Interaction of new fluorescent 2-quinolinone and coumarin derivatives with phospholipid monolayers and lipid vesicles

Ana S. Abreu ${ }^{1,2, *}$, Elisabete M. S. Castanheira ${ }^{1}$, B. F. Hermenegildo ${ }^{1}$, Maria-João R.P. Queiroz 2 and Paula M.T. Ferreira ${ }^{2}$
${ }^{1}$ Centro de Física (CFUM), Univ. do Minho, Campus de Gualtar, 4710-057 Braga, Portugal. ${ }^{2}$ Centro de Química (CQ-UM), Univ. do Minho, Campus de Gualtar, 4710-057 Braga, Portugal. *anabreu@quimica.uminho.pt

Molecular interactions between organic molecules and phospholipids of various chain lengths have been investigated, either with monolayers at the air-interface or with bilayer vesicles (liposomes) as models of cell membranes [1]. In the present work, the interaction with biomembrane models of a fluorescent 3-amino-4-phenylquinolin-2-one $\mathbf{1}$ and a 3-(tert-butoxycarbonyl)amino-4phenylcoumarin 2 (Fig. 1), previously synthesized by us [2], were studied. Interactions of both compounds with phospholipid monolayers of egg-yolk phosphatidylcholine (Egg-PC), dipalmitoyl phosphatidylcholine (DPPC) and dipalmitoyl phosphatidylglycerol (DPPG) has been studied by the Langmuir-Blodgett technique (Fig. 2).

1. $\mathrm{R}=\mathrm{H}, \mathrm{X}=\mathrm{NH}$
2. $\mathrm{R}=\mathrm{Boc}, \mathrm{X}=\mathrm{O}$

Figure 1. Structure of compound $\mathbf{1}$ and 2.

Figure 2: Surface pressure/molecular area isotherms of Egg-PC, Egg-PC/1 and Egg-PC/2 at the air-water interface at $22^{\circ} \mathrm{C}$.

Fluorescence emission and anisotropy measurements of $\mathbf{1}$ and $\mathbf{2}$ in lipid vesicles were performed below (gel phase) and above (liquid-crystalline phase) the lipid melting transition temperature (Table 1) in order to obtain information about compound interactions with the lipid membranes.

Table 1. Steady-state fluorescence anisotropy (r) values and maximum emission wavelengths (λ_{em}) for compounds $\mathbf{1}$ and $\mathbf{2}$ in lipid membranes.

Lipid Membranes	$\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	1		2	
		$\lambda_{\text {em }} / \mathrm{nm}$	r	$\lambda_{\text {em }} / \mathrm{nm}$	r
Neat Egg-PC	25	398	0.088	399	0.216
Neat DPPC	25	398	0.059	400	0.164
	55	398	0.045	400	0.149
Neat DPPG	25	394, 509 sh	0.023	400	0.146
	55	394, 503 sh	0.012	398	0.119
$\begin{gathered} \text { DPPC/DPPG } \\ (1: 1) \end{gathered}$	25	394, 500 sh	0.025	397	0.177
	55	397, 502 sh	0.012	396	0.157

Acknowledgements: FCT-Portugal, QREN and FEDER/COMPETE through CFUM, CQ-UM, Project PTDC/QUI/81238/2006 and Post-doc. grant of Ana S. Abreu (SFRH/BPD/24548/2005).
[1] Peetla C., Stine A., Labhasetwar V., Molecular Pharmaceutics 2009, 6, 1264-1276.
[2] Queiroz M.-J.R.P., Abreu A.S., Calhelha R.C., Carvalho M.S.D., Ferreira P.M.T., Tetrahedron 2008, 64, 5139-5146.

