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Abstract

In this paper, we obtain the global asymptotic stability of the zero solution of
a general n-dimensional delayed differential system, by imposing a condition of
dominance of the nondelayed terms which cancels the delayed effect.

We consider several delayed differential systems in general settings, which allow
us to study, as subclasses, the well known neural network models of Hopfield, Cohn-
Grossberg, bidirectional associative memory, and static with S-type distributed de-
lays. For these systems, we establish sufficient conditions for the existence of a
unique equilibrium and its global asymptotic stability, without using the Lyapunov
functional technique. Our results improve and generalize some existing ones.
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1 Introduction

In the last decades, retarded functional differential equations (FDEs) have
attracted the attention of an increasing number of scientists due to their po-
tential application in different sciences. Differential equations with delays have
served as models in population dynamics, ecology, epidemiology, disease mod-
elling, neural networks.

Neural network models possess good potencial applications in areas such as
content-addressable memory, pattern recognition, signal and image processing
and optimization (see [1], [2], [3], [4], and references therein). In optimization
applications, it is required that the designed neural network converges to a
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unique and globally asymptotically stable equilibrium. Thus, it is important
to achieve sufficient conditions for the systems to possess this dynamic.

In 1983, Cohen and Grossberg [5] proposed and studied the artificial neural
network described by a system of ordinary differential equations

ẋi(t) = −ki(xi(t))


bi(xi(t))−

n∑

j=1

aijfj(xj(t))


 , i = 1, . . . , n (1)

and, in 1984, Hopfield [6] studied the particular situation of (1) with ki ≡ 1,

ẋi(t) = −bixi(t) +
n∑

j=1

aijfj(xj(t)), i = 1, . . . , n. (2)

The finite switching speed of the amplifiers, communication time, and process
of moving images led to the use of time-delays in models (1) and (2). Since
then, several sufficient conditions have been obtained to ensure existence and
global asymptotic stability of an equilibrium point of different generalizations
of models (1) and (2) with delays (see [1], [2], [3], [4], [7], [8], [9], [10], [11] and
references therein).

Other neural network models have been studied, such as the static neural
network model [12],

ẋi(t) = −xi(t) + gi




n∑

j=1

aijxj(t) + Ii


 , i = 1, . . . , n, (3)

also with distributed delays [13], and the bidirectional associative memory
neural network [14],





ẋi(t) = −xi(t) +
∑n

j=1 aijfj(yj(t)) + Ii

ẏi(t) = −yi(t) +
∑n

j=1 bijgj(xj(t)) + Ji

, i = 1, . . . , n (4)

as well as some other generalizations (see e.g. [15], [16], [17], [18]).

Besides the above cited works, there is an extensive literature dealing with
global stability of neural network models with delays. We emphasize however
that, in the literature, the usual approach to study the global asymptotic
stability of the equilibrium of a system relies on the use of the Lyapunov
functional technique. In general, constructing a Lyapunov functional for a
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concrete n-dimensional FDE is not an easy task. Frequently, a new Lyapunov
functional for each model under consideration is required. Contrary to the
usual, our techniques (see [19], [20], [21]) do not involve Lyapunov functionals,
and our method applies to general systems.

In this paper, we consider general retarded FDEs

ẋi(t) = ri(t)fi(xt), t ≥ 0, (5)

with ri : [0, +∞) → (0, +∞) and fi : Cn → R continuous functions, i ∈
I := {1, · · · , n}. The phase space is the space Cn := C([−τ, 0];Rn), τ > 0,
equipped with the sup norm ‖ϕ‖ = supθ∈[−τ,0] |ϕ(θ)|, ϕ ∈ Cn, relative to the
norm |x| = max{|xi| : i ∈ {1, · · · , n}}, x = (x1, . . . , xn) ∈ Rn, in Rn. As usual,
xt denotes the function in Cn defined by xt(θ) = x(t + θ),−τ ≤ θ ≤ 0.

An equilibrium point x∗ ∈ Rn of (5) is said to be globally asymptotically stable
if it is stable and it is a global attractor of all solutions of (5).

We now set some notation. For x = (x1, . . . , xn) ∈ Rn, we say that x > 0 if
xi > 0 for i = 1, . . . , n and x−1 is the vector given by x−1 := (x−1

1 , . . . , x−1
n ).

For x ∈ Rn, we use x to denote both the real vector and the constant function
ϕ(θ) = x in Cn. For ϕ = (ϕ1, . . . , ϕn) ∈ Cn and a = (a1, . . . , an) ∈ Rn,
we denote by a.ϕ the function in Cn, (a1ϕ1, . . . , anϕn). Cn is supposed to be
partially ordered with

ϕ ≥ ψ if and only if ϕi(θ) ≥ ψi(θ), θ ∈ [−τ, 0], i = 1, . . . , n.

Recall now some concepts from matrix analysis. A real matrix A is said to be
non-negative if all its entries are non-negative. In this case, we write A ≥ 0.
If all of the entries are positive, A is said to be positive and we write A > 0.
Similarly, if A and B are matrices of equal dimensions, A ≥ B or A > B
means that A−B ≥ 0 or A−B > 0, respectively.

For a square real matrix A = [aij] with non-positive off-diagonal entries, i.e.,
aij ≤ 0 for all i 6= j, we say that A is an M-matrix if all the eigenvalues of
A have a non-negative real part, or, equivalently, if all the principal minors
of A are non-negative; and A is said to be a non-singular M-matrix if all the
eigenvalues of A have a positive real part, or, equivalently, if all the principal
minors of A are positive. For properties of M-matrices, we refer the reader to
[22], Chapter 5.

If x(t) is defined for t ≥ 0, we say that x(t) is eventually monotone if there is
t0 > 0 such that x(t) is monotone on [t0, +∞).

The remainder of this paper is organized as follows: In Section 2, a criterion for
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the global asymptotic stability of the equilibrium point x = 0 of the general
system (5) is presented. Then we obtain a sufficient condition for the existence
of a unique equilibrium point, and for its global asymptotic stability, of the
system

ẋi(t) = −ri(t)ki(xi(t))[bi(xi(t)) + fi(xt)], i = 1, . . . , n, t ≥ 0, (6)

which will be applied to the study of the stability of several neural network
models. In Section 3, we consider two types of neural network models with
distributed delays, the Cohen-Grossberg and the static. For both, we give
sufficient conditions for the existence and global asymptotic stability of an
equilibrium point improving known results in the literature. Finally, in Sec-
tion 4, we give a similar result for a general neural network system with dis-
crete time-varying delays, which has, as subclass, several Cohen-Grossberg
and bidirectional associative memory neural network models.

2 Main Results

Let Cn := C([−τ, 0];Rn) be equipped with the supremum norm ‖·‖ relative to
the norm | · | in Rn. In the phase space Cn, consider a nonautonomous system
of delayed differential equations of the form

ẋi(t) = ri(t)fi(xt), i = 1, . . . , n, t ≥ 0, (7)

where ri : [0, +∞) → (0, +∞) and fi : Cn → R are continuous functions,
i ∈ I := {1, . . . , n}.

For (7) the following hypotheses will be considered:

(H1) ri(t) is uniformly bounded on [0, +∞) and
∫∞
0 ri(t)dt = ∞, i ∈ I;

(H2) (i) fi is bounded on bounded sets of Cn, i ∈ I;
(ii) for all ϕ ∈ Cn such that ‖ϕ‖ = |ϕ(0)| > 0, then ϕi(0)fi(ϕ) < 0 for all

i ∈ I such that |ϕi(0)| = ‖ϕ‖.

Note that (H2)(ii) implies that x = 0 is the unique equilibrium of (7).

The following result was proven in [21]:

Lemma 2.1 [21] Consider the equation

ẏ(t) = f(t, yt), t ≥ t0, (8)
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where t0 ∈ R and f : [t0, +∞) × Cn → Rn is a continuous function, f =
(f1, . . . , fn) satisfying:

(H2∗) for all t ≥ t0 and ϕ ∈ Cn such that |ϕ(θ)| < |ϕ(0)|, for θ ∈ [−τ, 0),
then ϕi(0)fi(t, ϕ) < 0 for some i ∈ I such that |ϕ(0)| = |ϕi(0)|.

Then, the solutions of (8) are defined and bounded for t ≥ t0. Moreover, if
y(t) is a solution of (8) and |y(t)| ≤ K for t ∈ [t0 − τ, t0], then |y(t)| ≤ K for
t ≥ t0.

Now, we state our main result on the global asymptotic stability of the equi-
librium x = 0 of (7). We remark that the arguments used in the proof can be
found in [19] and [21].

Theorem 2.2 Assume (H1)-(H2). Then the equilibrium x = 0 of (7) is
globally asymptotically stable.

Proof. From Lemma 2.1, we deduce that all solutions are defined and bounded
on [0, +∞), and that x = 0 is uniformly stable. It remains to prove that zero
is globally attractive.

Let x(t) = (xi(t))
n
i=1 be a solution to (7). Set

−vi = lim inf
t→+∞ xi(t), ui = lim sup

t→+∞
xi(t), i ∈ I,

and

v = max
i∈I

{vi}, u = max
i∈I

{ui}.
Note that u, v ∈ R and −v ≤ u.

It is sufficient to prove that max(u, v) = 0. Assume e.g. that |v| ≤ u, so that
max(u, v) = u. (The situation is analogous for |u| ≤ v.)

Let i ∈ I such that ui = u and fix ε > 0. There is T = T (ε) > 0 such that
‖xt‖ < uε := u + ε for t ≥ T .

As in [21], first we prove that there is a sequence (tk)k∈N with

tk ↗ +∞, xi(tk) → u, and fi(xtk) → 0, as k → +∞. (9)

Case 1. Assume that xi(t) is eventually monotone. In this case, limt→+∞ xi(t) =
u and for t large, either ẋi(t) ≤ 0 or ẋi(t) ≥ 0. Assume e.g. that ẋi(t) ≤ 0 for t
large (the situation ẋi(t) ≥ 0 is analogous). Then fi(xt) ≤ 0 for t large, hence

lim sup
t→+∞

fi(xt) = c ≤ 0.
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If c < 0, then there is t0 > 0 such that fi(xt) < c/2 for t ≥ t0, implying that

xi(t) ≤ xi(t0) +
c

2

t∫

t0

ri(s)ds.

From (H1) and the above inequality, we obtain xi(t) → −∞ as t → +∞,
which is not possible. Thus c = 0, which proves (9).

Case 2. Assume that xi(t) is not eventually monotone. In this case there is a
sequence (tk)k∈N such that tk ↗ +∞, ẋi(tk) = 0 and xi(tk) → u, as k → ∞.
Then fi(xtk) = 0 for all k ∈ N, and (9) holds.

Now we have to show that u = 0, hence v = 0 as well.

For t ≥ T , we have ‖xt‖ < uε and from (H1) and (H2) we conclude that
there is K > 0 such that |ẋj(t)| = |rj(t)fj(xt)| < K, t ≥ T, j ∈ I. It follows
that x(t) and ẋ(t) are uniformly bounded on [0, +∞), thus {xtk : k ∈ N} ⊆ Cn

is bounded and equicontinuous. By Ascoli-Arzelà Theorem, for a subsequence,
still denoted by (xtk), we have xtk → ϕ for some ϕ ∈ Cn. Since ‖xtk‖ ≤ uε and
ε > 0 is arbitrary, then ‖ϕ‖ ≤ u. From (9), we get ϕi(0) = u and fi(ϕ) = 0.
Clearly ‖ϕ‖ = |ϕi(0)| = u and from hypothesis (H2)(ii) we conclude that
u = 0, and the theorem is proven.

In applications, neural networks models often take the form

ẋi(t) = −ri(t)ki(xi(t))[bi(xi(t)) + fi(xt)], i = 1, . . . , n, t ≥ 0, (10)

where ri : [0, +∞) → (0, +∞), ki : R→ (0, +∞), bi : R→ R and fi : Cn → R
are continuous functions, i ∈ I.

In the sequel, for (10) the following hypotheses will be considered:

(A1) for each i ∈ I, there is βi > 0 such that

(bi(u)− bi(v))/(u− v) ≥ βi, ∀u, v ∈ R, u 6= v;

(A2) fi : Cn → R are Lipschitz functions with constants li, i ∈ I.

Here, we give sufficient conditions for the existence, uniqueness and global
asymptotic stability of the equilibrium point for system (10). To prove the
existence and uniqueness of the equilibrium, we make use of arguments in
recent literature [2], [11], [16], and [23]. First, we state the following lemma.

Lemma 2.3 [24] If H : Rn → Rn is a continuous and injective function such
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that
lim
|x|→∞

|H(x)| = ∞,

then H is a homeomorphism of Rn.

Lemma 2.4 Assume (A1), (A2) and βi > li for i ∈ I. Then system (10)
has a unique equilibrium point x∗ = (x∗1, . . . , x

∗
n) ∈ Rn.

Proof. Define the continuous map

H : Rn → Rn

x 7→ (b1(x1) + f1(x), . . . , bn(xn) + fn(x)), x = (x1, · · · , xn).

First, we prove that H is injective. By way of contradiction, assume that
there exist x, y ∈ Rn, with x 6= y, such that H(x) = H(y). It follows that
bi(xi) + fi(x) = bi(yi) + fi(y) for all i ∈ I, hence

|bi(xi)− bi(yi)| = |fi(x)− fi(y)|, i ∈ I,

and from the hypotheses we have

βi|xi − yi| ≤ li|x− y| < βi|x− y|, i ∈ I,

which is a contradiction.

Now we prove that lim|x|→∞ |H(x)| = ∞. Let γ := mini∈I(βi − li) > 0. For
x ∈ Rn and i0 ∈ I such that |xi0| = |x|, we have

|H(x)| ≥ |bi0(xi0) + fi0(x)|

= |(bi0(xi0)− bi0(0)) + (fi0(x)− fi0(0)) + (bi0(0) + fi0(0))|

≥ (βi0 − li0)|xi0| − |bi0(0) + fi0(0)|

≥ γ|x| − |b(0) + f(0)|,

then |H(x)| → +∞, as |x| → ∞.

From the above lemma we conclude that H is a homeomorphism, hence there
is a unique x∗ ∈ Rn such that H(x∗) = 0, i.e., x∗ is the unique equilibrium
point of (10).
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Lemma 2.5 Assume (A1), (A2) and βi > li for all i ∈ I. Suppose that
x∗ = 0 is the equilibrium of (10). Then the function g = (g1, . . . , gn) : Cn → Rn

defined by gi(ϕ) = −ki(ϕi(0))[bi(ϕi(0)) + fi(ϕ)], satisfies (H2).

Proof. Clearly g satisfies (H2)(i).

Let ϕ ∈ Cn be such that ‖ϕ‖ = |ϕ(0)| > 0 and consider i ∈ I such that
|ϕi(0)| = ‖ϕ‖.

Since x∗ = 0 is the equilibrium, then bj(0)+fj(0) = 0 for all j ∈ I. If ϕi(0) > 0,
then ‖ϕ‖ = ϕi(0) and from the hypotheses we conclude that

ki(ϕi(0))(bi(ϕi(0)) + fi(ϕ)) = ki(ϕi(0))[(bi(ϕi(0))− bi(0)) + (fi(ϕ)− fi(0))]

≥ ki(ϕi(0))(βi − li)‖ϕ‖ > 0.

Analogously for the situation ϕi(0) < 0.

Assume that x∗ = (x∗1, . . . , x
∗
n) ∈ Rn is the equilibrium point of (10). By

translating it to the origin by the change x̄(t) = x(t)− x∗, (10) becomes

˙̄xi(t) = −ri(t)k̄i(x̄i(t))[b̄i(x̄i(t)) + f̄i(x̄t)], i ∈ I, t ≥ 0, (11)

with k̄i(u) = ki(u + x∗i ), b̄i(u) = bi(u + x∗i ) − bi(x
∗
i ) and f̄i(ϕ) = fi(x

∗ +
ϕ) − fi(x

∗). Clearly bi and fi satisfy (A1) and (A2) if and only if b̄i and f̄i

satisfy (A1), (A2). From Lemmas 2.4 and 2.5, and Theorem 2.2, we have the
following result:

Theorem 2.6 Assume (H1), (A1) and (A2). If βi > li for all i ∈ I, then
system (10) has a unique equilibrium point which is globally asymptotically
stable.

3 Global stability for neural network models with distributed de-
lays

In this section, we shall apply the study in last section to two different types
of neural network models with distributed delays, improving recent stability
results in the literature (see examples below).
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3.1 Cohen-Grossberg neural network models

Consider the following generalization of the Cohen-Grossberg model (1),

ẋi(t) = −ki(xi(t))


bi(xi(t)) +

n∑

j=1

fij(xj,t)


 , i ∈ 1, . . . , n, (12)

where ki : R → (0, +∞), bi : R → R and fij : C1 → R are continuous func-
tions, i, j = 1, . . . , n.

Remark 3.1 Model (12) generalizes several neural network models, which
have been studied in [3], [7], [10], [15], [17], [25], [26].

For system (12), we assume (A1) and

(A3) fij : C1 → R are Lipschitz functions with constants lij, i, j ∈ I.

Define the square real matrices,

B = diag(β1, . . . , βn), A = [lij] and N = B − A, (13)

where β1, . . . , βn are as in (A1).

Theorem 3.1 Assume (A1) and (A3). If N is a non-singular M-matrix,
then there is a unique equilibrium point of (12), which is globally asymptotically
stable.

Proof. If N is a non-singular M-matrix, then (see [22]) there is d = (d1, . . . , dn) >
0 such that Nd > 0, i.e.,

βidi >
n∑

j=1

lijdj, i ∈ I. (14)

The change yi(t) = d−1
i xi(t) transforms (12) into

ẏi(t) = −ki(diyi(t))d
−1
i


bi(diyi(t)) +

n∑

j=1

fij(djyj,t)


 , i ∈ I. (15)

Defining, for each i ∈ I,

f̄i(ϕ) = d−1
i

n∑

j=1

fij(djϕj), ϕ = (ϕ1, . . . , ϕn) ∈ Cn,
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b̄i(u) = d−1
i bi(diu), k̄i = ki(diu), u ∈ R,

system (15) has the form

ẏi(t) = −k̄i(yi(t))[b̄i(yi(t)) + f̄i(yt)], i ∈ I, t ≥ 0. (16)

For ϕ, ψ ∈ Cn and i ∈ I, we have

|f̄i(ϕ)− f̄i(ψ)| = d−1
i

∣∣∣∣∣∣

n∑

j=1

fij(djϕj)−
n∑

j=1

fij(djψj)

∣∣∣∣∣∣
≤


d−1

i

n∑

j=1

lijdj


 ‖ϕ− ψ‖,

thus f̄i is a Lipschitz function with constant li := d−1
i

∑n
j=1 lijdj, i ∈ I. More-

over, b̄i satisfies (A1) with β̄i = βi, and from (14) we have βi > li, i ∈ I. The
conclusion follows now from Theorem 2.6.

Example 3.1 Consider the Cohen-Grossberg neural network model with dis-
crete delays

ẋi(t) = −ki(xi(t))


bi(xi(t))−

n∑

j=1

P∑

p=1

a
(p)
ij fj(xj(t− τ

(p)
ij )) + Ji


 , i ∈ I, (17)

where P ∈ N, Ji, a
(p)
ij ∈ R, τ

(p)
ij ≥ 0, and ki : R → (0, +∞), bi, fi : R → R are

continuous functions, i, j = 1, . . . , n, p = 1, . . . , P , recently studied in [2] and

[27]. Let τ = max{τ (p)
ij : i, j ∈ I, p = 1, . . . , P}.

System (17) has the form (12) for fij(ϕ) = −∑P
p=1 a

(p)
ij fj(ϕ(−τ

(p)
ij )), ϕ ∈ C1 =

C([−τ, 0],R). Since fi : R → R are Lipschitz functions with constants li, fij

is also a Lipschitz function, with Lipschitz constant lij =
∑P

p=1 |a(p)
ij |lj, for all

i, j ∈ I. Theorem 3.1 applied to system (17) gives the following result:

Corollary 3.2 Assume (A1) and that fi : R → R is a Lipschitz function
with constant li, for all i ∈ I. If N := B−A, where B = diag(β1, . . . , βn) and

A = [lij] with lij =
∑P

p=1 |a(p)
ij |lj, is a non-singular M-matrix, then there is a

unique equilibrium point of (17), which is globally asymptotically stable.

Remark 3.2 For system (17), the existence and uniqueness of an equilibrium
point was already obtained by Y. Chen [2], but he assumed the following
additional hypotheses:

(i) For each i ∈ I, there exist ki, ki > 0 such that

0 < ki ≤ ki(u) ≤ ki, ∀u ∈ R;

(ii) N := BK −AK is a non-singular M-matrix, where K = diag(k1, . . . , kn)
and K = diag(k1, . . . , kn).
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Note that, if (i) holds, then N is a non-singular M-matrix which implies that
N is a non-singular M-matrix. But the reverse is not truth. The above Corol-
lary 3.2 improves strongly the criterion in [2].

3.2 Static neural network models with S-type distributed delays

Consider the following generalization of the static model (3),

ẋi(t) = −ki(xi(t))


bi(xi(t)) + fi




n∑

j=1

ωij

0∫

−τ

xj(t + θ)dηij(θ) + Ji





 , (18)

i ∈ I, where Ji, ωij ∈ R, ki : R → (0, +∞), bi, fi : R → R are continuous
functions and ηij : [−τ, 0] → R are normalized bounded variation functions,
i.e., ηij ∈ BV ([−τ, 0];R) with V ar[−τ,0]ηij = 1, i, j = 1, . . . , n. Assume the
hypothesis:

(A4) fi : R→ R is a Lipschitz function with constant li, for i ∈ I.

For each i ∈ I, the function defined by

f̄i(ϕ) = fi




n∑

j=1

ωij

0∫

−τ

ϕj(θ)dηij(θ) + Ji


 , ϕ = (ϕ1, · · · , ϕn) ∈ Cn

is a Lipschitz function with constant li
∑n

j=1 |ωij|. Define the following square
real matrices:

B = diag(β1, . . . , βn) and M = B − [li|ωij|]. (19)

We have the following result:

Theorem 3.3 Assume (A1) and (A4). If M is a non-singular M-matrix,
then there is a unique equilibrium point of (18), which is globally asymptotically
stable.

Proof. The proof is analogous to the proof of Theorem 3.1, so it is omitted.

Example 3.2 Consider the static neural network model with S-type dis-
tributed delay studied in [13]
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ẋi(t) = −bi(λ)xi(t) + fi




n∑

j=1

ωij(λ)

0∫

−τ(λ)

xj(t + θ)dηij(λ, θ) + Ji(λ)


 ,(20)

i ∈ I, where λ ∈ Λ ⊆ R is a real parameter, fi : R → R are continuous
functions, bi, τ : Λ → [0, +∞) and Ji, ωij : Λ → R are real functions with
0 ≤ τ(λ) ≤ τ for some τ > 0, and, for each λ ∈ Λ, θ 7→ ηij(λ, θ) are normalized
bounded variation functions on [−τ(λ), 0], i, j ∈ I.

Suppose that, for each i, j ∈ I, there exist bi, ωij > 0 such that,

0 < bi ≤ bi(λ), and |ωij(λ)| ≤ ωij, for all λ ∈ Λ.

Assume that the functions fi satisfy (A4), and define the following square
real matrices:

B(λ) = diag(b1(λ), . . . , bn(λ)), M(λ) = B(λ)− [li|ωij(λ)|], λ ∈ Λ,

B = diag(b1, . . . , bn) and M = B − [liωij].

Definition 3.1 System (20) is said to be globally asymptotically robust stable
on Λ if, for each λ ∈ Λ, there is an equilibrium point of (20) which is globally
asymptotically stable.

The next result is an immediate consequence of Theorem 3.3.

Corollary 3.4 Assume (A4). If M is a non-singular M-matrix, then system
(20) is globally asymptotically robust stable on Λ.

Proof. Let λ0 ∈ Λ. Since M ≤ M(λ0) and M is a non-singular M-matrix, then
M(λ0) is a non-singular M-matrix as well (see [22]), thus we have the result
from Theorem 3.3.

Remark 3.3 Besides the assumptions in Corollary 3.4, Wang and Wang [13]
assumed that the maps λ 7→ bi(λ) were bounded and that, for each λ ∈ Λ,
θ 7→ ηij(λ, θ) were nondecreasing normalized bounded variation function on
[−τ(λ), 0]. Thus the last result improves the main result in [13].

Remark 3.4 The results in this section also hold for non-autonomous models
of the form (10), if the functions ri(t) satisfy (H1).

12



4 Global stability of neural network models with discrete time-
varying delays

Consider the following neural network model:

ẋi(t) = −ki(xi(t))


bi(xi(t)) +

n∑

j=1

P∑

p=1

h
(p)
ij (xj(t− τ

(p)
ij (t)))


 , i ∈ I, (21)

where ki : R → (0, +∞), bi, h
(p)
ij : R → R and τ

(p)
ij : [0, +∞) → [0, +∞) are

continuous functions such that, h
(p)
ij are Lipschitz functions with constants l

(p)
ij ,

τ
(p)
ij are bounded and (A1) holds for bi, i, j = 1, . . . , n, p = 1, . . . , P .

System (21) is a generalization of several neural network models with discrete
time-varying delays [8], [9], [16]. It is important to note that the general set-
ting of (21) allows us to consider the bidirectional associative memory neural
network models in [16] and [18] as subclasses.

Let τ ≥ 0 be such that 0 ≤ τ
(p)
ij (t) ≤ τ for all t ≥ 0, i, j ∈ I and p ∈ {1, . . . , P},

and define the square real matrices

B = diag(β1, . . . , βn) and N := B − [lij],

where β1, . . . , βn are as in (A1) and lij =
∑P

p=1 l
(p)
ij .

Theorem 4.1 Assume (A1), 0 ≤ τ
(p)
ij (t) ≤ τ and h

(p)
ij are Lipschitz functions

with constants l
(p)
ij , i, j ∈ I, p ∈ {1, . . . , P}.

If N is a non-singular M-matrix, then there is a unique equilibrium point of
(21), which is globally asymptotically stable.

Proof. Since N is a non-singular M-matrix, then (see [22]) there is d =
(d1, . . . , dn) > 0 such that Nd > 0, i.e.,

βi > d−1
i




n∑

j=1

lijdj


 , i ∈ I. (22)

The change zi(t) = d−1
i xi(t) transforms (21) into

żi(t) = −k̄i(zi(t))[b̄i(zi(t)) + hi(t, zt)], i ∈ I, t ≥ 0, (23)

13



where

hi(t, ϕ) = d−1
i

[∑n
j=1

∑P
p=1 h

(p)
ij (djϕj(−τ

(p)
ij (t)))

]
, t ≥ 0, ϕ ∈ Cn, i ∈ I,

k̄i(u) = ki(diu), b̄i(u) = d−1
i bi(diu), u ∈ R, i ∈ I.

Note that (b̄i(u)− b̄i(v))/(u− v) ≥ βi for u, v ∈ R, u 6= v, i.e., condition (A1)
is satisfied by the functions b̄i(u), i ∈ I. For ϕ, ψ ∈ Cn and t ≥ 0 we have

|hi(t, ϕ)− hi(t, ψ)| ≤

d−1

i

n∑

j=1

lijdj


 ‖ϕ− ψ‖, i ∈ I,

that is, hi(t, ·) is a uniform Lipschitz function on Cn for all t ≥ 0, with Lipschitz
constant li := d−1

i

∑n
j=1 lijdj < βi.

Observe that system (23) has an equilibrium point y∗ = (y∗1, · · · , y∗n) ∈ Rn if
and only if H(y∗) = 0, where

H(y) =


b̄i(yi) + d−1

i

n∑

j=1

P∑

p=1

h
(p)
ij (djyj)




n

i=1

, y = (y1, · · · , yn) ∈ Rn.

Arguing as in the proof of Lemma 2.4, we conclude that there is a unique
point y∗ = (y∗1, · · · , y∗n) such that H(y∗) = 0.

By translating the equilibrium to the origin by the change yi(t) = zi(t) − y∗i ,
(23) becomes

ẏi(t) = gi(t, yt), t ≥ 0, i ∈ I, (24)

where g = (g1, . . . , gn) : [0, +∞)× Cn → Rn is defined by

gi(t, ϕ) = −k̄i(ϕi(0)+ y∗i )[b̄i(ϕi(0)+ y∗i )+hi(t, ϕ+ y∗)], ϕ ∈ Cn, t ≥ 0, i ∈ I.

Arguing as in the proof of Lemma 2.5, we conclude that g satisfies (H2∗), thus
from Lemma 2.1 all solutions of (24) are defined and bounded on [0, +∞).

Let y(t) = (yi(t))
n
i=1 be a solution of (24). Set

−vi = lim inf
t→+∞ yi(t), ui = lim sup

t→+∞
yi(t), i ∈ I,

and

v = max
i∈I

{vi}, u = max
i∈I

{ui}.
Note that u, v ∈ R and −v ≤ u.
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It is sufficient to prove that max(u, v) = 0. Assume e.g. that |v| ≤ u, so that
max(u, v) = u. (The situation |u| ≤ v is analogous).

Fix ε > 0 and let T = T (ε) > 0 be such that ‖yt‖ < uε := u + ε for t ≥ T . Let
i ∈ I such that ui = u.

Arguing as in the proof of Theorem 2.2, we conclude that there is a positive
real sequence (tk)k∈N such that

tk ↗ +∞, yi(tk) → u and gi(tk, ytk) → 0, as k → +∞. (25)

From our hypotheses, clearly we have g bounded on [0, +∞) × K for all
bounded sets K ⊆ Cn. Since ‖yt‖ < uε for t ≥ T , we have (ẏj(t))

n
j=1 bounded.

Hence y(t) and ẏ(t) are uniformly bounded on [0, +∞), thus {ytk : k ∈ N} ⊆
Cn is bounded and equicontinuous. By Ascoli-Arzelà Theorem, for a subse-
quence, still denoted by (ytk), we have ytk → ϕ for some ϕ ∈ Cn. Since
‖ytk‖ ≤ uε and ε > 0 is arbitrary, then ‖ϕ‖ ≤ u. Moreover, from (25) we get
ϕi(0) = u.

Since the sequence
((

τ
(p)
ij (tk)

))
k∈N in RPn2

is bounded, there is a subsequence

of (tk), still denoted by (tk), which converges to a point (τ
(p)∗
ij ) ∈ [0, τ ]Pn2

.
Thus

gi(tk, ytk) → ci as k → +∞,

with
ci := −k̄i(ϕi(0) + y∗i )[b̄i(ϕi(0) + y∗i ) + h̄i(ϕ)],

where

h̄i(ϕ) := d−1
i




n∑

j=1

P∑

p=1

h
(p)
ij (dj(ϕj(−τ

(p)∗
ij ) + y∗j ))


 .

Since y∗ is the equilibrium point of (23), we have b̄j(y
∗
j ) + h̄j(0) = 0 for all

j ∈ I.

If ϕi(0) = u > 0, then

b̄i(ϕi(0) + y∗i ) + h̄i(ϕ) = b̄i(ϕi(0) + y∗i )− b̄i(y
∗
i ) + h̄i(ϕ)− h̄i(0)

≥ βiϕi(0)− d−1
i

n∑

j=1

lijdj‖ϕ‖ =


βi − d−1

i

n∑

j=1

lijdj


 u > 0.

Since k̄i(u + y∗i ) > 0, we have ci 6= 0, which contradicts (25). Hence u = 0
and then all solutions y(t) of (24) verify y(t) → 0 as t → +∞, that is, the
equilibrium point of (21) is globally asymptotically stable.
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Example 4.1 Consider the Cohen-Grossberg neural network model studied
in [9]

ẋi(t) = −ki(xi(t))


bi(xi(t))−

n∑

j=1

cijgj(xj(t))

−
n∑

j=1

aijfj(xj(t− τij(t))) + Ji


 , i ∈ I, (26)

where aij, cij, Ji ∈ R and τij : [0, +∞) → [0, +∞), ki : R→ (0, +∞), bi, fi, gi :
R→ R are continuous functions, i, j ∈ I, with τij bounded.

Assume that the functions bi satisfy (A1) and fi, gi : R → R are Lipschitz
functions with constants θi and γi, for i ∈ I. Define the square real matrices

B = diag(β1, . . . , βn) and N = B − [|cij|γj]− [|aij|θj],

where β1, . . . , βn are as in (A1).

Clearly, (26) is a particular situation of (21). From Theorem 4.1 we have the
following result:

Corollary 4.2 Assume (A1) and that fi, gi : R→ R are Lipschitz functions
with constants θi and γi, i = 1, . . . , n.

If N is a non-singular M-matrix, then there is an equilibrium point of (26),
which is globally asymptotically stable.

Remark 4.1 Model (26) was studied in [9] and [11]. Chen and Rong [9] proved
that all solutions of (26) converge exponentially to the equilibrium point with
the additional hypotheses:

(i) τij(t) are continuously differentiable functions with τ ′ij(t) ≤ 1 for all t ≥ 0
and i, j ∈ I;

(ii) There are ki, ki > 0 such that

0 < ki ≤ ki(u) ≤ ki, u ∈ R, i ∈ I.

Without condition (i) and assuming that there is ki > 0 such that ki ≤ ki(u)
for all u ∈ R, i ∈ I, instead of (ii), Song and Cao [11] proved the exponen-
tial stability of (26). In a forthcoming paper, the exponential stability of the
equilibrium of general models (12) and (21) will be addressed.

Example 4.2 Consider the Hopfield neural network model
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ẋi(t) = −di(λ)xi(t) +
n∑

j=1

cij(λ)gj(xj(t)) +
n∑

j=1

aij(λ)fj(xj(t− τij(t)))+

+Ji(λ), i ∈ I, (27)

where λ ∈ Λ ⊆ R is a real parameter, τij : [0, +∞) → [0, +∞) are bounded
continuous functions, aij, cij, di, Ji : Λ → R are real functions and fi, gi : R→
R are Lipschitz functions with constants θi, γi for i, j ∈ I.

Note that, for each λ ∈ Λ, (27) looks like (26) when ki(u) ≡ 1 and bi(u) =
di(λ)u for u ∈ R, i ∈ I.

Assume that there are square real matrices Ā = [āij] ≥ 0, C̄ = [c̄ij] ≥ 0 and
D = diag(d1, . . . , dn), with di > 0 for all i ∈ I, such that, for each λ ∈ Λ,

|aij(λ)| ≤ āij, |cij(λ)| ≤ c̄ij, and 0 < di ≤ di(λ), ∀i, j ∈ I.

For each λ ∈ Λ, define

D(λ) = diag(d1(λ), . . . , dn(λ)), M(λ) = D(λ)−[|aij(λ)|θj]−[|cij(λ)|γj] and

M = D − [āijθj]− [c̄ijγj].

From Theorem 4.1 we have the following result:

Corollary 4.3 If M is a non-singular M-matrix, then system (27) is globally
asymptotically robust stable on Λ.

Proof. Let λ0 ∈ Λ. Since M ≤ M(λ0) and M is a non-singular M-matrix, then
(see [22]) M(λ0) is also a non-singular M-matrix and the result follows from
Theorem 4.1.

Remark 4.2 In [10], the global asymptotic robust stability of the Hopfield
model (27) with discrete independent delays τij(t) ≡ τij was proved. Hence,
our Corollary 4.3 is a generalization of the main result in [10].

It is important to note that the general setting of (21) allows us to consider
the bidirectional associative memory neural network model with delays as a
subclass.

Example 4.3 Consider the following model:
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



ẋi(t) = −ki(xi(t))


bi(xi(t)) +

P∑

p=1

g
(p)
i (xi(t− ω

(p)
i (t)))

−
m∑

j=1

P∑

p=1

f
(p)
ij (yj(t− τ

(p)
ij (t)))


 , i = 1, . . . , n,

ẏj(t) = −hj(yj(t))


aj(yj(t)) +

P∑

p=1

f
(p)
j (yj(t− ρ

(p)
j (t)))

−
n∑

i=1

P∑

p=1

g
(p)
ji (xi(t− σ

(p)
ji (t)))


 , j = 1, . . . ,m,

(28)

for t ≥ 0 and n,m, P ∈ N, where ki, hj : R→ (0, +∞), bi, aj, g
(p)
i , f

(p)
j , g

(p)
ji , f

(p)
ij :

R → R are continuous functions and ω
(p)
i , ρ

(p)
j , τ

(p)
ij , σ

(p)
ji : [0, +∞) → [0, +∞)

are bounded continuous functions, i = 1, . . . , n, j = 1, . . . ,m e p = 1, . . . , P .

Arik [15] and Wang and Zou [17] studied the bidirectional associative memory
neural network model with discrete delays described by





ẋi(t) = −xi(t) +
n∑

j=1

aijfj(yj(t− τij)) + Ii

ẏi(t) = −yi(t) +
n∑

j=1

bijgj(xj(t− σij)) + Ji

, i = 1, . . . , n. (29)

Wang and Zou [18] incorporated inhibitory self-connections terms into model
(29), and considered the following system





ẋi(t) = −xi(t) + ciigi(xi(t− dii)) +
n∑

j=1

aijfj(yj(t− τij)) + Ii

ẏi(t) = −yi(t) + liifi(yi(t−mii)) +
n∑

j=1

bijgj(xj(t− σij)) + Ji

i ∈ I.(30)

Recently, the following bidirectional associative memory neural network model
with time-varying delays was considered in [16]:
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



ẋi(t) = −ki(xi(t))


bi(xi(t))−

m∑

j=1

cijfj(λjyj(t− τij(t))) + Ii


 ,

i = 1, . . . , n,

ẏj(t) = −hj(yj(t))

[
aj(yj(t))−

n∑

i=1

djigi(µixi(t− σji(t))) + Jj

]
,

j = 1, . . . ,m,

. (31)

Model (28), here considered for the first time, arises as a generalization of all
these models. Since (28) is a particular situation of (21), from Theorem 4.1
we have the following result:

Corollary 4.4 Suppose that aj and bi satisfy (A1) with constants αj and βi,

respectively, that ki(u) > 0 and hj(u) > 0 for all u ∈ R; f
(p)
j , g

(p)
i , f

(p)
ij , g

(p)
ji

are Lipschitz functions with Lipschitz constants θ
(p)
j , γ

(p)
i , θ

(p)
ij , γ

(p)
ji respectively,

and that ω
(p)
i , ρ

(p)
j , τ

(p)
ij , σ

(p)
ji are bounded continuous functions, for i = 1, . . . , n,

j = 1, . . . , m and p = 1, . . . , P .

Define

N :=




B −Gd −F

−G A− Fd




(n+m)×(n+m)

,

where

B = diag(β1, . . . , βn), A = diag(α1, . . . , αm)

Gd = diag




P∑

p=1

γ
(p)
1 , . . . ,

P∑

p=1

γ(p)
n


 , Fd = diag




P∑

p=1

θ
(p)
1 , . . . ,

P∑

p=1

θ(p)
m


 ,

G =




P∑

p=1

γ
(p)
ji




m×n

, F =




P∑

p=1

θ
(p)
ij




n×m

.

If N is a non-singular M-matrix, then there is a unique equilibrium point of
(28), which is globally asymptotically stable.

Remark 4.3 As remarked, (28) is a generalization of models (29), (30) and
(31). With the same hypotheses of Corollary 4.4, the exponential stability of
(29) and (30) was obtained in [15] and [18]. In [16], the same stability was
obtained for system (31) with the additional hypotheses ki(u) ≥ ki > 0 and
hi(u) ≥ hi > 0, u ∈ R, i ∈ I. As mentioned in Remark 4.1, the question of the
exponential asymptotic stability for delayed neural networks will be addressed
in the general framework of systems of the form (12) and (21).
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