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ABSTRACT 

In the present work, a strengthening technique based on near surface mounted (NSM) carbon fibre 

laminate strips bonded into slits opened on the concrete cover is used to improve the flexural capacity of 

columns subjected to bending and compression. This technique avoids the occurrence of the peeling 

phenomenon, is able to mobilize the full strengthening capacity of the strips, and provides higher 

protection against fire and vandalism acts. The present paper describes the adopted strengthening 

technique and reports the experimental characterization of the materials involved in the strengthening 

process. The results obtained in two series of reinforced concrete columns, subjected to axial compression 

and lateral cyclic loading, show that a significant increase on the load carrying capacity can be achieved 

by using the NSM technique. Cyclic material constitutive laws were implemented in a finite element 

program and the tests with reinforced concrete columns strengthened with the NSM technique were 

numerically simulated under cyclic loading. These numerical simulations reproduce the experimental 

load-displacement diagrams satisfactorily. 

 

Keywords: Near Surface Mounted Reinforcement, Reinforced Concrete Columns, Strengthening, 

Carbon Fiber Reinforced Polymer Strips, Bending Failure, Epoxy Adhesive 

 

1. INTRODUCTION 

Until the last quarter of the twentieth century seismic loading was not generally taken into account 

in the design of reinforced concrete buildings or, when considered, the resulting reinforcement detailing 

might not be satisfactory regarding the current structural codes. For this reason, significant damage can 
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occur in old buildings, even with the occurrence of moderate seismic loads. In most cases, columns 

represent the most vulnerable elements since their failure leads to the collapse of the structure. 

Since the beginning of the nineties conventional materials used to strengthen reinforced concrete 

(RC) columns are being replaced with carbon and glass fibre reinforced polymers (CFRP or GFRP). The 

advantages of these composite materials are the strength/weight and stiffness/weight high ratios, as well 

as the high resistance to environmental actions, lightness, durability and ease of application [1-4]. 

In the present work a strengthening technique, based on the installation of strips of carbon fibre 

reinforced polymer (CFRP) laminates into slits opened on the concrete cover of the elements to 

strengthen, is used to increase the flexural resistance of RC columns failing in bending. These strips have 

a cross section of 9.6×1.5 mm2 and are bonded to concrete by means of an epoxy adhesive. This 

technique is termed near surface mounted (NSM) and its effectiveness in the flexural and shear 

strengthening of RC beams has been already assessed [5-10]. 

In recent years a significant amount of research has been undertaken with the aim of accurately 

modelling the cyclic behaviour of RC columns. An extensive review of available constitutive models and 

appropriate FEM-based numerical strategies is published elsewhere [11]. The most common approaches 

regarding the modelling of RC columns with finite elements involve a discretization with 3D solid 

elements or with Timoshenko beam elements. When 3D solid elements are used, some elements represent 

concrete and others simulate the reinforcement. For the case of Timoshenko beam elements each cross 

section is discretized into fibers, corresponding some to the concrete and the remaining to the 

reinforcement [12]. Models based on 3D solid elements are more suitable to reproduce the behaviour of 

RC columns subjected to any type of loading such as significant shear forces or torsion. Timoshenko 

beam based models are less demanding in terms of computational resources but are more appropriate to 

the simulation of columns mainly subjected to axial and flexural forces. 

In the present work, the effectiveness of the NSM technique in the flexural strengthening of RC 

columns was appraised by means of two series of tests, with different steel reinforcement ratios, subjected 

to cyclic loading and constant axial compressive load. These tests were numerically simulated with the 

materially nonlinear algorithms of the FEMIX computer code [13]. In the context of this work, additional 

cyclic constitutive material models were developed and implemented in the code. The RC columns are 
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discretized with 3D Timoshenko beam elements and each cross section is treated as a set of quadrilateral 

sub domains (fibrous model, [12]). 

In the following sections the experimental and numerical research are described and the main 

results are presented and discussed. 

 

2. EXPERIMENTAL PROGRAM 

The experimental program carried out in the context of the current work is composed of eight 

specimens and twelve tests as shown in Table 1. Two series of columns reinforced with longitudinal steel 

bars of 10 and 12 mm diameter, φl, were used. The following denominations are adopted: NON series for 

non-strengthened columns; PRE series for concrete columns strengthened with CFRP strips; POS series 

for columns of the NON series which were strengthened and then retested. The generic denomination of a 

series is Cnm_s, where n represents the diameter of the longitudinal bars, in mm, (10 or 12), m is equal to 

a or b (a and b are two tests in similar conditions for statistical purposes), and s is equal to NON, PRE or 

POS. 

 

3. TEST SETUP AND TESTING PROCEDURES 

The test setup is shown in Fig. 1. Each specimen is composed of a column monolithically 

connected to a footing, which is fixed to a foundation block by four steel bars. The cyclic horizontal load 

was applied by means of an actuator having a load capacity of 100 kN. The force was measured using a 

tension/compression load cell that can reach a maximum load of 250 kN with 0.05% accuracy. This load 

cell was attached to the piston of the actuator (cell C1 in Fig. 1). To avoid eccentric forces on the actuator, 

a 3D hinge was placed between the column and the load cell that measures the horizontal force. A vertical 

load of approximately 150 kN was applied to the column, which corresponds to an axial load ratio 

of 0.22. The vertical load was kept practically constant during the test by means of a 250 kN actuator. 

This actuator was supported by two bolted steel bars, which were fixed to the foundation block. The axial 

vertical force was measured with a 500 kN load cell with 0.5% accuracy (cell C2 in Fig. 1). Linear 

variable displacement transducers (LVDT) were used to record the horizontal displacements of the 

column, as well as an eventual vertical movement of the footing (see Fig. 2). The measuring stroke for 

each LVDT is indicated in parentheses (±12.5 or ±25 mm). The location of the strain-gauges (SG) which 

were glued to the CFRP strips is also indicated in Fig. 2. 
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The tests were carried out with closed-loop servo-controlled equipment. A displacement history 

was imposed to LVDT1, with a full range of 50 mm and 0.05% accuracy, located at the level of the 

horizontal actuator, see Fig. 1 and Fig. 2. From the analytical and numerical simulations it was verified 

that the steel yield initiation occurred for a lateral deflection of about 5 mm at the level of the horizontal 

actuator. Therefore, an increment of 2.5 mm was selected in the present experimental program. This 

increment was the same for all the specimens, in order to allow for the comparison of stiffness and 

strength degradation for the same lateral deflections. The displacement history included eight full 

loading-unloading cycles: ±2.5 mm, ±5.0 mm, ±7.5 mm, ±10.0 mm, ±12.5 mm, ±15.0 mm, ±17.5 mm 

and ±20.0 mm, with a displacement rate of 150 µm/s. 

 

4. MATERIAL CHARACTERIZATION 

4.1 Concrete 

A low strength concrete was used for all tests, in order to reproduce the type of concrete used in 

the sixties and seventies. The concrete was composed of 250 kg/m3 of normal Portland cement, 

1196.5 kg/m3 of gravel 5-15 mm, 797.5 kg/m3 of sand 0-5 mm, and 151.5 l/m3 of water. 

The uniaxial compressive behaviour of the concrete of each column series was assessed by 

performing compression tests with two cylinders of 150 mm diameter and 300 mm height. These tests 

were performed at 28 days and at the time the columns were tested. For each series of columns, two 

beams with dimensions of 850×100×100 mm3 were also cast for assessing the tensile strength in bending 

and the fracture energy of the concrete [14]. The results obtained in the compression tests indicated an 

average compressive strength, at 28 days, of 16.7 MPa, with a standard deviation of 3.31 MPa. An 

average tensile strength of 2.62 MPa, with a standard deviation of 0.48 MPa, and an average fracture 

energy of 0.08 N·mm/mm2 were registered from the three-point notched beam bending tests, at 28 days. 

Table 2 and Table 3 include the values of the concrete compressive strength at the age of the column 

tests. 

 

4.2 Steel reinforcement 

In the RC structures built in the sixties and seventies smooth surface steel bars were commonly 

used. For this reason, this type of bars was also used in the reinforcement of the tested columns. To assess 

the behaviour of the steel bars, uniaxial tensile tests were carried out in a servo-controlled testing 
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machine, according to the recommendations of the European standard EN 10002 [15]. The yield stress 

(fsy), the ultimate stress (fsu), and the elasticity modulus (Es) of φ6 bars are (as an average of the tests with 

three specimens): fsy = 352.4 MPa, fsu = 352.8 MPa, and Es = 203700 MPa. The reinforcement details for 

φ10 and φ12 bars are presented later (see Table 6). 

 

4.3 Epoxy mortar 

An epoxy mortar was used to fix the CFRP laminates to the column footing (see Fig. 3). The 

epoxy mortar was composed of one part of epoxy and three parts of fine sand previously washed and 

dried (parts measured in weight). The uniaxial compressive strength and the flexural tensile strength of 

the epoxy mortar were evaluated from tests in specimens with 160×40×40 mm3, at 48 hours and at 28 

days, following the European standard [16]. At 48 hours, a compressive strength of 43.75 MPa, with a 

standard deviation of 2.14 MPa, and a flexural tensile strength of 33.93 MPa with a standard deviation of 

0.57 MPa, were obtained. At 28 days, a compressive strength of 51.71 MPa, with a standard deviation of 

0.47 MPa, and a flexural tensile strength of 35.40 MPa, with a standard deviation of 1.70 MPa, were 

obtained. 

In order to evaluate the adhesive properties of the epoxy mortar relatively to a concrete surface, the 

following procedure was undertaken: reutilization of the remains of previous bending tests with 

850×100×100 mm3 beams, which were used to evaluate the properties of the concrete used in the 

columns; utilization of the epoxy mortar to glue both pieces together; test of the resulting specimen under 

flexure load. In these tests it could be observer that the fracture neither propagated across the epoxy 

mortar, nor across its interface with the concrete (see Fig. 4). Therefore, these tests indicated that the 

properties of the bonding between the developed epoxy mortar and concrete are very good. 

 

4.4 CFRP laminate strips 

The CFRP strips, which were provided in rolls, had a thickness of 1.45±0.005 mm and a width of 

9.59±0.09 mm (average values of 15 measures). To evaluate the tensile strength and the elasticity 

modulus of the applied strips, uniaxial tensile tests were carried out in a servo-controlled test machine 

(Instron, series 4208), according to the recommendations of ISO 527-5 [17]. Strains were registered by 

means of a clip-gauge with a measuring stroke of 50 mm, whereas forces were obtained from a 100 kN 

load cell with an accuracy less than 0.1%. The stress-strain relationships obtained were linear up to 
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failure, which indicates a brittle behaviour. An elasticity modulus of 159000 MPa and a tensile strength of 

1741 MPa resulted from the tests. 

 

4.5 Epoxy adhesive 

The adhesive that was used to bond the CFRP strips to concrete was composed of two parts of 

epoxy and one part of a hardening component (parts measured in weight). In order to assess the tensile 

behaviour of the epoxy adhesive, five specimens were tested with the same equipment and measurement 

devices that were used in the uniaxial tensile tests of the CFRP strips (see the previous Section). The tests 

were carried out according to the recommendations of ISO 527-2 [18] and a load cell with 5 kN load 

capacity was used. Fig. 5 shows the uniaxial stress-strain curves obtained in the tests. All the specimens 

exhibited similar uniaxial stress-strain relationships with the exception of the fourth. However, significant 

differences are observed in terms of tensile strength probably due to spurious voids detected in the 

fracture surfaces of the tested specimens. In fact, in the fracture surface of specimen 4 the imperfections 

were all micro-voids, while in the other specimens voids of a considerably larger size were observed. 

According to the recommendations of ISO 527-2 [18], an elasticity modulus of 5090±590 MPa was 

obtained. 

 

5. ADOPTED STRENGTHENING TECHNIQUE 

Fig. 3 presents the strengthening technique adopted for the column elements. In a region 100 to 

150 mm high at the bottom of the column (herein designated as “nonlinear hinged region”) the concrete 

cover was removed. Afterwards, 5 mm wide and 15 mm deep slits were cut in the concrete cover, in the 

faces that will be subjected to the highest tensile stresses. In order to anchor the CFRP strips to the 

footing, 100 mm deep perforations were made in correspondence with each slit. Before the installation of 

the strips, all the slits and holes were cleaned using steel brushes and compressed air. The CFRP strips 

were cleaned with a solvent. The slits were then filled with the epoxy adhesive and the strips were 

installed into the slits. Finally, the nonlinear hinged region and the holes in the footing were filled with 

the epoxy mortar. A detailed description of this strengthening technique can be found in [19]. 
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6. EXPERIMENTAL RESULTS 

6.1 Load carrying capacity 

The test series was carried out with the procedures described in Section 3. Table 2 and Table 3 

contain the extreme values obtained in the tests for the horizontal force considering as positive a right to 

left force in Fig. 1 (the age of the columns at testing time is in parentheses). The observed maximum force 

differs significantly, even between specimens of the same series. This discrepancy is mainly due to the 

variability of the concrete properties and to some extent lack of precision in the location of the steel 

reinforcement. A significant increase of the maximum load of the columns of the PRE series 

(strengthened before testing) and POS series (strengthened after testing) was observed, relatively to the 

results obtained in the columns of the NON series. As expected, the strength increase provided by the 

CFRP was higher in the columns with lower longitudinal steel reinforcement ratios (C10 series). The 

increase of the load carrying capacity provided by the NSM strengthening technique was similar in the 

PRE series and in previously tested columns (POS series).  

 

6.2 Force-displacement relationships 

Fig. 6 shows two typical relationships between the horizontal force and the deflection at LVDT1. 

The envelopes of the relationships between force and deflection at LVDT1 for all the tested columns are 

shown in Fig. 7 to Fig. 9. It can be observed that, in columns reinforced with φ10 and φ12 bars, the 

increase of the load carrying capacity occurred before and after yielding of the steel longitudinal 

reinforcement, respectively. Up to a deflection that approximately corresponds to the yield initiation of 

the steel longitudinal reinforcement, the stiffness of the columns of the POS series was, in general, lower 

than the stiffness of the columns of PRE and NON series, since, when tested, the columns of the POS 

series were already significantly damaged. This effect is more evident in the columns possessing more 

longitudinal reinforcement, since, due to the higher maximum load applied to these columns, the concrete 

was significantly more damaged. In general, a pronounced pinching effect occurred (narrowing of the 

hysteretic diagrams), indicating that these columns had reduced capacity to dissipate energy. The relative 

high concrete compressive axial stress (3.75 MPa) and the low concrete compressive strength class 

applied in the tested columns have contributed to this behaviour. In the strengthened columns this 

pinching effect was even more pronounced since, due to the increase of the flexural carrying capacity 

provided by the CFRP strips, the concrete axial compressive stresses have increased. From the horizontal 
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force vs. deflection at LVDT1 relationships recorded in the cyclic tests, the following diagrams can be 

obtained: dissipated energy vs. accumulated horizontal displacement, and maximum horizontal force in 

each series of load cycles vs. horizontal displacement. Typical graphs for these relationships are depicted 

in Fig. 10 and Fig. 11, which correspond to the C12b_POS column. Due to the fact that this strengthening 

technique does not provide significant concrete confinement, the increase on the dissipated energy was 

marginal. Table 4 includes the values of the dissipated energy obtained in the cyclic tests. 

 

6.3 Force-strain relationships 

In the majority of the strengthened columns some CFRP strips have reached tensile strain values 

close to their ultimate strain (≅1 %). As an example, Fig. 12 illustrates, for the column C10a_POS, the 

relationship between the horizontal force applied to the column and the strain measured in the SG6 

strain-gauge (see also Fig. 2). Due to the contribution of the surrounding concrete, the maximum 

compressive strain in the CFRP was about half the value recorded in tension. Relationships similar to 

those depicted in Fig. 12 were obtained for the remaining columns. 

 

6.4 Crack patterns and failure modes 

In all the tested columns a flexural failure mode occurred. Fig. 13 shows the crack patterns that 

could be observed in the four lateral faces the columns C10a_NON and C10a_POS, according to the 

labels indicated in Fig. 2. These crack patterns are representative of the NON and POS series of columns. 

The crack patterns of the PRE and POS series of columns are similar (see also [19]). Fig. 13 shows that in 

the NON columns the flexural failure crack formed at the column-footing interface, while in the PRE and 

POS columns a more diffuse crack pattern occurred. In these cases the flexural failure crack is located 

above the repaired zone, i.e., approximately 150 mm above the column bottom surface. This new location 

of the failure surface contributed to the increase of the flexural load carrying capacity of the strengthened 

columns. 

 

7. NUMERICAL SIMULATION 

7.1 Introduction 

A fibrous model with cyclic constitutive laws for concrete and steel bars was implemented in the 

FEMIX computer program [20], which is based on the finite element method. The fibrous model was 
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incorporated in the three-dimensional Timoshenko beam finite element [12]. With this finite element and 

the FEMIX framework, three-dimensional reinforced concrete frames with cyclic loading and nonlinear 

material behaviour can be analysed. This model was used in the numerical simulation of the behaviour of 

RC columns strengthened with the NSM technique and submitted to axial and cyclic lateral loads (see the 

previous Sections). The simulated columns were discretized with isoparametric Timoshenko beam 

elements with three nodes each. The cross section of each element is discretized with 4-noded 

quadrilateral elements representing each a longitudinal fibre (see Fig. 14). The geometry of the cross 

section of each fibre can vary along the beam element. The material model may vary from fibre to fibre 

thus allowing for the consideration of non constant concrete properties in the cross section (e.g., 

unconfined and confined concrete). A 2x2 Gauss-Legendre rule is adopted to evaluate the integrals 

related to each 4-noded finite element used in the discretization of the cross section. In the integrals that 

are required to evaluate the stiffness matrix and the internal forces of the Timoshenko beam element a 

Gauss-Legendre rule with two points is used. A linear stress-strain relationship was assumed for the 

CFRP strips, in agreement with the results obtained in the experimental tests. The formulation that was 

adopted for the simulation of the cyclic behaviour of the concrete and steel materials is briefly described 

in the following sections. A more detailed description can be found elsewhere [21, 22]. 

 

7.2 Constitutive laws 

7.2.1 Concrete cyclic model 

Chang and Mander [21] developed a cyclic model for unconfined and confined concrete based on 

the expression that was originally proposed by Tsai [23] to simulate the monotonic concrete compressive 

behaviour. Chang and Mander assumed that concrete subjected to a monotonic tensile stress can also be 

simulated with the Tsai equation by selecting appropriate values for the parameters. 

In the present work the aforementioned models are adopted, with minor adjustments, to simulate 

the concrete behaviour under monotonic and cyclic loading. These adjustments essentially involve the 

calculation procedure of parameter r in Eq. (3) (see Appendix I). The new procedure is based on 

experimental results that suggest the calculation of the parameter r with Eq. (4). 

 

7.2.2 Steel cyclic model 
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The original formulation of the Menegotto and Pinto model is adopted in the present work [24]. A 

brief description of this model is included in Appendix II. Some adjustments are necessary, being the 

main modification restricted to Eq. (22). 

 

8. Model appraisal 

The tested RC columns were numerically simulated with the FEMIX computer code [20]. All the 

tested columns were discretized with six isoparametric Timoshenko beam elements with three nodes 

each. According to the developed approach, at the cross section level each fibre is discretized with a 

quadrilateral finite element. These fibres are represented by 4-noded finite elements with a 2x2 

Gauss-Legendre integration rule, thus simulating the concrete core, concrete cover, steel bars and CFRP 

strips. The concrete part of the cross section was discretized with sixteen quadrilateral elements. Each 

longitudinal bar and each CFRP strip was simulated with an additional quadrilateral element. A linear 

stress-strain relationship was assumed for the CFRP strips, in agreement with the results obtained in the 

experimental tests [19]. Table 5 and Table 6 include the values that were adopted for the parameters that 

define the concrete and steel constitutive models (the definition of the parameters included in these tables 

can be found in Appendices I and II). These values were obtained from tests that were carried out with 

concrete and steel specimens, as described in Section 4. 

Fig. 15 shows the comparison between the experimental and numerical envelope curves for the 

NON and PRE tested columns with φ10 steel bars. It can be concluded that the implemented numerical 

model reproduces the main phenomena observed in the experimental tests. 

The POS columns require a two-phase structural analysis: without and with strengthening. Since 

the computer code cannot simulate a structure with more than one phase, the POS columns were not 

numerically analyzed. 

Fig. 16 includes, for the C12b_PRE column, the numerical and experimental horizontal 

force-deflection relationships. Regardless of correctly predicting the envelope response, in the numerical 

model larger energy dissipation occurred when compared with the experimental test. This is due to the 

fact that, in the present version of the program, it was assumed that concrete behaves linear-elastically in 

shear, which is an inaccurate approach, and the inelastic buckling of the steel bars was not integrated in 

the steel cyclic constitutive model. The incapability of the numerical model to simulate the pronounced 

pinching effect observed in the experimental tests resides on the fact that the model, in the present 
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version, can not model the debonding between reinforcement and surrounding concrete, which results in a 

reduction of the energy dissipation capacity of the RC column. To accurately simulate this effect, a bond-

slip model needs to be implemented to model the bond behaviour between reinforcement and concrete. 

 

9. CONCLUSIONS 

A strengthening technique based on bonding CFRP laminate strips into slits opened on the 

concrete cover was applied to RC columns subjected to axial compression and lateral cyclic loading. 

Since the amount of CFRP strengthening was the same for all columns, those with a smaller conventional 

steel reinforcement (4φ10) had a larger load carrying capacity increase (92%) than those with 4φ12, 

which had only a capacity increase of 34%. With the proposed strengthening technique premature 

debonding could be avoided, which allowed for the possibility of a full exploitation of the CFRP 

resistance as was indicated by the attainment of high strain values. This fact lead to the failure of some 

CFRP strips in the base of the columns. 

The obtained experimental results indicate that the proposed strengthening technique is very 

promising for increasing the load carrying capacity of concrete columns failing in bending. However, as 

was expected, the energy absorption capacity of the tested RC columns was not improved by this 

technique, since it does not provide significant concrete confinement. 

With the aim of simulating the behaviour of reinforced concrete columns strengthened with the 

technique proposed in this work, a fibrous model with cyclic constitutive laws for concrete and steel bars 

was implemented in a computational code based on finite element techniques. This computational model 

can simulate the cyclic behaviour in compression and in tension of unconfined and confined concrete. 

The numerical model has reproduced, with good agreement, the behaviour observed in the experiments, 

being a useful tool for the analysis of this type of structures. 
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APPENDIX I - Chang and Mander Model 

Fig. 17 represents the envelope curves and cyclic rules of the model. The superscript + or – 

indicates that the parameter corresponds to a tensile or compressive state, respectively. The 

non-dimensional stress-strain relationship of the envelope curve for the case of the compressive behaviour 

can be written in the following manner: 

 

for 0 − −< <c ccrx x  

( )− −=c cc cf f y x  

( )− −=ct c cE E z x  

(1a) 

for − −≤ ≤ccr c cspx x x  
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where, fcc is the concrete compressive strength (for confined concrete '=cc ccf f ; for unconfined concrete 

'=cc cf f ), Ec is the concrete initial Young’s Modulus (CEB-FIP 1993, [26]), 
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In (6) ε cc  is the strain that corresponds to the concrete compressive strength (for confined 

concrete 'ε ε=cc cc ; for unconfined concrete 'ε ε=cc c , where 'ε cc  and 'ε c  are the strains that correspond to 

'
ccf  and '

cf , respectively). The parameter ε ccr  represents the critical compressive strain, after which a 

linear stress-strain relationship is assumed for the concrete in compression (see Fig. 17). 

The non-dimensional spalling strain, cspx , determined according to Eq. (7), corresponds to the maximum 

compressive strain, after which, due to concrete spalling, it is assumed that the concrete residual strength 

is exhausted. 

( )

( )

−
−

− −= − ccr
csp ccr

c ccr

y x
x x

n z x
 (7) 

 

Eqs. 1a and 1b define the rule 1, while Eq. 1c defines the rule 5. As already mentioned, the shape of the 

tension envelope curve is the same as that of the compression envelope curve [21], hence similar Eqs. can 

be used to define the rule 2 (Eqs. 8a and 8b) and rule 6 (Eq. 8c) of the concrete tension envelope curve, as 

follows: 

for + +<c ccrx x  

( )+ +=c ct cf f y x  

( )+ +=ct c cE E z x  

(8a) 

for + +≤ ≤ccr c ctux x x  

[ ( ) ( ) ( )]+ + + + + += + −c ct ccr c ccr c ccrf f y x n z x x x  

( )+ +=ccr c ccrE E z x  

(8b) 

for + >c ctux x  

0+ += =c ctf E  
(8c) 

where 

ε ε
ε

+ −= c co
c

ct

x , 
ε+ = c ct

c
ct

E
n

f
 and 

( )

( )

+
+

+ += − ccr
ctu ccr

c ccr

y x
x x

n z x
 (9) 

 

with fct being the concrete tensile strength and εct its corresponding strain. All other rules corresponding to 

unloading and reloading branches are represented by a transition curve, which starts from an already 
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known starting point (a subscript a is used to designate this point: εca; fca) and slope (Eca) that needs to be 

evaluated, and ends at a target point (a subscript b is used to designate this point: εcb; fcb), whose 

coordinates, as well as the slope at this point (Ecb) need to be calculated. The transition curve is 

represented by 

( )( )ε ε ε ε= + − + − cR

c ca c ca ca c c caf f E A  (10) 

where 

sec

sec

-

-
= cb c

c
c ca

E E
R

E E
 and sec

ε ε
−=

− c

c ca
c R

cb ca

E E
A  (11) 

 

The rules are summarized in Table 7. The parameters used in this table are calculated using the 

expressions included in Table 8. In Table 7 ε cr  and crf  are the strain and the stress components of the 

last reversal point. The parameter , ( )εct k ciE  in Table 7 represents the tangent Young’s Modulus at strain εci 

for the kth rule (i represents the a or b point). In Table 8 ( )ε±
c cif  and ( )ε±

c ciE  represent the stress and the 

tangent elasticity modulus at strain εci, evaluated with the equations that define the envelope curves. 

If, during the unloading process modelled with rule 3, a reversal occurs (see Fig. 17), the values 

that define the target point of the function that establishes the rule 7 are obtained from linear 

interpolation, using values calculated with the expressions of Table 8 corresponding to rule 7, as 

described elsewhere [21]. 

Similarly, when a reversal in rule 4 takes place, a linear interpolation is used to obtain the values 

of the parameters that define the rule 8. A reversal in rule 9 is modelled with rule 11, while a reversal in 

rule 10 is simulated with rule 12 (see Fig. 17). In order to define the rules 11 and 12, the points a and b 

are assumed to be located in the branches corresponding to rule 9 and 10, respectively (in case of rule 12, 

a is now the target point). The following equation is used to obtain the strain at the target point 

ε ε ε ε
ε ε ε ε

− −

+ − − +

− −=
− −

ca cpl cun cb

cun cpl cun cpl

 (12) 

A reversal in rule 13 is simulated with rule 14, which has the b target point lying on the abscissa, whose 

strain value, εcb , can be calculated from the following equation 

sec

ε ε −= − ca
cb ca

c

f

E
 (13) 
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The shift in the tension envelope curve, whose definition is based on the strain parameter εco (see Fig. 17), 

is calculated as described in the following steps: 

a) Calculate the compressive and tensile non-dimensional strain ductility parameters 

ε
ε

−
− = cun
cu

cc

x  and 
ε ε

ε

+
+ −= cun co
cu

ct

x  

(Note: in the first iteration εco= 0; in the first reversal ε +
cun = 0) 

(14) 

b) If + −<cu cux x  then 

+ −=cu cux x , 0ε =co , ε ε+ +=cun cu ctx  (15) 

and the corresponding stress, +
cunf , is obtained from the tensile envelope curve at ε +

cun . The shift is finally 

calculated from 

ε ε ε ε− += + ∆ −co cpl co cu ctx , where, 
sec

2ε
+

+ −∆ =
+
cun

co
c cpl

f

E E
 (16) 

The utilization of the cyclic concrete model that was described above only requires the following 

parameters: Ec, fcc, fct, εcc , εct , ε +
ccr , ε −

ccr . 
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APPENDIX II – Menegotto and Pinto Model 

Ten rules define the cyclic model assumed for steel bars, being five associated with the 

compressive state and the remaining with the tensile state. The tensile and compressive envelope curves 

depend on the monotonic stress-strain (ε−s sf ) relations defined by rules 1 and 2, respectively (see 

Fig. 18 and Fig. 19). The strain parameter ε so  (Fig. 18), which is dependent on the experienced plastic 

excursion into the envelope curve, can be relocated and scaled in order to simulate strength 

degradation [21]. 

The stress and the tangent elasticity modulus of the envelope curve are calculated with the 

expressions defined by Eqs. 17a and 17b. In the following equations the tensile envelope curve (rule 1) is 

described by considering the (+) version of the parameters, while the compressive envelope curve (rule 2) 

by considering the (-) version. 

1
0.110

( ) 1
( ) 1

2
1

ε ε ε ε
ε ε

ε

±±
± ±

± ±

±

 ∆ + −
 = + − −
 −    

 +      

p

s ss s su ss
s su sy

su sh
s ss

sy

E sign
f f f

E

f

 
(17a) 

1

1
21.110

( ) 1
( )

2
1

ε ε
ε

±

±
−

±
±

± ±

±

∆ + −= + ∆
−  

 +      

p

p
s s su s

st s sh
su sy

s ss

sy

E sign f f
E sign E

f f
E

f

 
(17b) 

where 

ε ε ε ±= −ss s so ; 
ε ε± ±

± ±
± ±

−=
−

su sh
sh

su sy

p E
f f

 (18) 

1ε ε ε +∆ = −s ss sh ; 2ε ε ε+∆ = −s su ss  for the case of the tensile envelope (19a) 

1ε ε ε−∆ = −s sh ss ; 2ε ε ε −∆ = −s ss su  for the case of the compressive envelope (19b) 

 

All the rules simulating the unloading and reloading branches (see Fig. 19) are based on the model 

proposed by Menegotto and Pinto [24]. The following equations define these branches 

1
( )ε ε − = + − + 

 
s sa sa s sa

Q
f f E Q

A
 (20a) 
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sec
sec

1
ε ε

−

−= −
−+
−

s

s sa
st s R

s sa
sa

ch sa

E QE
E E

E
f f

 
(20b) 

where εsa and fsa are the strain and stress components of the a initial point, Esa is the tangent elasticity 

modulus at this point, and 

1

1
1

ε ε −
 = = +

−  

s s
R R

s sa
sa

ch sa

A E
c f f

 

sec

1

−
=

−

s

sa

E
c

E
Q

c
 

1 ( )

(1 )

ε ε= + −
− s s

sa
ch sa sb sa

R R

E c
f f

c

 

(21) 

An iterative procedure is required to obtain the strain and stress components that define the unloading and 

reloading branches. The parameters that define these rules are summarized in Table 9, where ε sr  and fsr 

are the strain and the stress components of the last reversal point, and maxεs  and minεs  are the maximum 

excursions into the tensile envelope branch and into the compressive envelope branch, respectively. 

Table 10 shows how to calculate the parameters required by the rules indicated in Table 9. 

In a cracked reinforced concrete element the stress in the steel reinforcement attains a higher value 

in the vicinity of the cracks than in the intact zones. Therefore, when a steel constitutive model is based 

on the average stress, this stress is smaller than the one that in reality occurs in the cracked zone. For this 

reason, steel yield initiation at cracked zones is not correctly simulated if average stress values are 

adopted to characterize the stress field in a steel bar involved by cracked concrete. To overcome this 

deficiency an improvement has been implemented in the present constitutive model by means of a 

technique proposed by Stevens [25], which is based on a reduction of the tensile envelope curve (see 

Fig. 18), according to the following recommendation 

75

φ
∆ =s ct b

s

f f C , with fct in MPa 

1       for steel bars of high adherence

in the remaining cases, with =13.5 MPa
5

τ τ


= 



b b
b

ct

C

f

 

(22) 

where φs is the bar diameter in millimetres. 
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The utilization of the cyclic steel model that was described above only requires the following parameters: 

Es, fsy, ε sh , fsh, Esh, ε su  and fsu. 
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NOTATION 

 

The following symbols were used in the paper. 

Subscript s and c denote steel and concrete respectively. 

C/T = Compression /Tension 

/c sE  = initial Young modulus of concrete/steel 

cnewE  = tangent modulus at the new stress point 

/+ −
soE  = initial Young’s modulus at reversal C/T branch 

cplE  = tangent modulus when the stress is released 

/− +
creE  = tangent modulus at the returning point(/ε − +

cre , /− +
cref ) 

scE  = tangent modulus of steel 

/− +
shE  = tangent modulus at strain hardening (/ε − +

sh ) 

stE  = tangent modulus of steel 

/− +
tE  = tangent modulus for concrete on C/T envelope 

/c sf  = concrete/steel stress 

ctf  = peak concrete tension strength 

′
cf  = peak confined concrete strength  

/− +
cf  = concrete stress on the C/T envelope 

/− +
cnewf  = new stress at the unloading strain for C/T 

/− +
cref  = stress at the returning strain (/ε − +

cre ) 

/− +
csuf  = ultimate (maximum) stress during C/T in steel 

/− +
cunf  = unloading stress from C/T concrete envelope curve 

/− +
syf  = yield stress during C/T in steel 

/− +
cn  = n value for the C/T envelope curve 

/+ −
soR  = Menegotto–Pinto Eq. parameter 

cspx  = non-dimensional spalling strain 
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/− +
cx  = non-dimensional strain on the C/T envelope  

/− +
crx  = non-dimensional critical strain on C/T envelope curve.  

cε  = concrete strain 

cε ′  = concrete strain at peak confined stress 

/ε − +
so  = point of origin of the C/T envelope curve 

ε cpl  = plastic strain 

/ε − +
cre = strain at the returning point to the C/T envelope curve 

/ε − +
sh  = hardening strain during C/T in steel 

/ε − +
su  = strain at ultimate stress ( /− +

suf ) 

ε t  = strain at peak tension stress 

/ε − +
cun  = unloading strain from C/T concrete envelope curve 
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Fig. 1 – Test set-up (dimensions in mm). 
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Fig. 2 – Location of the displacement transducers (LVDT) and strain gauges (SG) (dimensions in mm). 
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Fig. 3 – Adopted flexural strengthening technique for RC columns (dimensions in mm). 
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(a)  (b) 

Fig. 4 – Notched beam bending tests for the characterization of the concrete-epoxy mortar bond 

performance: (a) test setup; (b) crack propagation. 
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Fig. 5 – Tensile stress-strain relationship for the epoxy adhesive specimens. 
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Fig. 6 – Cyclic force-deflection (at LVDT1) relationship for C10a column.  
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Fig. 7 – Force-displacement envelopes for all load cycles of series C10_NON and C10_POS. 
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Barros, J.A.O., Varma, R.K., Sena-Cruz, J.M., Azevedo, A.F.M., (2008) Near surface mounted CFRP strips for the flexural 
strengthening of RC columns - experimental and numerical research, Engineering Structures Journal, 30(12): 3412-3425 

 33

 

 
 
 
 
 
 
 
 
 

-25 -20 -15 -10 -5 0 5 10 15 20 25
-50

-40

-30

-20

-10

0

10

20

30

40

50

 C10a_PRE
 C10b_PRE
 C12a_PRE
 C12b_PRE

 

F
o

rc
e 

(k
N

)

Displacement (mm)  

Fig. 9 – Force-displacement envelopes for all load cycles of series PRE. 



Barros, J.A.O., Varma, R.K., Sena-Cruz, J.M., Azevedo, A.F.M., (2008) Near surface mounted CFRP strips for the flexural 
strengthening of RC columns - experimental and numerical research, Engineering Structures Journal, 30(12): 3412-3425 

 34

 

 

 
 
 
 
 
 
 
 
 

0 250 500 750 1000 1250
0

1000

2000

3000

4000

5000

 

 

T
o

ta
l e

n
er

g
y 

(J
)

Accumulated horizontal displacement (mm)

3768 J

 

Fig. 10 – Total energy vs. accumulated horizontal displacement for C12b_POS column. 
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Fig. 11 – Variation of the peak load in the load cycles for C12b_POS column. 
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Fig. 12 – Relationship between the force and the strain on the strain gauge SG6 (see Fig. 2) for the 

column C10a_POS. 
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(a) (b) 

Fig. 13 – Crack pattern on column C10a_NON (a) and C10a_POS (b). Note: thick line means higher 

crack opening; shaded zone represents concrete too damaged. 
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Fig. 14 – Fibrous model concept. 
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Fig. 15 – Numerical and experimental results of the (a) C10b_NON and (b) C10b_PRE columns.
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Fig. 16 – Numerical and experimental results of the C12b_PRE column. 
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Fig. 17 – Schematic representation of the concrete cyclic constitutive model. 
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Fig. 18 – Schematic representation of the parameters for the steel cyclic constitutive model. 
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Fig. 19 – Schematic representation of the cyclic steel constitutive model. 
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Table 1. Denominations for the specimens. 
Longitudinal 

reinforcement 

(1) 

Series 

NON(1) 

(2) 

PRE(2) 

(3) 

POS(3) 

(4) 

4φ10 C10a_NON C10a_PRE C10a_POS 

C10b_NON C10b_PRE C10b_POS 

4φ12 C12a_NON C12a_PRE C12a_POS 

C12b_NON C12b_PRE C12b_POS 

 

(1) Non-strengthened; (2) Strengthened before testing; 

(3) Columns of NON series after have been tested and strengthened. 
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Table 2. Maximum forces obtained in the columns of PRE series (strengthened before testing). 

 Series PRE 

 C10a_PRE C10b_PRE C12a_PRE C12b_PRE 

Age1 (days) 111 113 110 115 

Average compressive strength1 (MPa) 17.49 14.99 23.55 17.93 

Tensile (kN) 37.14 40.63 44.13 39.81 

Compressive (kN) -38.54 -37.96 -43.66 -36.64 

 

Note: 1values at the age of the columns at testing. 
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Table 3. Maximum forces obtained on the columns of series NON (non-strengthened) and POS 

(strengthened after preliminary testing). 

Column C10a_ C10b_ C12a_ C12b_ 

Diameter of longitudinal bars (mm) 10 10 12 12 

Average compressive strength1 (MPa) 15.21 13.21 17.23 19.95 

Tensile NON (kN) 16.67 

(86)2 

21.78 

(85)2 

26.35 

(85)2 

29.31 

(85)2 

POS (kN) 37.96 

(146)2 

41.38 

(130)2 

34.11 

(150)2 

45.54 

(154)2 

Increase (%) 127.7 89.99 29.45 55.37 

 

Compressive 

NON (kN) -19.76 

(86)2 

-24.07 

(85)2 

-30.52 

(85)2 

-32.27 

(85)2 

POS (kN) -34.11 

(146)2 

-43.1 

(130)2 

-37.03 

(150)2 

-41.58 

(154)2 

Increase (%) 72.62 79.06 21.33 28.85 

 

 Note: 1values at the age of the columns at testing of the series NON. 2Values inside round parentheses represent the age of the 

 columns at testing, in days. 
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Table 4. Dissipated energy. 

Column Reference 

 

 

Accumulated horizontal displacement 

(mm) 

 

Dissipated energy 

(kN·mm) 

C10a_NON 1139 2013 

C10a_POS 1081 3457 (72%) 

C10a_PRE 1081 3732 

C10b_NON 1083 2627 

C10b_POS 1090 3786 (44%) 

C10b_PRE 1082 3436 

C12a_NON 1078 2552 

C12a_POS 1089 3216 (26%) 

C12a_PRE 1082 3436 

C12b_NON 1077 3344 

C12b_POS 1094 3777 (13%) 

C12b_PRE 1090 3560 

 

Note: Values inside parentheses represent the dissipated energy increment. 
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Table 5. Data used in the numerical analysis to simulate the concrete behaviour. 

Column 
ccf  

(N/mm2) 
ccε  crx−  

Ec
 1 

(N/mm2) ctε  crx+  

fct
 2 

(N/mm2) 

C10b_NON 13.21 2.50e-3 2 20052 1.20e-4 2 1.20 

C10b_PRE 14.79 2.50e-3 2 20821 1.40e-4 2 1.36 

C12b_NON 19.95 2.50e-3 2 23000 2.50e-4 2 1.57 

C12b_PRE 17.93 2.50e-3 2 22001 1.89e-4 2 1.42 

 

Notes: 1Young’s Modulus; 2uniaxial tensile strength, according to CEB-FIP Model Code [26]  
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Table 6. Data used in the numerical analysis to simulate the behaviour of the steel bars. 

Column 
Es 

(N/mm2) 

fsy 

(N/mm2) 

εsh fsh 

(N/mm2) 

εsu fsu 

(N/mm2) 

Esh 

(N/mm2) 

C10 216900 323.3 0.0075 344.0 0.03 456.5 6400.0 

C12 229700 364.8 0.0035 384.0 0.03 518.8 6400.0 
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Table 7. Controlling parameters used in transition curves for the concrete cyclic constitutive model. 

Parameters 
Rule number 

3 4 7 8 9 10 11 12 13 14 15 

caε  cunε−  cunε+  cunε−  cunε+  cplε−  cplε+  crε  crε  crε  crε  crε  

caf  
cunf −  cunf +  cnewf −  cnewf +  0 0 crf  crf  0 

crf  crf  

caE  cE  cE  cnewE−  cnewE+  cplE−  cplE+  cE  cE  0 
cE  cE  

cbε  
cplε−  cplε+  creε−  creε+  cunε+  cunε−  cbε  caε  

cunε−  cbε  caε  

cbf  0 0 cref −  cref +  cnewf +  cnewf −  cbf  caf  
cnewf −  0 

caf  

cbE  
cplE−  cplE+  creE−  creE+  cnewE+  cnewE−  ,9( )ct bE ε  ,10( )ct aE ε  

cnewE−  0 ,13( )ct aE ε  
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Table 8. Parameters used in transition curves for the concrete cyclic constitutive model. 

Parameter (-) (+) Parameter (-) (+) 

seccE±  

0.57

0.57

cun

c cc
c

cun

cc

f

E
E

ε
ε
ε

−

−

 
+ 

 
 

+  
 

 

0.67

0.67

cun

c ct
c

cun co

ct

f

E
E

ε
ε ε

ε

+

+

 
+ 

 
 − +  
 

 cε±∆  
1.15 2.75

cun

cun

cc

ε
ε
ε

−

−

+
 

0.22 cunε+  

cplE±  0.1 exp 2 cun
c

cc

E
ε
ε

− 
−  
 

 
1.1

1

c

cun co

ct

E

ε ε
ε

+ − +

 

cf
±∆  0.09 cun

cun
cc

f
ε
ε

−
−  0.15 cunf +  

cnewf ±  cun cf f− −−∆  cun cf f+ +−∆  cplε±  
sec

cun
cun

c

f

E
ε

−
−

−−  
sec

cun
cun

c

f

E
ε

+
+

+−  

cnewE±  cnew

cun cpl

f

ε ε

−

− −−
 cnew

cun cpl

f

ε ε

+

+ +−
 

creε±  cun cε ε− −+∆  cun cε ε+ ++∆  

cref ±  cre
c

cc

f
ε
ε

−
− 
  
 

 cre co
c

ct

f
ε ε

ε

+
+  −
  
 

 creE±  cre
c

cc

E
ε
ε

−
−  
  
 

 cre co
c

ct

E
ε ε

ε

+
+  −
  
 

 

 

Note: cun
cun c

cc

f f
ε
ε

−
− −  

=  
 

; cun co
cun c

ct

f f
ε ε

ε

+
+ +  −=  
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Table 9. Controlling parameters used in Menegotto Pinto model [24].  

Parameter 
Rule number 

3 4 5 6 7 8 9 10 

saiε  srε  srε  srε  srε  srε  srε  srε  srε  

saif  srf  srf  srf  srf  srf  srf  srf  srf  

saiE  soE−  soE+  soE+  soE−  soE−  soE+  soE+  soE−  

sbiε  mins soε ε−+  maxs soε ε++  

max

3 5

1.2

s so

sa sa

sy

s

f

E

ε ε
ε ε

+

+

+
+ −

−

 

min

4 6

1.2

s so

sa sa

sy

s

f

E

ε ε
ε ε

−

−

+
+ −

−

 
5saε  6saε  7saε  8saε  

sbif  3( )s sbf ε  4( )s sbf ε  5( )s sbf ε  6( )s sbf ε  5saf  6saf  7saf  8saf  

sbiE  3( )s sbE ε  4( )s sbE ε  5( )s sbE ε  6( )s sbE ε  ,5 5( )sa saE ε  ,6 6( )sa saE ε  ,7 7( )sa saE ε  ,8 8( )sa saE ε  
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Table 10. Parameters required for Menegotto Pinto model [24]. 

Parameter (+) (-) Parameter (+) (-) 

soε ±  (1 )sa rev sb revk kε ε+ − + −+ −  (1 )sa rev sb revk kε ε− + − +− +  saε±  
y

so sh
s

f

E
ε ε

+
+ ++ −  

y
so sh

s

f

E
ε ε

−
− −+ −  

sbε±  
max

max
s

so s
s

f

E
ε ε+ + −  min

min
s

so s
s

f

E
ε ε− + −  

revk±  
min

2
exp

5000( )
s

sy

ε
ε−

 
−  
 

 max
2

exp
5000( )

s

sy

ε
ε+

 
−  
 

 

soE±  (1 )sa sEε−∆  (1 3 )sa sEε− ∆  sR±  

1

3

20 (1 20 )sy
sa

s

f

E
ε

 
− ∆ 

 
 

1

3

16 (1 10 )sy
sa

s

f

E
ε
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Note: saε∆  = 
2

sbi saiε ε−
 

 


