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SUMMARY

The increased usage of advanced fibrous composite materials in structural engineering has made
mandatory the development of computacional models for their analysis. The present model for
linear and nonlinear analysis is based on the finite element techniques and deals with plates, slabs or
plane shells made of fibrous and laminated composite materials. Parabolic finite elements formulated
according to the Mindlin theory are employed. The assumption of constant transverse shear strain
is corrected by using a shear correction factor derived in cylindrical bending to approximate the real
shear strain energy.

The computacional code, developed for small computers, consists in three basic parts: pré-processing
with graphical verification; analysis to obtain the global displacements and reactions for each load
case, and finally, post-processing with full graphical output of all quantities of interest for each layer
or layer interfaces. Some applications are ilustrated.

1. INTRODUCTION

The present model deals with the linear and the geometrically nonlinear analysis of composite lami-
nates built up by isotropic and orthotropic layers. The laminate structures are discretized by linear
and quadratic flat finite elements with five degrees of freedom per node. A Total Lagrangian ap-
proach accounting for large displacements in the Von Karman [1] sense is adopted. The solution of
the nonlinear equations is performed by using the Newton-Raphson method.

2. NUMERICAL MODEL

2.1 Displacements, strains and stress

The assumed displacement field [2,3] of # n — ply composite laminate has the following form,

u(z,y,2) = Uz,9) + 20, (z,y) 1)
v(z,y,2) = v(z,y) - 20, (z,9) (2)
w(z,y,2) = w(z,y) | (3)
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in which %,V and W are the midplané displacements and 8,,0, are de rotations of a normal to the
midplane with relation to the z and y axis, respectively.

The strain vector [4] accounting for large displacements, small rotations and infinitesimal strains is

written by the relation,

E=E+E (4)
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corresponding to the membrane, shear and bending strains, respectively, and,
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represents the membrane nonlinear strains.

The Piola-Kirchhoff stress vector [5], corresponding to the Green-Lagrange strain vector is given by,

g™ ={N, Nv’sz}T =

Ef = {Mzz, Myz, sz}T =

Ec = {sz, Qyz}T =

for the membrane, bending and shear stress resul

2.2 The Generalized Hooke’s Law

r

h/2 i T
L2 omewra) ] ®

M2 T .
_/—h/z (02,04, T2y) .z.dz] (9)

h/2 1T
[[—h/z (722, Ty2) dz]v (10)

tants.

The stress-strain relations for the k** layer in the material coordinate axes (z,y, z) are written as

612



g D4 ¢ 0] Em g/ g
O = see — cee cee cen seoe +zk coe + cee (11)
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wherein
(D], = [T1} [C1l, [T, (12)
[Da],, = [T2[} [C2]i [Tals (13)
and
cos? @ sin? 0 2sinf cosf
[T1], = | sin®@ " cos?f —2sin 4 cos (14)
—sinfcos® sinfcosd cos?@ —sin?é
cosf sinf
(T2l = [ —s8inf cosf ] (15)

represent the transformation matrices between the local and the global coordinate systems, and ¢
corresponds to the angle between the global z axis and the fibers orientations (anticlockwise).

The elasticity matrices for the k** layer corresponding to the normal and shear strains, respectively,
are written as

Cu Ci2 O Cu 0
[Cllk =1 Cn Ca 0 ) [Czlk = [ 0o C ] (16)
0 0 Cgs x 55 Ji
in which
Cn = E1/(1 - viz - vy); Css = G1a;
Ci2 = Ca1 = v12 E3/(1 — vy2 - va1); Cu = G113 kys; (17)
Ca2 = E3/(1 — v12 - vpy); Css = Gas - kas,

The shear correction factors ki3 and k;s [3,6-8] are introduced in (17) to correct the constant shear
strain hyphotesis of the Mindlin theory [2] in order to better approximate the real shear strain energy.

2.3 Strain matrix

According to (4), the differential operators relating strains to displacements are written as

[B] = [Bo] + [BL] (18)

in wich [By) is the strain matrix corresponding to the linear strains g,
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(B™ [0]

[Bol=| [0] [B] (19)
o] (B9
and
% 0] o o & N
Br=| 0 5| [B]=]0 -5 o|;B= . (20)
' —— -N 0

are the membrane, bending and shear strain-displacement matrices, respectively.

The nonlinear strain matrix is expressed by,

o [8{]
(Bul= 1| [0] o] (21)
| [o] [0 |
wherein ;
[Bf] = 4] (c] (22)
and s
w
& 0
oz %_N 0 o
z
[A=] 0 5| ;[c]l= (23)
8N 0 0
du Bw 8”
| 3y Oz
where N are the shape functions [10]. )
2.4 Stiffness matrix
The nonlinear equilibrium equations can be expressed by,
dp = [kr] dU | (24)
in which dy represents the residual genéralized forces, and [kr| the tangencial stiffness matrix,
[kT] = [ko + kr, + kg] R (25)

and dU the nodal displacement increment.

The submatrices [ko|, [kz] and [ks] correspond to the small displacement (linear analysis), large
displacement and geometric matrices, respectively. ‘

614



Incorporating (4) and (11) in the virtual work principle, JW; = [, deT gdv, developing the implicit
matrix products and integrating through the laminate thickness, the components of the stiffness
matrix [ko + k] are obtained [3].

The geometric stiffness matrix [ks] is given by,

(ko] = [, (617 (M) [G] A (26)
in which _
[M1=[,’J'; ’,‘(,] @

The vector of nodal forces equivalent to the internal stress field is obtained by
E ./ [Bm]T il dA 28
= T T
| (8] e+ [B] BT )

2.5 Notilinear solution algorithm

The solution of the equilibrium equations is performed by an incremental and iterative procedure.
In the present model the Newton-Raphson method [11] is adopted with different schemes. Two
convergence criteria have been employed: i) displacement convergence criteria; ii) force convergence
criteria.

3. COMPUTER CODE

The computer codes for the linear and the geometnc nonlinear analysis have similar structure,
consisting in three modules:

i) The pre-processing module generates the finite element mesh, and creates the corresponding
data file. Verification of data is made possible by several graphical facilities.

ii) The solution module calculates the disi)lacements and reactions for each load case (linear
analysis) or for each load increment (geometric nonlinear analysis). The results are kept in
unfformatted files in order to minimize memory space allocation.

iii) The post-processing module have different options which allow graphic or numerical output
for each load case (or load increment). The results may be obtained in the middle surface or
interfaces of each laminate layer. The optional output facilities provide computer memory and
time savings.

4. NUMERICAL EXAMPLES AND DISCUSSION

The appraisal of the present finite element formulation has already been estabilished by comparing
its results with those available in several references [4,5,8,12-17]. In the following numerical examples
the solution performance and the graphical possibilities are illustrated.
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4.1 Composite table

The first example is a part of a research project, looking for the appropriated design of seats for
trains. The table, component of seats (Fig. 1) is built by seven plies, stacked as shown in Fig. 2..
The material properties of plies are presented in table 1. The composite table was discretized by 24
eight-node Serendipity finite elements mesh (Fig. 3) and linear elastic analysis is adopted.

By simmetry considerations, only a half of the plate is discretized, Fig. 3. The boundary conditions
associated to a cantilever plate and the vertical force (850N) in the nineth node are also shown.

In figures 4 to 6 are presented in graphic shape some of the results which illustrate that the structure
will perform correctly under the assumptions of ultimate stress level and service working conditions.

Fig. 1 — Composite table

Glass fiber woven robing
reinforced polyester

) / Chopped strand mat
Vs
2mmi ( o 1
1 o - ___'(s%/m PVC 72
T /\

7
| |
] |

Fig. 2 — Transversal section
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Fig. 3 — Finite element mesh

Glass fiber
woven robing Chopped Soam
. reinforced poliester strand mat - Pve 72
1
(MPa) 234740 11000 (MPa) 72.6
[«
(MPa) 24740 11000 (MPa) 19.3
[«] o
(MPa) 4500 4300 (MPa) 4.08
[ T
(MPa) 338 159 (MPa) 32.16
T »
(MPa) 100 50 (N/mm3) | 0.18 x 108
4
(N/mm3) 0.15 x 10”4 0.15 x 10”4 v 0.3
v 0.18 0.81
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Table 1 — Material properties of plies
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Fig. 4 - Principal stresses: a) Top surface of 1st ply (0maz = 15.3 MPa); b) Top surf. of

2nd ply (0maz = 6.8 MPa); c) Top surf. of 3rd ply (oymez = 13.3 M Pa); d) Top
surf. of 4th ply (0mqsz = 0,035 M Pa).
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Fig. 5 — Shear stresses in I and II Gauss Points Fig. 6 — Vertical displacement field

4.2 Orthotrqpic square plate

4.2.1 Clamped plate

The geometrically nonlinear analysis of an orthotropic plate (Fig. 7) under a uniform transverse
pressure is carried out and compared with results given by other authors. The material properties
and parameters used are as follows:

¢ . . G
~Eyf/By=3.0; 1 =025 12 _CG1s _ G _
1

— Nine - node Lagrange elements.

- Reduced integration.

— Specified tolerance of 0.1% according to the force convergence criteria.

— Newton - Raphson method with stiffness matrix updated in each iteration.

Ref [4] |
-=--- Present analysis

%54 18 27 3 4s 54 63 72 a1 (za/h = 100)

T ™ — =" Present analysis
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Fig. 7 — Orthotropic square plate (mesh)
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4.2.2 Simply supported square plate

The orthotropic plate (Fig. 7) under a uniform transverse pressure, with the same parameters and
material properties of 4.2.1 is now analysed by considering simply supported boundary conditions.
The results presented were obtained for thickness/span relation, 2a/h=10.

variation with load parameter.

39,0y 1a?
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Nmax. = 84.3 (10th increment)

Nmax. = 24.8 (3rd increment)
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Fig. 13 — Principal membrane forces

Mmax. = 4.101 (10th increment)
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Positive moments

The increasing of stiffness ([kz] + [k,]) developed with loadmg leads to the nonlmear variation of
vertical displacements (Fig. 9). The stresses (Fig. 10) and the bending moments (Fig. 11), at centre,
show as well, a significative nonlinear behaviour. At the zones near the support edges the stress and
stress resultants (Figs. 10 to 12) behave approximately in a linear manner. The principal in-plane
forces represented in Fig. 13, develop a compressive ring near the support edges which balances the
membrane tensile forces in the central zone of the plate.

This ring mechanism leads to the development of negative bending moments mainly, in the fiber
direction (Fig. 14). The graphlcal output illustrated in figure 15 can clarify the previous interpreta-

tion.
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Fig. 14 — Principal moments
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Fig. 15 - Maximum principal membrane forces (positive) at 3rd (a) and 10th (b) increment
Minimum principal membrane forces (negative) at 3rd (c) and 10th (d) increment

5. CONCLUDING REMARKS

A model for the linear and geometrically nonlinear analysis of fiber reinforced and composite lami-
nated plates was described. The computational code is implemented with pré- and post-processing
graphic facilities which prove to be essencial for the analysis and design of composite structures.

An adequate formulation to take into account the shear deformation and an efficient approach for
large displacement analysis which have significant influence on the structural behaviour of composite

plates are considered in the present model.
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