavi and Nigri, reaching 16 propagules per in-shell nut. After 

shelling, the contamination spread to the kernel, but processing after shelling eliminated 

the majority of the fungi. The number of Aspergillus contaminating the blanched nutmeat 

was reduced to 1 per nut, and belonged mostly to section Aspergillus. This means that 

peeling and drying the kernel to aW below 0.4 before packing was an appropriate 

processing that resulted in good quality product (in terms of fungal contamination). 

Generally, a variety of fungal survival structures (conidia, sclerotia, chlamydospores and 

ascospores) exhibit significant heat resistance at temperatures between 55 and 95 ºC. 

Conidia from A. niger, A. flavus, A. parasiticus and mostly E. rubrum, have been reported 

to be extremely resistant to temperatures around 55 ºC (see Scholte et al., 2004 for 

revision), but these fungi were almost completely eliminated from our samples after being 

submitted to oven-drying. 

5.1.1.3 Differences among nuts 

In-shell almonds and chestnuts were both strongly contaminated by fungi commonly 

present in the environment, but almonds were significantly more contaminated with 

Aspergillus than chestnuts. The main difference between the two nuts in terms of 

Aspergillus contamination was the presence of sections Aspergillus, Flavi and Nigri in 

almonds, which were rare or even absent in chestnuts. One of the possible explanations for 

the higher contamination of almonds with Aspergillus species is the differences in 

environmental conditions under which each type of nut is produced. Almonds are produced 

under considerably dryer and warmer conditions than chestnuts, and these conditions 

probably make Aspergillus more competitive when facing other fungi.  

The differences in intrinsic biological and chemical characteristics of both matrices 

may also account for Aspergillus advantage in almonds when compared to chestnuts, in the 

presence of competing fungi. As previously referred, almonds are extremely rich in protein 

and fat, whereas chestnuts are mainly composed of water and carbohydrates. Sections 

Flavi and Nigri seem to be well adapted to almonds. This is probably related to their ability 
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to produce a wide range of hydrolytic proteins such as lipases that confer them advantage 

in fat-rich substrates (Mellon et al., 2000; Yu et al., 2003; Mellon et al., 2007).  

Even though Aspergillus were more abundant in the outer shell of almonds, internal 

contamination was higher in chestnuts. This suggests that, even though almonds are 

exposed to higher levels of Aspergillus contamination, spore germination and colonisation 

of internal tissues is probably easier in chestnuts. This fact is potentially due to the fact that 

the shell is thinner and more prone to damage in chestnuts (Wells & Payne, 1975). 

Furthermore, they are somewhat more perishable (Mignani & Vercesi, 2003) and are easily 

spoiled by insects (Wells & Payne, 1975; Jermini et al., 2006). 

5.1.1.4 Differences among origin 

Almonds from Faro were significantly more contaminated with sections Circumdati, 

Flavi, Nigri and Flavipedes than those from Moncorvo. Internal contamination with 

Penicillium spp, section Aspergillus and section Flavi was also significantly higher in 

Faro’s almonds. The higher levels of contamination in these samples probably have to do 

with two main factors. Whereas in Trás-os-Montes the almond culture continues to be a 

strong source of local financial income, the almond production in the region of Algarve has 

been in great decline for the last decade (INE, 2005), and producers do not develop an 

intensive production of this culture. This means that almonds from Algarve are not 

harvested every year or, when they are, they can be maintained in storage by the producer 

for years, depending on the market conditions. The mix of old nuts with new ones and the 

storage for long periods can be the source of high levels of contamination with the most 

common storage fungi, like Penicillium spp. and Aspergillus spp.  

On the other hand, the environmental conditions under which Faro’s almonds were 

produced and harvested were more prone to Aspergillus development than those from 

Moncorvo. In fact, almonds from Faro (2008 crop) were produced under high drought and 

temperature stress, with 4% the usual rainfall and mean temperature 1.7 ºC higher, but 

harvest was done under high humidity, with September having 700% more rain than usual. 

Even though we did not follow those almonds at the producer and we do not know the 

conditions to which the monitored almonds were submitted during storage, we can suppose 

that probably the maturation period selected for more xerophilic fungi, but then the drying 
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period after harvest was longer than usual, allowing for some of those fungi, namely from 

sections Flavi and Nigri, to more easily establish and develop. Similar situation, even if not 

so marked, had been observed between the two monitored years for Moncorvo’s almonds. 

5.1.1.5 Associations among fungi 

Associations among fungi were almost always positive and generally highly 

significant, but high levels of association between fungi were rare. In “unprocessed” 

samples, section Flavi correlated mostly (but only moderately) with section Nigri. This 

means that, in general, nuts superficially contaminated with representatives of section 

Flavi are more likely to be co-contaminated with section Nigri than with any other fungus. 

On the other hand, in “processed” almond samples, i.e. those samples which suffered some 

kind of processing that altered the type and level of superficial contamination, Penicillium 

spp. contamination highly and significantly correlated with Aspergillus spp. and section 

Aspergillus, but sections Flavi and Nigri associated very poorly with each other.  

Numerous studies have been devoted to fungal surveys on nuts, but few studies have 

tested for associations among fungi on individual seeds or crop parts. Doster et al. (1996) 

and Bayman et al. (2002) reported a highly significant association between A. flavus and A. 

niger for Californian figs and for Californian nuts (pistachios, almonds, walnuts and Brazil 

nuts), respectively. Also, and even though the association is not clearly determined, the 

majority of studies on Aspergillus surveys refer to similar numbers or incidences of both 

sections Flavi and Nigri, being that on nuts (King & Schade, 1986; Abdel-Gawad & Zohri, 

1993; Freire et al., 2000; Singh & Shukla, 2008) or on other foods (e.g. Freire et al., 2000; 

Sanchéz-Hervás et al., 2008), which suggests that they are, in fact, associated to some 

degree. This association is probably due to the fact that sections Flavi and Nigri share 

common habitats and ecophysiological characteristics (Rosso & Robinson, 2001; Magan, 

2006; Klich, 2007), so conditions that favour one of these fungi probably favour the other. 

An alternative explanation given by Bayman et al. (2002) is that infection by one 

Aspergillus species makes a fruit more susceptible to other aspergilli. Results obtained by 

Phillips et al. (1979) did not reflect the same type of correlation, as they reported that 

section Flavi was negatively correlated with sections Nigri and Aspergillus.  
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Doster et al. (1996) and Bayman et al. (2002) reported a negative association 

between Aspergillus spp. and Penicillium spp. Bayman et al. (2002) postulated that there is 

probably some degree of antagonism or competitive exclusion between Aspergillus spp. 

and Penicillium spp. Our results do not support this theory. Also, a study on the 

antagonistic effect of various fungi against Aspergillus spp., especially section Flavi, in 

Californian almonds detected that growth of aspergilli in the presence of penicilli was not 

significantly deterred (Phillips et al., 1979). Joffe (1969) observed that fungi with higher 

aW requirements had stronger antagonistic effect over A. flavus than those fungi usually 

associated with dry foods. It is not completely understood if competition is due to 

antagonistic effects or to the physical and chemical environment. Whatever the case might 

be, our results corroborate that perception, since samples with high incidences of field 

fungi were less contaminated with Aspergillus spp. and vice-versa. 

5.1.2 Aflatoxigenic fungi 

In this section, isolates will be referred to as A. flavus, A. parasiticus and A. tamarii 

lato sensu, based only on their identification to the phenotypic level in terms of 

morphology and aflatoxigenic profile. Identification to the species level will be considered 

later. In our survey, only almonds were contaminated with Aspergillus section Flavi, so 

chestnuts will not herein be considered.  

In our survey, A. parasiticus was found to be the predominant species, corresponding 

to 55.4% of all isolates, followed by A. flavus (36.4%) and A. tamarii (8.2%). Our results 

go against the majority of the reports, being that on almonds (Abdel-Gawad & Zohri, 1993; 

Bayman et al., 2002) or on other foods (Cotty, 1997; Wicklow et al., 1998; Klich, 2002b; 

Barros et al., 2003, 2005; Batista et al., 2003; Vaamonde et al., 2003; Arrus et al, 2005a; 

Razzaghi-Abyaneh et al.; 2006; Iamanaka et al., 2007; Atehnkeng et al., 2008; Nakai et al., 

2008; Sánchez-Hervás et al., 2008), where A. flavus is usually found to be the dominant 

species, and A. parasiticus, A. nomius and A. tamarii are found only rarely.  

In terms of aflatoxigenicity, 65.6% of our isolates were found to produce at least one 

type of AFs. A. parasiticus were found to be all aflatoxigenic, whereas only 28.1% of the 

A. flavus isolates were detected to produce AFs. None of the A. tamarii isolates produced 
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detectable amounts of AFs. A. parasiticus and A. tamarii toxigenic profiles were as 

expected, as they are very consistent throughout regions and substrates.  

The factors responsible for the toxigenicity profile of A. flavus populations in a 

region or substrate are not fully understood. The fact that low levels of aflatoxigenic A. 

flavus were found in almonds, a rich-carbon substrate, may be related to the theory 

proposed by Bilgrami et al. (1988) and Horn & Dorner (2001), which suggests that AF 

production ability and other wild-type characters in A. flavus are lost in nutritionally rich 

environments.  

Another interesting observation from our study was that A. parasiticus was more 

significant in field and storage samples (nearly 80%) than A. flavus and that, as samples 

were submitted to storage, at both producer and processor, A. flavus became progressively 

more significant. In processor samples, the first samples taken (late March) had an 

incidence of 27 to 42% of A. flavus, and two months later that incidence ranged from 35 to 

71%. This fact may in part be the result of A. flavus being more adapted to the 

environmental conditions at the processor’s warehouse and the almonds’ aW than 

A. parasiticus. Water activities from processor samples were always very low (below 0.56 

in all samples), but were slightly higher at the end of the storage period for most of the 

samples (increased from 0.43 to 0.53, in average). The warehouse environmental 

conditions were not fully and correctly registered, because of problems with the data 

logger installed at the warehouse, but temperatures during the monitored period (March to 

May) were higher than normal, reaching almost 30 ºC, and relative humidity was below 

70%. Gonçalez et al. (2008) reported that A. parasiticus was more frequent in dry pods of 

Brazilian peanuts whereas A. flavus was found more frequently in less mature pods.  

5.1.3 Aflatoxin extraction and detection 

5.1.3.1 Method performance 

In the present work, an analytical procedure was tested and in-house validated for the 

determination of AFB1, AFB2, AFG1 and AFG2 in almonds, based on immunoaffinity 

column sample cleanup and HPLC coupled with photochemical derivatisation and 

fluorescence detection. The calibration parameters (linearity) that determine the precision 
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of the equipment were satisfactory. Linearity is considered to be achieved when the 

coefficient of determination (r2) is ≥ 0.997 (Chan, 2004). In our case, r2 was slightly below 

that level for AFG1 and AFG2 (0.991 and 0.993, respectively). LOQ values were 0.77, 

0.17, 1.45 and 0.35 µg/kg for AFB1, AFB2, AFG1 and AFG2, respectively. LOQ values 

from other reports using methodologies similar to ours vary widely. Campone et al. (2009) 

and Muscarella et al. (2009) reported LOQ levels in the range of 0.1-0.22, 0.04, 0.2-0.5 

and 0.1 µg/kg for the four AFs. Chun et al. (2007) reported LOQs of 0.15, 1.40, 1.30 and 

2.5 µg/kg. Even if higher than in some other reports, LOQs obtained in our study were 

satisfactory, since they were more sensitive than the specified limits imposed by European 

Regulations (EC, 2010a). 

The results of the in-house validation procedure demonstrated the conformity of the 

method of AFs analysis in almonds with provisions of Regulation (EC) No. 401/2006 (EC, 

2006a). The recommended range for recovery rates is 70-100% for AFB1 and AFG1, and 

50-120% for AFB2 and AFG2 for the AFs concentrations tested. The mean recovery rates 

obtained in our study were 93.7 and 96.8% for AFB1 (for 6 and 2 µg/kg, respectively), 96.4 

and 96.9% for AFB2 (for 1.5 and 0.5 µg/kg, respectively), 86.0 and 103.0 for AFG1 (for 6 

and 2 µg/kg, respectively), and 92.9 and 105.6 for AFG2 (for 1.5 and 0.5 µg/kg, 

respectively). RSDr ranged from 0.7 to 11.3%, which also complied with the recommended 

values (which range from 22 to 33%). Similar results from both recovery rates and RSDr 

were obtained by Trucksess et al. (1994). On the other hand, Campone et al. (2009) 

reported slightly lower recovery rates for similar spiking concentrations, ranging from 84 

to 91%. Abdulkadar et al. (2000) tested almonds spiked with 10 µg/kg of AFB1 and AFG1 

and 2.5 µg/kg of AFB2 and AFG2, and obtained average values ranging from 87 to 95%. 

Under the described conditions, AFB1, AFB2, AFG1 and AFG2 were resolved with 

retention times between 15 and 25 min. Retention times can be reduced by increasing the 

organic solvent percentage (Campone et al., 2009). However, when analysing food sample 

extracts, it is common to have some level of background noise due to co-extractable 

materials which usually elute during the first minuts of the run. Therefore, the lower 

organic solvent percentage used, even though it elongates the time of run, is advantageous 

to allow the separation of the four AFs from the potential interfering components. HPLC 

chromatograms obtained from the blank and spiked almond extracts clearly showed that 
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there were no interfering peaks in the elution area of the four AFs, which suggests that the 

method employed is adequate and highly selective for AFs. 

5.1.3.2 Aflatoxins detection in almond samples 

A total of 4.97 µg/kg, corresponding mainly to AFB1, was detected in only one of the 

21 (5%) almond samples analysed. No AFGs were detected in any of the samples. 

European standards currently set admissible levels for almond kernels contamination with 

AFB1 and total AFs (AFT, sum of B1, B2, G1 and G2) to 12 µg/kg and 15 µg/kg, 

respectively, for kernels that will be further subjected to sorting or physical treatment, or 8 

µg/kg and 10 µg/kg, respectively, for kernels intended for direct consumption (EC, 2010a). 

The contaminated sample originated from storage almonds, which can be included in the 

first group. In either case, contamination was below the current admissible levels. Even if 

the more restrictive European legislation from 2006 was to be considered (EC, 2006b), 

where the levels for the first group were set to 5 and 10 µg/kg for AFB1 and AFT, 

respectively, the contaminated sample was below the admissible levels.  

Low levels of AF incidence in almonds had already been reported by others. Schade 

et al. (1975) found that only 14% of unsorted in-shell nuts from California were 

contaminated with AFs, generally at low levels. Abdel-Gawad & Zohri (1993) and 

Abdulkadar et al. (2000) analysed various nuts marketed in Saudi Arabia and Qatar (no 

origin reported), respectively, and found that none of the in-shell and shelled almond 

samples were contaminated. AFB1 (95 ng/kg) and AFB2 (15 ng/kg) were found in one 

sample of almonds from Spain by Jiménez & Mateo (2001). Only traces of AFs were 

associated with whole almonds from Morocco (Bottalico & Logrieco, 2001). 

None of the field samples was found to be contaminated with AFs, even though 

almonds from Moncorvo were subjected to stressfull conditions in both years of field 

sampling. The only contaminated sample in our study corresponded to in-shell almonds 

from the initial period of storage. It would be expectable that, throughout this period, levels 

of contamination would increase. Saleemullah et al. (2006) studied the effect of storage on 

the AF contamination of almonds, and detected that the level of contamination was 

significantly affected by storage duration. In that study, contamination of AF-free almonds 



Chapter 5 Discussion 
 
 
 

223 

inoculated with aflatoxigenic A. flavus increased to 7.5 µg/kg after 3 months of storage and 

to 12 µg/kg after 18 months, with moisture content increasing from 2.7% to 41.3%.  

In terms of processor samples, we would expect that these samples would be more 

contaminated with AFs than those from field and storage, because of significantly higher 

levels of contamination with aflatoxigenic fungi, but no contamination was detected. 

Results of a survey on the occurrence of AFs in processed (peeled, sliced, diced, and 

ground) Italian almonds showed that a negligible AF risk, if any, was associated with 

processed products (principally ground almond; Bottalico & Logrieco, 2001). Opposite 

results were found in two surveys on processed California almonds (Schade et al., 1975; 

Schatzki, 1996), where AFs were found essentially on diced or ground material. This 

finding may be associated with the fact that processed nuts are considered low-quality 

products, since they usually integrate damaged almonds, either by lack of sorting or to hide 

damages.  

In this study, aW from storage and processor samples was always maintained below 

the safety value of 0.7. Aflatoxigenic isolates were able to persist or even grow but were 

not capable of producing AFs (Gqaleni et al., 1997; Arrus et al., 2005). Another factor that 

might be influencing the amount of AF in our samples is that simultaneous infection with 

other fungi, namely A. niger, Rhizopus spp., Trichoderma and Penicillium spp., can result 

in decreased AF levels (Wicklow et al., 1980; Mislivec et al., 1988; Nout, 1989; Doster et 

al., 1996; Aziz & Shahin, 1997; Bayman et al., 2002). In fact, no section Nigri isolates 

were detected in our AF contaminated sample. Furthermore, in samples where AFs were 

not detected, all nuts contaminated with section Flavi isolates were also contaminated with 

other fungi, namely Penicillium spp. and, with the exception of two storage samples, 

section Nigri.  

It has also been shown that non-aflatoxigenic A. flavus have an effect of competitive 

exclusion towards aflatoxigenic isolates (Cotty & Bayman, 1993; Cotty, 1994). Except for 

storage samples (including the one contaminated), all other samples contaminated with 

aflatoxigenic isolates were also contaminated with a relevant proportion of non 

aflatoxigenic A. flavus. Also, a low number (2 isolates) and incidence (two in ten nuts) of 

Aspergillus section Flavi was detected as superficial contaminant of the AF contaminated 

sample, but the only two isolates were identified as A. parasiticus, a strong AFs producer. 

Doster et al. (1996) had also reported that all figs contaminated with A. parasiticus (present 
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in low numbers) were heavily contaminated with AFs (> 100 µg/kg), whereas figs 

contaminated with A. flavus (mainly atoxigenic) were free of AFs. One or all of these 

biological factors could have been responsible for the low incidence of AFs in our samples.  

5.1.4 General quality and safety of Portuguese chestnuts and almonds  

Our results suggest that chestnuts are superficially strongly contaminated with 

various fungi but internal contamination is usually limited to unidentified yeasts and a 

reduced number of filamentous fungi which are potentially toxigenic. In fact, Penicillium 

spp., which in our study were strongly associated with internal contamination, have been 

widely associated with nuts contamination with several types of mycotoxins (CAST, 

2003). Fusarium spp., which are responsible for the production of a wide range of 

mycotoxins (CAST, 2003), have also been determined to be important in chestnut 

contamination. On the other hand, Aspergillus species were only found occasionally. There 

are few reports on chestnuts contamination with mycotoxins. Abdel-Gawad & Zohri 

(1993) analysed a wide range of mycotoxins in chestnuts strongly contaminated with 

Fusarium, Penicillium and Aspergillus, and detected AFB1 and AFG1. On the other hand, 

Overy et al. (2003) detected significant contamination of Canadian chestnuts with 5 

mycotoxins, chaetoglobosins A and C, emodin, ochratoxin A and penitrem A, associated 

with the most prolific penicillia, but no AFs were detected. 

As said, the production of mycotoxins is strongly dependent on the environmental 

conditions under which food products are produced and stored. Regional chestnuts are 

harvested during the rainy season, which could lead to the development of contaminating 

fungi and subsequent mycotoxin production, but they are immediately dried in a warm and 

aerated warehouse and fumigated. Treated chestnuts are then stored in 50 kg bags under 

controlled atmosphere with low temperature and high CO2 concentration until they are 

further processed or shipped as fresh fruit. These conditions strongly deter fungal growth 

and mycotoxin production (e.g. Filtenborg et al., 2004; Giorni et al., 2008), mainly under 

high humidity or water activity of the fruit, as is the case with chestnuts. During 

processing, nuts go through various stages of selection (both mechanical and human), and 

low quality nuts (with visible insect or mould damage; naturally damaged shell, etc) are 

segregated and do not integrate final processed products. 



Chapter 5 Discussion 
 
 
 

225 

Almonds from all over the world have been strongly associated with mycotoxigenic 

fungi, and especially the highly toxigenic sections Flavi and Nigri seem to be well adapted 

to this matrix. Also, they have been frequently associated with AF contamination. 

Almonds have not been a frequent subject of survey for mycotoxins other than AFs, but 

Zaied et al. (2010) have searched for OTA in almonds from Tunisian markets and found 

contamination with 61 µg/kg, proving that this may be a potential risk for almonds, as a 

consequence of the strong contamination with section Nigri. Other mycotoxins produced 

by field fungi are probably not an important issue in this type of nut.  

Howerver, almonds originating from Portugal seem to be produced, stored and 

processed in such a way that, even though allowing the contamination with those fungi, are 

not conducive to strong internal infection and AF contamination. Thus, it seems that those 

conditions are adequate for the production of almonds and by-products, and that there 

should not be major worries on the quality and safety of those products. 
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5.2 Molecular differentiation of aflatoxigenic and non-aflatoxigenic isolates 

For the molecular differentiation of aflatoxigenic and non-aflatoxigenic isolates, we 

have selected the aflD gene, which is responsible for the conversion of norsolorinic acid 

(NOR) to averantin (AVN) in the middle of the AF biosynthetic pathway (Yu et al., 

2004a), because its expression had been reported as showing a high correlation to 

aflatoxigenic ability (Scherm et al., 2005). The aflQ gene was specifically chosen because 

it is considered to be the only gene envolved in the final step of transforming O-

methylsterigmatocystin (OMST) into AFB1 (Yu et al., 2004a), a crucial step of the AF 

pathway that seems to be unique to aflatoxigenic species (Prieto & Woloshuk, 1997).  

The presence of these two genes could not be correlated to AF producing ability: the 

genes were detected in all aflatoxigenic isolates, but the same happened for many of the 

non-aflatoxigenic isolates. Yin et al. (2009) reported that 24 of 35 A. flavus isolates 

containing no detectable AFs had the entire AF gene cluster, and only eleven atoxigenic 

isolates had different deletion patterns in the cluster.  

Since multiplex RT-PCR for the 3 genes (tub1, aflQ and aflD) revealed some 

inconsistency in the amplification patterns, we chose to test aflD and aflQ (maintaining 

tub1 as internal amplification control in all cases) expression separately. We found 

expression of aflD in both aflatoxigenic and non-aflatoxigenic isolates, and for that reason 

we chose not to analyse its expression for all the isolates. RT-PCR for aflQ showed a 

confusing, but consistent, band pattern. When using the primer pair ord1-gF/ord1-gR 

proposed by Sherm et al. (2005) for the amplification from RNA, we detected a band 

corresponding to the size of the expected amplification from DNA (719 bp) in all isolates 

and another band corresponding to the expected amplification from RNA (599 bp) in the 

toxigenic isolates. To exclude the possibility of DNA contamination of the RNA, we ran a 

PCR for the RNA samples and no amplification occured, confirming the efficacy of the 

DNase treatment. Furthermore, if any DNA contamination was to be present, two bands for 

the tub1 gene would appear at sizes 1406 bp (DNA) and 1198 bp (RNA). Only the smaller 

band was present, further confirming the purity of the RNA samples. One of the possible 

explanations is that the 719 bp band obtained after RT-PCR of the aflQ gene may have 

resulted from defective splicing of the pre-mRNA molecule during processing (a 
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phenomenon known as alternative splicing), resulting in potential intron retention. Chang 

et al. (2010) estimated that 1.6% of the A. flavus genes are alternatively spliced. The 

number is far less than the estimates in higher organisms (e.g. up to 74% for human 

genome; Johnson et al., 2003) but close to the scale of the estimated 4.2% in the 

basidiomycetous yeast Cryptococcus neoformans (Galagan et al., 2005b). For instance, it 

has been reported that alternative splicing by intron retention is essential for amine-

regulated gene expression in Aspergillus oryzae (Kubodera et al., 2003). In the hypothesis 

of alternative splicing, we can assume that an error in the RNA processing of the aflQ gene 

stopped the production of AFs, and that no alternative pathway existed to conclude the 

transformation of OMST into AFB1.  

We detected a fragment corresponding to aflQ mRNA (599 bp) in all strong 

aflatoxigenic isolates, but not in the non-aflatoxigenic nor in the weak AFs producers (all 

A. flavus). Scherm et al. (2005) were able to detect aflQ expression in A. parasiticus strains 

only, and not in any of the A. flavus tested, even the aflatoxigenic ones. Our strong 

aflatoxigenic isolates, which showed a marked aflQ signal, are all classified as 

A. parasiticus. The fact that we were not able to detect aflQ expression in aflatoxigenic 

A. flavus is in accordance with those authors. It could result from the fact that they are very 

weak AFs producers, and gene expression is not detected, or because of incompatibility of 

the primers with A. flavus aflQ mRNA sequence. In fact, Sweeney et al. (2000) tested this 

primer pair for one strain of A. parasiticus only, but the sequence used for constructing the 

primers is reported to be the one corresponding to the A. flavus aflQ DNA sequence 

(=ord1, EMBL Accession no. U81806). Primers sequences are present in both A. flavus 

aflQ (=ord1; Prieto & Woloshuk, 1997) DNA and cDNA (EMBL Accession no. U81807) 

as well as in A. parasiticus aflQ (=ordA; Yu et al., 1998), so the non-detection of aflQ 

expression in A. flavus should not be the result of lack of complementarity between mRNA 

and primers sequences. However, we could detect a weak signal in the weak producer 

MUM 10.200, classified as A. flavus.  

The primer pair ord1-gF/ord1-cR proposed by Degola et al. (2007) did not produce 

any amplicon. We later came to the knowledge that the primers sequences published by 

those authors were not correct, which justifies the complete absence of amplification. 

In general terms, our results are contradictory to those reported by Scherm et al. 

(2005). These authors tested 9 structural and 2 regulation genes in 13 lab strains and 
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concluded that aflD expression had the best correlation between aflatoxigenicity and gene 

expression, and that aflQ expression did not show any consistency. Furthermore, they 

could not identify aflQ expression in any of the A. flavus strains, only in the aflatoxigenic 

A. parasiticus strains. In our study, the analysis of gene expression under inductive 

conditions showed a good correlation between aflQ expression and AF production ability, 

but that correlation was not observed for the aflD gene. 
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5.3 Aspergillus section Flavi 

5.3.1 Identification of Portuguese isolates based on polyphasic approach 

In the present study, we analysed, characterised and identified 352 isolates on the 

basis of 3 different types of methodologies: i) phenotypic (morphological and 

physiological) analysis; ii) DNA sequence analysis; and iii) protein mass spectral analysis 

by MALDI-TOF ICMS. 

Several morphological features were tested as identification tools, but only colony 

colour on CYA and conidia ornamentation were used as part of the phenotypic scheme of 

species identification, because they were the only ones considered significantly 

informative. In fact, these features were very consistent within morphotypes and 

phenotypes, and showed to be highly associated (as confirmed by Cramer’s test of 

association) also with species, after isolates’ identification had been confirmed by 

molecular and spectral analysis.  

Conidia ornamentation associated almost perfectly with colony colour (Cramer’s V = 

0.989, P < 0.001): all brown colonies showed conspicuously roughened conidia with thick 

walls (A. tamarii morphotype); all (except one) yellow-green colonies showed smooth 

conidia (A. flavus morphotype); and all dark-green colonies showed rough conidia (A. 

parasiticus morphotype). Based on this almost perfect association, we could be lead to the 

conclusion that the analysis of both features is redundant, and that only one of the features 

would be enough for morphotype identification. But the fact is that colony colour and 

conidia ornamentation are not always easily determined, and it is the association between 

both features that gives some confidence to this approach. 

Conidial head seriation has also been referred to as a helpful feature for the 

differentiation of A. flavus and A. parasiticus, since the first is considered to be uniseriate 

and the latter biseriate (Klich, 2002a). But each isolate usually shows both uni- and 

biseriate heads (and so they are better classified as ‘predominantly uniseriate’ or 

‘predominantly biseriate’), and both species show uni- and biseriate isolates (Rodrigues et 

al., 2009). From our population, only 64 isolates were submitted to this analysis. From 

those, 63% of the A. flavus isolates were predominantly biseriate, whereas 94.1% of the A. 
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parasiticus were predominantly uniseriate. These results show the moderate association 

between conidial head seriation and species (Cramer’s V = 0.679, P < 0.001), and 

consequently the weakness as identification tool. 

Kozakiewicz (1989) reported sclerotia production as being a rare characteristic of A. 

flavus strains only. Furthermore, the size and shape of sclerotia have also been used to 

characterise and identify new species. Kurtzman et al. (1987) associated the unique shape 

of elongate (undetermined) sclerotia with the species A. nomius, and Cotty (1989) 

distinguished one atypical A. flavus by their small (< 400 µm) and numerous sclerotia (S-

type). This atypical A. flavus has been raised to species and named A. parvisclerotigenus 

(Frisvad et al., 2005). Another species showing microsclerotia close to A. flavus, A. 

minisclerotigenes, has also been recently described (Pildain et al., 2008). In our survey, we 

found all identified species to have both sclerotia producers and non-producers. A. flavus 

sclerotia were present in 80.7% of the isolates, and were all of the L-type (> 400 µm), 

whereas 52.6% of the A. parasiticus isolates produced these structures. On the other hand, 

the two unidentified clusters of isolates related to A. parasiticus (phenotypes A. parasiticus 

II and III) had near 80% of sclerotia-producers.  Also, 34.6% of the A. tamarii isolates 

showed rare white sclerotia on CYA plate. Goto et al. (1996) described the ability to 

produce dark brown and pyriform sclerotia by A. tamarii isolates cultivated in slants, but 

not by isolates cultivated in plate. In our study, sclerotia production was not considered an 

informative feature for isolate identification, even at the morphotype level, since the 

association between sclerotia production and species was low (Cramer’s V = 0.332, 

P < 0.001). 

We also tested the ability of 64 isolates to grow at 42 ºC in CZ. Kurtzman et al. 

(1987) refer that different species show different growth abilities under these culture 

conditions. We were not able to establish a relation between this feature and identified 

species. 

Morphological characterisation was complemented with the extrolite profile of the 

isolates in order to (potentially) achieve species identification. Klich (2007) stated that not 

all A. flavus isolates produce AFs, and those that do usually produce only AFBs (and 

CPA), whereas almost all A. parasiticus isolates produce both AFBs and AFGs, but not 

CPA. Numerous studies have shown that the mycotoxigenic potential and profile of A. 

flavus is variable. In fact, this species has been frequently divided into groups 
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(chemotypes), depending on their toxigenic profile (Vaamonte et al., 2003; Razzaghi-

Abyaneh et al., 2006; Giorni et al., 2007).  

In the present study, isolates belonging to the A. flavus morphotype were divided into 

4 phenotypes based on their extrolite profile. From those, 18% did not produce AFs or 

CPA under the tested conditions, 54% produced CPA only and 26% produced both AFBs 

and CPA. Other surveys conducted on peanuts, wheat, soybeans, maize and peanut-

growing soils showed CPA producers varying from 73% to 99% (Blaney et al., 1989; Horn 

et al., 1996; Resnik et al., 1996; Vaamonde et al., 2003; Barros et al., 2005). Strains 

producing both CPA and AFBs were less frequent than in Argentinean peanuts (63%; 

Vaamonde et al., 2003), peanut-growing soils (80%; Barros et al., 2005) or corn-growing 

soils (75%; Razzaghi- Abyaneh et al., 2006), but more frequent than in other substrates (up 

to 15% in soybeans, wheat and maize; Resnik et al., 1996; Vaamonde et al., 2003).  

In the molecular analysis, the isolates were divided into three major clusters, 

representing groups of species related to A. flavus, A. parasiticus and A. tamarii. In the A. 

flavus clade, the A. flavus I (non-aflatoxigenic) and A. flavus III (aflatoxigenic) isolates 

clustered with the closely related species A. oryzae, A. thomii, A. kambarensis, A. 

fasciculatus and A. subolivaceus, independently of their aflatoxigenic ability. Similarly to 

what had been previously reported (Pildain et al., 2008), the calmodulin gene was not able 

to clearly resolve these species. A distinct sub-clade related to A. flavus, A. 

minisclerotigenes and A. parvisclerotigenus was created with the A. flavus IV (MUM 

10.203) isolate and with two A. flavus III isolates (MUM 10.204 and MUM 10.206). MUM 

10.203 differs from the other isolates by its ability to produce small amounts of AFGs.  

Several atypical A. flavus strains have been reported to produce both AFBs and 

AFGs, but, contrary to our isolates, they have been associated with the production of 

microsclerotia (S-type) and usually high levels of AFs (e.g. Saito & Tsuruta, 1993; Cotty 

& Cardwell, 1999; Geiser et al., 2000; Vaamonde et al., 2003; Pildain et al., 2008). These 

isolates included atypical S-type A. flavus isolates (named A. flavus SBG; Cotty & 

Cardwell, 1999) as well as isolates later described as A. parvisclerotigenus (Frisvad et al., 

2005) and A. minisclerotigenes (Pildain et al., 2008), to which our isolates did not cluster. 

The molecular analysis did not support the close genetic relation to any of those species. In 

respect to MUM 10.204 and MUM 10.206, we should emphasise that they were difficult to 

characterise, due to inconsistency in their aflatoxigenic profile (the production of AFGs 
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was dubious after 3 repetitions), and they were only presumptively integrated in the A. 

flavus III phenotype.  

When analysed by MALDI-TOF ICMS, all A. flavus isolates clustered in a single 

clade, regardless of mycotoxigenic pattern. So, under the tested conditions, the method was 

not able to differentiate aflatoxigenic from non-aflatoxigenic isolates. Also, A. oryzae was 

not clearly differentiated from A. flavus from the spectral points of view. Even though A. 

oryzae and one non-aflatoxigenic A. flavus isolate (MUM 10.202) segregate from the 

major cluster of A. flavus isolates, we cannot undoubtedly state that they constitute 

different species. Li et al. (2000) stated the ability to differentiate A. flavus from A. oryzae, 

as well as aflatoxigenic from non-aflatoxigenic A. flavus strains, by MALDI-TOF ICMS 

based on the analysis of spore mass spectra, but only a few non-informative spectra were 

presented. No statistical analysis was performed and no dendrogram of relatedness was 

presented to prove that statement. Furthermore, the aflatoxigenic A. flavus strains used in 

that study produced both AFBs and AFGs, which, as already mentioned, is an atypical 

feature of A. flavus. In a later study (Lee et al., 2004), some of those atypical A. flavus 

strains were analysed by morphological and molecular (amplified fragment length 

polymorphisms, AFLP) analyses and were determined to be A. parasiticus.  

Regarding the A. parasiticus morphotype, molecular analysis resulted in the 

segregation of the isolates into three different clades. The A. parasiticus I isolates and the 

only A. parasiticus IV isolate analysed (MUM 10.212) were clustered into the same clade 

as type-strains for A. parasiticus, A. toxicarius, A. terricola var. americana, A. sojae and A. 

parasiticus var. globosus (with these species being considered synonymous, at least for the 

partial calmodulin gene). These results would suggest that the two phenotypes are in fact 

different chemotypes of A. parasiticus. Another possibility would be that isolates A. 

parasiticus IV were A. parasiticus producing AFGs at undetectable levels. To our 

knowledge, there are no references on A. parasiticus isolates not producing AFGs or 

producing them at undetectable levels when AFBs are produced in high amounts. A. 

parasiticus isolates are consistently reported as strongly aflatoxigenic, producing both 

AFBs and AFGs, and only few studies have reported very low proportions (3-6%) of non-

aflatoxigenic isolates within the species (Blaney et al., 1989; Doster et al., 1996; Horn et 

al., 1996; McAlpin et al., 1998; Tran-Dinh et al., 1999; Vaamonde et al., 2003). When the 

remaining A. parasiticus IV isolates were analysed by MALDI-TOF, MUM 10.212 was 



Chapter 5 Discussion 
 
 
 

233 

also not differentiated from the typical A. parasiticus isolates (phenotype I), but all the 

other A. parasiticus IV isolates created an independent clade. These results suggest that 

these isolates might constitute a non-identified taxon closely related to A. parasiticus.  

The isolates corresponding to the A. parasiticus II and A. parasiticus III phenotypes 

consistently formed two well-defined sub-clades in all data sets. A. parasiticus II isolates 

produced all AFs, but had the distinctive characteristic of producing more AFGs than 

AFBs. Besides that, the CPA HPLC chromatogram showed to be very distinctive from the 

other chromatograms. Also, A. parasiticus III isolates were differentiated from typical A. 

parasiticus by their clear ability to produce CPA. A. parasiticus II and A. parasiticus III 

are herein regarded as 2 putative unidentified species.  

In the A. tamarii morphotype, only one chemotype (represented by the isolate 

MUM 10.217) was identified corresponding to the expected extrolite profile. The A. 

tamarii isolates clustered with the A. tamarii type-strain also in the molecular and spectral 

approaches, thus confirming the correct identification.  

By comparing the phenotypic aggregation of the isolates using colony colour on 

CYA, conidia ornamentation, CPA production and AFs production with the molecular 

identification achieved by the calmodulin sequence analysis, we could observe that the two 

approaches were in very good agreement. Similar conclusions had already been reported 

by various authors working with section Flavi and with other sections in the Aspergillus 

genus (e.g. Ito et al., 2001; Peterson et al., 2001; Samson et al., 2004b, 2007; Serra et al., 

2006; Varga et al., 2007a, 2007b; Pildain et al., 2008; Zalar et al., 2008).  

5.3.2 Identification of key taxonomic characters for species identification 

Phenotypic features as markers for species identification 

As previously referred, numerous studies have reported species identification of 

section Flavi isolates based on morphological and physiological characterisation, but none 

has clearly stated the level of accuracy of the features used. In our study we were able to 

determine which phenotypic characteristics were more reliable for species identification. In 

this analysis, colony colour on CYA, conidia ornamentation, CPA production, AFBs 

production and AFGs production showed high association with species. CPA, AFBs and 

AFGs production correlated perfectly or almost perfectly and significantly with phenotype, 
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meaning that all isolates included in each of the phenotypes showed the same extrolite 

profile.  

Also, all isolates of each of the phenotypes had the same type of conidia 

ornamentation. Relative to colour on CYA, also used for isolate distribution into 

phenotypes, the association with phenotypes was very high but not perfect. In fact, there 

was one isolate that could not be assigned to a morphotype, because it showed smooth 

conidia but dark-green colour on CYA. After the mycotoxin profile was determined for 

that isolate, it was included in the A. flavus I phenotype. Other features like reverse on 

AFPA, fluorescence on CAM and aspergilla head seriation showed to be less reliable as 

identification characters, even though they had high level of association with the 

phenotypes. Sclerotia production on CYA was poorly associated with phenotype. 

We consider that the determination of a reduced number of phenotypic features that 

result in reliable species identification is of major importance in fungal surveys and 

population studies, as well as in those cases where laboratories lack resources to extend the 

identification of large numbers of isolates to other methods, like molecular or spectral. By 

adopting the strategy described in the present study, phenotypic characterisation can 

become more reliable and less time consuming.  

All isolates were screened for aflatoxigenic ability on CAM. It has been reported that 

CAM fluorescence does not always correspond to AF detection by chromatography 

(Abarca et al., 1988; Giorni et al., 2007; Scherm et al., 2005). The most striking example is 

given by Abarca et al. (1988), who reported that blue fluorescence on CAM was detected 

in only 4 out of ten aflatoxigenic A. flavus strains. In our study, presence of fluorescence 

on CAM was correlated with AFs production (determined by HPLC) at a very high level 

(Cramer’s V = 0.988, P < 0.001), since this medium did not yield any false-positives and 

only two false-negatives were detected (percentage of agreement 99.4%). These two false-

negatives showed to be weak AFs producers, as determined by HPLC. Furthermore, 

whenever present fluorescence assumed different colours: blue, violet or green.  

Isolates producing AFBs only (AFB+) also produced a violet fluorescence on CAM; 

isolates AFB+ and AFG+ generally produced a blue fluorescence, the exception being 5 of 

the 14 isolates producing AFGs at higher levels than AFBs, which produced a green 

fluorescence. To our knowledge, this is the first report on the association of different 
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fluorescence colour with different aflatoxigenic profiles. These results showed that CAM is 

a simple, rapid and reliable method for rapid screening of aflatoxigenic isolates. 

 

Molecular markers for species identification 

Fungal barcoding is being extensively studied and numerous reports have been 

released on the most appropriate DNA sequences to be used as universal molecular marker 

for fungal species identification. ITS has recently been proposed as the official primary 

barcoding marker for fungi (Deliberation of 37 mycologists from 12 countries at the 

Smithsonian's Conservation and Research Centre, Front Royal, Virginia, May 2007; see 

Bellemain et al., 2010). But the determination of a universal sequence that will serve all 

fungi has been contentious. In fact, each genus has its own specificities, an even within a 

genus some difficulties have been reported. For the Aspergillus genus, DNA sequences like 

the calmodulin and β-tubulin genes have been used extensively and have been proposed as 

more suitable barcodes.  

In our study, we used the ITS region and the calmodulin gene to create molecular 

dendrograms that could be compared to phenotypic and spectral dendrograms. By 

comparing all sets of data, we concluded that the ITS region was not a sensitive genetic 

marker. Even though only 11 isolates were tested for this DNA region, it became clear that 

it did not achieve a level of resolution high enough to differentiate very closely related 

species, as was the case of our isolates. The calmodulin gene revealed higher sensitivity, 

and the molecular clustering was in agreement with the clustering obtained by the other 

techniques. Bearing in mind that our molecular studies were applied to a limited number of 

isolates and that it was not our goal to study barcoding sequences, our results strengthen 

the hypothesis that the ITS region is not suitable for the identification of closely related 

species, and that the calmodulin gene is a better candidate for the role of Aspergillus 

section Flavi barcoding. 

It was also clear, not only from our molecular results but also from results reported 

elsewhere (Pildain et al., 2008) that very closely related species are difficult to discriminate 

based on a single DNA sequence. In fact, Samson & Varga (2009) recommend that, for 

species description, at least 2 gene sequences should be examined, using a technique called 

Multilocus approach, and various reports have been released demonstrating the usefulness 

of that approach (Ito et al., 2001; Peterson, 2001, 2008; Pildain et al., 2008)  
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MALDI-TOF validation for species identification 

Even though major efforts are being put on the establishment of a fungal genetic 

barcode, DNA sequencing is a technique that, albeit accurate and sensitive (depending on 

the sequence to be used), is expensive and time consuming. In fact, to achieve a good 

quality DNA sequence, a succession of elaborate steps is required: fungal growth, DNA 

extraction, PCR amplification, PCR product purification, sequencing and a series of 

intermediate agarose gels to confirm the success of each step. Phenotypic identification is 

also extremely time consuming and requires the skills of a specialised mycologist. 

Furthermore, intra-specific variability and inter-specific similarity are obvious drawbacks 

to an accurate identification. 

One of the aims of applying a polyphasic approach to our isolates was to determine 

the level of resolution and reliability of MALDI-TOF ICMS in the identification of very 

closely related species of Aspergillus section Flavi. MALDI-TOF ICMS is an innovative 

technique that has been extensively used in bacteria identification, but has only rarely been 

applied to fungal identification.  Because the structures present in a fungal colony are more 

diverse and complex than in a bacterial colony, several reports have been published on 

method optimisation. In our study, a minute mix of hyphae and conidia taken from a 

colony with 4 to 5 days of growth was used as test material; this material was directly 

placed on the analysis plate, treated in-situ by brief seconds with a protein extracting 

solution, and directly analysed by the equipment. This procedure takes only a few minutes 

per sample. Data are then analysed with specific bioinformatics software for isolate 

identification. The major drawbacks of this technique are the initial cost of the equipment 

and the requirement for a specialised analyst for data analysis, but the advantages over 

other methods are striking: after the initial investment on the equipment and analyst 

training, the cost of each analysis is extremely low, in terms of both time and money 

expended.   

Our results clearly demonstrate the utility of the methodology for discrimination 

between species and strains of fungi, including Aspergillus. MALDI–TOF MS-based 

fingerprinting is an objective and fast analytical methodology with the potential of strongly 

complementing current subjective and time-consuming identification techniques, which are 

mostly based on morphology and physiology. It is thus suitable for applications which 

have particular needs in high-throughput, highly accurate identification, and low sample 
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preparation. But results also reflected that the obtainable mass spectrum and its 

reproducibility are essential prerequisites for the successful classification and identification 

of fungal species. Various parameters have been reported to influence mass spectral data, 

such as the pre-treatment of the fungal sample (growth media, washing procedure), the 

applied matrix compound and solvent system as well as the MALDI sample preparation 

technique itself. 
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As a result of the present study, several conclusions can be withdrawn. In terms of general 

and aflatoxigenic fungal contamination, we can consider the following: 

- Chestnuts and almonds are different in their intrinsic biological, chemical and 

physical characteristics and they are produced under different environmental 

conditions. The conjugation of these factors resulted in different types of fungi 

identified as dominant contaminants. Chestnuts were more strongly associated with 

the so-called field fungi like Alternaria, Cladosporium and Fusarium, and almonds 

were predominantly contaminated with the storage fungi Aspergillus and 

Penicillium.  

- Fungal contamination of both matrices was found to be predominantly superficial, 

as few fungi were able to effectively transpose the shell and infect the kernel. Yet, 

kernel contamination of almonds increased significantly after shelling. 

- In almonds, fungi evolved from field to processing. Potentially toxigenic 

Aspergillus belonging to sections Flavi and Nigri became generally more 

significant and widespread throughout storage and processing, and were determined 

to be moderately associated.  

- Numerous isolates belonging to section Flavi were detected in Portuguese almonds, 

and the majority of those isolates was found to be aflatoxigenic. A. parasiticus, 

which is the most aflatoxigenic of the species, was the most significant 

contaminant. This fact may constitute a problem in terms of food safety if storage 

and processing conditions are not effectively controlled.  

- Portuguese almonds seem to be generally safe in terms of AF contamination, since 

only one storage sample was found to be contaminated with levels below the limits 

imposed by the latest legislation on the matter (Commission Regulation (EU) 

No 165/2010).  

As is widely recognised, the presence of toxigenic moulds in a food product does not 

automatically mean the presence of mycotoxins, but rather that a potential for mycotoxin 

contamination exists. On the other hand, the absence of toxigenic moulds does not 
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guarantee that the food is free of mycotoxins, since the toxins may persist long after the 

moulds have disappeared. Knowledge of regional differences in the toxigenic and genetic 

diversity of A. flavus populations as well as knowledge of the association of these 

populations with the dominant culture in a region may help understand the population 

dynamics and also give important information that could be used in determination of the 

most effective control measures for reducing pre- and post-harvest AF contamination. 

Taking this in consideration, we consider that:  

- Other surveys spanning different areas and stages of production need to be 

developed in Portuguese nuts. To our knowledge, this is the first study on 

contamination of Portuguese almonds and chestnuts with Aspergillus and 

aflatoxigenic fungi in particular, and it can only be regarded as a first contribution 

to the knowledge on this matter.  

- Because they differ in intrinsic features as well as in producing and processing 

conditions, almonds and chestnuts need to be addressed separately when 

considering measures that will allow the control of infection by mycotoxigenic 

fungi and mycotoxins.  

- Given the high incidence of Aspergillus sections Flavi and Nigri in almonds, toxins 

produced by these species, namely AFs and OTA, should be given particular 

attention in other studies of this nature. In the case of chestnuts, AF contamination 

was not studied, but the absence of isolates from aflatoxigenic species leads to the 

conclusion that AFs are probably not the major problem in terms of mycotoxin 

contamination of this matrix. Considering the major fungal contaminants and the 

production conditions, other toxigenic fungi and mycotoxins should be given more 

emphasis, as is the case of Fusarium spp. and related mycotoxins. 

- At present, storage and processing conditions of Portuguese almonds seem to be 

adequate for the obtention of safe products.  Drying almonds to aW levels below 

0.70 and the removal of nuts with visible damage from lots entering the processing 

stream are important steps towards having good quality products, even if it results 

in extra costs.  
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In terms of aflatoxigenic and non-aflatoxigenic isolates differentiation by molecular 

methods, this study headed to the following conclusions: 

- The presence of two strategic genes of the AF biosynthetic pathway, aflD and aflQ, 

was not associated with the aflatoxigenic ability of the isolates. On the other hand, 

the analysis of their expression under inducive conditions showed a good 

correlation between aflQ expression and AF production ability, showing that this 

could be used as a molecular marker for differentiating aflatoxigenic from non-

aflatoxigenic isolates.  

- Since the A. flavus isolates used in this part of the study were all non-aflatoxigenic 

or produced low levels of AFs, we consider that more isolates from the species A. 

flavus, which is extremely variable in terms of AF production, need to be tested in 

order to guarantee the ability of aflQ expression to be used as a molecular marker 

for this characteristic. 

Regarding the identification of Aspergillus section Flavi isolates, the following can be 

concluded: 

- Morphological analysis has shown sensitive and reliable as a first approach for 

species identification only when complemented with the mycotoxin profile. The 

determination of the level of association between each phenotypic feature and the 

identified species, allowed us to reduce the number of features to be examined to 

those that really played an important role in identification, thus simplifying the 

classic phenotypic scheme of identification. Still, phenotypic characterisation was 

extremely time-consuming and not completely straightforward, and subjective 

results made accurate identification difficult to attain.  

- In terms of molecular identification, the calmodulin gene showed to be more robust 

and reliable as genomic marker for this group of fungi than the ITS region, 

providing better DNA barcoding potential. Nevertheless, DNA sequence analysis 

was considered, under our laboratory conditions, time-consuming and expensive for 

the identification of a high number of isolates, even if only one sequence was 

analysed for each isolate. 
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- Using a single DNA sequence for isolate identification has shown to be accurate 

but unable to discriminate between isolates belonging to section Flavi, since this is 

a section composed of numerous very closely related species.  

- MALDI-TOF ICMS results were congruent with those obtained by classic 

phenotypic and molecular approaches, thus confirming this technique as highly 

reliable for fungal identification. Furthermore, it was considered faster and less 

expensive in terms of labour and consumables when compared with the other 

techniques employed, which we consider an essential condition whenever high 

numbers of isolates are involved.  

- MALDI–TOF MS-based fingerprinting methodology has herein been demonstrated 

to be sensitive and accurate for discrimination of section Flavi species, and can be 

regarded as an objective and fast analytical methodology with the potential of 

strongly complementing current subjective and time-consuming identification 

techniques. It is thus suitable for applications which have particular needs in high-

throughput, highly accurate identification, and low sample preparation.  

- By applying a polyphasic approach to the identification of section Flavi isolates, we 

were able to detect three groups of isolates that do not correspond to any known 

species, and the unidentified taxa are herein regarded as three potential new species. 

It is our conviction that the use of one of the identification approaches alone - 

phenotypic, molecular or spectral - would have not been enough for us to regard 

them as potential new species, and we stress the need for a polyphasic identification 

scheme when dealing with very closely related taxa. 

It has been largely mentioned that taxonomic schemes of identification in Aspergillus 

section Flavi should be based on polyphasic approaches involving various types of 

features. In the present study, a broad type and number of characteristics - morphological, 

biochemical, molecular and spectral – was analysed for a large number of isolates. From 

those, we could identify key taxonomic characteristics which we propose should integrate 

polyphasic schemes of identification in section Flavi: 

- Morphological: colony colour on CYA and conidia ornamentation; 
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- Metabolic: production of AFBs, AFGs and CPA and corresponding HPLC 

chromatograms; 

- Molecular: analysis of the calmodulin gene sequence. On this matter, the 

concatenation with other DNA segments like the β-tubulin gene, the ITS region and 

others, although not tested in this study, has been demonstrated valuable. 

- Spectral: mass spectra of intact cells tested under standardised conditions. 

Since the know-how has been created, the technologies implemented, and the fungi 

gathered in our laboratory, we intend to implement similar taxonomic schemes for other 

sections of genus Aspergillus with relevance to science and industry, from which the most 

significant is section Nigri. For this matter, the near 1,000 Aspergillus isolates collected in 

this study will serve as good biological material. 

 

The present work is far from being a finished business, and a lot of windows have been left 

open. Some of the perspectives of future work are the following:  

- For the near future remains the corroboration of the three unidentified taxa as new 

species. On this matter, additional phenotypic and molecular work specifically 

directed to the unidentified isolates is currently under development.  

- None of the identification schemes used in this study was able to differentiate the 

species A. flavus (potentially aflatoxigenic) and A. oryzae (non-aflatoxigenic). This 

is a question of major importance, given that A. oryzae is the most widely used 

fungus in the Oriental food industry. For that reason, we intend to deepen this work 

with MALDI-TOF ICMS, by analysing more A. oryzae isolates under varying 

conditions. 

- Under the tested conditions, which were intended for species identification, 

MALDI-TOF ICMS was unable to differentiate between aflatoxigenic and non-

aflatoxigenic isolates of A. flavus. Yet, aflatoxigenic ability is a phenotypic 

characteristic which depends greatly on fungal culture conditions. It is likely that, 

as happens for other methods, the differentiation of aflatoxigenic isolates by 

MALDI-TOF ICMS is dependent on the analysis of fungi under AF inducive 
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conditions. For the near future remains the intention of testing isolates under 

inductive and non-inducive conditions in order to determine the ability of MALDI-

TOF ICMS on this particular issue.  

- There is still the need for a comprehensive database of fungal fingerprint mass 

spectra to be established in order to achieve maximum accuracy of the method. 

Also, work is still to be done on the optimisation and standardisation of analyses. 

The high number of well characterised field isolates from Aspergillus section Flavi 

and other sections can serve as base material for achieving these goals; 
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Appendix I 

Table AI.1 Significance of differences (P-value) for samples’ aw, as determined by the Tamhane’s T2 test. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1. Storage 1 in-shell   

2. Storage 2 in-shell 0.537   

3. Storage 3 in-shell 0.006 0.000   

4. Storage 1 shelled 1.000 0.772 0.000   

5. Storage 2 shelled 0.727 1.000 0.000 0.950   

6. Storage 3 shelled 0.002 0.000 1.000 0.000 0.000   

7. C1 0.017 0.000 0.994 0.000 0.000 1.000   

8. C2 0.448 0.000 0.001 0.006 0.015 0.049 0.045   

9. D1 0.958 0.853 0.999 0.840 0.939 0.998 1.000 1.000   

10. D2 0.334 0.000 0.001 0.012 0.000 0.174 0.116 1.000 1.000   

11. F1 in-shell 0.011 0.000 1.000 0.000 0.007 1.000 1.000 0.036 1.000 0.499   

12. F1 shelled 0.061 0.220 1.000 0.050 0.494 1.000 1.000 0.999 1.000 1.000 1.000     

13. F2 kernel 0.170 0.000 0.001 0.005 0.000 0.379 0.021 0.958 1.000 0.783 0.402 1.000  

14. F2 shell  0.921 0.002 0.003 0.022 0.110 0.011 0.101 1.000 1.000 0.996 0.030 0.943 0.180   

15. F3 nutmeat 0.003 0.000 0.518 0.000 0.002 0.825 0.352 0.005 0.981 0.187 0.310 0.988 0.077 0.008   

16. F3 seed coat 0.005 0.000 0.000 0.001 0.004 0.000 0.000 0.000 0.494 0.019 0.000 0.140 0.001 0.002 0.000   
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Table AI.2 Differences in frequency of fungi in chestnuts from the tree or from the ground, as determined by two-tailed Fisher’s exact test. 

  
Genus 

 
Section 

    Total Penicillium Aspergillus   Aspergillus Circumdati Flavi Flavipedes Fumigati Nidulantes Nigri Versicolores Wentii 

Arv1/07 � Ch1/07 
In-shell - 1.000 1.000 0.494 - - - - - 0.056 - 0.494 
Shelled 0.001 1.000 0.361 1.000 - - - - - 0.361 - - 
All 0.008 1.000 0.405 1.000 - - - - - 0.018 - 0.497 

Arv1/07 � Ch2/07 
In-shell - 0.205 0.056 - - - - - - 0.056 - - 
Shelled 0.120 0.758 0.117 1.000 - - - - - 0.117 - - 
All   0.114 0.195 0.003   1.000 - - - - - 0.003 - - 

Ch1/07 � Ch2/07                         
In-shell - 0.139 0.117 0.494 - - - - - - - 0.494 
Shelled 0.000 0.758 1.000 - - - - - - 1.000 - 
All   0.000 0.143 0.059   0.497 - - - - - 1.000 - 0.497 

 
Values in bold, the frequencies were significantly different between samples, P < 0.05 
Values not in bold, the frequencies were not significantly different between samples, P > 0.05 
-, No statistics were computed because data were constant (frequency of infection 0% or 100%). 
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Table AI.3 Differences in frequency of fungi between in-shell and shelled nuts, as determined by two-tailed Fisher’s exact test. 

 
Genus 

 
Section 

Total Penicillium Aspergillus 
 

Aspergillus Circumdati Flavi Flavipedes Fumigati Nidulantes Nigri Versicolores Wentii 

Chestnut, field 
Arv1/07 0.000 0.003 1.000 1.000 - - - - - 0.714 - - 
Ch1/07 0.000 0.006 0.361 0.494 - - - - - 1.000 - 0.494 
Ch2/07 0.026 0.000 - - - - - - - - - - 
All 0.000 0.000 0.411 1.000 - - - - - 1.000 - 0.498 

Almond, field 
2007 0.000 0.000 0.000 0.000 1.000 0.242 0.494 - - 0.026 0.006 0.242 
2008 0.000 0.000 0.000 0.000 0.242 0.000 0.494 - 1.000 0.000 0.242 0.003 
All 0.000 0.000 0.000 0.000 0.121 0.000 0.121 - 1.000 0.000 0.000 0.000 

Almond, storage 
Storage 1 0.001 0.000 0.000 0.000 0.487 0.231 0.487 1.000 - - 0.000 0.006 
Storage 2 0.000 0.000 0.000 0.000 0.231 0.008 1.000 - - 0.008 0.000 0.000 
Storage 3 0.000 0.000 0.000 0.000 - 0.106 - - - 1.000 0.003 0.000 
All 0.000 0.000 0.000 0.000 0.003 0.000 0.015 1.000 1.000 0.000 0.000 0.000 

Almond, processor 
A - - -  - 0.211 0.650 - - - 0.582 1.000 0.023 
F - - -  - 0.211 0.003 - - - 0.000 0.303 0.001 
All -  - -  - 0.020 0.008 - - - 0.001 0.451 0.000 

 
Values in bold, the frequencies were significantly different between samples, P < 0.05 
Values not in bold, the frequencies were not significantly different between samples, P > 0.05 
-, No statistics were computed because data were constant (frequency of infection 0% or 100%). 
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Table AI.4 Differences in frequency of fungi between almond samples collected in 2007 and 2008, as determined by two-tailed Fisher’s 
exact test. 

    Genus   Section 
    Total Penicillium Aspergillus   Aspergillus Circumdati Flavi Flavipedes Fumigati Nidulantes Nigri Versicolores Wentii 

In-shell - 0.000 0.013 0.358 0.616 0.021 1.000 - 1.000 0.002 0.197 0.118 
Shelled 0.823 0.197 - - - - - - - - - - 
All   0.842 0.025 0.082   0.404 0.621 0.028 1.000 - 1.000 0.005 0.212 0.132 
 
Values in bold, the frequencies were significantly different between samples, P < 0.05 
Values not in bold, the frequencies were not significantly different between samples, P > 0.05 
-, No statistics were computed because data were constant (frequency of infection 0% or 100%). 
 
 

Table AI.5 Differences in frequency of fungi between almonds and chestnuts (only for 2007 tree collected samples), as determined by two-
tailed Fisher’s exact test. 

  Genus   Section 
  Total Penicillium Aspergillus   Aspergillus Circumdati Flavi Flavipedes Fumigati Nidulantes Nigri Versicolores Wentii 

In-shell - 0.001 0.000 0.000 1.000 0.242 0.494 - - 1.000 0.006 0.242 
Shelled 0.652 0.714 0.117 1.000 - - - - - 0.242 - - 
All 0.686 0.039 0.006   0.005 1.000 0.246 0.497 - - 0.792 0.007 0.246 
 
Values in bold, the frequencies were significantly different between samples, P < 0.05 
Values not in bold, the frequencies were not significantly different between samples, P > 0.05 
-, No statistics were computed because data were constant (frequency of infection 0% or 100%). 
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Table AI.6 Differences in frequency of fungi between storage samples A and B, as determined by two-tailed Fisher’s exact test. 

  Genus   Section 

 
Total Penicillium Aspergillus 

 
Aspergillus Circumdati Flavi Flavipedes Fumigati Nidulantes Nigri Versicolores Wentii 

A1-B1 
In-Shell - - - - 0.474 1.000 1.000 - - - 1.000 1.000 
Shelled 1.000 1.000 1.000 1.000 - - - 1.000 - - 1.000 0.474 
All 1.000 1.000 1.000   1.000 0.487 1.000 1.000 1.000 - - 1.000 0.501 

A2-B2 
In-Shell - - - - 1.000 -0.070 1.000 - - 1.000 0.303 1.000 
Shelled 0.350 0.350 0.303   0.582 - 1.000 - - - - - - 
All 0.501 0.501 0.514   0.748 1.000 0.273 1.000 - - 1.000 0.514 1.000 

A3-B3 
In-Shell - - - - - 0.582 - - - -1.000 0.179 1.000 
Shelled 1.000 1.000 1.000   0.628 - - - - - - 1.000 - 
All 1.000 1.000 1.000   0.741 - 0.605 - - - 1.000 0.155 1.000 

A-B 
In-Shell - - - - 0.353 0.771 1.000 - - 1.000 0.084 1.000 
Shelled 1.000 1.000 0.779 1.000 - 1.000 - 1.000 - - 0.492 0.492 
All 1.000 1.000 0.848   1.000 0.364 1.000 1.000 1.000 - 1.000 0.131 0.701 

 
Values in bold, the frequencies were significantly different between samples, P < 0.05 
Values not in bold, the frequencies were not significantly different between samples, P > 0.05 
-, No statistics were computed because data were constant (frequency of infection 0% or 100%). 
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Table AI.7 Differences in frequency of fungi in almond samples from field until the end of storage, as determined by two-tailed Fisher’s exact 
test. 

 
Genus 

 
Section 

 
Total Penicillium Aspergillus 

 
Aspergillus Circumdati Flavi Flavipedes Fumigati Nidulantes Nigri Versicolores Wentii 

Field � Storage 1 
In-Shell - - 0.048 0.000 0.639 0.359 0.581 - 1.000 0.000 0.000 0.008 
Shelled 0.400 0.517 0.000  0.091 - - - 0.308 1.000 - 0.308 0.091 
All 0.333 0.846 0.013  0.000 0.643 0.392 0.586 0.308 1.000 0.000 0.000 0.004 

Storage 1 � Storage 2                       
In-Shell - - -  - 1.000 0.082 1.000 - - 0.008 0.407 0.320 
Shelled 0.341 0.731 1.000  0.661 - 1.000 - 1.000 - - 1.000 0.487 
All 0.453 0.453 1.000  0.821 1.000 0.066 1.000 - - 0.012 0.498 0.815 

Storage 2� Storage 3     
In-Shell - - -  - 0.231 0.176 1.000 - - 0.044 0.191 0.731 
Shelled 0.748 0.731 0.731  0.716 - 1.000 - - - - 1.000 - 
All 0.808 0.815 0.815  0.818 0.241 0.139 1.000 - - 0.057 0.474 0.815 

Field � Storage 3 
In-Shell - - 0.048 0.000 0.547 0.757 1.000 - 1.000 0.001 0.000 0.001 
Shelled 0.098 0.517 0.000 0.000 - -  - - - 0.308 - 
All 0.147 0.846 0.004 0.000 0.552 0.775 1.000   1.000 0.004 0.000 0.004 

 
Values in bold, the frequencies were significantly different between samples, P < 0.05 
Values not in bold, the frequencies were not significantly different between samples, P > 0.05 
-, No statistics were computed because data were constant (frequency of infection 0% or 100%). 
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Table AI.8 Differences between processor’s samples A and B, as determined by two-tailed Fisher’s exact test. 

  Genus     Section           

  Total Penicillium Aspergillus   Aspergillus Circumdati Flavi Nigri Versicolores Wentii 

A in-shell vs A shelled - - - - 0.211 0.650 0.582 1.000 0.023 
A in-shell vs B - - - - 0.582 0.370 0.211 0.001 0.070 
A shelled vs B - - -   - 1.000 1.000 1.000 0.001 1.000 
 
Values in bold, the frequencies were significantly different between samples, P < 0.05 
Values not in bold, the frequencies were not significantly different between samples, P > 0.05 
-, No statistics were computed because data were constant (frequency of infection 0% or 100%). 

 

 
Table AI.9 Differences between samples C and D, as determined by two-tailed Fisher’s exact test. 

  Genus   Section         

  Total Penicillium Aspergillus   Aspergillus Flavi Nigri Versicolores Wentii 

C1 vs D1 - - - - 0.451 0.127 1.000 0.048 
C2 vs D2 - - - - 0.041 0.008 0.106 1.000 
C vs D - - -   - 0.023 0.001 0.568 0.105 

C1 vs C2 - - - - 0.333 1.000 0.020 0.015 
D1 vs D2 - - - - 1.000 0.487 1.000 0.000 
1 vs 2 - - -   - 0.453 0.781 0.083 0.000 

 
Values in bold, the frequencies were significantly different between samples, P < 0.05 
Values not in bold, the frequencies were not significantly different between samples, P > 0.05 
-, No statistics were computed because data were constant (frequency of infection 0% or 100%). 
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Table AI.10  Differences between different stages of processing of samples F, as determined by two-tailed Fisher’s exact test. 

  Genus   Section            

  Total Penicillium Aspergillus  Aspergillus Circumdati Flavi Flavipedes Nigri Versicolores Wentii 

In-shell F1 vs shelled F1 - - - - 0.211 0.003 0.211 0.000 0.303 0.001 
In-shell F1 vs shell F2 - - -   - 1.000 - 0.211 1.000 0.370 1.000 
In-shell F1 vs kernel F2 - - - - 1.000 1.000 0.095 0.532 0.700 0.017 
Shelled F1 vs kernel F2 - - - - 0.140 0.000 1.000 0.000 0.045 0.204 
Kernel F2 vs shell F2 - - - - 1.000 1.000 1.000 0.532 0.700 0.045 
Kernel F2 vs nutmeat F3 - - 0.487 0.487 0.047 0.000 1.000 0.000 0.001 0.003 

 

Values in bold, the frequencies were significantly different between samples, P < 0.05 
Values not in bold, the frequencies were not significantly different between samples, P > 0.05 
-, No statistics were computed because data were constant (frequency of infection 0% or 100%). 

 

 

Table AI.11 Differences in frequency of fungi of almonds in relation to origin, as determined by two-tailed Fisher’s exact test. 

  Genus       Section            
Moncorvo (A3/B3) vs Faro 
(F1) Total Penicillium Aspergillus   Aspergillus Circumdati Flavi Flavipedes Nigri Versicolores Wentii 

In-shell - - - - 0.030 0.000 0.030 0.000 0.709 0.210 
Shelled 0.004 0.000 0.001 0.000 - 0.030 - 0.333 1.000 0.333 
All 0.011 0.001 0.003   0.002 0.033 0.000 0.033 0.000 1.000 0.261 

 
Values in bold, the frequencies were significantly different between samples, P < 0.05 
Values not in bold, the frequencies were not significantly different between samples, P > 0.05 
-, No statistics were computed because data were constant (frequency of infection 0% or 100%). 
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Table AI.12 Differences in frequency of fungi of almonds between field, storage and processor samples, as determined by two-tailed 
Fisher’s exact test 

  Genus   Section 

  Total Penicillium Aspergillus    Aspergillus Circumdati Flavi Flavipedes Fumigati Nidulantes Nigri Versicolores Wentii 

Field � Storage 1 

In-Shell - - 0.048 0.000 0.639 0.359 0.581 - 1.000 0.000 0.000 0.008 
Shelled 0.400 0.517 0.000   0.091 - - - 0.308 1.000 - 0.308 0.091 

Storage 1 �  Storage 3 

In-Shell - - - - 0.487 1.000 0.487 - - 1.000 0.014 0.748 

Shelled 0.752 1.000 1.000   0.235 - - - 1.000 - -  1.000 0.487 

Storage 3 �  D1 

In-Shell - - - - - 0.000 - - - 0.000 0.191 0.480 

Shelled 0.000 0.000 0.000   0.000  - 0.000 - -  - 0.000 0.182 0.000 

Field � D1 

In-Shell 0.048 0.000 0.547 0.000 1.000 - 1.000 0.001 0.095 0.000 
Shelled 0.003 0.000 0.000   0.000   0.000 -   - -  0.000 0.002 0.000 

 
Values in bold, the frequencies were significantly different between samples, P < 0.05 
Values not in bold, the frequencies were not significantly different between samples, P > 0.05 
-, No statistics were computed because data were constant (frequency of infection 0% or 100%). 
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Table AI.13 Differences in number of isolates of Aspergillus section Flavi between field, storage and 
processor samples, as determined by two-tailed Mann-Whitney test 

 
  Morphotype   

Flavi Total A. flavus A. parasiticus A. tamarii AF+ A. flavus AF+ 

Stage of production (Moncorvo, 2008) 

Field vs Storage 1 0.109 0.547 0.060 1.000 0.214 0.652 

Field vs Processor 0.000 0.000 0.000 0.000 0.000 0.000 
Storage 3 vs Processor 0.000 0.000 0.000 0.000 0.000 0.000 

Origin (Moncorvo vs Faro)       
In-shell 0.000 0.000 0.000 0.000 0.000 0.037 
Shelled 0.001 1.000 0.000 1.000 0.000 1.000 

All 0.000 0.000 0.000 0.002 0.000 0.000 
Type of processing (Faro)       

In-shell vs shelled 0.000 0.001 0.000 0.211 0.000 0.474 

In-shell vs kernel 0.001 0.068 0.001 0.095 0.003 0.494 

In-shell vs shell 0.283 0.846 0.026 0.270 0.089 0.266 

Shelled vs kernel 0.000 0.003 0.004 1.000 0.000 0.064 

Shelled vs nutmeat 0.008 1.000 0.008 1.000 0.008 1.000 

Shelled vs seed coat 0.181 1.000 0.031 1.000 0.031 1.000 

kernel vs nutmeat 0.000 0.000 0.000 1.000 0.000 0.008 
nutmeat vs seed coat 0.231 1.000 1.000 1.000 1.000 1.000 

 
Values in bold, the frequencies were significantly different between samples, P < 0.05 
Values not in bold, the frequencies were not significantly different between samples, P > 0.05 
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Appendix II 
 
Table AII.1  List of Aspergillus section Flavi isolates 

Code Origin Sclerotia 
on CYA25a 

Seriation 
on CYA25b 

Conidia 
on CYA25 

Diameter 
on CZ42c 

Reverse 
on AFPA 

Colony colour 
on CYA25 

Fluorescence 
on CAM 

AFG2 
on YESd 

AFG1 
on YESd 

AFB2 
on YESd 

AFB1 
on YESd 

CPA 
on CYAe 

Phenotype Species 
(Phenotypic + 
Molecular + 
MALDI-TOF) 

Controls   

MUM92.01  > 400 b/u smooth 1.8 orange yellow-green violet - - - +/- +  A. flavus 

MUM92.02  > 400 u rough n.d. orange dark-green blue + + + + -  A. parasiticus 

05UAsBr01 
(MUM 10.220) 

 > 400 b smooth n.d. orange yellow-green - - - - - -  A. flavus 

01UAs55  
 

b smooth n.d. orange yellow-green - - - - - -  A. flavus 

NRRL427  
 

n.d. thick/rough n.d. brown brown - - - - - +  A. tamarii 

NRRL429  
 

n.d. thick/rough n.d. brown brown - - - - - +  A. tamarii 

NRRL3353  
 

n.d. rough n.d. cream dark-green blue ++ +++ + ++ -  A. nomius 

NRRL13137  
 

n.d. rough n.d. cream dark-green blue ++ +++ + ++ -  A. nomius 

Field strains   
07AAsp05 Moncorvo > 400 b/u rough 1.4 orange dark-green blue + + +/- + - A. parasiticus I A. parasiticus 

07AAsp37 
(MUM 10.200) 

Moncorvo - b/u smooth 1.4 orange yellow-green violet - - + ++ + A. flavus III A. flavus 

07AAsp43 
MUM 10.201) 

Moncorvo - u/b rough 1.5 orange dark-green blue + + +/- + - A. parasiticus I A. parasiticus 

08AAsp34 Moncorvo > 400 u rough 0.8 orange dark-green blue + +++ + ++ - A. parasiticus I A. parasiticus 

08AAsp35 
(MUM 10.202) 

Moncorvo > 400 b smooth 2.7 orange yellow-green - - - - - - A. flavus I A. flavus 

08AAsp36 
(MUM 10.225) 

Moncorvo > 400 u/b rough 0.5 orange dark-green blue + +++ + ++ - A. parasiticus I A. parasiticus 

08AAsp37 
(MUM 10.203) 

Moncorvo > 400 b smooth 2 orange yellow-green - - +/- - +/- + A. flavus IV A. flavus 

08AAsp38 Moncorvo - u rough 1.3 orange dark-green blue + +++ + ++ - A. parasiticus I A. parasiticus 

08AAsp39 Moncorvo - u rough 2.2 orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

08AAsp41 Moncorvo > 400 b smooth 2 orange yellow-green - - +/- - +/- + A. flavus IV A. flavus 

(continues) 
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Table AII.1 (continued) 

Code Origin Sclerotia 
on CYA25a 

Seriation 
on CYA25b 

Conidia 
on CYA25 

Diameter 
on CZ42c 

Reverse 
on AFPA 

Colony colour 
on CYA25 

Fluorescence 
on CAM 

AFG2 
on YESd 

AFG1 
on YESd 

AFB2 
on YESd 

AFB1 
on YESd 

CPA 
on CYAe 

Phenotype Species 
(Phenotypic + 
Molecular + 
MALDI-TOF) 

08AAsp42 
(MUM 10.204) 

Moncorvo - b smooth 2.5 orange yellow-green violet - - +/- + + A. flavus III  A. flavus 

08AAsp43 Moncorvo - b smooth 2.1 orange yellow-green - - - - - + A. flavus II A. flavus 

08AAsp66 Moncorvo > 400 u/b rough 0.5 orange dark-green blue + +++ + ++ - A. parasiticus I A. parasiticus 

08AAsp67 
(MUM 10.205) 

Moncorvo > 400 b/u rough 2.2 orange dark-green green ++ ++ + + (?) A. parasiticus II New sp. 1 

08AAsp68 Moncorvo - u rough 2.6 orange dark-green blue ++ +++ ++ +++ - A. parasiticus I A. parasiticus 

08AAsp72 Moncorvo - u rough 2.7 orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

08AAsp76 Moncorvo > 400 b/u smooth 1.5 orange yellow-green - - - - - + A. flavus II  A. flavus 

08AAsp77 Moncorvo - b smooth 2.9 orange yellow-green - - - - - + A. flavus II  A. flavus 

08AAsp83 Moncorvo > 400 u rough 1.6 orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

08AAsp101 Moncorvo - u/b rough 1.6 orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

08AAsp103 Moncorvo - u rough 1.7 orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

08AAsp105 Moncorvo > 400 b/u smooth 3 orange yellow-green - - - - - + A. flavus II  A. flavus 

08AAsp106 Moncorvo > 400 b/u smooth 3 orange yellow-green - - - - - + A. flavus II  A. flavus 

08AAsp108 Moncorvo - u rough 2.8 orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

08AAsp109 Moncorvo > 400 b smooth 2.7 orange yellow-green - - - - - + A. flavus II  A. flavus 

08AAsp110 Moncorvo > 400 u/b rough 1.7 orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

08AAsp111 Moncorvo - b/u rough 3.1 orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

08AAsp112 Moncorvo > 400 u/b smooth 2.6 orange yellow-green - - - - - + A. flavus II  A. flavus 

08AAsp113 Moncorvo > 400 u/b smooth 2.9 orange yellow-green - - - - - + A. flavus II  A. flavus 

08AAsp115 Moncorvo > 400 b smooth 2 orange yellow-green - - - - - + A. flavus II  A. flavus 

08AAsp116 
(MUM 10.206) 

Moncorvo - b smooth 2 orange yellow-green violet - - +/- + + A. flavus III A. flavus 

08AAsp117 Moncorvo > 400 u rough 1.8 orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

08AAsp119 Moncorvo - b thick/rough n.d. brown brown - - - - - + A. tamarii A. tamarii 

08AAsp158 Moncorvo - u/b rough 2.3 orange dark-green blue - - ++ +++ - A. parasiticus IV New sp. 3 

08AAsp159 Moncorvo - b smooth 2 orange yellow-green violet - - +/- + + A. flavus III A. flavus 

08AAsp176 Moncorvo > 400 b thick/rough n.d. brown brown - - - - - + A. tamarii A. tamarii 

08AAsp177 Moncorvo > 400 u rough n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

(continues) 
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Table AII.1 (continued) 

Code Origin Sclerotia 
on CYA25a 

Seriation 
on CYA25b 

Conidia 
on CYA25 

Diameter 
on CZ42c 

Reverse 
on AFPA 

Colony colour 
on CYA25 

Fluorescence 
on CAM 

AFG2 
on YESd 

AFG1 
on YESd 

AFB2 
on YESd 

AFB1 
on YESd 

CPA 
on CYAe 

Phenotype Species 
(Phenotypic + 
Molecular + 
MALDI-TOF) 

08AAsp178 Moncorvo > 400 u/b rough n.d. orange dark-green blue + +++ + ++ - A. parasiticus I A. parasiticus 

08AAsp179 
(MUM 10.207) 

Moncorvo > 400 b slightly rough n.d. orange yellow-green violet - - +/- +++ + A. flavus III A. flavus 

08AAsp180 Moncorvo > 400 b/u rough n.d. orange dark-green blue +++ +++ ++ +++ - A. parasiticus I A. parasiticus 

08AAsp181 Moncorvo > 400 b/u rough n.d. orange dark-green blue +++ +++ ++ +++ - A. parasiticus I A. parasiticus 

08AAsp182 Moncorvo > 400 b/u rough n.d. orange dark-green blue ++ +++ ++ +++ - A. parasiticus I A. parasiticus 

08AAsp183 
(MUM 10.208) 

Moncorvo > 400 u rough n.d. orange dark-green blue ++ +++ ++ +++ + A. parasiticus III New sp. 2 

08AAsp184 Moncorvo > 400 b rough n.d. orange dark-green blue +++ +++ ++ +++ - A. parasiticus I A. parasiticus 

08AAsp185 Moncorvo > 400 b rough n.d. orange dark-green blue +++ +++ + +++ - A. parasiticus I A. parasiticus 

08AAsp223 Moncorvo > 400 u/b rough n.d. orange dark-green blue +++ +++ ++ +++ - A. parasiticus I A. parasiticus 

08AAsp224 Moncorvo > 400 u/b rough n.d. orange dark-green blue +++ +++ ++ +++ - A. parasiticus I A. parasiticus 

08AAsp225 
(MUM 10.209) 

Moncorvo - b/u smooth n.d. orange yellow-green violet - - ++ +++ + A. flavus III A. flavus 

08AAsp226 Moncorvo > 400 u/b rough n.d. orange dark-green blue +++ +++ + +++ - A. parasiticus I A. parasiticus 

08AAsp252 
(MUM 10.210) 

Moncorvo - b/u rough n.d. cream dark-green blue +++ +++ ++ +++ - A. parasiticus I A. parasiticus 

08AAsp253 Moncorvo - u/b rough n.d. orange dark-green blue +++ +++ ++ +++ - A. parasiticus I A. parasiticus 

08AAsp273 Moncorvo > 400 u/b rough n.d. orange dark-green blue ++ +++ + ++ - A. parasiticus I A. parasiticus 

09AAsp01 Moncorvo - u/b rough n.d. orange dark-green blue ++ +++ + ++ - A. parasiticus I A. parasiticus 

09AAsp02 Moncorvo - u/b rough n.d. orange dark-green blue ++ +++ ++ +++ - A. parasiticus I A. parasiticus 

09AAsp03 Moncorvo - b smooth n.d. orange yellow-green violet - - - ++ + A. flavus III A. flavus 

09AAsp04 Moncorvo - u/b rough n.d. orange dark-green blue ++ + +++ ++ - A. parasiticus I A. parasiticus 

09AAsp05 Moncorvo > 400 b smooth n.d. orange yellow-green - - - - - - A. flavus I A. flavus 

09AAsp06 Moncorvo > 400 u/b rough n.d. orange dark-green blue ++ + +++ ++ - A. parasiticus I A. parasiticus 

09AAsp07 Moncorvo - u/b rough n.d. orange dark-green blue ++ +++ ++ +++ - A. parasiticus I A. parasiticus 

09AAsp08 Moncorvo > 400 b smooth n.d. orange yellow-green - - - - - - A. flavus I A. flavus 

09AAsp26 Moncorvo > 400 u/b rough n.d. orange dark-green blue ++ + +++ ++ - A. parasiticus I A. parasiticus 

09AAsp68 Moncorvo > 400 u/b rough n.d. orange dark-green blue ++ + +++ ++ - A. parasiticus I A. parasiticus 

09AAsp69 Moncorvo - u rough n.d. orange dark-green blue ++ + +++ ++ - A. parasiticus I A. parasiticus 

(continues) 
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Table AII.1 (continued) 

Code Origin Sclerotia 
on CYA25a 

Seriation 
on CYA25b 

Conidia 
on CYA25 

Diameter 
on CZ42c 

Reverse 
on AFPA 

Colony colour 
on CYA25 

Fluorescence 
on CAM 

AFG2 
on YESd 

AFG1 
on YESd 

AFB2 
on YESd 

AFB1 
on YESd 

CPA 
on CYAe 

Phenotype Species 
(Phenotypic + 
Molecular + 
MALDI-TOF) 

09AAsp70 Moncorvo > 400 u/b rough n.d. orange dark-green blue ++ + +++ ++ - A. parasiticus I A. parasiticus 

09AAsp117 Moncorvo > 400 n.d. n.d. n.d. orange dark-green blue ++ ++ ++ ++ - A. parasiticus I A. parasiticus 

09AAsp118 Faro > 400 n.d. n.d. n.d. orange dark-green blue ++ ++ ++ ++ - A. parasiticus I A. parasiticus 

09AAsp119 Moncorvo > 400 n.d. n.d. n.d. orange dark-green blue + +++ + ++ - A. parasiticus I A. parasiticus 

09AAsp120 Moncorvo > 400 n.d. n.d. n.d. orange dark-green blue ++ +++ ++ +++ - A. parasiticus I A. parasiticus 

09AAsp140 Moncorvo - n.d. n.d. n.d. orange dark-green blue ++ +++ ++ +++ - A. parasiticus I A. parasiticus 

09AAsp141 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp142 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green - - - - - - A. flavus I A. flavus 

09AAsp143 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green violet - - -/+ ++ + A. flavus III A. flavus 

09AAsp144 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp145 Moncorvo - n.d. n.d. n.d. orange dark-green blue + ++ +/- + - A. parasiticus I A. parasiticus 

09AAsp146 
(MUM 10.211) 

Moncorvo > 400 n.d. rough n.d. cream dark-green blue + ++ +/- + (?) A. parasiticus II New sp. 1 

09AAsp147 Moncorvo > 400 n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp148 Moncorvo n.d. n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp149 Moncorvo > 400 n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp150 Moncorvo - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp151 Moncorvo > 400 n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp152 
(MUM 10.221) 

Moncorvo > 400 n.d. rough n.d. orange dark-green green ++ ++ + + (?) A. parasiticus II New sp. 1 

09AAsp153 
(MUM 10.243) 

Moncorvo n.d. n.d. n.d. n.d. cream dark-green blue + ++ + + (?) A. parasiticus II New sp. 1 

09AAsp154 Faro > 400 n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp155 Faro - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp156 Faro - n.d. thick/rough n.d. brown brown - - - - - + A. tamarii A. tamarii 

09AAsp157 Faro > 400 n.d. n.d. n.d. orange yellow-green - - - - - - A. flavus I A. flavus 

09AAsp185 Faro > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp186 Faro n.d. n.d. n.d. n.d. orange dark-green blue + +++ +/- + - A. parasiticus I A. parasiticus 

09AAsp187 
(MUM 10.212) 

Faro n.d. n.d. rough n.d. orange dark-green violet +/- +/- ++ ++ - A. parasiticus I A. parasiticus 

(continues) 
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Table AII.1 (continued) 

Code Origin Sclerotia 
on CYA25a 

Seriation 
on CYA25b 

Conidia 
on CYA25 

Diameter 
on CZ42c 

Reverse 
on AFPA 

Colony colour 
on CYA25 

Fluorescence 
on CAM 

AFG2 
on YESd 

AFG1 
on YESd 

AFB2 
on YESd 

AFB1 
on YESd 

CPA 
on CYAe 

Phenotype Species 
(Phenotypic + 
Molecular + 
MALDI-TOF) 

09AAsp188 Moncorvo > 400 n.d. n.d. n.d. orange dark-green blue + + + + - A. parasiticus I A. parasiticus 

09AAsp189 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green violet - - ++ +++ + A. flavus III A. flavus 

09AAsp190 Faro - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp191 Faro - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp192 Faro - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp193 Moncorvo - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp194 Faro - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp195 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp196 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green violet - - + ++ + A. flavus III A. flavus 

09AAsp197 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp198 Faro - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp199 Faro > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp200 Faro - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp201 
(MUM 10.222) 

Faro > 400 n.d. n.d. n.d. orange dark-green blue + ++ + ++ (?) A. parasiticus II New sp. 1 

09AAsp202 Moncorvo - n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp203 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green violet - - + ++ + A. flavus III   A. flavus 

09AAsp204 Moncorvo > 400 n.d. n.d. n.d. cream dark-green blue + ++ + + (?) A. parasiticus II New sp. 1 

09AAsp205 Faro n.d. n.d. smooth n.d. orange dark-green - n.d. n.d n.d. n.d. - n.d. A. parasiticus 

09AAsp206 Moncorvo > 400 n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp207 Faro > 400 n.d. n.d. n.d. orange yellow-green violet - - + +++ + A. flavus III A. flavus 

09AAsp208 Moncorvo - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp209 Faro > 400 n.d. n.d. n.d. orange dark-green blue +/- ++ -/+ + - A. parasiticus I A. parasiticus 

09AAsp210 Faro > 400 n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp211 Faro - n.d. n.d. n.d. orange dark-green blue + + + + - A. parasiticus I A. parasiticus 

09AAsp212 Faro > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp213 Moncorvo > 400 n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp214 Faro - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp215 Faro > 400 n.d. n.d. n.d. orange dark-green blue + +++ + +++ - A. parasiticus I A. parasiticus 

(continues) 
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Table AII.1 (continued) 

Code Origin Sclerotia 
on CYA25a 

Seriation 
on CYA25b 

Conidia 
on CYA25 

Diameter 
on CZ42c 

Reverse 
on AFPA 

Colony colour 
on CYA25 

Fluorescence 
on CAM 

AFG2 
on YESd 

AFG1 
on YESd 

AFB2 
on YESd 

AFB1 
on YESd 

CPA 
on CYAe 

Phenotype Species 
(Phenotypic + 
Molecular + 
MALDI-TOF) 

09AAsp216 Moncorvo - n.d. thick/rough n.d. brown brown - - - - - + A. tamarii A. tamarii 

09AAsp217 Moncorvo - n.d. thick/rough n.d. brown brown - - - - - + A. tamarii A. tamarii 

09AAsp218 Moncorvo - n.d. thick/rough n.d. brown brown - - - - - + A. tamarii A. tamarii 

09AAsp219 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp220 Moncorvo - n.d. n.d. n.d. orange yellow-green - - - - - - A. flavus I A. flavus 

09AAsp221 Faro > 400 n.d. n.d. n.d. orange dark-green blue ++ +++ ++ +++ - A. parasiticus I A. parasiticus 

09AAsp222 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp223 Moncorvo > 400 n.d. n.d. n.d. orange dark-green blue ++ +++ ++ +++ - A. parasiticus I A. parasiticus 

09AAsp224 Faro > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp225 Faro n.d. n.d. n.d. n.d. orange dark-green blue + + + + - A. parasiticus I A. parasiticus 

09AAsp226 Faro > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp227 Faro > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp228 Faro > 400 n.d. n.d. n.d. orange dark-green blue ++ +++ ++ +++ - A. parasiticus I A. parasiticus 

09AAsp229 Moncorvo > 400 n.d. n.d. n.d. orange dark-green blue ++ +++ ++ +++ - A. parasiticus I A. parasiticus 

09AAsp230 Moncorvo > 400 n.d. rough n.d. orange dark-green blue ++ +++ ++ +++ - A. parasiticus I A. parasiticus 

09AAsp231 Faro - n.d. n.d. n.d. orange dark-green blue ++ +++ ++ +++ - A. parasiticus I A. parasiticus 

09AAsp232 Faro n.d. n.d. rough n.d. orange dark-green violet - - ++ +++ - A. parasiticus IV New sp. 3 

09AAsp233 
(MUM 10.244) 

Faro - n.d. n.d. n.d. orange dark-green blue ++ ++ + + (?) A. parasiticus II New sp. 1 

09AAsp234 Faro n.d. n.d. n.d. n.d. orange dark-green blue + ++ +/- + - A. parasiticus I A. parasiticus 

09AAsp235 
(MUM 10.224) 

Faro - n.d. n.d. n.d. orange dark-green violet - - ++ +++ - A. parasiticus IV  New sp. 3 

09AAsp236 Moncorvo - n.d. rough n.d. orange dark-green blue + + + + - A. parasiticus I A. parasiticus 

09AAsp237 Faro - n.d. n.d. n.d. orange dark-green blue ++ +++ ++ +++ - A. parasiticus I A. parasiticus 

09AAsp238 Moncorvo > 400 n.d. rough n.d. orange dark-green blue ++ +++ ++ +++ - A. parasiticus I A. parasiticus 

09AAsp239 
(MUM 10.245) 

Faro - n.d. n.d. n.d. orange dark-green green ++ ++ + + (?) A. parasiticus II New sp. 1 

09AAsp240 
(MUM 10.213) 

Moncorvo n.d. n.d. rough n.d. cream dark-green blue +/- ++ +/- ++ - A. parasiticus I A. parasiticus 

09AAsp241 Moncorvo > 400 n.d. rough n.d. orange dark-green violet - - + ++ - A. parasiticus IV New sp. 3 

09AAsp242 Faro > 400 n.d. n.d. n.d. orange dark-green blue + +++ ++ +++ - A. parasiticus I A. parasiticus 

(continues) 
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Table AII.1 (continued) 

Code Origin Sclerotia 
on CYA25a 

Seriation 
on CYA25b 

Conidia 
on CYA25 

Diameter 
on CZ42c 

Reverse 
on AFPA 

Colony colour 
on CYA25 

Fluorescence 
on CAM 

AFG2 
on YESd 

AFG1 
on YESd 

AFB2 
on YESd 

AFB1 
on YESd 

CPA 
on CYAe 

Phenotype Species 
(Phenotypic + 
Molecular + 
MALDI-TOF) 

09AAsp243 Faro > 400 n.d. n.d. n.d. orange dark-green blue + +++ + ++ - A. parasiticus I A. parasiticus 

09AAsp244 Faro > 400 n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp245 Faro - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp246 Faro n.d. n.d. n.d. n.d. orange dark-green violet - - + ++ - A. parasiticus IV New sp. 3 

09AAsp247 Faro - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp248 Faro - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp249 Moncorvo - n.d. rough n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp250 Moncorvo > 400 n.d. rough n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp251 Faro - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp252 Moncorvo - n.d. rough n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp253 Faro > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp254 Moncorvo > 400 n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp255 Faro - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp256 Moncorvo > 400 n.d. smooth n.d. orange yellow-green - - - - - - A. flavus I A. flavus 

09AAsp257 Faro > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp258 Faro - n.d. n.d. n.d. brown brown - - - - - + A. tamarii A. tamarii 

09AAsp259 Faro > 400 n.d. n.d. n.d. orange yellow-green violet - - -/+ ++ + A. flavus III  A. flavus 

09AAsp260 
(MUM 10.214) 

Faro > 400 n.d. rough n.d. orange dark-green green ++ ++ + + (?) A. parasiticus II New sp. 1 

09AAsp261 
(MUM 10.246) 

Faro > 400 n.d. n.d. n.d. orange dark-green green ++ +++ +/- + (?) A. parasiticus II New sp. 1 

09AAsp262 Moncorvo n.d. n.d. n.d. n.d. orange dark-green blue + +++ + ++ - A. parasiticus I A. parasiticus 

09AAsp263 Faro - n.d. n.d. n.d. orange dark-green violet - - + +++ - A. parasiticus IV New sp. 3 

09AAsp264 Moncorvo > 400 n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp265 Faro n.d. n.d. n.d. n.d. orange dark-green blue +/- ++ -/+ + - A. parasiticus I A. parasiticus 

09AAsp266 
(MUM 10.215) 

Faro n.d. n.d. rough n.d. cream dark-green blue +/- ++ ++ +++ - A. parasiticus I A. parasiticus 

09AAsp267 Faro - n.d. n.d. n.d. orange dark-green blue +/- ++ +/- + - A. parasiticus I A. parasiticus 

09AAsp268 Faro - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp269 Faro n.d. n.d. n.d. n.d. orange yellow-green - - - - - - A. flavus I A. flavus 
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Table AII.1 (continued) 

Code Origin Sclerotia 
on CYA25a 

Seriation 
on CYA25b 

Conidia 
on CYA25 

Diameter 
on CZ42c 

Reverse 
on AFPA 

Colony colour 
on CYA25 

Fluorescence 
on CAM 

AFG2 
on YESd 

AFG1 
on YESd 

AFB2 
on YESd 

AFB1 
on YESd 

CPA 
on CYAe 

Phenotype Species 
(Phenotypic + 
Molecular + 
MALDI-TOF) 

09AAsp270 Faro > 400 n.d. n.d. n.d. orange yellow-green - - - - - - A. flavus I A. flavus 

09AAsp271 Moncorvo - n.d. thick/rough n.d. brown brown - - - - - + A. tamarii A. tamarii 

09AAsp272 Moncorvo - n.d. n.d. n.d. brown brown - - - - - + A. tamarii A. tamarii 

09AAsp273 Moncorvo - n.d. n.d. n.d. orange yellow-green - - - - - - A. flavus I A. flavus 

09AAsp274 Moncorvo - n.d. n.d. n.d. brown brown - - - - - + A. tamarii A. tamarii 

09AAsp275 Moncorvo > 400 n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp276 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp277 Faro - n.d. n.d. n.d. orange yellow-green - - - - - - A. flavus I A. flavus 

09AAsp278 Faro > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp279 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp280 Faro - n.d. n.d. n.d. brown brown-green - - - - - + A. tamarii A. tamarii 

09AAsp281 Faro - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp287 Faro > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp288 Faro > 400 n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp289 Moncorvo > 400 n.d. rough n.d. orange dark-green blue + +++ + ++ - A. parasiticus I A. parasiticus 

09AAsp290 Moncorvo > 400 n.d. smooth n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp291 Moncorvo - n.d. n.d. n.d. orange dark-green blue + + + + - A. parasiticus I A. parasiticus 

09AAsp292 Moncorvo > 400 n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp297 Moncorvo > 400 n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp298 
(MUM 10.223) 

Moncorvo > 400 n.d. rough n.d. orange dark-green blue -/+ +++ -/+ + (?) A. parasiticus II New sp. 1 

09AAsp299 
(MUM 10.247) 

Moncorvo > 400 n.d. rough n.d. orange dark-green blue + ++ -/+ -/+ (?) A. parasiticus II New sp. 1 

09AAsp300 Moncorvo > 400 n.d. smooth n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp301 Faro > 400 n.d. n.d. n.d. orange yellow-green violet - - + + + A. flavus III A. flavus 

09AAsp302 Faro > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp303 Faro - n.d. n.d. n.d. orange dark-green blue + +++ + ++ - A. parasiticus I A. parasiticus 

09AAsp304 
(MUM 10.216) 

Moncorvo > 400 n.d. rough n.d. orange dark-green yellow +/- + + ++ - A. parasiticus I A. parasiticus 
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Table AII.1 (continued) 

Code Origin Sclerotia 
on CYA25a 

Seriation 
on CYA25b 

Conidia 
on CYA25 

Diameter 
on CZ42c 

Reverse 
on AFPA 

Colony colour 
on CYA25 

Fluorescence 
on CAM 

AFG2 
on YESd 

AFG1 
on YESd 

AFB2 
on YESd 

AFB1 
on YESd 

CPA 
on CYAe 

Phenotype Species 
(Phenotypic + 
Molecular + 
MALDI-TOF) 

09AAsp305 
(MUM 10.248) 

Faro > 400 n.d. rough n.d. orange dark-green blue + ++ + ++ + A. parasiticus III New sp. 2 

09AAsp306 Moncorvo > 400 n.d. n.d. n.d. orange dark-green blue -/+ ++ ++ +++ - A. parasiticus I A. parasiticus 

09AAsp307 Faro > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp308 Moncorvo > 400 n.d. smooth n.d. orange yellow-green - - - - - - A. flavus I A. flavus 

09AAsp309 Faro > 400 n.d. n.d. n.d. orange dark-green blue + ++ +/- + - A. parasiticus I A. parasiticus 

09AAsp310 Moncorvo > 400 n.d. smooth n.d. orange yellow-green violet - - +/- + + A. flavus III A. flavus 

09AAsp311 Moncorvo > 400 n.d. smooth n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp312 Moncorvo > 400 n.d. smooth n.d. orange yellow-green violet - - + ++ + A. flavus III A. flavus 

09AAsp313 Faro > 400 n.d. n.d. n.d. orange yellow-green violet - - - +/- + A. flavus III A. flavus 

09AAsp314 Faro > 400 n.d. n.d. n.d. orange yellow-green violet - - +/- +++ + A. flavus III  A. flavus 

09AAsp315 Moncorvo > 400 n.d. smooth n.d. orange yellow-green violet - - ++ +++ + A. flavus III  A. flavus 

09AAsp316 Faro > 400 n.d. n.d. n.d. orange dark-green blue + ++ + + - A. parasiticus I A. parasiticus 

09AAsp317 Faro > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II   A. flavus 

09AAsp318 Faro > 400 n.d. n.d. n.d. orange dark-green blue + + + + - A. parasiticus I A. parasiticus 

09AAsp319 Faro - n.d. n.d. n.d. orange dark-green - - - - - + A. flavus II  A. flavus 

09AAsp320 Moncorvo - n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp321 Faro > 400 n.d. n.d. n.d. orange yellow-green violet - - + ++ + A. flavus III A. flavus 

09AAsp322 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp323 Faro n.d. n.d. n.d. n.d. orange yellow-green - - - - - - A. flavus I A. flavus 

09AAsp324 Faro - n.d. n.d. n.d. orange dark-green violet - - +/- + + n.d A. flavus 

09AAsp325 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp326 Faro > 400 n.d. n.d. n.d. orange yellow-green - - - - - - A. flavus I A. flavus 

09AAsp327 Moncorvo > 400 n.d. smooth n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp328 Faro > 400 n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp329 Moncorvo > 400 n.d. smooth n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp330 Faro > 400 n.d. n.d. n.d. orange dark-green blue + +++ +/- ++ - A. parasiticus I A. parasiticus 

09AAsp331 Moncorvo - n.d. rough n.d. orange dark-green blue + + + + - A. parasiticus I A. parasiticus 

09AAsp332 Faro > 400 n.d. n.d. n.d. orange dark-green blue + + + + - A. parasiticus I A. parasiticus 
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Table AII.1 (continued) 

Code Origin Sclerotia 
on CYA25a 

Seriation 
on CYA25b 

Conidia 
on CYA25 

Diameter 
on CZ42c 

Reverse 
on AFPA 

Colony colour 
on CYA25 

Fluorescence 
on CAM 

AFG2 
on YESd 

AFG1 
on YESd 

AFB2 
on YESd 

AFB1 
on YESd 

CPA 
on CYAe 

Phenotype Species 
(Phenotypic + 
Molecular + 
MALDI-TOF) 

09AAsp333 Faro > 400 n.d. n.d. n.d. orange dark-green blue + + + + - A. parasiticus I A. parasiticus 

09AAsp334 Faro > 400 n.d. n.d. n.d. orange dark-green blue + +++ + ++ - A. parasiticus I A. parasiticus 

09AAsp335 Moncorvo - n.d. n.d. n.d. orange dark-green blue ++ +++ ++ +++ - A. parasiticus I A. parasiticus 

09AAsp336 Faro n.d. n.d. n.d. n.d. orange dark-green blue + + + + - A. parasiticus I A. parasiticus 

09AAsp337 Faro - n.d. n.d. n.d. orange dark-green blue ++ +++ ++ +++ - A. parasiticus I A. parasiticus 

09AAsp338 Faro > 400 n.d. n.d. n.d. orange dark-green blue + +++ + ++ - A. parasiticus I A. parasiticus 

09AAsp339 Moncorvo - n.d. n.d. n.d. orange dark-green blue ++ +++ ++ +++ - A. parasiticus I A. parasiticus 

09AAsp340 Moncorvo - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp341 Moncorvo n.d. n.d. thick/rough n.d. brown brown - - - - - + A. tamarii A. tamarii 

09AAsp342 Faro + n.d. thick/rough n.d. brown brown - - - - - + A. tamarii A. tamarii 

09AAsp343 Moncorvo n.d. n.d. n.d. n.d. brown brown - - - - - + A. tamarii A. tamarii 

09AAsp349 Moncorvo > 400 n.d. n.d. n.d. brown brown - - - - - + A. tamarii A. tamarii 

09AAsp378 Faro > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp379 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green violet - - + +++ + A. flavus III A. flavus 

09AAsp380 Faro > 400 n.d. n.d. n.d. orange yellow-green - - - - - - A. flavus I A. flavus 

09AAsp381 Faro > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp382 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp383 Faro n.d. n.d. n.d. n.d. orange dark-green blue +/- ++ -/+ + - A. parasiticus I A. parasiticus 

09AAsp384 Faro > 400 n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp385 Faro - n.d. n.d. n.d. orange yellow-green violet - - -/+ + + A. flavus III A. flavus 

09AAsp386 Faro > 400 n.d. n.d. n.d. brown brown - - - - - + A. tamarii A. tamarii 

09AAsp387 Faro > 400 n.d. n.d. n.d. brown brown - - - - - + A. tamarii A. tamarii 

09AAsp388 Faro - n.d. n.d. n.d. brown brown - - - - - + A. tamarii A. tamarii 

09AAsp389 Moncorvo - n.d. thick/rough n.d. brown brown - - - - - + A. tamarii A. tamarii 

09AAsp390 Moncorvo - n.d. thick/rough n.d. cream/orange brown - - - - - + A. tamarii A. tamarii 

09AAsp391 Faro - n.d. thick/rough n.d. brown brown - - - - - + A. tamarii A. tamarii 

09AAsp392 
(MUM 10.217) 

Faro - n.d. thick/rough n.d. brown brown - - - - - + A. tamarii A. tamarii 

09AAsp393 Moncorvo - n.d. n.d. n.d. orange yellow-green - - - - - - A. flavus I A. flavus 
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Table AII.1 (continued) 

Code Origin Sclerotia 
on CYA25a 

Seriation 
on CYA25b 

Conidia 
on CYA25 

Diameter 
on CZ42c 

Reverse 
on AFPA 

Colony colour 
on CYA25 

Fluorescence 
on CAM 

AFG2 
on YESd 

AFG1 
on YESd 

AFB2 
on YESd 

AFB1 
on YESd 

CPA 
on CYAe 

Phenotype Species 
(Phenotypic + 
Molecular + 
MALDI-TOF) 

09AAsp394 Moncorvo > 400 n.d. n.d. n.d. brown brown - - - - - + A. tamarii A. tamarii 

09AAsp395 Moncorvo > 400 n.d. n.d. n.d. brown brown - - - - - + A. tamarii A. tamarii 

09AAsp396 Moncorvo - n.d. n.d. n.d. brown brown - - - - - + A. tamarii A. tamarii 

09AAsp397 Moncorvo - n.d. n.d. n.d. orange yellow-green - - - - - - A. flavus I A. flavus 

09AAsp398 Faro - n.d. n.d. n.d. orange dark-green blue ++ ++ ++ ++ - A. parasiticus I A. parasiticus 

09AAsp399 Moncorvo > 400 n.d. n.d. n.d. orange dark-green blue -/+ + -/+ ++ - A. parasiticus I A. parasiticus 

09AAsp400 Faro > 400 n.d. n.d. n.d. orange yellow-green violet - - + ++ + A. flavus III A. flavus 

09AAsp401 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp402 Moncorvo - n.d. n.d. n.d. orange yellow-green - - - - - - A. flavus I A. flavus 

09AAsp403 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp404 Moncorvo - n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp405 Faro - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp406 Moncorvo - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp407 Faro - n.d. n.d. n.d. orange dark-green blue ++ ++ ++ ++ - A. parasiticus I A. parasiticus 

09AAsp408 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green violet - - -/+ + + A. flavus III A. flavus 

09AAsp409 Faro - n.d. n.d. n.d. orange dark-green blue ++ ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp410 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp411 Moncorvo - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp412 Faro > 400 n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp413 Moncorvo n.d. n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp414 Moncorvo - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp415 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green - - - - - - A. flavus I A. flavus 

09AAsp416 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp417 Moncorvo > 400 n.d. n.d. n.d. orange dark-green blue +/- ++ -/+ ++ - A. parasiticus I A. parasiticus 

09AAsp418 Moncorvo > 400 n.d. thick/rough n.d. brown brown - - - - - + A. tamarii A. tamarii 

09AAsp419 Faro > 400 n.d. n.d. n.d. orange yellow-green violet - - + + + A. flavus III A. flavus 

09AAsp420 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp421 Faro > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 
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Table AII.1 (continued) 

Code Origin Sclerotia 
on CYA25a 

Seriation 
on CYA25b 

Conidia 
on CYA25 

Diameter 
on CZ42c 

Reverse 
on AFPA 

Colony colour 
on CYA25 

Fluorescence 
on CAM 

AFG2 
on YESd 

AFG1 
on YESd 

AFB2 
on YESd 

AFB1 
on YESd 

CPA 
on CYAe 

Phenotype Species 
(Phenotypic + 
Molecular + 
MALDI-TOF) 

09AAsp422 Faro - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp423 Moncorvo - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp424 Moncorvo > 400 n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp425 Faro > 400 n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp426 Faro > 400 n.d. n.d. n.d. orange dark-green blue ++ ++ ++ ++ - A. parasiticus I A. parasiticus 

09AAsp427 Moncorvo > 400 n.d. n.d. n.d. orange dark-green blue -/+ ++ -/+ ++ - A. parasiticus I A. parasiticus 

09AAsp428 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp429 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp473 Faro > 400 n.d. n.d. n.d. orange dark-green blue +/- + +/- + - A. parasiticus I A. parasiticus 

09AAsp474 Faro - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp475 Faro - n.d. n.d. n.d. orange dark-green blue ++ ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp476 Faro - n.d. n.d. n.d. orange dark-green blue ++ ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp477 
(MUM 10.249) 

Faro - n.d. n.d. n.d. orange dark-green blue + ++ ++ ++ + A. parasiticus III New sp. 2 

09AAsp478 
(MUM 10.218) 

Faro > 400 n.d. n.d. n.d. orange yellow-green violet - - + + + A. flavus III A. flavus 

09AAsp479 Faro > 400 n.d. n.d. n.d. orange dark-green blue + ++ ++ ++ - A. parasiticus I A. parasiticus 

09AAsp480 Faro > 400 n.d. n.d. n.d. orange yellow-green violet - - + + + A. flavus III A. flavus 

09AAsp481 Faro - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp482 Faro > 400 n.d. n.d. n.d. orange yellow-green violet - - + ++ + A. flavus III  A. flavus 

09AAsp483 Faro > 400 n.d. n.d. n.d. orange dark-green blue ++ ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp484 Faro - n.d. thick/rough n.d. brown brown - - - - - + A. tamarii A. tamarii 

09AAsp485 Faro - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp486 Faro > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp487 
(MUM 10.250) 

Faro > 400 n.d. n.d. n.d. orange dark-green blue + ++ -/+ -/+ (?) A. parasiticus II New sp. 1 

09AAsp488 
(MUM 10.251) 

Faro > 400 n.d. n.d. n.d. orange dark-green blue + ++ ++ ++ + A. parasiticus III New sp. 2 

09AAsp489 Faro - n.d. n.d. n.d. orange dark-green blue ++ ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp490 Faro > 400 n.d. n.d. n.d. orange dark-green blue ++ ++ + ++ - A. parasiticus I A. parasiticus 
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Table AII.1 (continued) 

Code Origin Sclerotia 
on CYA25a 

Seriation 
on CYA25b 

Conidia 
on CYA25 

Diameter 
on CZ42c 

Reverse 
on AFPA 

Colony colour 
on CYA25 

Fluorescence 
on CAM 

AFG2 
on YESd 

AFG1 
on YESd 

AFB2 
on YESd 

AFB1 
on YESd 

CPA 
on CYAe 

Phenotype Species 
(Phenotypic + 
Molecular + 
MALDI-TOF) 

09AAsp491 Faro > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp492 Faro > 400 n.d. n.d. n.d. orange yellow-green violet - - + ++ + A. flavus III A. flavus 

09AAsp493 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green - - - - - - A. flavus I A. flavus 

09AAsp494 
(MUM 10.219) 

Faro > 400 n.d. rough n.d. orange dark-green blue +/- ++ + ++ + A. parasiticus III New sp. 2 

09AAsp495 Faro > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp496 Faro > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp497 Faro - n.d. n.d. n.d. brown brown - - - - - + A. tamarii A. tamarii 

09AAsp498 Faro > 400 n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp515 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp516 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp517 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp518 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green violet - - + ++ + A. flavus III A. flavus 

09AAsp519 Faro > 400 n.d. n.d. n.d. orange yellow-green - - - - - - A. flavus I A. flavus 

09AAsp520 Faro - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp521 Faro - n.d. n.d. n.d. orange yellow-green violet - - + ++ + A. flavus III A. flavus 

09AAsp522 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp523 Faro > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp524 Faro > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp525 Faro - n.d. n.d. n.d. orange yellow-green violet - - + ++ + A. flavus III A. flavus 

09AAsp526 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp527 Faro - n.d. n.d. n.d. brown brown - - - - - + A. tamarii A. tamarii 

09AAsp528 Faro > 400 n.d. n.d. n.d. orange yellow-green - - - - - - A. flavus I A. flavus 

09AAsp529 Faro > 400 n.d. n.d. n.d. orange dark-green blue ++ +++ + +++ - A. parasiticus I A. parasiticus 

09AAsp530 Faro > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp531 Faro - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp532 Faro > 400 n.d. n.d. n.d. orange dark-green blue + +++ + ++ - A. parasiticus I A. parasiticus 

09AAsp533 Moncorvo - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp534 Faro n.d. n.d. n.d. n.d. orange dark-green blue + +++ + ++ - A. parasiticus I A. parasiticus 

(continues) 
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Table AII.1 (continued) 

Code Origin Sclerotia 
on CYA25a 

Seriation 
on CYA25b 

Conidia 
on CYA25 

Diameter 
on CZ42c 

Reverse 
on AFPA 

Colony colour 
on CYA25 

Fluorescence 
on CAM 

AFG2 
on YESd 

AFG1 
on YESd 

AFB2 
on YESd 

AFB1 
on YESd 

CPA 
on CYAe 

Phenotype Species 
(Phenotypic + 
Molecular + 
MALDI-TOF) 

09AAsp537 Faro - n.d. n.d. n.d. orange dark-green blue +/- ++ -/+ ++ - A. parasiticus I A. parasiticus 

09AAsp538 Faro > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp539 Faro n.d. n.d. n.d. n.d. orange dark-green violet - - + ++ - A. parasiticus IV New sp. 3 

09AAsp540 Moncorvo - n.d. n.d. n.d. orange yellow-green violet - - -/+ ++ + A. flavus III A. flavus 

09AAsp541 Moncorvo > 400 n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp542 Moncorvo n.d. n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp543 Moncorvo n.d. n.d. n.d. n.d. orange yellow-green - - - - - + A. flavus II  A. flavus 

09AAsp544 Faro n.d. n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp545 Faro n.d. n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp546 Moncorvo - n.d. n.d. n.d. orange dark-green blue +/- ++ -/+ + - A. parasiticus I A. parasiticus 

09AAsp547 Faro > 400 n.d. n.d. n.d. orange dark-green blue ++ +++ ++ +++ - A. parasiticus I A. parasiticus 

09AAsp548 Faro n.d. n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp549 Faro n.d. n.d. n.d. n.d. orange dark-green blue ++ +++ ++ +++ - A. parasiticus I A. parasiticus 

09AAsp550 Faro - n.d. n.d. n.d. orange dark-green blue + ++ + ++ - A. parasiticus I A. parasiticus 

09AAsp551 Faro > 400 n.d. n.d. n.d. orange dark-green blue +/- ++ -/+ + - A. parasiticus I A. parasiticus 

 

-: not detected 
n.d.: not determined  

a size, in µm: average of 15 sclerotia  
b u: uniseriate; b: biseriate; u/b: predominantly uniseriate; b/u: predominantly biseriate 
c average of 3 colonies, in cm 
d ++: strong signal; +: medium signal; +/-: weak signal; -/+: very weak signal 
e (?) difficult to determine 
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Appendix III 

 

Figure AIII.1 Phylogram of evolutionary relationships of 25 taxa. The evolutionary history was 
inferred using the Neighbor-Joining method. The bootstrap consensus tree 
inferred from 1000 replicates is taken to represent the evolutionary history of 
the taxa analysed. Branches corresponding to partitions reproduced in less than 
50% bootstrap replicates are collapsed. The percentage of replicate trees in 
which the associated taxa clustered together in the bootstrap test (1000 
replicates) are shown next to the branches. The tree is drawn to scale, with 
branch lengths in the same units as those of the evolutionary distances used to 
infer the phylogenetic tree. The evolutionary distances were computed using the 
Maximum Composite Likelihood method and are in the units of the number of 
base substitutions per site. The rate variation among sites was modeled with a 
gamma distribution (shape parameter = 1). Codon positions included were 
1st+2nd+3rd+Noncoding. All positions containing alignment gaps and missing 
data were eliminated only in pairwise sequence comparisons (Pairwise deletion 
option). There were a total of 730 positions in the final dataset. Phylogenetic 
analyses were conducted in MEGA4.  
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Figure AIII.2 Evolutionary relationships of 25 taxa. The evolutionary history was inferred 
using the Maximum Parsimony method. The consensus tree inferred from 4938 
most parsimonious trees is shown. Branches corresponding to partitions 
reproduced in less than 50% trees are collapsed. The consistency index is 
0.960000 (0.922222), the retention index is 0.964286 (0.964286), and the 
composite index is 0.925714 (0.889286) for all sites and parsimony-informative 
sites (in parentheses). The percentage of parsimonious trees in which the 
associated taxa clustered together are shown next to the branches. The MP tree 
was obtained using the Close-Neighbor-Interchange algorithm with search level 
4 in which the initial trees were obtained with the random addition of sequences 
(10 replicates). The codon positions included were 1st+2nd+3rd+Noncoding. 
All alignment gaps were treated as missing data. There were a total of 730 
positions in the final dataset, out of which 70 were parsimony informative. 
Phylogenetic analyses were conducted in MEGA4.  
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Figure AIII.3  Phylogram of relatedness obtained by Maximum Likelihood analysis using 
PAUP4.0. 
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