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Departamento de Matemática e Aplicações, Universidade do Minho, Braga, Portugal

PACS: 51.10.+y, 47.70.Fw, 51.10.+y
Keywords: Boltzmann equation, Chemically reactive flows, Transport processes

Abstract

The kinetic model of the Boltzmann equation proposed in the work [1] for a binary mixture un-
dergoing chemical reactions of symmetric type which occur without activation energy is revisited here,
with the aim of investigating in detail the transport properties of the reactive mixture and the influence
of the reaction process on the transport coefficients. Accordingly, the non-equilibrium solution of the
Boltzmann equation is determined through an expansion in Sonine polynomials up to the first order,
using the Chapman-Enskog method, in a chemical regime for which the reaction process is close to
its final equilibrium state. The non-equilibrium deviations are explicitly calculated for what concerns
the thermal-diffusion ratio and coefficients of shear viscosity, diffusion and thermal conductivity. The
theoretical and formal analysis developed in the present paper is complemented with some numerical
simulations performed for different concentrations of reactants and products of the reaction as well as
for both exothermic and endothermic chemical processes. The results reveal that chemical reactions
without energy barrier can induce an appreciable influence on the transport properties of the mixture.
Oppositely to the case of reactions with activation energy, the coefficients of shear viscosity and ther-
mal conductivity become larger than those of an inert mixture when the reactions are exothermic. An
application of the non-barrier model and its detailed transport picture is included in this paper, in
order to investigate the dynamics of the local perturbations on the constituent number densities, and
velocity and temperature of the whole mixture, induced by spontaneous internal fluctuations. It is
shown that for the longitudinal disturbances there exist two hydrodynamic sound modes, one purely
diffusive hydrodynamic mode and one kinetic mode.

1 Introduction

Transport processes in reactive mixtures have become a fundamental subject of theoretical and experimen-
tal works, due to significant applications of reactive flows with detailed transport properties in chemical
technology, plasma chemistry, combustion, atmosphere physics at high altitudes and several others. In
particular, kinetic theory calculations directed to the estimation of transport coefficients for chemically
reactive systems have been established by several authors, after the first studies conducted by Prigogine
and co-workers in papers [2] and [3]. In fact, over the past few decades, many contributions to the scientific
literature of chemically reactive systems have been proposed in order to evaluate the transport coefficients
and investigate the non-equilibrium effects induced by the chemical reaction on the gas properties. Among
others, some reference works on this field are [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14].

In most papers in the existing literature, the chemical processes are described in terms of reactive
cross sections with an activation energy so that the large part of the collisions result in elastic scattering,
since only few particles can go beyond the activation energy barrier. Some few works consider reactive
cross sections without activation energy, corresponding to chemical interactions of hard sphere type [8],
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[16] or corresponding to Maxwellian-type molecules [15]. However, the collision terms in [15] and [16]
do not contain any feature which guarantees that each collision contributes exactly once to either elastic
or reactive term. Conversely, in paper [8], the authors propose a reactive kinetic model equation where
the elastic collision terms have a correction part with the meaning of excluding from the total number of
elastic collisions those events that lead to chemical reaction.

In the present work we study the transport properties of a binary gaseous mixture which undergoes a
chemical reaction of the type A+A⇋B+B which proceeds without activation energy. The starting point
is the kinetic model proposed in [1] and improved in [17]. More precisely, the explicit expressions of the
thermal-diffusion ratio and coefficients of shear viscosity, diffusion and thermal conductivity have been
obtained from the perturbation solution of the Boltzmann equation, in a chemical regime for which the
reaction process is close to its final equilibrium state. A detailed analysis of the transport properties is
then performed and a rather complete spectrum of the transport coefficients is shown.

The plan of this paper is as follows. The main aspects of the non-barrier kinetic model are presented in
Section 2. The collisional dynamics is detailed and the Boltzmann equation is derived with a new form of
the elastic and reactive collision terms. Following the ideas of papers [1] and [17], probability coefficients
χ and (1 − χ) are introduced in the reactive and elastic collision terms, respectively, in order to account
each binary encounter among identical particles exactly once, either as a reactive or an elastic event. The
corresponding macroscopic picture is also described by means of the balance equations for the relevant
hydrodynamic fields of the reactive mixture. At last, the Chapman-Enskog method and a first order Sonine
polynomial expansion of the distributions functions are used to approximate the non-equilibrium solution
of the Boltzmann equation in a chemical regime close to the final stage of the reaction process. In Section
3, the non-equilibrium distribution is used to deduce the constitutive equations for the pressure tensor and
heat flux vector of the mixture, and diffusion velocities and chemical reaction rates of the constituents. The
explicit expressions of the transport coefficients of shear viscosity, thermal conductivity, thermal-diffusion
ratio and diffusion, as well as the detailed expressions of the direct and reverse reaction rates are obtained.
The behavior of such kinetic properties is illustrated with several numerical simulations for exothermic and
endothermic chemical reactions, as well as for different constituent concentrations. The results obtained
in this section are discussed in detail, focusing the effects induced by the chemical reaction on the gas
mixture. In Section 4, an application of the non-barrier kinetic model where the transport effects play an
important role is studied. The dynamical behavior of small perturbations induced by spontaneous internal
fluctuations are investigated, characterizing the existence of two hydrodynamic sound modes, one purely
diffusive hydrodynamic mode and one kinetic mode. At last, in Section 5, the results are summarized and
some final remarks are stated.

Cartesian notation for tensors and the convention on repeated indices are used throughout the paper.
Greek indices denote the constituents of the mixture while Latin indices denote the cartesian coordinates.
The velocity vector of a molecule is denoted by cα while its components by cαi .

2 Basic Theory of the Non-Barrier Kinetic Model

The system we are interested in this work consists of a binary reactive mixture of ideal gases whose
constituents, denoted by A andB, undergo a simple reversible chemical reaction of the type A+A ⇋ B+B.
The molecules of the constituents have binding (or formation) energies ǫA and ǫB, but equal masses
mA = mB = m and equal diameters dA = dB = d. This kind of reaction can be considered as the first stage
of the Lindemann-Hinshelwood mechanism for reactions whose constituents are isomers [18], in particular
the transitions of crotonaldehyde and acrolein (s-cisands-transconformers), the reaction CH3NC⇋CH3CN
and the transformation cyclopropane ⇋ propene. Non-equilibrium effects for model reactive systems
undergoing symmetric chemical processes have been investigated by several authors. See, for example,
papers [11], [19], [20] and [21], just to cite some of them.

The elastic binary collisions are characterized by the conservation laws of momentum and kinetic
energy, namely,

mcα +mcβ = mc
′
α +mc

′
β ,

1

2
mc2α +

1

2
mc2β =

1

2
mc′2α +

1

2
mc′2β , (α, β = A,B), (1)
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where (cα, cβ) refer to pre-collisional velocities and (c′α, c
′
β) to post-collisional velocities. The relative

velocity is denoted by gβα = cβ − cα and the energy conservation law implies that gβα = g′βα.
The conservation laws of momentum and total energy (kinetic plus binding energy) for reactive binary

collisions read

mcA +mcA1
= mc

′
A +mc

′
A1

,
1

2
mc2A + ǫA +

1

2
mc2A1

+ ǫA =
1

2
mc2B + ǫB +

1

2
mc2B1

+ ǫB. (2)

In the above equations (cA, cA1
) are the velocities of the reactants, while (cB, cB1

) are the velocities of
the products of the reaction. The subindex 1 is used in order to distinguish two identical molecules that
participate in the reactive collision. The relative velocities of the reactants and products of the forward
reaction are denoted by gA = cA1

− cA and gB = cB1
− cB , respectively, and the conservation law of

the total energy in terms of the relative velocities reads: g2A = g2B + 4Q/m, where the difference of the
binding energies of the products and reactants is identified with the reaction heat Q = 2(ǫB − ǫA). Thus
the forward reaction is exothermic when Q < 0 and endothermic when Q > 0. For ideal gas mixtures
whose constituents are at the same temperature T , the chemical potential of the constituent α reads [22]

µα = ǫα − kT

[

3

2
lnT − lnnα + C

]

, (3)

where nα is the particle number density of the constituent α, k denotes Boltzmann’s constant and C is
a constant, which according to statistical mechanics is given by C = 3 ln(2πmk/h2)/2 with h denoting
Planck’s constant.

The affinity A of a chemical reaction is defined as the difference of the chemical potentials of the
reactants and products, i.e.,

A = 2(µA − µB) = −Q+ 2kT ln

(

nA

nB

)

, (4)

where the last equality follows from (3). At equilibrium the affinity vanishes and the above equation
reduces to the law of mass action:

Q = 2kT ln

(

neq
A

neq
B

)

, (5)

where neq
B and neq

A refer to the equilibrium values of the particle number densities.
The reactive mixture is characterized in the phase space, spanned by the positions and velocities of

the molecules, by the distribution functions fα(x, cα, t), α = A,B, such that fα(x, cα, t)dx dcα gives at
time t the number of molecules of constituent α in the volume element dx dcα. We adopt the convention
on repeated indices, and use Greek subscripts for the constituents of the mixture as well as and Latin
subscripts for cartesian components of a vector. The space-time evolution of the distribution functions is
governed by the Boltzmann equations

∂fα
∂t

+ cαi
∂fα
∂xi

=

B
∑

β=A

(1− χδαβ)

∫

[

f ′
αf

′
β − fαfβ

]

gβα σαβ dΩ dcβ (6)

+χ

∫

[fγfγ1 − fαfα1
]σ⋆

α gα dΩ
⋆ dcα1

, α 6= γ = A,B.

The first expression on the right-hand side of (6) is the elastic collision term, while the second one the
reactive collision term. The differentials dΩ, dΩ⋆ are elements of solid angle which characterize the elastic
and reactive scattering processes, respectively, and δαβ is the Kronecker symbol. At molecular level, the
differential cross sections characterize the types of collisions between the molecules and, in this work, it
is assumed that for the elastic encounters the differential cross section is that of rigid spheres of diameter
d, i.e., σαβ = d

2/4. For the inelastic collisions, we investigate chemical reactions of hard-sphere type
which proceed without activation energy, so that σ∗

α = d
2/4. Other differential cross sections for reactive

collisions without activation energy are considered, for example, in Stiller [23] and Brouard [24]. It would
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be interesting to underline that, with regard to the line-of-centers reactive cross section, in our model it
is not possible to consider the activation energy equal to zero, ǫ⋆ = 0, in order to recover the case without
activation energy. In fact, this procedure would lead to the wrong fact that the reaction heat would also
vanish. Although the reaction heat can be expressed as the difference between the forward and backward
activation energies, by definition it is the difference between the binding energies of the reactants and
products of the reaction. In our model for a symmetric chemical reaction, the binding energy is the
unique characteristic that distinguishes reactants and products, so that it should be positive or negative,
but not equal to zero. Moreover, in Eq. (6) the parameter χ, with 0 ≤ χ ≤ 1, is a scalar factor, which
represents the probability of a reactive encounter. In the case α = β, the term (1 − χ) is a reduced
factor for the elastic contributions among identical molecules with the following meaning. According to
the considered reaction dynamics, each encounter among identical molecules can result in both a reactive
collision or an elastic encounter. However, for hard-sphere type elastic and reactive cross sections, both
integrals on the right-hand-side of Eq. (6) extend over all values of the translational energy, so that the
contributions associated to each encounter among identical molecules are included in both the reactive
and elastic collision integrals

∫

[fβfβ − fαfα1
]σ⋆

α gα dΩ
⋆ dcα1

and
∫

[f ′
αf

′
α − fαfα] gαα σαα dΩ dcα. It seems

then reasonable to subtract from the elastic collision integral those events among identical particles which
give rise to a reactive encounter. This can be done introducing the probability χ of resulting a reactive
encounter from a binary collision among identical molecules and multiplying the corresponding elastic
and reactive collision integrals by (1 − χ) and χ, respectively. In particular, the reduced factor (1 − χ)
avoids a double counting in the sense that each encounter among identical molecules gives only one
contribution to Eq. (6), which can be either of elastic or reactive type. This is not the usual procedure
in the literature of the Boltzmann equation for chemically reacting mixtures, since the majority of the
research papers deal with reactive cross sections with activation energy and introduce a steric factor
connecting elastic and reactive interaction diameters. Therefore, reactive collisions occur only for those
pairs of molecules with relative translational energy larger than the activation energy, whereas almost
elastic collisions occur for low energy levels. In this sense there exists some overlapping for high energies,
since each encounter between particles of the same constituent is counted both as an elastic collision and
as a reactive interaction.

The macroscopic picture of the reacting mixture is described by the balance equations for the basic
fields of the constituent particle number densities nα, mean velocity v and temperature T of the whole
mixture, which are defined in terms of the distribution functions by

nα =

∫

fαdcα, vi =
1

n

B
∑

α=A

∫

cαi fαdcα, T =
1

3nk

B
∑

α=A

∫

mξ2αfαdcα, (7)

where n =
∑B

α=A nα is the particle number density of the mixture and ξαi = cαi − vi is a peculiar velocity.
The balance equations for the fields (7) are obtained from the Boltzmann equation (6) and read [13]

∂nα

∂t
+

∂

∂xi
(nαu

α
i + nαvi) = τα, α = A,B, (8)

∂̺vi
∂t

+
∂

∂xj
(pij + ̺vivj) = 0 , (9)

∂

∂t

[

3

2
nkT +

B
∑

α=A

nαǫα +
1

2
̺v2

]

+
∂

∂xi

[

qi + pijvj +

(

3

2
nkT +

B
∑

α=A

nαǫα +
1

2
̺v2

)

vi

]

= 0. (10)

Above, uαi is the constituent diffusion velocity, pij and qi are pressure tensor and heat flux vector of the
mixture, defined by

uαi =

∫

ξαi fαdcα, pij =

B
∑

α=A

∫

mξαi ξ
α
j fαdcα, qi =

B
∑

α=A

(
∫

m

2
ξ2αξ

α
i fαdcα + nαǫαu

α
i

)

. (11)

Furthermore, τα is the production rate of particle number density of constituent α whose expression is
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given by

τα = χ

∫

[fγfγ1 − fαfα1
]σ⋆

α gα dΩ
⋆ dcα1

dcα, α 6= γ = A,B. (12)

The Chapman-Enskog approach for the determination of non-equilibrium distribution function is des-
cribed in the text of Chapman-Cowling [25]. Many other authors have followed this method and expanded
upon the theory, including the case of reactive systems [2], [3], [4], [5], [6], [7], [9], [10], [11], [13]. The
chemical regime of the considered gas mixture is the one of the final stage of the reaction process, when
the chemical affinity A is a small quantity and the relaxation times of both chemical reaction and elastic
scattering are of the same order. This fast regime has been first analyzed in [26] by Ludwig and Heil and
further investigated by other authors, see e.g. [13], [27], [29], [28]. Accordingly, the collisional integrals
that appear on the right side of Boltzmann equation (6) have the same order of magnitude and the χ
parameter must be close to χ = 0.5.

It is well known (see [10]) that in the case of slow reactions or very fast reactions, the magnitudes
of the elastic Knudsen number KnE and of the reactive Knudsen number KnR are very distinct, namely
KnR ≫ KnE for slow reactions whereas KnE ≫ KnR, for very fast reactions. Conversely, in the case of fast
reactions, the chemical process is near the chemical equilibrium and the parameters KnE and KnR have
comparable order of magnitude. For the chemical regime considered in the present paper, KnR ≈ KnE
and, at the same time, the relaxation times of both chemical reaction and elastic scattering are smaller
than the characteristic time of the flow. Accordingly, the Boltzmann Eq. (6) is rewritten in the form

∂fα
∂t

+ cαi
∂fα
∂xi

=
1

θ

[ B
∑

β=A

(1− χδαβ)

∫

[

f ′
αf

′
β − fαfβ

]

gβα σαβ dΩ dcβ (13)

+χ

∫

[fγfγ1 − fαfα1
]σ⋆

α gα dΩ
⋆ dcα1

]

, α 6= γ = A,B,

where θ is a small parameter. The first step of the method consists in expanding the distribution function

fα in a power series around the local equilibrium distribution f
(0)
α , using the expansion parameter θ, as

fα = f (0)
α

(

1 + θΦ(1)
α + θ2Φ(2)

α + · · ·
)

= f (0)
α + θ f (1)

α + θ2f (2)
α + · · · (14)

The expansion (14) of the distribution function fα is then substituted in the Boltzmann Eq. (13) and the
terms of the same order in θ are grouped, resulting in a hierarchy of equations for the different orders of

approximation of fα. The first integral equation identifies the zero-order distribution function f
(0)
α as the

Maxwellian distribution fM
α

f (0)
α = fM

α = neq
α

( m

2πkT

) 3

2

exp

(

−
mξ2α
2kT

)

, (15)

with neq
α being the equilibrium number densities which are constrained by the mass action law (5).

The second integral equation can be written as (see [13])

f (0)

{[

να
nα
−

Q

3n

(

3

2
−

mξ2α
2kT

)

+
να

ℓ
(0)
F

∫

f (0)
α1

gασ
⋆
αdΩ⋆dcα1

]

ℓ
(0)
F

A

kT
+ ξαi ξ

α
j

m

kT

∂v〈i

∂xj〉
+

n

nα
ξαi d

α
i

−ξαi

(

5

2
−

mξ2α
2kT

)

1

T

∂T

∂xi

}

=
B
∑

β=A

∫

f (0)
α f

(0)
β (Φ

′(1)
β +Φ′(1)

α − Φ
(1)
β −Φ(1)

α )gβα σαβ dΩ dcβ

+

B
∑

β=A

∫

f (0)
α f (0)

α1
(Φ′(1)

γ1 +Φ′(1)
γ − Φ(1)

γ1 − Φ(1)
γ )σ⋆

α gα dΩ
⋆ dcα1

, (16)

where the first-order time derivatives of nα, u and T have been eliminated by using the balance equa-
tions of mass density, momentum density and temperature of an Eulerian mixture where the phenomena
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of diffusion, heat conduction and viscous are not taken into account. Above, we have introduced the
stoichiometric coefficients νA = −νB = −1 and the following abbreviations

∂v〈i

∂xj〉
=

1

2

(

∂vi
∂xj

+
∂vj
∂xi

)

−
1

3

∂vr
∂xr

δij, ℓ
(0)
F =

∫

f (0)
α f (0)

α1
σ⋆
A gA dΩ⋆ dcA1

dcA. (17)

Proceeding with the usual steps of the Chapman-Enskog method, the deviations are represented in

terms of the first-order Sonine polynomials S
(r)
m in the form

Φ(1)
α = −

1
∑

n=0

a
α
nS

(n)
3/2

(

C2α
)

ξαi
1

T

∂T

∂xi
− b

α
0S

(0)
5/2

(

C2α
)

ξα〈iξ
α
j〉

m

kT

∂v〈i

∂xj〉
−

1
∑

n=0

d
α
nS

(n)
3/2

(

C2α
)

ξαi d
A
i − e

α
1 S

(1)
1/2

(

C2α
) A

kT
.

(18)
Above, C2α = mξ2α/2kT are dimensionless quantities, whereas a

α
n, b

α
0 , d

α
n and e

α
1 are coefficients which

depend on nα and T and are determined from the Boltzmann equation. For more details on the above
representation, one is referred to the work [13]. The traceless part of the gradient of velocity ∂v〈i/∂xj〉,

the temperature gradient ∂T/∂xi, the affinity A/kT and the generalized diffusion force dAi represent the
thermodynamic forces. Furthermore, the generalized diffusion force is given by

dAi =
∂xA
∂xi

= −
∂xB
∂xi

= −dBi , (19)

with xα = nα/n being the molar fraction of the constituent α.

After some standard but rather cumbersome calculations, the deviations Φ
(1)
α have been explicitly

computed. By writing the deviations Φ
(1)
α in terms of the first-order Sonine polynomials as given by

Eq. (18), the reactive contribution to the deviation, that is the term which is proportional to affinity,
is treated in an equivalent manner to those terms related to the velocity gradient, temperature gradient
and generalized diffusion force. The deviations of the distribution function related to the to transport
phenomena as well as to the chemical affinity are all considered small and of the same order, since the

elastic and reactive collisions are treated with the same relevance. The detailed expression for Φ
(1)
α is

here omitted for brevity. It depends on the probability coefficient χ and contains all information about
the deviations of the reactive system from the equilibrium state. One is also referred to the work [13] for
some details about similar calculations.

By considering additional terms in the expansion (18), the non-equilibrium contributions to the reac-
tion rate and transport coefficients of the mixture would have a greater accuracy. However, these non-
equilibrium contributions should not be so relevant in the case of the present mixture, since we assume
that the heat of reaction is a small quantity and the parameter χ is about 0.5.

The range of validity of the Chapman-Enskog method used in this paper as well as the convergence
of the first-order Sonine expansion (18) are not investigated here. Some relevant studies on this topic
can be found, for example, in Refs. [6], [10], [13], [26] and [27]. In particular, in paper [10], the authors
have shown that the method can be applied to the case of slow, fast and very fast bimolecular chemical
reactions. In the present paper, we consider a very fast bimolecular reaction of symmetric type, and
applied the solution technique analyzed in paper [10] for the considered regime.

Our results, obtained with the Chapman-Enskog method for the considered fast chemical regime,
together with the first-order Sonine polynomial expansion, give a satisfactory description of the nonequi-
librium behavior of the considered reactive system, provided that the probability χ of a reactive collision
and the molar fraction xA of the reactants are considered in the ranges 0.45 ≤ χ ≤ 0.55 and 0.4 ≤ xA ≤ 0.6,
respectively.

3 Transport Coefficients

Once the non-equilibrium distribution functions have been determined as described in the Section 2, we
can obtain the constitutive equations for the pressure tensor pij and heat flux vector qi of the mixture, as
well as for the diffusion velocities uαi and production rates τα of the particle number densities. Hence, we

6



can analyze the first approximations to the transport coefficients of a binary mixture of reacting gases by
considering the non-equilibrium effects due to the presence of chemical processes. We consider a linear
theory, so there is no term involving the coupling between different tensorial processes. In particular, the
chemical effect arises from the heat of reaction as well as from the parameter χ. The chemical effects
analyzed in this paper arise from the considered chemical kinetic parameters, namely from the binding
energies (or heat of reaction Q) and from the parameter χ.

3.1 General expressions

The constitutive equations are obtained by inserting the non-equilibrium distribution function (15) to-
gether with the deviation (18) into the definitions (11) and (12). The integration of the resulting equations
lead to the following constitutive laws.

(i) Generalized Fick Law: in the case of a binary mixture there exists only one independent diffusion
velocity since uBi = −nAu

A
i /nB and the generalized Fick law reads

uAi = −
D12

xA

[

dAi +
kT
T

∂T

∂xi

]

, (20)

where the coefficient of diffusion D12 and the thermal-diffusion ratio kT are given by

D12 = xA
kT

m
d
A
0 and kT =

a
A
0

dA0

. (21)

By inspecting (20) we can conclude that the diffusion of the constituents of a mixture is caused by two
forces, namely the generalized diffusion force dAi and the temperature gradient ∂T/∂xi.

(ii) Navier-Stokes Law: the pressure tensor of the mixture is given by a sum of two contributions, i.e., a
hydrostatic pressure and a shear term proportional to the traceless part of the velocity gradient, namely,

pij = pδij − 2µ
∂v〈i

∂xj〉
, (22)

where p and µ represent the hydrostatic pressure and the shear viscosity coefficient of the mixture,
respectively. Their expressions are given by

p =

B
∑

α=A

nα kT and µ =

B
∑

α=A

nα b
α
0 kT. (23)

(iii) Generalized Fourier Law: the total heat flux of the mixture (11)3 was defined as the sum of two terms,
the first one corresponds to partial heat fluxes, while the second one is associated with the transport of
the binding energy by diffusion. The generalized Fourier law is also a function of the generalized diffusion
force dAi and the temperature gradient ∂T/∂xi and reads

qi = −λ
′ ∂T

∂xi
−D′dAi , (24)

where the coefficients λ′ and D′ associated with the thermal conductivity and diffusion-thermal effect,
respectively, are specified through the relations

λ′ = −
k2T

m

[

5

2

B
∑

α=A

nαa
α
1 +

Q

2kT
nAa

A
0

]

and D′ = −
k2T 2

m

[

5

2

B
∑

α=A

nαd
α
1 +

Q

2kT
nAd

A
0

]

. (25)

In order to determine the coefficient of thermal conductivity it is necessary to eliminate from (24) the
generalized diffusion force by assuming that there is no diffusion processes. From (20) we get

dAi = −
kT
T

∂T

∂xi
, (26)

7



so that the heat flux vector (24) becomes

qi = −λ
∂T

∂xi
, with λ = −

5

2

k2T

m

[

B
∑

α=A

nαa
α
1 −

a
A
0

dA0

B
∑

α=A

nαd
α
1

]

, (27)

λ being the coefficient of thermal conductivity of the mixture.

(iv) Reaction rate law: in an inert gas, the number of the molecules of each constituent always remains
constant even if the system is in some non-equilibrium state; conversely, in the case of reactive systems, the
chemical reaction modifies the number of the molecules of each constituent and there appear production
rate densities which are given by the term τα on the right hand side of the balance equation (8). For the
binary system in study here, we have τB = −τA and a positive production of the A-constituent implies
that the B-constituent is being consumed by the reaction. Hence, it is necessary to know the behavior of
the production rate of only one constituent, which can be the one of the A-constituent. The production
rate of the A-constituent results from the net balance between what is produced by the reverse reaction
A + A ← B + B and what is consumed by the direct reaction A+ A → B + B, which are expressed by
the quantities τ rA and τdA defined by

τA = τ rA − τdA, τ rA = χ

∫

fBfB1
gBσ

⋆
B dΩ⋆ dcB1

dcB , τdA = χ

∫

fAfA1
gAσ

⋆
AdΩ

⋆ dcA1
dcA. (28)

In a linearized theory their expressions read

τ rA = n2
Aκ

(0)

[

1− (1− κ⋆r)
A

kT

]

, τdA = n2
Aκ

(0)

[

1 + κ⋆d
A

kT

]

, τA = −n2
Aκ

(0) [1− κ⋆r + κ⋆d]
A

kT
. (29)

Above, κ(0) is the first approximation to the rate constant, κ⋆d and κ⋆r are dimensionless second approxi-
mations to the direct and reverse rate constants, respectively, which are given by

κ(0) = 4χd2
√

πkT

m
, κ⋆r = −

(

1

2
−

Q

kT

)

nA

nB
e
A
1 , κ⋆d =

1

2
e
A
1 . (30)

The expressions for the transport coefficients of diffusion D12, thermal-diffusion ratio kT shear viscosity
µ and thermal conductivity λ – given above by (21), (23)2 and (27)2 – are the same as those of paper

[13], but here the scalar coefficients, which appear in the expression (18) for the deviation Φ
(1)
α , depend

on the probability factor χ and are evaluated for a differential cross section which does not depend on
the activation energy. Moreover, the first approximation to the rate constant κ(0) – given by (30)1 – has
the same form as the pre-exponential factor of the Arrhenius equation, apart from the factor χ. In fact,
κ(0) is the actual rate of reaction in the first order approximation, since in the case of non-barrier model
there is no activation energy.

3.2 Results and discussions

The behavior of the transport coefficients can now be illustrated as a function of two parameters such as
the mole fraction of the A-constituent, xA = neq

A /(neq
A +neq

B ), and the probability χ of a reactive collision,
since the reaction heat is connected to the equilibrium molar fractions through the mass action law (5),
that is

Q

kT
= 2 ln

(

xA
1− xA

)

. (31)

According to the chemical regime considered in the present work, both types of encounters (elastic and
reactive) are equally probable and the elastic and reactive Knudsen numbers KnE and KnR are of the same
order. So we choose values for the parameter χ in the range 0.45 ≤ χ ≤ 0.55, the case χ = 0.5 representing
the same probability of occurrence of elastic and reactive collisions. Concerning the molar fraction xA, we
will restrict xA to the range 0.4 ≤ xA ≤ 0.6, which represents mixtures where the proportion of the two
constituents are not too disparate and the reaction heat can be considered a small quantity, according to
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Figure 1: Behavior of the transport coefficients as function of mole fraction xA for three different values
of the probability coefficient: (a) dimensionless shear viscosity coefficient (left) and (b) dimensionless
thermal conductivity coefficient (right).

its relation with xA given by (31). This choice is justified by the fact that we are considering a situation in
which the particles are distributed in a rather uniform way, without a particular species in much greater
concentration than the other.

In order to show the behavior of the transport coefficients µ, λ, D12, kT and of the rate constant κ∗d
defined in the previous Subsection 3.1, let us first introduce the dimensionless coefficients µ∗, λ∗ and D∗,
given by

µ∗ =
µ

µI
, λ∗ =

λ

λI
, D∗ =

D12

D11
. (32)

Note that the thermal-diffusion ratio kT and the rate constant κ∗d are already dimensionless quantities.
The µI and λI represent the shear viscosity and thermal conductivity coefficients of a single inert gas,
respectively, whileD11 is the self-diffusion coefficient of a binary mixture of hard spheres. Their expressions
are given by [25]

µI =
5

16d2

√

mkT

π
, λI =

75k

64d2

√

kT

πm
, D11 =

177

464nd2

√

kT

πm
. (33)

Figures 1a, 1b, 2a, 2b and 3 describe the behavior of the dimensionless coefficients µ∗ and λ∗ of shear
viscosity and thermal conductivity, thermal-diffusion ratio kT , dimensionless diffusion coefficient D⋆ and
direct reaction rate κ∗d, as functions of the molar fraction xA, for three values of the probability coefficient
χ. From all figures except that for the diffusion coefficient, we can observe that there is an inflection
point common to all curves for different values of χ, when the molar fractions of both constituents are
equal, i.e., xA = xB = 0.5. This point corresponds to a mixture with vanishing reaction heat (see (31))
and separates the region xA < 0.5 on its left hand side, with negative reaction heat, from the region
xA > 0.5 on the right hand side, with positive reaction heat. Moreover, for the considered non-barrier
model, the constituents are distinguished by the formation energies only, which are related to the reaction
heat by Q = 2(ǫB − ǫA). Therefore, the inflection point corresponds to a mixture for which the particles
A and B become indistinguishable and the reaction process does not affect the chemical composition of
the gas system. On the other hand, the region xA < 0.5 corresponds to a mixture with predominant B-
constituent and exothermic chemical reaction whereas the region xA > 0.5 to a mixture with predominant
A-constituent and endothermic chemical reaction. Other main observations that we can make here for
the shear viscosity and thermal conductivity ratios – according to Figures 1a and 1b – are the following:
(a) it is noticeable that the effects on both coefficients are larger when the probability of reactive collision
becomes greater than 0.5, since more reactions occur; (b) for xA = xB = 0.5 the reaction heat vanishes
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Figure 2: Behavior of the transport coefficients as function of mole fraction xA for three different values of
the probability coefficient: (a) thermal-diffusion ratio (left) and dimensionless diffusion coefficient (right).

and there is no any reactive effect on the shear viscosity µ∗ and thermal conductivity λ∗ ratios; (c) when
xA < 0.5, the system becomes more viscous and more heat conducting due to the chemical reaction; this
feature can be explained as follows: since the reaction heat is negative, the energy is released (exothermic
process), so that the temperature of the mixture increases and causes a rise in both coefficients of shear
viscosity and thermal conductivity of the mixture; (d) when xA > 0.5, just the opposite occurs and
the coefficients of shear viscosity and thermal conductivity decrease as a consequence of the temperature
decreasing in an endothermic process. It is important to call attention to the fact that for chemical
reactions with activation energies, both coefficients of shear viscosity and thermal conductivity decrease
for endothermic as well as for exothermic reactions (see e.g. [31], [32], [33], [34]).

The thermal-diffusion ratio kT is represented in Figure 2a. With respect to this coefficient it is possible
to conclude that the reaction heat is directly responsible for the observed alternation in its signal. Indeed,
the change from an exothermic reaction (xA < 0.5) to an endothermic one (xA > 0.5) implies that
the thermal-diffusion ratio alternates its signal, from a positive value to a negative one. The coefficient
vanishes only when the mixture presents the same amount of reactants and products of the reaction.
What is interesting here is that the resultant effect is due exclusively to the chemical reaction, since in a
system composed by particles with the same mass and diameter, which do not react, a crossed effect like
the thermal-diffusion does not appear.

The dimensionless coefficient D∗ is shown in Figure 2b. The phenomenon of diffusion of particles
in gases is common in mixtures composed of different molecules, as well as in a single gas of isotopes
molecules, an effect known as self-diffusion. On account of this fact, the diffusion does not vanish when
xA = xB , contrary to the thermal-diffusion ratio. The behavior shown in Figure 2b indicates that the
diffusion coefficient D∗ becomes smaller by increasing the concentration of the A-constituent. In terms of
the reaction heat, this means that the diffusion coefficient decreases when the chemical reaction switches
from an exothermic to an endothermic reaction.

With respect to the dimensionless reaction rate, its first approximation κ(0) depends only on the
probability coefficient χ. This result is different from the one when an activation energy is involved and
the Arrhenius equation is valid. Moreover, the second approximation is a function of both the molar
fraction xA and the probability coefficient χ, through the coefficient e

A
1 . The behavior of the second

approximation for the direct reaction rate κ∗d is plotted in Figure 3 as function of the molar fraction
xA for different values of the probability factor χ. Here we also note that this coefficient vanishes when
there is an equal amount of A and B-particles. Again, the largest effect is observed when the probability
coefficient χ becomes larger than χ = 0.5. This behavior is totally expected, since under this condition
the reactions become more frequent.
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Figure 3: Behavior of the direct reaction rate κ∗d as function of mole fraction xA for three different values
of the probability coefficient χ.

4 Eigenmodes in a Chemically Reacting Gas Mixture

In this section we investigate the dynamical behavior of a small local disturbance from the spatially
homogeneous solution caused by a spontaneous internal fluctuation. By assuming that the disturbance is
sufficiently weak that only linear deviations from the homogeneous solution need to be taken into account,
we define dimensionless perturbations of the hydrodynamic fields as

nα(x, t) =
nα(x, t)

n0xα
− 1, vi(x, t) =

vi(x, t)

c
and T (x, t) =

T (x, t)

T0
− 1, (34)

which represent small perturbations about an equilibrium state of constant number densities neq
A , neq

B ,
temperature T0 and vanishing value of the velocity. Above, xα = neq

α /n0 is the molar fraction of constituent
α with n0 = neq

A + neq
B and c is the adiabatic sound speed of the mixture, given by

c =

√

5

3

kT0

m
. (35)

Insertion of the constitutive relations (20), (22), (24), (29)3 together with the perturbations (34) into
the balance equations (8), (9) and (10) leads to a system of linear partial differential equations for nA,
nB , vi and T . Since the time evolution and decay of local disturbances are described by the so-called
eigenmodes, we look for solutions of the form

















nA(x, t)

nB(x, t)

vi(x, t)

T (x, t)

















=

















nA(κ, t)

nB(κ, t)

vi(κ, t)

T (κ, t)

















exp [ i (κ · x− ωt) ] , (36)

where the time is given in units of an effective relaxation time τr = (4/5)(µ0/n0kT0) and the position
is given in units of an effective length cτ . Above, κ and ω are the dimensionless wave-vector and the
angular frequency of the disturbances, respectively. If the wave-vector is taken parallel to the x-axis, we
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obtain the following longitudinal system of algebraic equations for the amplitudes of the perturbations:

















A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

































nA(κ, t)

nB(κ, t)

vx(κ, t)

T (κ, t)

















= 0, (37)

where the elements of the above matrix are given by

A11 = ωxA + i

[

2χx2A +
531

580
D∗xAxBκ

2

]

, A12 = A21 = −i

[

2χx2A +
531

580
D∗xAxBκ

2

]

, (38)

A13 = −xAκ, A14 = −A24 = i
531

580
D∗kTκ

2, A22 = ωxB + i

[

2χx2A +
531

580
D∗xAxBκ

2

]

, (39)

A23 = −xBκ, A31 = −
3

5
xAκ, A32 = −

3

5
xBκ, A33 = ω + iµ∗κ

2, (40)

A34 = −
3

5
κ, A43 = −

2

3
κ, A41 = −A42 = i

2

3

[

χx2A
Q

kT0
+

531

580
D∗xAxBκ

2

]

, (41)

A44 = ω + i

[

15

8
λ∗ +

177

290
D∗

k2T
xAxB

]

κ2. (42)

The longitudinal system of algebraic equations (37) has a non-trivial solution if the determinant of the
matrix of the coefficients vanishes. This condition leads to a dispersion relation which can be used to
determine the angular frequency ω as a function of the wavenumber κ or vice versa. The eigenmodes
follow when we take the wavenumber real and solve the dispersion relation for the angular frequency
leading to a relation of the form ω = ω(κ). In this case, the real part of the angular frequency describes
the frequency of oscillation of a small internal perturbation, while the imaginary part describes the decay
of its amplitude in time. If we solve the dispersion relation for κ = κ(ω), we get the so-called forced
modes, which describe the propagation of sound waves in a chemically reacting gas mixture [35].

The solution of the dispersion relation for the longitudinal system (37) gives four eigenmodes which
can be divided into hydrodynamic modes, where ω(κ) tends to zero when κ goes to zero, and kinetic
modes, where ω(κ) tends to a constant value when κ goes to zero. In the small wavenumber limit, the
longitudinal eigenmodes can be determined by expanding the angular frequency as

ω(κ) = a0 + a1κ+ a2κ
2 + . . . , (43)

where the expansion coefficients an depend on the transport coefficients and on the reaction heat. Hence,
after some algebraic work, we get

ω1,2 = ±κ− i

{

µ∗

2
+

3

8
λ∗ +

177

1450
D∗

[

k2T
xAxB

−
kT
2

(

Q

kT0

)]}

κ2 + . . . , (44)

ω3 = −i

{

9

8
λ∗ +

531

1450
D∗

[

k2T
xAxB

−
kT
2

(

Q

kT0

)]}

κ2 + . . . , (45)

ω4 = −i 2
xA
xB

χ− i
531

580
D∗

[

1 +
kT
3

(

Q

kT0

)]

κ2 + . . . . (46)

Expressions (44)–(46) show that in the small wavenumber limit there exist three hydrodynamic modes and
one kinetic mode. Two of the hydrodynamic modes are sound modes that describe sound propagation in
opposite directions parallel to x-axis, while the other hydrodynamic mode is purely diffusive. Furthermore,
for values of the wavenumber close to zero, the kinetic mode does not propagate since its real part vanish.
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Figure 4: Wavenumber dependence of the longitudinal eigenmodes for and exothermic reaction with
xA = 0.4.

Figures 4, 5 and 6 show the wavenumber dependence of the longitudinal eigenmodes for values of the
molar fraction of the reactants equal to 0.4, 0.6 and 0.5, respectively. The left frames of these figures
represent the wavenumber dependence of the real part of the frequency, while the right frames show
the wavenumber dependence of the imaginary part of the frequency, where the solid and dashed lines
correspond to the propagating and non-propagating modes, respectively. The dimensionless transport
coefficients for the molar fractions 0.4, 0.5 and 0.6 and probability coefficient χ = 0.5 are given in Table
1.

xA D∗ µ∗ λ∗ kT
0.4 0.6951 1.0515 1.0211 0.1008
0.5 0.5815 1 1 0
0.6 0.4798 0.9785 0.9226 -0.2117

Table 1: Dimensionless transport coefficients µ∗, λ∗, D∗ and kT for molar fractions xA = 0.4, 0.5 and 0.6
and probability coefficient χ = 0.5.

Figure 4 shows that a kinetic sound mode that propagates slower than the hydrodynamic sound mode
appears in the wavenumber interval 0.88 < κ < 0.98 for the exothermic case (Q < 0). The occurrence of
this kinetic sound mode is caused by the coupling between the purely diffusive eigenmode and the kinetic
eigenmode. Besides, we infer from Figure 4 that a dispersion curve with several sound propagation gaps
(i.e., when the sound oscillation frequency vanishes) follows from the usual hydrodynamic equations when
κ > 1.22. At this point, it is important to mention that the usual eigenmodes can be used to describe
the time evolution and the decay of small local disturbances from equilibrium caused by spontaneous
internal fluctuations as long as the condition ℓ/λ < 1/2 is satisfied, where λ is the wavelength of the
fluctuations and ℓ is the mean free path. In terms of the dimensionless wavenumber this condition can be
written as κ < 1.80 indicating that the kinetic sound model shown in Figure 4 appears in the wavenumber
region where the usual hydrodynamic description is still valid. When the reaction is endothermic (Q > 0)
we verify from Figure 5 the existence of a kinetic sound mode that also propagates slower than the
hydrodynamic sound mode, which begins to propagate at larger wavenumber values than that of the
exothermic case. Figure 5 also shows a dispersion curve with a sound propagation gap that appears at
κ = 1.32 when the reaction is endothermic. Finally, from Figure 6, we see that no kinetic sound mode
appears when the reaction heat Q vanishes. This result leads us to affirm that the appearance of a
kinetic sound mode when the reaction is exothermic or endothermic is caused by the coupling between
the concentration and temperature fluctuations. Furthermore, for the vanishing reaction heat case, we
note that the hydrodynamic sound mode stops to propagate for wavenumber values larger than 1.30.

At this point it is noteworthy to mention that the existence of just four modes is dictated by the choice
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of the four basic fields (or moments) na, nb, vx and T . If higher moments of the distribution function are
chosen as basic fields, beyond the emergence of additional kinetic modes, we expect that such extended
hydrodynamics eigenmodes can be used to describe the time evolution and the decay of the spontaneous
disturbances from equilibrium in a wavenumber region where the usual hydrodynamic description is no
longer valid.
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Figure 5: Wavenumber dependence of the longitudinal eigenmodes for an endothermic reaction with
xA = 0.6.
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Figure 6: Wavenumber dependence of the longitudinal eigenmodes for vanishing reaction heat, i.e., when
xA = 0.5.

5 Conclusions

In the present paper, a new model of the Boltzmann equation has been used to describe a binary mixture
undergoing the symmetric chemical reaction A+A⇋B+B that proceeds without the need of exceeding
the activation energy barrier. The transport properties of the reactive mixture have been examined in
a flow regime for which the reactive processes are close to the final state of chemical equilibrium. The
effects of the reactive process on the transport coefficients have been investigated in detail, analyzing the
contributions of the reactive collisions on the coefficients of diffusion, shear viscosity, thermal conductivity
and thermal-diffusion ratio, as well as on the direct and reverse reaction rates. Both the exothermic
and endothermic chemical reactions have been considered and the influence of the reaction heat on the
transport properties has been investigated in depth.
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The results reported in this paper have been obtained with the Chapman-Enskog method together
with the first-order Sonine polynomial expansion for the considered fast chemical regime. They provide
a satisfactory description of the nonequilibrium effects in the considered reactive system, when the prob-
ability χ of a reactive collision and the molar fraction xA of the reactants are considered in the ranges
0.45 ≤ χ ≤ 0.55 and 0.4 ≤ xA ≤ 0.6, respectively.

The range of validity of the Chapman-Enskog method, as well as the convergence of the first-order
Sonine expansion were not investigated in our paper. The work involved to achieve a convergence analysis
is really huge and typically implies rather cumbersome calculations. This will be done in a forthcoming
work.

Numerical analysis has been carried out for different sets of mixture parameters and the results
provide some interesting information about the kinetics of the reactions without barriers, as underlined
in Subsection 3.2. Opposed to the case of chemical reactions with activation energies, both coefficients
of shear viscosity and thermal conductivity increase for exothermic reactions. Finally, the application
performed in Section 4 shows that there exist four longitudinal eigenmodes: two hydrodynamic sound
modes, one purely diffusive hydrodynamic mode and one kinetic mode. When the reaction heat vanishes
xA = xB = 0.5, the kinetic mode does not show up indicating that the kinetic mode is due to a coupling
between the concentration and temperature fluctuations.
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