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SUMMARY

The Mindlin’s theory for the bending of plates is formulated by the finite elements method in order
to the analysis of plate structures resting on elastic media. The foundation soil is represented by
springs with linear elastic behaviour (Winkler’s theory).

A programme has been developped for small computers. It consists of three moduli: preprocessing

which includes data preparation with graphic treatment (network generation and renumbering, etc.);

displacements and support reactions calculation for each loading system; postprocessing, including
options with numerical files creation and graphical treatment of results.

The stiffness of the foundation soil can vary from point to point, the plate can have variable thickness
and may be actuated by a large variety of types of loads. :

1. INTRODUCTION

In the analysis of plate structures lying on elastic soil two main methods have been used. One
considers the plate as a rigid structure when compared with the soil. The other assumes that the
plate is discretized in a net of finite differences, the soil being represented by springs with Winkler’s
coeficients [7].

In many cases the deformability of the plate must be taken into account since it changes the stress
distribution. On the other hand the finite differences method has difficulties in dealing with plates
with irregular geometry. :

In this work we present a model for the analysis of plate structures resting on elastic soil formulated
by the finite elements method and based in the Mindlin’s theory. In this case the deformability of
the plate is taken into account and no difficulties arise with irregular geometry.

N

2. NUMERICAL MODEL
2.1 Displacements
In the Mindlin’s theory [1] the displacement U = {u,v, w}T are expressed as function of the dis-

placement of the middle surface U = {4, , w}T and of the rotations 6, and 6y of the normals to the
middle surface in the planes YZ e ZX, respectively, according to the following relations (Fig. 1),

u(z,y,2) = z20,(z, y) (1)
v(z,y,2) = —20,(z,y) (2)

w(z,y,2) = W(z,y) (3)
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Fig. 1 — Displacements

2.2 Deformations

Considering small displacement and that the u and v derivatives in order to z,y, 2 are also small
and taking into account that w is independent of z, the strain vector will be given by the following
relations: ’

[ &y ) ( 8u/65: ; ) | )
&y | dv/3y 28l
e={ T § _ | 9u/oy+dv/oz L _ | > | (4)
Yz du/dz +dw/dz
. Yys J \ a"/az""aw/ay J | & )
where,
36,/9z 6, + 9% /9z
& =4 -00.J0y ; &= (8)
30, /3y — 30, /dz 8, +3%/dy

give the strains due to bending and shear, respectively. The vector of the generalized strains will
take the form

e={e'.z}) ©)

2.3 Stress and forces
To the vector of strains refered in (4) cbrfesponds the vector of Piolla-Kirchhoff stress,

a= {O'z, Oy, Tzy, sz:rvx}T (7)

The generalized forces are obtained from (7) and are written as

z={".z} | ®
where, .
g/ = {Manvanv}T = {/_:72 (02,0y,7zy) - 2+ d’} 9)
e r_ | M2 T
g = {Qna st} = {-/:h/2 (Tzu Tyz)dz} (10)

which represent the bending and shear forces, respectively, h being the thickness of the element.
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2.4 Constitutive relations

For an homogeneous and isotropic elastic material, with null stress on the 2 direction, the vector (8)
is related to the vector of strains (6) by the expression:

.2 Df [0 &/
= > o | (11)
Cay o [D] &
where, .
1 v O
PR . ) 10
[Df]=12—(1—_72) v 1 0 | ;[D]l=G-h-k iy (12)
0 0 1z

are respectively the bending elasticity matrix and the shear elasticity matrix. The variables Ev,G
and k are the Young’s modulus, the Poisson’s ratio, the shear modulus and a corrective factor [2] to

take into account the assumption of constant strain in the thickness of the element, formulated in
the theory of Mindlin. For rectangular sections of isotropic materials k assumes the value of 5/6.

2.5 Strain matrices

The plate structures analysed by the model may be discretized in isoparametric elements of 8 nodes of
the Serendipity type and of four and nine nods of the Lagrange [3-6]. Therefore, the generalized dis-
placements at a internal point of a finite element will be obtained from the generalized displacements
of its nodal points,

T=3 MK T, (13)
=1

where N; is a shape function associated to the node s, U = {, 4., 0,}T is the vector of the displace-
ments of node 1, Iy is the unit matrix (3 x 3). Summation is extended to the number of nodal points
of the element. Putting (13) into (4) the vector of strains (6) at any internal point of the element is
writen in function of the nodal displacements,

g n [Bl ] [ n

=) 0, = > [BLT; : (14)

g° =1 [Bc] 0’ i =1
where
0 0 ON/dz ‘
ONfoz 0 N
[B]=|0 -anjay o ; [BY= : (15)
ON/3dy -N 0

0 -dN/oz AN/dy

-orrespond, respectively, to the bending and shear strain matrices.
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2.6 Stiffness matrix

The stiffness matrix of the plate structure seting in an elastic media will have the contribution of
the stiffness matrix of the structure plus the stiffness matrix of the soil, which model are springs
orthogonal to the middle plane of the plate. The Winkler coefficients are the elements of the soil
stiffness matrix. ’

2.6.1 Stiffness matrix of the plate structure

Assuming a virtual strain vector dg, the virtual internal work of the stress @ will be
W, = / deT 7dA (16)
A o
Putting (6), (8), (11) and (14) into (16), one obtains

W, = dT" /A ([B7] (D1 (B]) a4 T" (17)

According to the virtual work theorem this is equal to the work done by the external forces: dU .F..
From that equality we obtain the stiffness matrix, ' ‘

(K] = [, 181" (D] [B] d4 | (8)

The matricial element k;; of this matrix is given by

L [ErEE],

A

)

(19)
[B7 (D] [B°); |

i, =1,2,...,n (number of nodes of the element)

2.6.2 Stiffness matrix of the soil

Given the Winkler coefficients associated with the nodes of the structural element, the Winkler
coefficient at any internal point of the element is given, in a isoparametric formulation, by '

Col6n) =3 (Coli Nilesn) (20)

=1

where N;(&, n) are the shape functions
[3] refered in (13) and (&, ) the local
coordinates of the element. The vir-
~tual vertical displacement at any in-
ternal point of the element is given
through the virtual vertical displace-
ment of the nodes of the element,

Fig. 2 — Soil model
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n
dw(¢, ) = ) dw; N;(&n) (21)
=1
The internal virtual work done in the element is given by

aw, = / dw Cy dA (22)
A

Putting (20) and (21) into (22), using the virtual work theorem and applying the Gauss numerical
integration, we obtain the stiffness coefficient corresponding to the generic nodes i and j of the
element, associated with the contribution of the soil for the global stiffness of the soil/structure

system, Ne N
9 Ng

(kc)ij = E E N;i(&p,nq) - Cu(ps1q) - N;(€ps ng) - detJ - Wp = Wy (23)
p=1 ¢=1

where detJ is the determinant of the jacobian matrix [3] of the element which is related to the
conversion of the global coordinates (z,y) to the local coordinates (&,7) of the element, Ng is the
number of Gauss points of integration (two points for the elements of four nodes and three points for
the element of eight and nine nodes) and wp, w, are the weights associated to the integration point
(€, mq) in the local coordinates system. : -

Notice that the soil stiffness, only affects the degree of freedom associated to the vertical displacement.

3. COMPUTATIONAL CODE

As already said our analysis is carried out in three phases: preprocessing, calculation and postpro-
cessing. In this way it is possible to calculate structures of large dimensions in small computers, since
for each programme only the necessary space in memory is reserved.

The main options in the computational code developped are the following:

1) Preprocéssing programme:

(1) creates files for finite elements grid generation; (2) generates the the finite elements grid;
(3) renumbers the grid nodes; (4) creates data files. (2), (3) and (4) have graphical facilities.

2) Calculation programme:

This program allows the calculation of displacement and reactions for each loading case.

3) Postprocessing programme:

N

The options associated to this programme allow the graphical or numerical printing of results
for each case of loading.

The following are the options of this programme:

(1) Data, (2) Nodal equivalent forces; (3) Displacements; (4) Coloring of the displacements;
(5) Printing of the deflected structure; (6) Reactions; (7) Calculation and postprocessing of
internal forces; (8) Coloring of the internal forces, (9) Internal forces diagrams; (10) Graphics
of displacements and internal forces; (11) Pressures on the soil.
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4. APPLICATIONS

Most of the results presented in the bibliography related to plate structures resting in elastic media,
have been obtained by finite differences [7]. Therefore, in the following we compare the results
obtained with our model with those obtained by finite differences, refered by other authors [7].

4.1 Rectangular footing

In Fig. 3 a rectangular footing resting on elastic media is presented (with a finite differences grid
[7]). It has a vertical load at its center.

The data is the following: / P24 n——]

E, = 22408730 kN/m? (Young’s modulus for
the concrete of the plate)

Cy = 23536 kN/m® (Winkler’s coefficient for

the soil) {ﬂj}‘ 18 m
~e = 23.56 kN/m® (Specific weight of the
concrete)
In Fig. 4 we represent the network -
of finite elements, together with the :
principal moments in the footing. ¢ 890 kN
) 04 m
In table 1 we present some of the re- 11 b
sults obtained with our model com-
pared with those of reference (7). T
Fig. 3 — Rectangular footing resting
on elastic media.
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Fig. 4 — Principal moments
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Displacements Moments (kN.m/m) Pressures

Node %100 (m) M., . My, (kN/m?)
P. model | Ref. [7] | P. model(!) | Ref. [7] | P. model( | Ref. [7] | P. model | Ref. [7]
12 | 0.85781 | 0.89973 11.171 | 16.249 0 0 | 201.898 | 211.761
25 | 0.87472 | 0.91698 39.648 | 39.358 10.908 | 11.219 | 205.875 | 215.819
38 | 0.80196 | 0.93387 87.876 | 87.560 48.790 | 46.908 | 209.981 | 210677
51 | 0.91539 | 0.94529 221914 | 247.588 178.942 | 202.551 | 215.447 | 222.484

1) Values extrapolated from the Gauss points to the node points with quadratic functions.
Table 1

4.2 Raft foundation

In Fig. 5 we present the grid of finite elements (8 nodes) for the raft foundation given in ref. [7].
The data is

E, = 22408776 kN /m?

§=0.15 | Y
Cy = 5655.2kN/m? fm_?__z.na oz 223 ool
h=1.168m T B ) P R e
. +— 819263 144 ls8s 186 fs87 188 li89 190 [1asdaes
Node F,(kN) Node F,(kN) 2819 174175 176 R Y4 178 179|180
+— (iE14285 164 1165 66 f167  se@  |169 170 |371fa73
1 -198.9 1 121 -763.6
3 -99.4 123 -381.0 2.819 154 155 156 157 158" 159160
7 ‘405.3 127 '1144-7 4 1414243 144 14% 146 147 148 149 150 1513253
11 '116'7 131 -3026 1128 ::: ;:2 124 ::: 126 :2; 128 ::: 130 i;: :;g
13 | -2334( 133 -606.4
21 '73.7 141 '245-0 3.383 11471115 . 116 117 118 1191120
23 -36.8 || 143 |. -122.5
27 -150.1 147 _367'5 1014203 104 1105 106 [107 108 109 110 |111]a13
31 -43.2 || 151 -97.3 . ‘
33 -86.5 153 _194'5 3.383 94 |95 Ll 97 @8 99 [100
61 -245.0 | 181 -73.7 ,
63 | -1225| 183 | -36.8 - e e e #Z
67 -367.5 191 -43.2 4 |616463 64 €5 €6 . 67 68 53] 70 717273
1 97.3 || 193 -86.5 - - e 5 lso
73 -194.5 || 201 -198.9 '
81 | -763.6 | 203 -99.4 TR e e e b 5 g
83 | -381.0( 207 | -7295 L ore v e s |0
87 -1144.7 || 211 -116.7 '
91 -302.6 | 213 -233.4 e P T 212353
03 -606.4 1128 l_‘ 1 2]3 a 5 6 7 8 T :u fg X

Fig. 5 — Grid of finite elements for the raft foundation.

We presents the results obtained from reference [7] (pp. 214-221) for the line sectins A; and Az
represented in fig 7:
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n 0,914 = z = = H s =z = = = = H =
Line seclion &1 feeeme—d + ; ' A : 4 4 ! ! . S |
Moz x (1) 0,0 79,3 150,72 7014 2275 229.6 217,84 04,3 20,0 217,9 211,5 184,7 1357 70,8 0.0
[ | | ! I } | ] | ] | | | | |
Mgz ¥ (=1) 223,3-178,0 1574 133,5 125,7 126,9 134,0 138,6 133, 126,72 124,0 130,0 145,2 168,5 208,0
{kN,n/a)

n 0,914
Line section A2 b $ } t $ + + - ¢ 4 + + ¢ 4 +=> X
Moo v (=13 0.0 82,0 223,3 283,8 301,2 275,8 198,3 24,0 188,2 260,3 2757 233,5198.3 76,3 0,0
} } { | | | | ] | | | { | ! |
My= x (=1) 523,1 386,6 212,2 135,2 106,0 115,9 1656 254.6 158.0 99,0 78,4 92,5 146,8 126.0 3609
{kN.n/m)

In Fig. 6 the moments M;, and My, (options of the programme) are plotted for sections S; and 2
which contains the Gauss points nearer to the sections A; and A; of Fig. 7.

Myi (% m/m) My T T¥n msm)
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Ras 1" nm) T
' Mx 440, ; ; M Yz ; Se
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-180.1 i 200. 1 - B
-200. 180. | i
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-220. L - 140. 1 __
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-200. | _ :g~ I .
~300. 1 1 .l B
~320. 1 i 20. ]
~340. . N N . : ximy 0. : i L . . Ky
.0000 2.1337 4.2674 6.40118 8.5348 10.6685 12.8022 0000 2.1337 4.2674 6.4011 6.5348 10.6685 12.8022

Fig. 6 — Graphics of the moments for sections Sy and Ss.

In Fig 7 we present the principal moments. The coloring of the moments M., and M, developped
in the plate and the soil pressures are given in Fig. 8. These results are some of the graphical options
of our computational code.
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5. CONCLUSIONS

The modeling of the soil by springs with a linear behaviour and considering the plate-soil interaction,
lead to a moment distribution quite different from that obtained by the simplified method of assuming
an infinite stiffness for the plate in relation to the stiffness of the soil.

The graphical opfions of the computational code greatly contribute to the easy interpretation and
analysis of the data and results.
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