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ABSTRACT

Sandwich construction may be defined as a three-layer rype of construction where a relatively weak, low-
density core material supporis and stabilizes thin layers of high sirength face material lis typical features,
namely high strenghi-thin and low sirength-thick materials, interfaces, banding and load transfer sﬁggest
that each of the layers will perform accordingly to its material characteristics and laminale position. |
Most of the theories used for the analysis of such structures are based either in the Kirchhoff or Mindlin
assumptions. The first model does not accounts for transverse shear deformations while the second
assumes a first order shear-deformation behaviour. However, both models consider for all the layers a
common and unigue rotation of the middle-surface normal. In the model which will be described in this
paper, it is assumed that each layer (skin or core) can rotate independently, due to their different material
characteristics. With this asswnption, each layer can deform locally, this being a more accurate model for
high-stress gradient areas. 7

In each layer, iransverse shear deformation is considered by the imposition of Mindlin-type kinematic
relations. In the displacement-based finite-element ﬁm_del. each node possesses 9 degrees of freedom, three
displacements of the plate middle-surface and two rotations of the normal of each layer middle-surface.
Displacemeni confinuity at the interfaces is imposed. The transverse shear siresses at the middle-surface of
the layers are accuratelly computed, although constant in each layer. However, in this model shear
correction factors are not used, which simpi{ﬁe.-v the usual Mindlin-type models, in which these factors are-
calculated through cylindrical bending assumptions.

In this paper, the three-layer sandwich element formulation for linear static analysis will be described. The
four, eight and nine-noded isoparametric plate elements are considered. Numerical examples are discussed

in order 1o access the model accuracy.



INTRODUCTION

Sandwich structures are one of the most sucessful areas of research and development in
composite materials field. The literature in this field is relatively large. Allen! has
published theories for sandwich plate analysis. Pagano?? presents exact solutions for
simple cases, considering the transverse shear deformation effects. Numerical methods,
such as the Finite Element Method (FEM), are necessary in practical applications as they
are able 1o modelize general geometries, boundary conditons, loadings and materials.
Among the significant contributions in this field, Khatua et al4 and Kolar et al® developed
elements based on displacement fields, and Kraus® presents an assumed stress hybrid
formulation for an orthotropic sandwich plate element. Manwenya et al? published the
formulation of a multilayer quadratic isoparametric plate element with layer-wyse shear
deformation theory involved, and Ferreira8 studied a three-layer sandwich plate, by
considering the shear deformation effects of both skins and core. In the present paper,
this latter work is briefly discussed.
THEORY

Modelling a layered structure like a sandwich plate, one frequently proceeds to a kind of
homogeneization to account for all the kinematic effects (membrane, bending, shear and
interactions). However, this procedure does not capture completely the local effects of
heterogeneous, highly non-symmetric sandwich structures. We propose a more accurate
formulation which considers a three-layer plate (fig.1), each one of these can locally
deform. The present approach considers the shear deformation effects in each layer.

The present shear deformation theory for general sandwich plates has been developed by
assuming the displacement field in the following form: '

In each layer, i, the middle-layer displacement field is found by

(ugl={ug,, vy, w17, i=1,2,3 M

in which ug,, v, and w, represents the ith layer displacements about the x,y and z axes.

For the first layer (top) we assume (by displacement continuity) that
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in which h, represents the i layer thickness and 8;;, 8y, the ith layer rotations of the

“normal” about the x and y axes. For layer 2 and 3 (core and bottomn layer, respectively),
expressions similar to (2) can be found. It is supposed that the laminate middle-surface is
(conveniently) placed at core middle-surface. By this supposition we can write

(Uyg 3Vap Wag 1T= Lug vy W IT
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The middle-surface displacement field of the 3 layer (bottom) is expressed as
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Fig.1 - Three-layer sandwich element - Geometry and displacement components

By setting z; as a local i layer z coordinate as
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the ith Jayer displacement field is found as



fu) = {u,y} +z (8] (6)

For the first layer (layer 1), for example, expression (6) can be developed as
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For the other layers similar expressions can be found.
The strain - displacement relations for the i layer are as follows:
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In each layer, the strain tensor is divided into membrane{e™};, bending {€");, shear

{€°};, and membrane-bending, {Emb}'i :

m mb b
£ i 0 ; 0 i (10)

The membrane strains are constant through the sandwich thickness and are given for the
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ith layer as:
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The bending strains are expressed by
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The shear strains are given by

(12)
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Finally, the membrane-bending strains for the top layer (layer 1) are expressed as

(13)
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The mgmbrane-bcnding strains vanish for the core, as result of the sandwich middle-

surface position. The expression for the bottom layer (layer 3) is given by
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Notice that through this approach the membrane-bending effects are automatically

achieved.

The material constitutive relations for the ith layer can be written as {;}=[D;] {&} or
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where {0} represents the stress tensor for the it Jayer referred to the Jayer coordinate

axes (1,2,3) as shown in fig.2, and [D,] is the reduced material stiffnesses matnx of the

ith layer and the following relations hold between these matrix coefficients and the

engineening elastc constants:
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The stress-strain relation for the ith layer in the laminate coordinate axes (X,y,z) are

written as
{(¢'); = [D; {e'}; : (19)
where
(o'hiT={ox, Oy, Ty Txas Tz )i (20)
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Fig.2 - Lamina coordinate systems (x,y,z) - Global and (1,2,3) - Local
(note: z and 3 are the same and normal to the plane (x,y) or (1,2))

where [B]; represents the transformation mairix of the stress/strain vectors between the
lamina and the laminate coordinate systems according to the usual transformation rule
given in Jones? . Notice that in the present model no shear cormrection factors are applied
to the shear elastic coefficients,

By integrating the stresses through the plate thickness, the generalized stress-resultant for
the three-layer sandwich (fig.3) are obtained as:
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The 1t -layer moments are calculated as
m
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(note that in this case z'P = hi/2 and z;bot =- hi/2)
The laminate moments are calculated by summing the latter (1 ' -layer) moments

produced by the i th -layer position in z-direction. These latter moments are expressed as
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The laminate moments are then obtained as follows
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The shear stress-resultants are expressed as
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Fig.3 - Generalized stress-resultants for the three-layer sandwich plate
FINITE ELEMENT FORMULATION

In the standard finite element technique, the solution domain is discretized into n

subdomains (elements) such that

I e
@)= 1 (5
where 11 and I1¢ are the total potential energy of the system and the element, respectively.

The element potential can be expressed in terms of the internal strain energy U¢and the
external work done We for an element e as

e () = Ue- We (29)

in which {8} is the vector of unknown displacement variables in the problem and is
defined by

{6} = {uo,VD,WO aex] :eyl 3 ex?, y 8)!2: ex3 3 ey3}T (30)

By assuming the same interpolation function to define all the components of the
generalized displacement vector {8}, we can write

NN
{8} =2 [INJ{3}
i=1 3N
in which NN is the number of nodes of the element, [Nj] is the interpolating (shape)
function matrix associated with node i and {8;) is the part of {8} corresponding to node

1.



The strain vector is related to the displacements vector as
(e}=[B]{3} (32)

in which [B] is the so-called strain-displacement matwix, containing the shape functions
and their denivatives. The [B] matrix is divided into membrane, bending, shear and
membrane-bending matrices, according to the relations (30) and (9) to (15).

The elastic static stuffness matrix is achieved by the minimization of the internal sirain

energy8 and is evaluated by summing up the contribuition of the three layers as
3
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1=1 (33)
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NUMERICAL EXAMPLE AND DISCUSSION

Validity of the finite element formulations of the present model is established by
comparing results for sandwich plate problems with those available in the form of exact,
closed form and other finite element solutions. This example is selected from Srinivas!0,
in which a square, simply supported along all four edges plate is analysed for different
material and layer thickness configurations. The plate 1s loaded by a transversely uniform
pressure, the 8-noded Serendipity element was used throughout, and the stresses are
cvaluated at the nearest gauss point. The plate geométry, finite element mesh and
boundary conditions are illustrated in fig.4, The adimensional core material characteristics

are
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The skins (layers 1 and 3) material characteristics are proportional to the core

characteristics and are calculated through the use of factors
¢y = [Pl k=1,3
kT T~ K=,
D..
[ ‘Jlm: (36)
Five diferent cases are studied. These seek to simulate several sandwich configurations,

such as an isotropic homogeneous laminate (case 1), 2 symmetric sandwich (cases 2 and
3) and non-symmetric sandwich (cases 4 and 5).
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Fig.4 - Geometry, mesh, material and boundary conditions of a square, simply supported
sandwich plate.

The following general observations can be made from the results presented in tables 1-5
and figs. 5-7: (i) Deflection and inplane stresses are accurately predicted without refining
the mesh, as the 2x2 mesh in a quarter plate gives sufficiently accurate results, (i) For
Non-symmetric sémdwich, this model presents a better bending behaviour, with very
accurate deflections. Notice that for cases 4 and 5, the most difficult to model, the
predicted inplane sresses are more accurate than those predicted by Barros!! and
Figueiras!?, (iii) With the present model (without the use of shear correction factors) a
very accurate prediction of ransverse shear stresses can be directly achieved, in each
middle-surface.

Table 1- Maximum in-plane stresses o, /q (x,y=0) and displacements in a simply supporied square
sandwich plate (case 1) h1/h=0.1, ho/h=0.8, h3/h=0.1, c=1, c3=1

In-plane stresses ...>--Layer 1-- -Core - --Layer 3--
Source w* Top | Bottom Top Botiom Top Bottom
Srinivas[exact] 181.05 36012 28538 28.538 -28.545 -28.545 -35937
Figueiras 18399 36223 28.978 28978 -28.978 -28.978 -36.223
Barros 181.22 .35.693 28.560 28.560 -28.560 -28.560 -35493 .
Kirchhoff 16838 36.098 28.878 28878 -28.378 -28.878 -36.098

Present analysis 180.5 38819 30.712 30.712  -30.712 -30.712 -38.819




Table 2- Maximum in-plane stresses &, /q (x,y=0) and displacements in a simply suppornied square

sandwich plate (case 2) h1/h=0.1, hp/h=0.8, h3/h=0.1, ¢|=10, c3=10

In-plane stesses ....>--Layer 1-- -Core - --Layer 3--
Source w* Top Bottom Top Bouem Top Botlom
Srinivasfexact] 41906 65332 48.857 4903 4860 -48.609 -65.083
Figueiras 41,922 65.226 48.735 4.8735 -4.8735 -48.735 -65.226
Barrog 41,980 63.247 54.020 54020 -54020 -54.020 -63247
Kirchhoff 31.24] 66953 53,563 53563 -53563 -53.563 -66.953 )
Present analysis — 41930 64.150 47.720 4772 4772 47720 -64.150

= w... G, (core)
B T
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Table 3- Maximum in-plane stresses oy /q (x,y=0) and displacements in a simply suppored square

sandwich plate (case 3) h1/h=0.1, hp/h=0.8, ha/h=0.1, ¢]=50, ¢3=50

In-plane stresses ....>--Layer 1--

-Core

--Layer 3--

Source w Top Bottom Top Botiom Top Bottom
Srinivas{exact} 16.753  67.213 37473  0.76826 -0.74196 -37.157 -66.900
Figueiras 16.850 58.307 46.646  0.9330 -0.9330 -46.646 -58.307
Barros 16.812 58.069 46463 0.9290 -0.9290 -46.463 -58.069
Kirchhoff 6.762 72457 57966 1.1593 -1.1593 -57.966 -72.457
Present analysis 16.814 66490 35970 0.7194 -0.7194 -35970 -66.490
i i
z z
) Loy 1.902
e L - — -preea g
I = =~ Present Analysis
-— - Barros [14]
— Srinivas [12] 2 3211
- - - - - ~ - - - - = -3.908(14)
/ 3———-——-'—1—’9‘9. 2 [14]
1.902

Inplane stresses g, /g

Transverse shear stressses Ty2/q

Fig. 5 - In-plane and transverse shear stresses- case 3



Table 4- Maximum in-plane stresses O, /q (x,y=0) and displacernents in a simply supported squarc

sandwich plate {case 4) hy/h=0.1, hy/h=0.8, ha/h=0.1, ¢1=50, c3=10

4.191 [14]
S

In-plane stresses ....>--Layer 1-- ~Core - --Layer 3--
Source w* Top Bonom Top Bottom Top Bottom
Srinivasfexact) 28.297  91.610 37.307 076477 -4.4503 -44.512 -55.207
Figueiras 28.432 82.238 47.287 (.9457 4.6464 46.464 -53455
Barros 28300 81774 47.013 09404 -4.6193 -46.193 -53.148
Kirchhoff ] 17.855 90.037 51.771 1.0354 -5.0871 -50.871 -58.524
Present analysis 28.260 90440 35950 0719 4335 -43.350 -54.110 —
i i
z Z
Laver
2.265
. Y 2.446 [14]
” 1 T - B -
~ == Present Analysis
—-— - Barros [14]
— - - - - — Smmvas[2l _ _ 2.l 3418
-100 / 100
/ 3 - e 1.721[14}
1.499

In-plane stresses o, /q

Transverse shear swessses 1,,/q

Fig. 6 - In-plane and transverse shear stresses- case 4

Table 5- Maximum in-plane stresses o, /q (x,y=0) and displacements in a simply supported square
sandwich plate (case 5) h1/h=0.1, hp/h=0.6, h3/h=0.3, ¢1=10, c3=10

In-plane swesses ....>--Layer 1-- -LCore - --Layer 3--
Source w* Top Bottom ‘Top Bottom Top Bottom
Srinivasfexact] 34549  63.756 50.236 5.0409 -0.33609 -3.4028 -43.771
Figueiras 34921 63504 53218 53218 -0.8407 -8.497 -39.354
Barros 34706 63.061 52.856 52856 -(.8436 -8.436 -39.089
Kirchhoff 25342 67060 56.199 56199 -0.89729 -8.9729 -41.559
Present analysis 34,533 62.540 49.908 4908 03180 -3.180 -43.210
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Fig. 7 - In-plane and transverse shear stresses- case 3
CONCLUSIONS

A very accurate model for sandwich plate finite element analysis is presented. This model
1§ more accurate than the Mindlin first-order shear-deformation modell2.14 and much
supenior than Kirchhoff models. Both deflections and inplane stresses are precisely
predicted, while transverse shear stresses are also predicted very precisely in each layer
middle-surface. Shear correction factors, usually employed in first order shear

deformation theories, like the Mindlin theory, are not used in the present approach.
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