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a b s t r a c t

This study has investigated the joint effect of several factors on the workability and mechanical strength
of alkali-activated metakaolin based mortars. The factors analysed through a laboratory experiment of
432 specimens, pertaining to 48 different mortar mixes were, sodium hydroxide concentration (10 M,
12 M, 14 M, 16 M), the superplasticizer content (1%, 2%, 3%) and the percentage substitution of metaka-
olin by calcium hydroxide in the mixture (5%, 10%). The results show that the workability decreases with
the concentration of sodium hydroxide and increases with the amount of calcium hydroxide and superp-
lasticizer. The results also show that the use of 3% of superplasticizer, combined with a calcium hydroxide
content of 10%, allows improving the mortar flow from less than 50% to over 90%, while maintaining a
high compressive and flexural strength.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

To make Portland cement clinker limestone is heated with a
source of silica in a kiln at temperatures well over 1350 �C. The
production of one tonne of cement generates 0.55 tonnes of chem-
ical CO2 and requires an additional 0.39 tonnes of CO2 in fuel emis-
sions for baking and grinding, accounting for a total of 0.94 tonnes
of CO2 [1]. Other authors [2] report that the Portland cement indus-
try emitted in 2000, on average, 0.87 kg of CO2 for every kg of ce-
ment produced. Current estimates of world cement manufacture
are near 3000 Mt (million tonnes)/year. Although Portland cement
demand is decreasing in industrial nations, it is increasing dramat-
ically in developing countries. Global demand will have increased
almost 200% by 2050 from 2010 levels (Fig. 1). This is particularly
serious in the current context of climate change caused by carbon
dioxide emissions worldwide, causing a rise in sea level and the
occurrence of natural disasters and being responsible for a future
meltdown in the world economy [4,5]. Furthermore, the search
for more durable binders relates to the fact that reinforced Port-
land cement concrete structures deterioration is a very common
phenomenon. Beyond the durability problems originated by
imperfect concrete placement and curing operations, the real issue
about Portland cement durability is related to the intrinsic proper-
ties of that material. It presents a higher permeability that allows
water and other aggressive elements to enter, leading to carbon-
ation and chloride ion attack resulting in corrosion problems. This

implies expensive conservation actions or building new structures.
Research works carried out so far in developing alkali-activated
binders, show that this new material is likely to have enormous po-
tential to become an alternative to Portland cement. Alkali-acti-
vated concrete have been receiving increased attention, due to
the need of reducing green house gas emissions generated by Port-
land cement and to the need of new binders with enhanced dura-
bility performance [6–8]. Although research in this field has been
published as ‘‘alkali-activated’’ binders, the term ‘‘geopolymer’’ is
the generally accepted name for this technology. Geopolymerisa-
tion involves a chemical reaction between various alumino-silicate
oxides with silicates under highly alkaline conditions, yielding
polymeric Si–O–Al–O bonds indicating that any Si–Al materials
could become sources of geopolymerisation. Alkali-activated bind-
ers generates 80% less carbon dioxide than Portland cement [9].
Weil et al. [10] mentioned that in comparison to Portland cement
concrete the global warming potential (GWP) of alkali-activated
concrete is 70% lower. The high cost of alkali-activated binders is
one of the major factors which still remains a severe disadvantage
over Portland cement [11–13]. Currently alkali-activated binders
only becomes economic competitive for high performance struc-
tural purposes. However, future increase cost of Portland cement
due to European Emissions Trading Scheme (ETS) that will put a
price on carbon dioxide emissions generated during clinker pro-
duction will reduce the economic advantage of this material. In
the short term the above cited disadvantage means that the study
of alkali-activated applications should focus on high cost materials
such as, commercial concrete repair mortars. Pacheco-Torgal et al.
[14–16] show that alkali-activated mortars can be as much as se-
ven times cheaper than current commercial repair mortars. But if
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the cost to bond strength ratio were compared the differences are
even higher, with the cost of the cheapest commercial repair mor-
tar being 13.8 times higher than the alkali-activated mortars. Alka-
li-activated mortars and concretes present a stiff workability
behaviour arising from the use of viscous compounds such has so-
dium silicate and sodium hydroxide. Several authors have reported
placement difficulties related to the low workability of alkali-acti-
vated mortars. Some authors [17] show that several superplasticiz-
ers used in the Portland cement concrete industry lost their
fluidifying properties for alkali-activated mortars. Other authors
[18] found out that the use of a superplasticizer leads to an
improvement of alkali-activated mortars workability but they
can also contribute to a reduction on compressive strength
depending on the sodium silicate to NaOH ratio. Sathonsaowaphak
et al. [19] reported that workable ranges of sodium silicate/NaOH
ratios and NaOH concentration are between 0.67–1.5 and 7.5–
12.5 M. Also Rangan [20] confirmed that the addition of a naphtha-
lene sulfonate-based superplasticizer improves the workability of
fly ash geopolymer mixtures, however, a superplasticizer content
above 2% is responsible for a slight degradation of compressive
strength. Therefore, the purpose of this paper is to understand
how the composition of alkali-activated mortars influences its
workability and its mechanical strength.

Fig. 1. Portland cement demand [3].

Table 1
Chemical composition of metakaolin.

SiO2 Al2O3 Fe2O3 K2O Na2O MgO TiO2 Other minor oxides

50.75 43.48 2.45 – 0.04 0.11 0.57 2.6
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Fig. 2. Flow versus sodium hydroxide concentration for several contents of superplasticizer and calcium hydroxide.
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2. Experimental work

2.1. Materials

The metakaolin used in this study was subjected to a thermal treatment at
650 �C during a few seconds using a flash calcination apparatus. Its chemical com-
position is shown in Table 1. The fine aggregate used was crushed sand from the
same mine with a specific gravity of 3.0 a 24 h water absorption of 1.0%, and a fi-
nesse modulus of 2.8. The superplasticizer has been provided by MAISOL – FPR,
with a density of 1.100 ± 0.005 g/cm3. A hydrated commercial lime powder sup-
plied by Lusical with more than 70% of CaO and a density of 0.46 g/cm3 was also
used.

2.2. Mixture proportions and synthesis

The factors considered in this investigation led to the manufacture of 48 differ-
ent mixes (432 specimens). The factors analysed were, sodium hydroxide concen-
tration (10 M, 12 M, 14 M and 16 M), the superplasticizer content (1%, 2% and 3%)

and the percentage substitution of metakaolin by calcium hydroxide in the mixture
(5% and 10%). The mass ratio of sand/metakaolin/activator used was 2.2/1/1. Previ-
ous trials showed that a higher sand content leads to a very stiff behaviour and a
lower one leads to liquid like mortar. The alkaline activator was prepared prior to
use. An activator with sodium hydroxide and sodium silicate solution
(Na2O = 13.5%, SiO2 = 58.7%, and water = 45.2%) was used with a mass ratio of
1:2.5. Previous investigations showed that this ratio lead to the highest compressive
strength results in alkali-activated mortars. Distilled water was used to dissolve the
sodium hydroxide flakes to avoid the effect of unknown contaminants in the mixing
water. The alkaline activator was prepared prior to use. Alkali-activated mortars
were a mixture of aggregates, metakaolin, calcium hydroxide and alkaline silicate
solution. The sand, metakaolin and calcium hydroxide were dry mixed before added
to the activator. No extra water has been added.

2.3. Workability

The workability assessment has been conducted with a truncated conical mould
and a jolting table according to the EN 1015-3.
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Fig. 3. Compressive strength for 7 days curing versus flow in mortars with a 10 M
sodium hydroxide concentration and a calcium hydroxide percentage of 10% for
several contents of superplasticizer.
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Fig. 4. Compressive strength for 7 days curing versus flow in mortars with a 12 M
sodium hydroxide concentration and a calcium hydroxide percentage of 10% for
several contents of superplasticizer.
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2.4. Compressive and flexural strength testing

Compressive and flexural strength data was obtained using 160 � 40 � 40 mm3

cubic specimens according to EN 1015-11. The fresh mortar were cast and allowed
to set at room temperature for 24 h before being removed from the moulds and
kept at room temperature (20 �C) until tested in compression and flexural strength.
Compressive strength for each mortar mixture was obtained from an average of 3
specimens from those broken in flexure.

3. Results and discussion

Fig. 2 presents the results of the alkali-activated mortars flow
according to the sodium hydroxide concentration for several con-
tents of superplasticizer and calcium hydroxide. The results show
that alkali-activated mortars without superplasticizer show a flow
below 50%. Mortars with increase superplasticizer content show an
increase flow. The mortars containing a high calcium hydroxide

show a high flow because this mixture has a low percentage of
metakaolin. Since metakaolin has a high Blaine fineness it needs
a high liquid phase in order to be dissolved. Flow is also reduced
with high sodium hydroxide concentration. The highest flow was
achieved by mortars with a sodium hydroxide concentration of
10 M and a calcium hydroxide of 10% (Fig. 3d). The use of a superp-
lasticizer content of 3% combined with a calcium hydroxide con-
tent of 10%, allows increasing a mortar flow of less than 50% to
over 90%. Similar findings were recently reported [19]. Figs. 3–6
show the compressive strength for 7 days curing versus flow in al-
kali-activated mortars according to the sodium hydroxide concen-
tration and several contents of superplasticizer and calcium
hydroxide. In the mortars with a sodium hydroxide concentration
of 10 M, the flow increase due to the increase in the superplasticiz-
er content is associated to an almost constant strength level, which
is a different behaviour from the one reported by other authors
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Fig. 5. Compressive strength for 7 days curing versus flow in mortars with a 14 M
sodium hydroxide concentration and a calcium hydroxide percentage of 10% for
several contents of superplasticizer.
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Fig. 6. Compressive strength for 7 days curing versus flow in mortars with a 16 M
sodium hydroxide concentration and a calcium hydroxide percentage of 10% for
several contents of superplasticizer.
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[16,17]. As for the mortars with a sodium hydroxide concentration
of 12 M and a 10% calcium hydroxide, when the superplasticizer

content increase from 2% to 3% a flow increase is observed but at
the same time a compressive reduction takes place. This confirms
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previous findings [17,20] and could be explained by high air en-
trained content. The compressive strength of alkali-activated mor-

tars according to the curing days is showed in Figs. 7–9. The results
show that higher sodium hydroxide concentrations lead to a com-
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Fig. 8. Compressive strength according to age for mortar mixtures with 5% of calcium hydroxide and several sodium hydroxide concentrations and superplasticizer contents.
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pressive strength increase, but that only happens beyond 7 days
curing. Higher concentrations of alkaline solution raises the pH

which increases the dissolution and solubility of the aluminosili-
cate mineral waste and provides positive ions to balance the neg-
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Fig. 9. Compressive strength according to age for mortar mixtures with 10% of calcium hydroxide and several sodium hydroxide concentrations and superplasticizer
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ative charge of the aluminate group [21,22]. The adverse effect re-
ported by Lee et al. [23] related to reduction in strength due to ex-

cess of alkali have not been confirm. With the exception of the mix
with a sodium hydroxide concentration of 12 M and a 3% of
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Fig. 10. Compressive strength versus H2O/Na2O atomic ratio for mortars with 0% of calcium hydroxide and several superplasticizer contents.
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superplasticizer which needs 28 curing days to achieve a 40 MPa
compressive strength, the other can easily achieved a high

mechanical strength just after 7 days curing. Some of them can
even reach 50 MPa. Figs. 10–12 show the compressive strength
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Fig. 11. Compressive strength versus H2O/Na2O atomic ratio for mortars with 5% of calcium hydroxide and several superplasticizer contents.
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versus H2O/Na2O atomic ratio according to curing time. The results
show a compressive strength increase with the H2O/Na2O molar

ratio decrease below 9.5. This behaviour is independent of the cal-
cium hydroxide content. Although other authors [15] obtained a
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Fig. 12. Compressive strength versus H2O/Na2O atomic ratio for mortars with 10% of calcium hydroxide and several superplasticizer contents.
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lower compressive strength for the same sodium hydroxide con-
centration and calcium hydroxide content (30 MPa for 16 M and

10% lime), when using tungsten mine waste mud the explanation
for that is not entirely related to the different reactivity between
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Fig. 13. Flexural strength according to age for mortar mixtures with 0% of calcium hydroxide and several sodium hydroxide concentrations and superplasticizer contents.
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the metakaolin and the tungsten mine waste mud. The different re-
sults are much more related to the H2O/Na2O parameter which is

8.9 (16 M) in the present study and was 13.4 for those authors.
When they used a H2O/Na2O around 10 they observed a compres-
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Fig. 14. Flexural strength according to age for mortar mixtures with 5% of calcium hydroxide and several sodium hydroxide concentrations and superplasticizer contents.
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sive strength of 55 MPa after just 7 days curing. The flexural
strength of alkali-activated mortars according to the curing days

is showed in Figs. 13–15. The results are rather high between 8
and 12 MPa representing 20–25% of the compressive strength.
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Fig. 15. Flexural strength according to age for mortar mixtures with 10% of calcium hydroxide and several sodium hydroxide concentrations and superplasticizer contents.
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Similar findings had already been reported [24]. This is quite differ-
ent from the behaviour observed for Portland cement based con-
crete for which flexural strength represents 10–15% of the
compressive strength and a flexural strength above 10 MPa is
uncommon. The results also show that flexural strength increased
with and increased in sodium hydroxide concentration, the in-
crease is similar to the increase already observed for the compres-
sive strength in both cases that influence means an increase
around 35%.

4. Conclusions

The results also show that the mortars workability is reduced
with the increase of the sodium hydroxide concentration and also
with a high replacement of metakaolin with calcium hydroxide,
because metakaolin has a high Blaine fineness. The results also
show that the compressive strength and flexural strength in-
creased with and increased in sodium hydroxide concentration,
in both cases that influence means an increase around 35%. The
use of a superplasticizer content of 3% combined with a calcium
hydroxide content of 10% is responsible for an increase in mortar
flow from less than 50% to over 90% while maintaining a high level
of mechanical strength. The results show that the use of a superp-
lasticizer content up to 3% does not lead to mechanical strength
reductions, with the exception of the mixture with a calcium
hydroxide content of 10% and a sodium hydroxide concentration
of 12 M.
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