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Abstract

In this paper, a generalized neural network of Cohen-Grossberg type with both discrete
time-varying and distributed unbounded delays is considered. Based on M-matrix theory,
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equilibrium point. The global exponential stability of the equilibrium is also addressed
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shows that these results generalize and improve some earlier publications.
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1 Introduction

The Cohen-Grossberg neural network models, first proposed and studied by Cohen and
Grossberg [4], have been the subject of an active research due to their large application
in various engineering and scientific areas such as neural-biology, population biology, and
computing technology. The neural network in [4] can be described by the following system
of ordinary differential equations

ẋi(t) = −ai(xi(t))

bi(xi(t))− n∑
j=1

cijfj(xj(t)) + Ii

 , i = 1, . . . , n. (1.1)

In order to be more realistic, differential equations describing neural networks should
incorporate time delays to take into account physical and biological phenomena. It is known
that time delays may lead to oscillation, divergence, or instability to a system [14].

For over two decades, several generalizations of model (1.1) with constant, discrete time-
varying, or continuous distributed delays have been proposed and studied (see [2], [3], [18],
[19], [20], and references therein). Besides the cited works, there is an extensive literature
dealing with stability of Cohen-Grossberg models with delays.

Recently, neural network models with both discrete time-varying and continuous dis-
tributed delays have been considered [17], [21], and the following Cohen-Grossberg neural
network model

ẋi(t) = −ai(xi(t))
[
bi(xi(t))−

n∑
j=1

cijgj(xj(t))−
n∑
j=1

dijfj(xj(t− τij(t)))

−
n∑
j=1

qij

∫ 0

−∞
kij(−s)vj(xj(t+ s))ds+ Ii

]
, t ≥ 0, (1.2)
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was studied in [13], [16].
In this paper we consider a generalization of (1.2), see (2.1) below, and shall study the

existence of an equilibrium point and its global attractivity and global exponential stability.
We emphasize that, contrary to the usual approach in the literature, instead of Lyapunov
functional techniques, we apply some quite different techniques, presented in [5], [6], [15])
to study the global stability of an equilibrium point of the model. Our method allows us to
deal with more general models.

Now we set some definitions and notations. We denote by BC = BC((−∞, 0]; Rn) the
space of bounded and continuous functions, φ : (−∞, 0] → Rn, equipped with the norm
||φ||∞ = sup

s≤0
|φ(s)|, where | · | is the maximum norm in Rn, i.e. |x| = max{|xi| : i = 1, . . . , n}

for x = (x1, . . . , xn) ∈ Rn. For a ∈ Rn, we also use a to denote the constant function ϕ(s) = a
in BC. A vector c = (c1, . . . , cn) ∈ Rn is said to be positive if ci > 0 for i = 1, . . . , n and in
this case we write c > 0. For a real matrix A = [aij ]n×n we denote by |A| the absolute-value
matrix given by |A| = [|aij |]n×n.

For an open set D ⊆ BC and f : [0,+∞)×D → Rn continuous, consider the functional
differential equation (FDE) given in a general setting by

ẋ(t) = f(t, xt), t ≥ 0, (1.3)

where, as usual, xt denotes the function xt : (−∞, 0] → Rn defined by xt(s) = x(t + s) for
s ≤ 0. As we are interested in neural network models, we always consider solutions of (1.3)
with initial bounded conditions.

It is well-known that the Banach space BC is not an admissible phase space for (1.3) in
the sense of [10], consequently the standard existence, uniqueness, continuous dependence
type results are not available. Instead of BC, we consider the admissible Banach space

UCg =
{
φ ∈ C((−∞, 0]; Rn) : sup

s≤0

|φ(s)|
g(s)

<∞, φ(s)
g(s)

is uniformly continuous on (−∞, 0]
}
,

equipped with the norm ||φ||g = sup
s≤0

|φ(s)|
g(s)

, where g : (−∞, 0] → [1,∞) is a function

satisfying:

(g1) g is a non-increasing continuous function and g(0) = 1;

(g2) lim
u→0−

g(s+ u)
g(s)

= 1 uniformly on (−∞, 0];

(g3) g(s)→ +∞ as s→ −∞.

As BC ⊆ UCg, then BC is a subspace of UCg, and we denote by BCg the space BC with
the norm || · ||g.

As UCg is an admissible Banach space, we consider the FDE (1.3), in the phase space
UCg, for a convenient function g and under enough smooth properties of f , and we have
existence and uniqueness of solution for the initial value problem (see [11]). We denote by
x(t, 0, ϕ) the solution of (1.3) with initial condition x0 = ϕ, ϕ ∈ UCg.

In section 2, we establish sufficient conditions for the existence and global attractivity of
an equilibrium point of a general Cohen-Grossberg neural network model. An equilibrium
point x∗ of a FDE is said to be globally attractive if any solution x(t) with bounded initial
condition satisfies x(t)→ x∗ as t→ +∞.
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In section 3, we set sufficient conditions for the equilibrium point to be globally expo-
nentially stable. An equilibrium point x∗ of a neural network model is said to be globally
exponentially stable if there are positive constants ε, M such that

|x(t, 0, ϕ)− x∗| ≤Me−εt||ϕ− x∗||∞ ∀t ≥ 0, ϕ ∈ BC.

As mentioned in [7], the definition of global exponential stability of an equilibrium x∗ is
the usual in the literature on neural networks with unbounded delays, but is does not even
imply the stability of x∗ in the phase space UCg, i.e. relative to the norm || · ||g.

To prove the boundedness solutions of the differential systems studied in this paper, we
use the following result established in [7].

Lemma 1.1. [7] Consider equation (1.3) in UCg, and suppose that f transforms closed
bounded sets of [0,+∞)×D into bounded sets of Rn. If the hypothesis

(H) for all t ≥ 0 and ϕ ∈ BC such that |ϕ(s)| < |ϕ(0)| for s ∈ (−∞, 0), then ϕi(0)fi(t, ϕ) <
0 for some i ∈ {1, . . . , n} such that |ϕ(0)| = |ϕi(0)|

holds, then any solution x(t) of (1.3) with initial condition ϕ ∈ BC is defined and bounded
on [0,+∞), and verifies |x(t)| ≤ ||ϕ||∞ for all t ≥ 0.

To prove the existence and uniqueness of an equilibrium point, we make use of arguments
in [15] and the following lemma:

Lemma 1.2. [9] If H : Rn → Rn is a continuous and injective function such that

lim
|x|→+∞

|H(x)| = +∞,

then H(x) is a homeomorphism of Rn onto itself.

2 Global attractivity

Consider the generalized Cohen-Grossberg model with both discrete time-varying and con-
tinuous distributed infinite delays given by

ẋi(t) = −ai(xi(t))
[
bi(xi(t)) +

n∑
j=1

P∑
p=1

(
h

(p)
ij (xj(t− τ (p)

ij (t)))+

+f (p)
ij

( ∫ 0

−∞
g
(p)
ij (xj(t+ s))dη(p)

ij (s)
))]

, t ≥ 0, (2.1)

i = 1, . . . , n, where ai : R → (0,∞), bi, h
(p)
ij , f

(p)
ij , g

(p)
ij : R → R, τ (p)

ij : [0,∞) → [0,∞)

are continuous functions, and η
(p)
ij : (−∞, 0] → R are non-decreasing bounded functions,

normalized so that η(p)
ij (0)− η(p)

ij (−∞) = 1, for all i, j ∈ {1, . . . , n}, p ∈ {1, . . . , P}. In [7], a
function g : (−∞, 0]→ [1,+∞) was defined by

(i) g(s) = 1 on [−r1, 0];

(ii) g(−rn) = n, n ∈ N;

(iii) g is continuous and piecewise linear (linear on intervals [−rn+1,−rn]),
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where rn ↗ +∞ is a suitable sequence of positive numbers, in such a way that conditions
(g1), (g2), (g3) hold and∫ 0

−∞
g(s)dη(p)

ij < +∞, i, j = 1, . . . , n, p = 1, . . . , P.

See more details in Lemma 4.1 in [7]. Thus, we may consider the differential system (2.1) in
the phase space UCg.

As mentioned above, we only consider solutions of (2.1) with bounded initial data, i.e.,

x0 = ϕ, ϕ ∈ BC. (2.2)

In the sequel, for (2.1) the following hypotheses will be considered:

(A1) for each i ∈ {1, . . . , n}, there is βi > 0 such that

(bi(u)− bi(v))/(u− v) ≥ βi, ∀u, v ∈ R, u 6= v;

(A2) h
(p)
ij , f

(p)
ij , g

(p)
ij : R→ R are Lipschitz functions with Lipschitz constants γ(p)

ij , µ(p)
ij , and

σ
(p)
ij , respectively, for i, j = 1, . . . , n, p = 1, . . . , P ;

(A3) t− τ (p)
ij (t)→∞ as t→∞, for i, j = 1, . . . , n, p = 1, . . . , P .

Now, we define the square real matrices,

B = diag(β1, . . . , βn), L = [lij ] and N = B − L, (2.3)

where β1, . . . , βn are as in (A1) and lij =
∑P

p=1 γ
(p)
ij + µ

(p)
ij σ

(p)
ij .

We recall here the definition of a non-singular M-matrix. For further properties of M-
matrices, we refer the reader to Chapter 5 of [8].

Definition. If D = [dij ] is a square matrix with non-positive off-diagonal entries, i.e.,
dij ≤ 0 for all i 6= j, we say that D is a non-singular M-matrix if all the eigenvalues of D
have positive real part, or, equivalently, if all the principal minors of D are positive.

Theorem 2.1. Assume (A1)-(A3). For N defined in (2.3), if N is a non-singular M-
matrix, then there is a unique equilibrium point x∗ = (x∗1, . . . , x

∗
n) of (2.1) which is globally

attractive.

Proof. Since N is a non-singular M-matrix, then (see [8]) there is d = (d1, . . . , dn) > 0 such
that Nd > 0, i.e.,

βi > d−1
i

 n∑
j=1

lijdj

 , i = 1, . . . , n. (2.4)

The change zi(t) = d−1
i xi(t) transforms (2.1) into

żi(t) = −āi(zi(t))[b̄i(zi(t)) + hi(t, zt)], t ≥ 0, i = 1, . . . , n, (2.5)
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where, for each t ≥ 0, i = 1, . . . , n, φ ∈ UCg, and u ∈ R, we have

hi(t, φ) = d−1
i

 n∑
j=1

P∑
p=1

(
h

(p)
ij

(
djφj(−τ (p)

ij (t))
)

+ f
(p)
ij

(∫ 0

−∞
g
(p)
ij (djφj(s))dη

(p)
ij (s)

)) ,
āi(u) = ai(diu), b̄i(u) = d−1

i bi(diu).

Note that (b̄i(u)− b̄i(v))/(u− v) ≥ βi for u, v ∈ R, u 6= v, i.e., condition (A1) is satisfied by
the functions b̄i, i ∈ {1, . . . , n}.

Define the continuous function H : Rn → Rn,

H(x) =

b̄i(xi) + d−1
i

n∑
j=1

P∑
p=1

(
h

(p)
ij (djxj) + f

(p)
ij

(
g
(p)
ij (djxj)

))n

i=1

, x = (x1, · · · , xn) ∈ Rn.

Then x∗ ∈ Rn is an equilibrium of the neural network (2.5) if and only if H(x∗) = 0.
Consequently, to prove the existence and uniqueness of an equilibrium point, it is sufficient
to prove that H is a homeomorphism. Arguing as in the proof of Lemma 2.4 in [15], we
conclude that H is injective and lim|x|→∞ |H(x)| = ∞, thus, from Lemma 1.2, we obtain
that H is a homeomorphism, hence there is a unique equilibrium point x∗ ∈ Rn of (2.5).

Translating the equilibrium to the origin through the change yi(t) = zi(t) − x∗i , (2.5)
becomes

ẏ(t) = f(t, yt), t ≥ 0, (2.6)

where f = (f1, . . . , fn) : [0,∞)× UCg → Rn is defined by

fi(t, φ) = −āi(φi(0) + x∗i )[b̄i(φi(0) + x∗i ) + hi(t, φ+ x∗)]. (2.7)

It is easy to see that f transforms closed bounded sets of [0,+∞)× UCg into bounded sets
of Rn.

Let t ≥ 0 and ϕ ∈ BC satisfying |ϕ(s)| < |ϕ(0)|, for s ∈ (−∞, 0), and let i ∈ {1, . . . , n} be
such that |ϕ(0)| = |ϕi(0)|. Suppose that ϕi(0) > 0 (the situation is analogous for ϕi(0) < 0).
Then ϕi(0) = sup

s≤0
|ϕ(s)| and

b̄i(ϕi(0) + x∗i ) + hi(t, ϕ+ x∗) = b̄i(ϕi(0) + x∗i )− b̄i(x∗i )

+d−1
i

n∑
j=1

P∑
p=1

[(
h

(p)
ij (djϕj(−τ (p)

ij (t)) + djx
∗
j )− h

(p)
ij (djx∗j )

)

+f (p)
ij

(∫ 0

−∞
g
(p)
ij (djϕj(s) + djx

∗
j )dη

(p)
ij (s)

)
− f (p)

ij (g(p)
ij (djx∗j ))

]

≥ βiϕi(0)− d−1
i

n∑
j=1

P∑
p=1

(
γ

(p)
ij dj

∣∣∣ϕj(−τ (p)
ij (t))

∣∣∣+ µ
(p)
ij σ

(p)
ij dj

∫ 0

−∞
|ϕj(s)|dη(p)

ij (s)
)

≥ βiϕi(0)− d−1
i

n∑
j=1

lijdj sup
s≤0
|ϕ(s)| =

(
βi − d−1

i

n∑
j=1

lijdj

)
sup
s≤0
|ϕ(s)| > 0,
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hence f satisfies hypothesis (H). Consequently, for y(t) = (yi(t))ni=1 a solution of (2.6) with
initial condition y0 ∈ BC, from Lemma 1.1 we conclude that y(t) is defined and bounded
on R and verifies

|y(t)| ≤ ||y0||∞, t ≥ 0. (2.8)

Set
−vi = lim inf

t→∞
yi(t), ui = lim sup

t→∞
yi(t), i = 1, . . . , n,

and
v = max

i
{vi}, u = max

i
{ui}.

Note that u, v ∈ R and −v ≤ u.
It is sufficient to prove that max{u, v} = 0. Assume e.g. that |v| ≤ u, so that max{u, v} =

u. (The situation |u| ≤ v is analogous). Let i ∈ {1, . . . , n} such that ui = u.
Arguing as in the proof of Theorem 3.2 in [7], we can conclude that there is a positive

real sequence (tk)k∈N such that

tk ↗∞, yi(tk)→ u and fi(tk, ytk)→ 0, as k →∞. (2.9)

For convenience, we prove it here.
Case 1. Assume that yi(t) is eventually monotone. In this case, limt→∞ yi(t) = u and,

for T large, either ẏi(t) ≤ 0 for t ≥ T or ẏi(t) ≥ 0 for t ≥ T . Assume e.g. that ẏi(t) ≤ 0 for
all t > T large (the situation ẏi(t) ≥ 0 is analogous). Then ẏ(t) = fi(t, yt) ≤ 0 for t ≥ T
large, hence

lim sup
t→∞

fi(t, yt) := c ≤ 0.

If c < 0, then there is t0 > 0 such that fi(t, yt) < c/2 for t ≥ t0, implying that

yi(t) = yi(t0) +
∫ t

t0

fi(s, ys)ds ≤ yi(t0) +
c

2
(t− t0),

then yi(t)→ −∞ as t→∞, which is not possible because of (2.8). Thus c = 0, which proves
(2.9).

Case 2. Assume that yi(t) is not eventually monotone. In this case there is a sequence
(tk)k∈N such that tk ↗∞, ẏi(tk) = 0 and yi(tk)→ u, as k →∞. Then fi(tk, ytk) = 0 for all
k ∈ N, and (2.9) holds.

For the sake of contradiction, assume that u > 0.
Fix ε > 0 and let T = T (ε) > 0 be such that |y(t)| < uε := u+ ε, for t ≥ T , and∫ −T

−∞
dη

(p)
ij (s) <

ε

||y0||∞
, i, j ∈ {1, . . . , n}, p ∈ {1, . . . , P}.

Since t − τ (p)
ij (t) → ∞ as t → ∞ and yi(tk) → u > 0, then there is k0 ∈ N such that, for

k ≥ k0, tk − τ
(p)
ij (tk) > T , tk > 2T , and yi(tk) > 0. Hence, from the hypotheses and (2.8) we
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conclude that, for k > k0,

b̄i(yi(tk) + x∗i ) + hi(tk, ytk + x∗) =

= b̄i(yi(tk) + x∗i )− b̄i(x∗i ) + d−1
i

n∑
j=1

P∑
p=1

[(
h

(p)
ij (djyj(tk − τ

(p)
ij (tk)) + djx

∗
j )− h

(p)
ij (djx∗j )

)

+f (p)
ij

(∫ 0

−∞
g
(p)
ij (djyj(tk + s) + djx

∗
j )dη

(p)
ij (s)

)
− f (p)

ij (g(p)
ij (djx∗j ))

]

≥ βiyi(tk)− d−1
i

n∑
j=1

P∑
p=1

(
γ

(p)
ij dj |yj(tk − τ

(p)
ij (tk))|+ µ

(p)
ij σ

(p)
ij dj

∫ 0

−∞
|yj(tk + s)|dη(p)

ij (s)
)

≥ βiyi(tk)− d−1
i

n∑
j=1

P∑
p=1

[
γ

(p)
ij djuε + µ

(p)
ij σ

(p)
ij dj

(∫ −T
−∞
|yj(tk + s)|dη(p)

ij (s) +
∫ 0

−T
|yj(tk + s)|dη(p)

ij (s)
)]

≥ βiyi(tk)− d−1
i

n∑
j=1

P∑
p=1

[
γ

(p)
ij djuε + µ

(p)
ij σ

(p)
ij dj

(
ε+ uε

∫ 0

−T
dη

(p)
ij (s)

)]

≥ βiyi(tk)− d−1
i

n∑
j=1

P∑
p=1

(
γ

(p)
ij djuε + µ

(p)
ij σ

(p)
ij dju2ε

)
≥ βiyi(tk)− d−1

i

n∑
j=1

djliju2ε.

Letting k →∞ and ε→ 0, we get

lim inf
k→∞

[
b̄i(yi(tk) + x∗i ) + hi(tk, ytk + x∗)

]
≥
(
βi − d−1

i

n∑
j=1

lijdj

)
u > 0.

On the other hand, since yi(t) is bounded and āi is positive and continuous, there is K > 0
such that āi(yi(t) + x∗i ) > K for all t ≥ 0. Together with the above inequality, this implies
that fi(tk, ytk) 9 0 as k → ∞, which is a contradiction. Thus u = 0, hence v = 0 as well,
and this ends the proof of the theorem.

Example 2.1. Consider the Cohen-Grossberg neural network model with infinite discrete
time-varying delays (see [12])

ẋi(t) = −ai(xi(t))

bi(xi(t))− n∑
j=1

cijgj(xj(t))−
n∑
j=1

dijfj(xj(t− τij(t)))

 , i = 1, . . . , n,(2.10)

where cij , dij ∈ R and ai : R → (0,∞), bi : R → R and τij : [0,∞) → [0,∞) are continuous
functions, gi, fi : R → R are Lipschitz functions, and t − τij(t) → ∞ as t → ∞, for
i, j = 1, . . . , n. Note that system (2.10) includes known models of cellular neural networks
as particular cases.

System (2.10) has the form (2.1) if P = 2, h(1)
ij (u) = −cijgj(u), h(2)

ij (u) = −dijfj(u),

f
(1)
ij (u) = f

(2)
ij (u) = 0, τ (1)

ij (t) = 0 and τ
(2)
ij (t) = τij(t), u ∈ R, t ≥ 0, i, j = 1, . . . , n. If
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gi, fi : R → R have Lipschitz constants Gi, Fi respectively, then h
(1)
ij , h

(2)
ij are also Lipschitz

functions, with Lipschitz constants l(1)
ij = |cij |Gj , l(2)

ij = |dij |Fj respectively, for all i, j ∈
{1, . . . , n}. Theorem 2.1 applied to system (2.10) gives the following result:

Corollary 2.2. Assume that (A1) holds, τij : [0,∞) → [0,∞) satisfy t − τij(t) → ∞ as
t → ∞, and that gi, fi : R → R are Lipschitz functions with Lipschitz constants Gi, Fi, for
all i, j = 1, . . . , n. If

N := B − L, where B = diag(β1, . . . , βn), L = [l(1)
ij + l

(2)
ij ], (2.11)

with βi as in (A1) and l(1)
ij = |cij |Gj, l(2)

ij = |dij |Fj, is a non-singular M-matrix, then there
is a unique equilibrium point of (2.10), which is globally attractive.

Remark 2.1. For system (2.10), the global attractivity of an equilibrium point was already
obtained by T. Huang et al. [12], provided that: the functions fi, gi are Lipschitzian, the
matrix N as above is a non-singular M-matrix, bi(u) are differentiable functions such that
b′i(u) ≥ βi > 0 (clearly a stronger hypothesis than (A1)) and the following additional
hypothesis is satisfied:

for each i ∈ {1, . . . , n}, there exist ai, ai > 0 such that 0 < ai ≤ ai(u) ≤ ai, u ∈ R.

Thus, the above Corollary 2.2 significantly improves the criterion in [12]. We also remark
that the global exponential stability of the equilibrium point of (2.10), with bounded delays
τij , was studied in [6].

In the following example, a bidirectional associative memory (BAM) neural network
model is treated as a particular case of the generalized Cohen-Grossberg model (2.1).
Example 2.2. Consider the BAM neural networks model presented in [15] (see also [1])

ẋi(t) = −ai(xi(t))

bi(xi(t)) +
P∑
p=1

g
(p)
i (xi(t− ω(p)

i (t)))

−
m∑
j=1

P∑
p=1

f
(p)
ij (yj(t− τ (p)

ij (t)))

 , i = 1, . . . , n,

ẏj(t) = −dj(yj(t))

cj(yj(t)) +
P∑
p=1

f
(p)
j (yj(t− ρ(p)

j (t)))

−
n∑
i=1

P∑
p=1

g
(p)
ji (xi(t− ζ(p)

ji (t)))

 , j = 1, . . . ,m,

(2.12)

for t ≥ 0 and n,m,P ∈ N, where ai, dj : R → (0,∞), bi, cj , g
(p)
i , f

(p)
j , g

(p)
ji , f

(p)
ij : R → R are

continuous functions and ω
(p)
i , ρ

(p)
j , τ

(p)
ij , ζ

(p)
ji : [0,∞)→ [0,∞) are continuous functions such

that t − ω(p)
i (t) → ∞, t − ρ(p)

j (t) → ∞, t − τ (p)
ij (t) → ∞, and t − ζ(p)

j (t) → ∞ as t → ∞,
i = 1, . . . , n, j = 1, . . . ,m and p = 1, . . . , P . Contrarily to what happens in [15], we do not
assume that the time-dependent delays ω(p)

i (t), ρ(p)
j (t), τ (p)

ij (t), ζ(p)
ji (t) are bounded.

Clearly, (2.12) is a particular case of (2.1). Next result is a direct consequence of Theorem
2.1, and extends the stability criterion presented in [15] to the situation with unbounded
discrete time-varying delays.
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Corollary 2.3. Suppose that bi and cj satisfy (A1) with constants βi and γj respectively,
ai(u) > 0 and dj(u) > 0 for all u ∈ R, f (p)

j , g
(p)
i , f

(p)
ij , g

(p)
ji are Lipschitz functions with Lip-

schitz constants θ(p)
j , ξ

(p)
i , θ

(p)
ij , ξ

(p)
ji respectively, and ω

(p)
i , ρ

(p)
j , τ

(p)
ij , ζ

(p)
ji are continuous func-

tions such that

t−min
i,j,p

{
ω

(p)
i (t), ρ(p)

j (t), τ (p)
ij (t), ζ(p)

ji (t)
}
→∞ as t→∞.

Define

N :=

 B −Gd −F

−G C − Fd


(n+m)×(n+m)

,

where
B = diag(β1, . . . , βn), C = diag(γ1, . . . , γm)

Gd = diag

 P∑
p=1

ξ
(p)
1 , . . . ,

P∑
p=1

ξ(p)n

 , Fd = diag

 P∑
p=1

θ
(p)
1 , . . . ,

P∑
p=1

θ(p)
m

 ,

G =

 P∑
p=1

ξ
(p)
ji


m×n

, F =

 P∑
p=1

θ
(p)
ij


n×m

.

If N is a non-singular M-matrix, then there is a unique equilibrium point of (2.12), which
is globally attractive.

3 Exponential stability

In this section, we address the global exponential stability of the equilibrium point of (2.1).
Here system (2.1) is considered in the phase space UCg, with g(s) = e−αs, s ∈ (−∞, 0],

for a convenient α > 0 defined below, equipped with the norm ||φ||g,c = sup
s≤0

|φ(s)|∞,c
g(s)

,

where | · |∞,c is the norm in Rn defined by |y|∞,c = |(y1, . . . , yn)|∞,c = max
i
{ci|yi|} with

c = (c1, . . . , cn) > 0.
The general family of functional differential systems in the phase space UCg,

ẋi(t) = −ρi(t, xt)[bi(xi(t)) + fi(t, xt)], i = 1, . . . , n, t ≥ 0, (3.1)

where ρi : [0,+∞) × UCg → (0,+∞), bi : R → R, and fi : [0,+∞) × UCg → R are
continuous functions, was considered in [7]. For system (3.1), the following set of hypotheses
was imposed:

(E1) for each i ∈ {1, . . . , n}, there is βi > 0 such that

(bi(u)− bi(v))/(u− v) ≥ βi, ∀ u, v ∈ R, u 6= v;

(E2) for each i ∈ {1, . . . , n}, there is li > 0 such that

|fi(t, ϕ)− fi(t, ψ)| ≤ li||ϕ− ψ||g,c ∀ ϕ,ψ ∈ UCg;
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(E3) ρ := inf{ρi(t, ϕ) : t ≥ 0, ϕ ∈ BCg, i = 1, . . . , n} > 0;

(E4) for each i ∈ {1, . . . , n}, βi > cili.

In [7], the following result was established.

Theorem 3.1. [7] Assume (E1)-(E4).
If x∗ = (x∗1, . . . , x

∗
n) ∈ Rn is an equilibrium point of (3.1), then there are positive constants

ε,M such that

|x(t, 0, ϕ)− x∗|∞,c ≤Me−εt||ϕ− x∗||∞,c, ∀t ≥ 0, ϕ ∈ BCg.

In order to apply the exponential stability criterion presented in the previous theorem to
model (2.1), we now assume that the delayed functions τ (p)

ij (s) are bounded, i.e., 0 ≤ τ (p)
ij (t) ≤

τ for some τ > 0, and there exists ξ > 0 such that all the normalized non-decreasing and
bounded functions η(p)

ij satisfy ∫ 0

−∞
e−ξsdη

(p)
ij (s) <∞. (3.2)

Theorem 3.2. Consider (2.1), where ai : R → (0,+∞), bi : R → R, and τ
(p)
ij : [0,+∞) →

[0,+∞) are continuous, h(p)
ij , f (p)

ij , and g
(p)
ij are Lipschitz functions with Lipschiz constants

γ
(p)
ij , µ(p)

ij , and σ
(p)
ij respectively, and η

(p)
ij are non-decreasing, bounded and normalized, i.e.

η
(p)
ij (0)− η(p)

ij (−∞) = 1, i, j = 1, . . . , n, p = 1, . . . , P .
Assume in addition that:

(i) (E1) is satisfied;
(ii) ai := inf{ai(x) : x ∈ R} > 0 for i = 1, . . . , n;
(iii) there exists a constant ξ > 0 such that η(p)

ij satisfy (3.2) for all i, j = 1, . . . , n,
p = 1, . . . , P ;

(iv) there exists τ > 0 such that 0 ≤ τ (p)
ij (t) ≤ τ for t ≥ 0, i, j = 1, . . . , n, p = 1, . . . , P .

If the matrix N defined in (2.3) is a non-singular M-matrix, then there is a unique equilibrium
point of (2.1), which is globally exponentially stable.

Proof. Since N is a non-singular M-matrix, there is d = (d1, . . . , dn) > 0 such that (2.4)
holds (see [8]), hence there is δ > 0 such that

βi > d−1
i

 n∑
j=1

lij(1 + δ)dj

 , i = 1, . . . , n. (3.3)

As in the proof of Theorem 4.3 in [7], from (3.2) we can conclude that there is ς ∈ (0, ξ)
such that ∫ 0

−∞
e−ςsdη

(p)
ij (s) < 1 + δ, i, j = 1, . . . , n, p = 1, . . . , P. (3.4)

Let α := min
{
ς,

log(1 + δ)
τ

}
and consider system (2.1) in the phase space UCg, where

g(s) = e−αs, s ≤ 0, equipped with the norm ||φ||g,c with c = (d−1
1 , . . . , d−1

n ). From Theorem
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2.1, we know that there exists a unique equilibrium point, x∗ = (x∗1, . . . , x
∗
n) ∈ Rn. System

(2.1) has the form (3.1) with

fi(t, φ) =
n∑
j=1

P∑
p=1

(
h

(p)
ij

(
φj(−τ (p)

ij (t))
)

+ f
(p)
ij

(∫ 0

−∞
g
(p)
ij (φj(s))dη

(p)
ij (s)

))
.

For ϕ, φ ∈ UCg and t ≥ 0, since h
(p)
ij , f (p)

ij , g(p)
ij are Lipschitz functions and η

(p)
ij are

non-decreasing, we have

|fi(t, φ)− fi(t, ϕ)| =

=

∣∣∣∣∣∣
n∑
j=1

P∑
p=1

(
h

(p)
ij (φj(−τ (p)

ij (t)))− h(p)
ij (ϕj(−τ (p)

ij (t)))

+f (p)
ij

(∫ 0

−∞
g
(p)
ij (φj(s))dη

(p)
ij (s)

)
− f (p)

ij

(∫ 0

−∞
g
(p)
ij (ϕj(s))dη

(p)
ij (s)

))∣∣∣∣
≤

n∑
j=1

P∑
p=1

(
γ

(p)
ij

∣∣∣φj(−τ (p)
ij (t))− ϕj(−τ (p)

ij (t))
∣∣∣+ µ

(p)
ij

∣∣∣∣∫ 0

−∞

[
g
(p)
ij (φj(s))− g(p)

ij (ϕj(s))
]
dη

(p)
ij (s)

∣∣∣∣ )

≤
n∑
j=1

P∑
p=1

(
γ

(p)
ij dj

d−1
j |(φj − ϕj)(−τ

(p)
ij (t))|

eατ
(p)
ij (t)

eατ
(p)
ij (t) + µ

(p)
ij σ

(p)
ij

∫ 0

−∞
e−αsdj

d−1
j |(φj − ϕj)(s)|

e−αs
dη

(p)
ij (s)

)

≤
n∑
j=1

P∑
p=1

(
γ

(p)
ij e

ατ
(p)
ij (t)dj + µ

(p)
ij σ

(p)
ij dj

∫ 0

−∞
e−αsdη

(p)
ij (s)

)
‖φ− ϕ‖g,c

≤
n∑
j=1

P∑
p=1

(
γ

(p)
ij (1 + δ)dj + µ

(p)
ij σ

(p)
ij dj(1 + δ)

)
‖φ− ϕ‖g,c ≤

( n∑
j=1

lij(1 + δ)dj

)
‖φ− ϕ‖g,c.

This means that
|fi(t, φ)− fi(t, ϕ)| ≤ li‖φ− ϕ‖g,c, i = 1, . . . , n,

with li :=
∑n

j=1 lij(1 + δ)dj , and from (3.3) we have βi > cili, i ∈ {1, . . . , n}. Now, the
conclusion follows from Theorem 3.1.

Remark 3.1 Since the non-autonomous terms h(p)
ij were not included in the family of neural

network models studied in [7], the previous result improves Theorem 4.3 in [7].

Example 3.1. If we take P = 2, h(1)
ij (u) = −cijgj(u), f (1)

ij (u) = 0, τ (1)
ij (t) = 0, τ (2)

ij (t) =

τij(t), h
(2)
ij (u) = −dijfj(u), f (2)

ij (u) = −qiju+Ii, g
(2)
ij (u) = vj(u), with cij , dij , qij , Ii ∈ R, and

η
(2)
ij (s) =

∫ s

−∞
kij(−v)dv, s ∈ (−∞, 0], i, j = 1, . . . , n,
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where kij : [0,+∞) → [0,+∞) are continuous functions, the model (2.1) becomes the
following Cohen-Grossberg neural networks model

ẋi(t) = −ai(xi(t))
[
bi(xi(t))−

n∑
j=1

cijgj(xj(t))−
n∑
j=1

dijfj(xj(t− τij(t)))

−
n∑
j=1

qij

∫ 0

−∞
kij(−s)vj(xj(t+ s))ds+ Ii

]
, t ≥ 0, (3.5)

for i = 1, . . . , n, with the connection matrices

C = [cij ]n×n, D = [dij ]n×n, and Q = [qij ]n×n.

Applying Theorem 3.2 to model (3.5), we have the following result.

Corollary 3.3. Consider (3.5), where ai : R → (0,+∞), bi : R → R, and τij : [0,+∞) →
[0,+∞) are continuous, gj, fj, and vj are Lipschitz functions with Lipschiz constants Gj,
Fj, and Vj respectively, and kij are nonnegative continuous functions such that∫ +∞

0
kij(t)dt = 1, i, j = 1, . . . , n.

Assume in addition that:
(i) (E1) is satisfied;
(ii) ai := inf{ai(x) : x ∈ R} > 0 for i = 1, . . . , n;
(iii) there exists a constant ξ > 0 such that∫ +∞

0
kij(t)eξtdt < +∞, i, j = 1, . . . , n;

(iv) there exists τ > 0 such that 0 ≤ τ (p)
ij (t) ≤ τ for t ≥ 0, i, j = 1, . . . , n, p = 1, . . . , P .

If the matrix
N = B − |C|G− |D|F − |Q|V

where B = diag(β1, . . . , βn), G = diag(G1, . . . , Gn), F = diag(F1, . . . , Fn), and V =
diag(V1, . . . , Vn), is a non-singular M-matrix, then there is a unique equilibrium point of
(3.5), which is globally exponentially stable.

Remark 3.2 Since model (3.5) is only a particular case of model (2.1), our Theorem 3.2 is
more general than the main result in [16].

Example 3.2. Consider the following model:

ẋ(t) = −(2 + cosx(t))
[
6x(t) + g1(x(t)) + g1(y(t))

+g1(x(t− τ(t))) +
∫ 0

−∞
k(−s)y(t+ s)ds

]

ẏ(t) = −(2 + sin y(t))
[
4.5y(t) + g2(y(t)) + g2(x(t− τ(t)))

+g2(y(t− τ(t))) +
∫ 0

−∞
k(−s)x(t+ s)ds

]
, (3.6)

12



where g1(u) = 1
2(|u + 1| − |u − 1|), g2(u) = 1

2(|u + 1| + |u − 1|), τ(t) = 3| cos t| + 1, and
k(t) = e−t.

The model (3.6) satisfies all hypotheses of Theorem 3.2 with

a1 = a2 = 1, β1 = 6, β2 = 4.5, τ = 4,

and g1, g2 are Lipschitz functions with Lipschitz constant 1. Thus,

B =
(

6 0
0 4.5

)
, L =

(
2 2
2 2

)
, N =

(
4 −2
−2 2.5

)
and it easy to see that N is a non-singular M-matrix. From Theorem 3.2, we know that
model (3.6) has a unique equilibrium point which is globally exponential stable.

Since there is not a ∈ R such that g1(u) = ag2(u), for all u ∈ R, the main result in [16]
cannot be applied to prove the stability of model (3.6).

We used the Mathematica software to plot a numerical simulation of the behavior of the
solution (x(t), y(t)) of model (3.6) with initial condition ϕ(s) = (3 cos s, 2 sin s), s ≤ 0, for

τ(t) ≡ 4 and k(t) ≡ 0. Note that, in this simple case, the matrix N =
(

4 −1
−1 2.5

)
is also

a non-singular M-matrix. Once again, we cannot apply the result in [16].

10 20 30 40 50
t

-0.1

0.1

0.2

0.3
xHtL

Figure 1: Behavior of the first neuron x(t) in system (3.6) with τ(t) ≡ 4, k(t) ≡ 0, and
initial condition ϕ(s) = (3 cos s, 2 sin s)
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-0.75

-0.70
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Figure 2: Behavior of the second neuron y(t) in system (3.6) with τ(t) ≡ 4, k(t) ≡ 0, and
initial condition ϕ(s) = (3 cos s, 2 sin s)
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