
Nair do Amaral Sampaio Neta

Maio de 2011 

U
M

in
ho

|2
01

1

Sugar ester biosurfactants for food industry 
applications

S
u

g
a

r 
e

st
e

r 
b

io
su

rf
a

ct
a

n
ts

 f
o

r 
fo

o
d

 in
d

u
st

ry
 a

p
p

lic
a

ti
o

n
s

N
ai

r 
do

 A
m

ar
al

 S
am

pa
io

 N
et

a

Universidade do Minho

Escola de Engenharia



Tese de Doutoramento
Doutoramento em Engenharia Química e Biológica

Nair do Amaral Sampaio Neta

Maio de 2011 

Sugar ester biosurfactants for food industry 
applications

Universidade do Minho

Escola de Engenharia

Trabalho efectuado sob a orientação do
Professor Doutor José António Couto Teixeira
e da
Professora Doutora Lígia Raquel Marona Rodrigues



Neta, N.A.S. ii 
Universidade do Minho, 2011 

 

 

 

 

 

 

Autora: Nair do Amaral Sampaio Neta 

Email: nairsampaio@ig.com.br 

Tel: +55 (85)32842066 

Passaporte: CV726998 

 

Título da tese: Sugar ester biosurfactants for food industry applications 

 

Orientadores: 

Professor Doutor José António Couto Teixeira 

Professora Doutora Lígia Raquel Marona Rodrigues 

 

Ano de conclusão: 2011 

Doutoramento em Engenharia Química e Biológica 

 

 

É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTA TESE 
APENAS PARA EFEITO DE INVESTIGAÇÃO, MEDIANTE 
DECLARAÇÃO ESCRITA DO IN TERESSADO, QUE A TAL SE 
COMPROMETE 

 

 

Universidade do Minho, 19 de Maio de 2011 

 

 



Neta, N.A.S. iii 
Universidade do Minho, 2011 

AGRADECIMENTOS 

 

Primeiramente, a Deus, por efetuar em minha vida tanto o querer como o realizar, segundo 
a sua boa vontade. “Tudo posso Naquele que me fortalece!” (Fl 4,13). 
 
Ao Professor José Teixeira, orientador, agradeço o apoio constante para a realização 
acadêmica deste trabalho. Suas poucas, mas muito sábias palavras fizeram a diferença. 
 
À Professora Ligia Rodrigues, co-orientadora, agradeço a eficiência e prontidão na 
realização deste trabalho. 
 
A todos os meus colegas que participaram da minha jornada acadêmica: Otniel, Sara, Luis, 
Renata, Cristiana, Italo, Leandro, Natanael e as colegas do Labiotec. 
 
A todos do Departamento de Engenharia Biológica. 
 
Aos queridos amigos conhecidos em Portugal: Adriana, Praveen, Ana, Quika, Jorge, Paulo, 
Zuzú, Edson, Gis, Vivi, Meire, Cristina (Sabor Tropical), Helena, Emanuel, Tati, Torquato, 
Emílio, Marcelo, Mariana, Eliana, Carol, Sérgio e D. Dora, obrigada pelo apoio. 
 
À Fábia e ao Bartô o meu mais sincero agradecimento pela ajuda. 
 
Às Professoras Luciana e Sueli, gostaria de agradecer a valorosa ajuda na parte final deste 
trabalho. 
 
Aos meus queridos amigos brasileiros que, mesmo longe, me apoiaram virtualmente: Ana 
Raquel, Kariny, T. Raquel, Mazinho, Roberta e Mazé. Obrigada pela amizade. 
 
À Soraya, amiga querida, por sua dedicação, paciência e por sua amizade, o meu muito 
obrigada. 
 
Aos meus amados pais, Lourdes e Bernardo, pelo amor incondicional, dedicação, apoio e 
esforços sempre presentes durante todo o meu crescimento pessoal, profissional e por esta 
conquista. 
 
Às minhas irmãs, Nadir e Maura, pelo carinho, força e fé nos momentos difíceis. 
 
Ao Abelardo, meu querido irmão, agradeço a imensurável dedicação durante os momentos 
mais difíceis da minha vida, cuidando de mim quando eu mais precisei com muito carinho. 



Neta, N.A.S. iv 
Universidade do Minho, 2011 

Em especial ao meu marido, João Alfredo, pelo carinho, paciência e por acreditar em mim, 
demonstrando todo seu amor. 
 
Agradeço a toda a minha família. 
 
Ao apoio do Programa Alban, Programa de bolsas de alto nível da União Europeia para 
América Latina, bolsa nº E07D401544BR. 
 
À Universidade do Minho, pela concretização dessa conquista. 
 
A todos que colaboraram direta ou indiretamente para a concretização deste sonho. 
 
 
Finalmente, gostaria de dedicar este trabalho a minha filha, Maria Teresa, extensão do meu 
ser, minha flor mais querida a quem dou a minha vida. Agradeço as alegrias, brincadeiras e 
descontração nos momentos difíceis. Obrigada minha amada filha! 
 
 
 
 

Nair 



Neta, N.A.S. v 
Universidade do Minho, 2011 

ABSTRACT 

 

Sugar ester biosurfactants for food industry applications 

 

Biosurfactants are compounds with surface activity constituting the major class of natural 

surfactants that present interesting features (e.g. emulsifying capacity) for the food 

industry. These compounds have several advantages over synthetic surfactants such as 

degradability, can be synthesized from renewable substrates as carbohydrates and fatty 

acids, and low toxicity. In this sense, the purpose of this thesis is to synthesize new 

biosurfactants, in particular fructose, sucrose and lactose esters, for potential use in the 

food industry. Several synthesis experiments were performed under different experimental 

conditions to maximize the esterification reaction yield, and consequently the production 

of biosurfactant. The sugar ester biosurfactants purity was the determinant factor for these 

studies. The synthesis assays were performed in shake flasks under controlled temperature, 

time and agitation, according to the optimal criteria for the lipases used, namely Candida 

antarctica type B (CALB) lipase and porcine pancreas lipase (PPL). An experimental 

design was conducted in order to optimize the yield of fructose esters production from 

fructose, oleic acid and ethanol using CALB. Temperature and reaction time were found to 

be the most significant parameters. The optimum conditions were 57.1 ºC, 100 rpm and 

37.8 h and a maximum esterification yield of 88.4% was obtained. Afterwards, the lipases 

from CALB and PPL were used with different carbohydrates (fructose, sucrose and 

lactose), fatty acids (oleic and linoleic) and solvents (ethanol and ethyl acetate), in order to 

explore the synthesis of novel sugar esters with improved characteristics. The optimal 

conditions have been established for all set of experiments and the sugar ester 

biosurfactants have been characterized according to their surface activity and 

emulsification index (EI). In the experiments for which CALB was used, lactose ester 

synthesized using linoleic acid and ethanol presented the highest esterification yield 

(83.5%). However, the fructose esters obtained showed a better performance regarding 

their ability to reduce surface tension (35.8 mN/m) and to stabilize an emulsion (EI 

between 54.4 and 58.4%). Regarding the use of PPL, the highest esterification yields 
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(47.6%) were observed for sucrose esters, which presented the best reduction of surface 

tension (33.4 mN/m) and EI (between 58.1 and 58.4%). Finally, CALB was immobilized 

on chitosan and used to synthesize sugar ester biosurfactants. The enzyme immobilization 

on chitosan showed the highest yield in the lactose ester production (84.1%) compared 

with the results obtained with the lipase CALB immobilized on acrylic resin. Additionally, 

the production of fructose ester was found to be higher for CALB immobilized on acrylic 

resin (74.3%). Sugar ester biosurfactants were then added to samples of fresh coconut milk 

and characterized according to their surface activity, EI and particle size distribution. 

Results indicated the lactose ester as the best biosurfactant (surface tension reduction 38.0 

mN/m, EI = 54.1%), although good results were also found for the other sugar esters. In 

summary, the results gathered in this thesis demonstrate the potential of sugar ester 

biosurfactants for food industry applications. 

 

Keywords: Candida antarctica type B lipase, porcine pancreas lipase, esterification, sugar 
ester biosurfactants, surface and emulsification activity, food industry. 



Neta, N.A.S. vii 
Universidade do Minho, 2011 

RESUMO 

 

Ésteres de açúcar biosurfactantes para aplicações na indústria 

alimentar 

 

Biosurfactantes são compostos com actividade de superfície que constituem a principal 

classe de surfactantes naturais e que apresentam características interessantes (por exemplo, 

capacidade emulsificante) para a indústria alimentar. Estes compostos têm várias 

vantagens sobre os surfactantes sintéticos, são biodegradáveis, podem ser sintetizados a 

partir de substratos renováveis tais como os carboidratos e ácidos graxos, e têm baixa 

toxicidade. Nesse sentido, o objectivo desta tese é sintetizar novos biosurfactantes, em 

particular os ésteres de frutose, sacarose e lactose, para potencial uso na indústria de 

alimentos. Vários experimentos de síntese foram realizados sob diferentes condições 

experimentais para maximizar o rendimento da reacção de esterificação e, 

consequentemente, a produção de biosurfactantes. A pureza dos ésteres de açúcar 

biosurfactantes foi o factor determinante para esses estudos. Os ensaios de síntese foram 

realizados em matraz sob condições controladas de temperatura, tempo e agitação, de 

acordo com os critérios óptimos para as lipases utilizadas, nomeadamente a lipase Candida 

antarctica tipo B (CALB) e lipase pâncreas de porco (PPL). Um delineamento 

experimental foi conduzido de forma a optimizar o rendimento da produção de ésteres de 

frutose a partir de frutose, ácido oléico e etanol utilizando CALB. A temperatura e o tempo 

de reacção foram considerados os parâmetros mais significativos. As condições óptimas 

foram 57.1 ºC, 100 rpm e 37.8 h e um rendimento máximo de esterificação de 88.4% foi 

obtido. Posteriormente, as lipases CALB e PPL foram utilizadas com diferentes 

carboidratos (frutose, sacarose e lactose), ácidos graxos (oléico e linoléico) e solventes 

(etanol e acetato de etila), a fim de explorar a síntese de novos ésteres de açúcar com 

características melhoradas. As condições óptimas foram estabelecidas para todo o conjunto 

de experimentos e os ésteres de açúcar biosurfactantes foram caracterizados de acordo com 

sua actividade superficial e índice de emulsificação (IE). Nos experimentos onde a lipase 

CALB foi utilizada, o éster de lactose sintetizado usando ácido linoléico e etanol 
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apresentou o maior rendimento de esterificação (83.5%). No entanto, os ésteres de frutose 

obtidos mostraram melhor desempenho quanto à capacidade de reduzir a tensão superficial 

(35.8 mN/m) e para estabilidade da emulsão (EI entre 54.4 e 58.4%). Quanto ao uso da 

PPL, o maior rendimento de esterificação (47.6%) foi observado nos ésteres de sacarose, 

que apresentaram a melhor redução de tensão superficial (33.4 mN/m) e EI (entre 58.1 e 

58.4%). Finalmente, a lipase CALB foi imobilizada em quitosana e usada para sintetizar 

ésteres de açúcar biosurfactantes. A imobilização da enzima em quitosana apresentou o 

maior rendimento na produção de éster de lactose (84.1%) em comparação com os 

resultados obtidos com a lipase CALB imobilizada em resina acrílica. Além disso, a 

produção de éster de frutose foi maior com a lipase CALB imobilizada em resina acrílica 

(74.3%). Em seguida, ésteres de açúcar biosurfactantes foram adicionados às amostras de 

leite de coco fresco e caracterizadas de acordo com sua actividade superficial, EI e 

distribuição do tamanho das partículas. Os resultados indicaram o éster de lactose como o 

melhor biosurfactante (tensão superficial 38.0 mN/m, EI = 54.1%), embora bons resultados 

também foram encontrados para os outros ésteres de açúcar. Em resumo, os resultados 

obtidos nesta tese demonstraram o potencial dos ésteres de açúcar biosurfactantes para 

aplicações na indústria alimentar. 

 

Palavras-chave: lipase Candida antarctica tipo B, lipase de pâncreas de porco, 
esterificação, ésteres de açúcar biosurfactantes, actividades de superfície e emulsificação, 
indústria alimentar. 
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General Introduction 

 

“Só uma coisa torna um sonho impossível: o 

medo de fracassar. Nunca deixei que nenhum 

limite tirasse de mim a ambição da auto-

superação. As pessoas que alcançam seu 

potencial pensam em aperfeiçoamento”. 

(Nair Sampaio) 

 

 

SCOPE AND AIMS 

 

Chemical catalysts contribute to the substantial decrease in energy and reduction of 

manufacturing costs. However, the chemical synthesis of sugar esters generates a final 

product that is often aggressive to the environment, and whose preparation requires high 

temperatures, making it a difficult process. Accordingly, these synthetic surfactants present 

some drawbacks, such as their costs, availability and environmental impact. Therefore, the 

enzymatic synthesis, using lipases as biocatalyst, appears to be an interesting green 

alternative for the production of sugar ester biosurfactants. Sugar ester biosurfactants 

produced by esterification reactions, are compounds with surfactant properties, i.e., 

capable of reducing the surface tension and of promoting the emulsification of immiscible 

liquids. In this sense, the general objective of this thesis was to develop an ecologically 

friendly process for the synthesis of sugar ester biosurfactants, by the esterification 

reaction of carbohydrates with fatty acids using lipases. In the reaction schemes, solvents 

that leave no toxic residues in the final product were used. Therefore, the specific aims of 

this thesis were: 

 



Neta, N.A.S. xxii 
Universidade do Minho, 2011 

- to produce sugar ester biosurfactants by esterification reactions of several 

combinations of carbohydrates (fructose, sucrose and lactose), fatty acids (oleic and 

linoleic acids), solvents (ethanol and ethyl acetate) and lipases (CALB and PPL); 

- to characterize the esterification reaction products using several techniques (thin 

layer chromatography, emulsification index and surface tension); 

- to increase the production yields of sugar ester biosurfactants using low-cost and 

biodegradable raw materials; 

- to optimize the sugar ester biosurfactants production yields using experimental 

design statistic techniques; 

- to compare CALB lipase performance for the synthesis of sugar ester biosurfactants 

when immobilized in two different supports; 

- to determine the effect of sugar ester biosurfactants as a potential emulsifier in food 

formulations. 

 

The produced and characterized sugar ester biosurfactants described in this thesis are 

intended to be applicable in the food industry in several products such as, coconut milk, ice 

cream, fruit juice, among others. 

 

OUTLINE OF THE THESIS 

This thesis is organized in six chapters that cover the research aims stated above. The 

thesis subjects are introduced in this chapter, while in Chapter 6 the main conclusions and 

perspectives extracted from the current work are given. In the other chapters, the research 

fields are covered as follows: 

 

- In Chapter 1, an overview on the different approaches related with the production of 

sugar ester biosurfactants or sugar esters using chemical and enzymatic processes, and the 

importance of using lipases in organic reactions is given. The future perspectives regarding 



Neta, N.A.S. xxiii 
Universidade do Minho, 2011 

the replacement of products obtained by chemical via by sugar ester biosurfactants in the 

food industry are discussed. 

 

- In Chapter 2, the maximization of fructose ester production by response surface 

methodology using a compilation of mathematical and statistical techniques, is described. 

Synthesis was conducted by esterification of oleic acid with fructose using a lipase from C. 

antarctica type B (CALB) immobilized on acrylic resin. 

 

- In Chapter 3, the production of sugar ester biosurfactants by enzymatic synthesis from 

CALB lipase, using different combinations of sugars (fructose, sucrose and lactose), fatty 

acids (oleic acid and linoleic acid) and solvents (ethanol and ethyl acetate), is discussed. 

The production of sugar esters is confirmed by TLC and esterification yields, surface 

activity and emulsification index are presented. 

 

- The synthesis of fructose, sucrose and lactose esters catalyzed by porcine pancreas lipase 

(PPL) is described in Chapter 4. Different fatty acids (oleic and linoleic acid) and solvents 

(ethanol and ethyl acetate) are used. Furthermore, the sugar ester biosurfactants 

synthesized are characterized according to their surface activity and emulsification 

indexes. 

 

- In Chapter 5, the use of CALB immobilized on acrylic resin (commercial) and chitosan 

for the production of sugar ester biosurfactants is evaluated. Additionally, the 

biosurfactants are characterized according to their ability to stabilize coconut milk.  
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Chapter 1 

 
Sugar ester biosurfactants: their 
enzymatic synthesis and applications 
 

“A alegria está na luta, na tentativa, no 

sofrimento envolvido. Não na vitória 

propriamente dita”. 

(Mahatma Gandhi) 

 

Sugar ester biosurfactants can be synthesized either by chemical or enzymatic processes. 

Due to the high regiospecificity of enzymes, enzymatic synthesis is characterized by the 

production of sugar monoesters, whereas the chemical process usually leads to a mixture of 

sugar polyesters. Therefore, various sugar esters can now be prepared by a single reaction 

step employing lipase as biocatalyst. The immobilization of enzymes has immediate 

benefits (such as control stability/activity in unusual conditions of temperature, pressure 

and pH, or in non-conventional media, such as in organic solvents, and improve their 

efficiency and recovery) and the support type is generally considered as the most important 

component for a successful development and application of the immobilized biocatalyst in 

organic reactions. Sugar esters are non-ionic biosurfactants consisting of a hydrophilic 

(carbohydrate moiety) and a hydrophobic group (one or more fatty acids). By controlling 

the esterification degree, as well as the nature of fatty acid and sugar, a range of sugar 

esters can be synthesized. Being biosurfactants, these compounds present surface activity 

and a high emulsifying capacity, thus they can be used in a great variety of industries. The 

potential of sugar ester biosurfactants for applications in the food industry will be 

discussed in this chapter. 
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1.1 Introduction 

Enzymes are considered natural catalysts (biocatalystics) (Hasan et al. 2006) that 

increase the speed of a reaction by lowering its activation energy if they occur. Without the 

use of enzymes, it is possible that reactions might not occur, thus, the reaction rate is very 

low under moderate conditions of pressure and temperature (Park et al. 2004). 

Gutiérrez-Ayesta et al. (2007) conducted several experiments under different 

conditions to evaluate the ability of lipases to hydrolyse vegetable oils and phosphatides. 

Marked differences were observed in lipase hydrolytic activity in terms of source, degree 

of purity, state (free or immobilised), substrate, and reaction medium (solvent-free or 

biphasic). In view of the different structural characteristics of commercially available 

lipases, it is reasonable to assume that under fixed-reaction conditions, the catalytic activity 

is related with the enzyme structure. 

Numerous advantages have been associated with the use of enzymes, as an example 

the production of purer products (monoesters) due to the high selectivity of the catalyst and 

the mild conditions of temperature, pressure and pH required for synthesis, in contrast to 

the extreme conditions associated with the chemical processes (Cameotra and Makkar 

2004, Krajewska 2004). 

Chemical catalysts contribute to the substantial decrease in energy and reduction of 

manufacturing costs, i.e., the chemical synthesis of sugar esters generates a final product 

that is often aggressive to the environment, and whose preparation requires high 

temperatures, making it a difficult process (Tsavas et al. 2002). In recent years, the most 

significant development in the field of synthetic chemistry has been the use of biological 

systems to replace chemical reactions. Reactions catalyzed by enzymes or enzyme systems 

display far greater specificities than more conventional forms of organic reactions (Ogawa 

and Shimizu 2002).  
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1.2 Lipases 

Most lipases consist of approximately 300 amino acid residues and present a 

molecular mass between 25-75 kDa, are glycoproteins, bearing the glycosylated 

hydrophilic part around the active site, and are included in the hydrolase family group of 

enzymes (Caballero et al. 2009, Ciafardini et al. 2006, Hasan et al. 2006, Saxena et al. 

2003). Moreover, lipases are water-soluble enzymes that play an important role in the 

metabolism of fats in the digestion process, evolving to deal with the biophysical 

properties of the interfacial microenvironment where their substrates are to be found. 

These enzymes are used several applications in food, dairy, detergent and pharmaceutical 

industries (Gupta et al. 2004, Reis et al. 2009). Joseph and collaborators (2008) reported 

that the hydrolases catalyze the hydrolysis of triglycerides to free fatty acids and glycerol, 

and also esterification reactions, interesterification, acidolysis, alcoholysis and aminolysis. 

Novel biotechnological applications have been successfully established by using 

lipases for the synthesis of biopolymers, the production of enantiopure pharmaceuticals, 

agro-chemicals, and flavour compounds (Jaeger and Eggert 2002), as well as many other 

processes. Using lipases the operatinal costs, such as reaction time, energy expenditure and 

manpower, can be minimized due to the use of organic reactions (Hasan et al. 2006, 

Saxena et al. 2003). 

 

1.2.1 Sources of lipases 

There are several sources of lipases that have been extensively used in industrial 

processes, namely vegetal (Asclepiadaceae, Euphorbiaceae and Caricaceae), animal 

(pancreatic, hepatic and gastric) and microbial (bacteria and fungi). Microbial lipases can 

be produced by yeasts like Candida and Torulopsis, by filamentous fungi like Rhizopus, 

Geotrichum and Humicola, and by bacteria like Pseudomonas and Staphylococcus. The 

most common lipases from animal sources are the ones from porcine pancreas (PPL), 

while those from vegetal sources are extracted from soybean, barley and cotton (Gupta et 

al. 2004, Hasan et al. 2006). These enzymes have differences in their catalytic properties, 

and it is important to notice that most lipases currently used are produced by 

microorganisms (Cheng and Tsai 2006, Gupta et al. 2004, Ng and Tsai 2004, Ng and Tsai 

2006, Villeneuve et al. 2000).  
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Microbial lipases are mostly extracellular, thus easier to isolate/recover, are generally 

more stable, and far more diverse as compared to other sources of lipases (Demirjian et al. 

1999, Hasan et al. 2006, Leathers et al. 2010, Mahapatra et al. 2009).  

The lipase obtained from Candida antarctica type B, also known as CALB, is one of 

the most frequently used lipases in organic reactions (McCabe and Taylor 2004). It 

consists of 317 amino acids and has a molecular mass of approximately 33 kDa. 

Furthermore, it is commercially available in the free and immobilized state (Ong et al. 

2006). 

CALB can be used for industrial processes, such as the synthesis of triglycerides and 

esterification of terpene alcohols. Its use has been reported for the synthesis of acyl hexose, 

oleate esters of fructose and glucose. Furthermore, this enzyme demonstrated a high 

potential for the synthesis of active compounds in the pharmaceutical industry, and in the 

manufacturing of pulp and paper (Liese et al. 2000, Yadav and Lathi 2003, Zhang et al. 

2003). 

Porcine pancreatic lipase (PPL) is one of the cheapest commercially available non-

microbial enzyme, having a high thermostability and activity in anhydrous reaction media 

(Gogoi et al. 2008). This enzyme presents a molecular mass of approximately 50 kDa, it is 

the main enzyme involved in the digestion of triglycerides. Nevertheless, enzyme 

preparations are often impure, containing various hydrolases such as esterases, trypsin and 

other proteases, among others (Caro et al. 2008), which can impair the success of a given 

enzymatic reaction. The PPL commercially available has been used in several studies. It 

contains about 8 to 20% of enzyme, and according to Kazlauskas and Bornscheuer (1998) 

it also contains contaminant proteins, such as α-chymotrypsin, carboxypeptidase B, 

protease, phospholipase, and cholesterol esterase. Among the contaminants, only the α-

chymotrypsin and cholesterol esterase have been considered potential inhibitors of the 

hydrolysis reaction of esters (Faber 1997). However, these limitations can be overcome by 

the addition of several substances, such as calcium and sodium ions (Verger 1997). 

Finally, it is worth emphasizing the importance of fungi as enzyme producers. The 

most extensively studied lipase-producers are Geotrichum candidum, Aspergillus niger, 

Aspergillus oryzae, Rhizopus delemar and Penicillium cyclopium. Their enzymes are 

extracellular, theferore its recovery from fermentation broths is easier. Fungi lipases 
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constitute a source of new biocatalysts with special features and a high potential for 

organic reactions (Macedo et al. 2004). 

In addition, lipases possess a wide substrate specificity, have the ability to recognize 

chirality and do not require labile cofactors (Jaeger and Eggert 2002, Yadav and 

Sivakumar 2004). As previously mentioned, these enzymes have been used for the 

synthesis of organic chemicals, mainly in aqueous media and in some cases non-aqueous 

media, since they are inexpensive, stable, and easy to recycle (Reetz 2002). 

In non-aqueous media, lipases are used in esterification, transesterification, 

amidation, hydrolysis, hydrazinolysis, and epoxidation reactions. They are known to 

catalyze the synthesis of amides from non-activated esters n-octyl alkyl-amides (Chowdary 

and Prapulla 2002, Jaeger and Eggert 2002, Ng and Tsai 2006, Yadav et al. 2005, Yadav 

and Borkar 2006, Yadav and Borkar 2008, Yadav and Borkar 2009a, Yadav and Borkar 

2009b, Yadav and Devi 2001). 

Studies reported that the lipases specificity is controlled by the molecular properties 

of the enzyme, substrate structure and factors affecting the enzyme-substrate binding (Hou 

and Shimada 2009, Naik et al. 2010). According to this specificity, lipases are classified 

into different groups, namely random non-specific, regiospecific, stereospecific or fatty 

acid specific lipases. However, there are some lipases that do not have specificity to all 

fatty acids, regardless of the position on the glycerol, being hydrolyzed in equimolar 

concentrations (Shintre et al. 2002, Van de Velde et al. 2002).  

Furthermore, lipases have been extensively studied with respect to their biochemical 

and physiological properties (Villeneuve et al. 2000). Most lipases have a great range of 

activity and stability between pH 6.0 and 8.0, and optimum temperature for maximum 

activity between 40 and 70 °C (Table 1.1) (Kazlauskas and Bornscheuer 1998). 
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Table 1.1 Biochemical properties of some lipases obtained from different sources 

Properties 

Sources of lipases 

Candida 

rugosa 

Candida 

antarctica 

(CALB) 

Porcine 
pancreatic 

Geotrichum 

candidum 

Molecular weight (kDa) 65 33 50 54 
Specificity Non specific 1.3-specific 1.3 specific Non specific 
Temperature optimum (ºC) 37 57 45 40 
pH optimum 7.0 7.0 8.0 6.3 
Km value (µM) 0.17 0.19 0.30 0.71 
Thermostability (ºC) 37 70 40 55 

 

 

1.2.2 Use of lipases in esterification 

The catalytic properties of enzymes have promoted the development of various 

products and also manufacturing processes where, the substrate specificity of lipases is 

known to be less rigorous compared to other enzymes (Gandhi et al. 2000, Kirk et al. 

2002, van Beilen and Li 2002, Villeneuve et al. 2000). This results in the increase of 

enzymes with improved properties for established technical applications, and in the 

production of new enzymes tailor-made for entirely new areas of application where 

enzymes have not previously been used (Kirk et al. 2002, Villeneuve et al. 2000). 

Lipases have been reported in several applications, such as in the synthesis of chiral 

compounds; carbohydrate ester synthesis; polyunsaturated fatty acid 

purification/enrichment; synthesis of biologically active compounds (e.g. alkaloids, 

antibiotics, terpenoids, pheromones); ester synthesis for perfumes and flavors (e.g. short-

chain fatty acid esters synthesized with lipases are useful in making fruity flavors); 

synthesis of structured lipids and synthesis of organic carbonates (organic carbonates can 

be synthesized via lipase-catalyzed transesterification involving carbonates and alcohols in 

a water-restricted environment) (Fan and Qian 2010, Gandhi et al. 2000). 
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1.2.3 Immobilized lipases 

Enzymes are naturally subjected to inactivation by chemical, physical or biological 

factors. Also, they are unstable, have a rapid loss of catalytic activity and are not 

regenerated (Kourkoutas et al. 2006). Therefore, new immobilization techniques have been 

developed to provide stability to the enzymes, and improve their efficiency and recovery 

(Kourkoutas et al. 2004, Roble et al. 2000). For example, the ester production using free 

lipases was found to be very low due to enzyme inhibition by short-chain acids 

(Kourkoutas et al. 2006). 

Lipases have been successfully immobilized on a variety of matrices to be used in 

organic reactions (Hiol et al. 2000, Pahujani et al. 2008). Furthermore, the operational 

stability, especially in low-water media, and enzyme immobilization on various 

organic/inorganic supports also has been extensively studied aiming at an improved 

activity (Tzialla et al. 2010). 

The use of immobilized lipases has been reported in several industrial areas, namely 

in the pharmaceutical, meat tenderization, clarification of beer, preparation of infant foods 

and dietary supplements, processing of fats and other lipids, as an additive in detergents, 

oleochemical industries, pulp and paper, the synthesis of drugs and fine chemicals, 

production of cosmetics, bioremediation and resolution of racemic mixtures and also in the 

bioenergetics in transesterification of oils and fats in the presence of solvents to produce 

biodiesel, as well as in medicine (Nitsawang et al. 2006, Sangeetha and Abraham 2006). 

Furthermore, these enzymes in an industrial context have been reported to be advantageous 

since their immobilization provided them a clear advantage to control their 

stability/activity in unusual conditions of temperature, pressure and pH, or in non-

conventional media, such as in organic solvents (Bayramoglu et al. 2004, Caro et al. 2008, 

Singh et al. 2007).  

The immobilization method and type of support to be used in a given process should 

be established empirically, while holding the choice of the binomial enzyme-support that 

has the better retention of activity. The choice of the method of restraint and the type of 

support will depend basically of the specific characteristics of the biological material. 

Given the variability of these factors, it can be stated that there is not a universal method 

suitable for any process (Corcoran 1985). Therefore, the lipase immobilization on 
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appropriate supports represents an important step. An ideal support would allow adsorbing 

the enzyme without affecting its activity and without interfering with the enzymatic 

reaction.  

Lipases can be immobilized by a number of methods, including physical adsorption 

(active charcoal), covalent binding (cellulose, silica) and entrapment (cellulose) (Hasan et 

al. 2006, Wang et al. 2008). Physical adsorption and entrapment are the simplest methods 

of enzyme immobilization although they present some limitations, such as desorption and 

leakage of the enzyme. These limitations can lead to a low stability and catalytic activity. 

Alternatively, the covalent binding methods can be used, since a stronger binding between 

enzyme and solid support is obtained (Park et al. 2001, Park et al. 2002, Shim et al. 2007, 

Soares et al. 2003, Song et al. 2010). Nevertheless, the covalent binding methods result in 

a considerable decrease of the enzyme activity. It is assumed that this enzyme inactivation 

is caused by the damage of its active site and distortion of its native structure, due to the 

covalent bonds between the enzyme and the solid support (Giacomini et al. 1998). To 

overcome this problem, it is necessary to develop methods of pre-treatment or support 

types that prevent the loss of activity during the immobilization process (Lee et al. 2006, 

Song et al. 2010). Supports should be available, low cost, enable large scale operation, 

non-toxic, and have a high retention capacity and mechanical strength (Brígida et al. 2007, 

2008). 

Several materials have been reported as potential supports for enzymes 

immobilization. Alginate gels, carrageenan and polyacrylamide, alumina, ground kanuma, 

stalk of sugar cane, silica, acrylic resin and chitosan are some examples described in the 

literature (Biro et al. 2008, Bryjak and Trochimczuk 2006, Cruz et al. 2009, Emregul et al. 

2006, Makas et al. 2010, Orrego et al. 2010, Tanvir et al. 2009, Wang et al. 2007). 

Silica gel has been widely used as a support since it has a high mechanical strength, 

thermal and chemical stability, high resistance to microbial contamination and degradation, 

and a high surface area. Silica gel was used to immobilize lipase from Candida 

cylindracea which catalyzes the hydrolysis of triglycerides into free fatty acids (David et 

al. 2006). 
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Alumina has also been used to immobilize lipase from C. antarctica for the synthesis 

of butyl butyrate (Lozano et al. 2002). This support is highly resistant to high temperatures 

and pH’s (Costa et al. 2001).  

Furthermore, efforts have been made in order to develop immobilization supports 

commercially available, inexpensive and biodegradable. Brígida et al. (2007, 2008) used 

waste green coconut fiber for covalent immobilization of CALB. Besides being an 

interesting immobilization support, these wastes take up to seven years to decompose, 

contributing to the spread of tropical diseases, being responsible for leakage from landfills, 

if not properly disposed. Therefore, its use in added-value applications is also interesting 

from the environmental standpoint. 

Among the potential supports that are abundant in nature, chitosan is the best 

example, being usually produced by alkaline hydrolysis of chitin, a process which results 

in N-deacetylation and depolymerization. Chitin poly (N-acetyl-glucosamine) is a polymer 

that can be obtained from the outer shell of crustaceans (shrimp and crab). Moreover, it is 

also naturally present in the cell walls of some microorganisms (Alsarra et al. 2002, Silva 

et al. 2006). Chitosan is a renewable and biodegradable low cost polymer (Alsarra et al. 

2002).  

Table 1.2 summarizes some types of supports used in the immobilization of lipases, 

as well as their microbial sources.  

 

Table 1.2 Supports used for lipases immobilization 

Support Microorganism Method Reference 
Chitosan Candida antarctica covalent Rodrigues et al. (2008b) 
Eupergit C Candida rugosa covalent  Knezevic et al. (2006) 
Alumina Candida antarctica covalent Lozano et al. (2002) 
Silica gel and 
alumina 

Candida cylindracea covalent  Moreno and Sinisterra (1994) 

Green coconut 
fiber 

Candida antarctica adsorption Brígida et al. (2008) 

Activated 
carbon 

Candida antarctica adsorption Rodrigues et al. (2008a) 

Polystyrene Candida rugosa covalent Ye et al. (2009) 
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1.3 Esterification in organic solvents 

The most diverse organic reactions such as hydrolysis, esterifications, 

interesterifications, alcoholysis, acidolysis, aminolysis and lactonizations can be conducted 

through synthesis routes using chemical or biochemical catalysts to achieve a given 

conversion under controlled conditions. The main advantages of these reactions are the 

enhanced solubility of nonpolar substrates and the possibility of shifting the equilibrium of 

the reaction towards the synthesis (Persson et al. 2002). 

The synthesis of esters can be carried out either chemically or enzymatically. The 

chemical process occurs with a low selectivity and leads to a mixture of sugar esters with 

different degrees of esterification. It requires toxic organic solvents and is conducted at 

high temperatures, resulting in low quality of the final product (Yoo et al. 2007). To 

overcome this limitation biological catalysts and organic solvents that leave no toxic 

residues in the final product of the reaction, can be used (Pandey et al. 1999). Furthermore, 

the enzymatic method presents several advantages, namely the reduction of the number of 

reactional steps, the lack of racemization, and the minimal protection due to 

regiospecificity (Kim and Shin 2001). 

Among several organic reactions, esterification is the most widely used in the 

organic process industry (Ali et al. 2007, Yadav and Thathagar 2002). The methyl or ethyl 

esters of fatty acids can be produced by esterification using biocatalysts (Arai et al. 2010, 

Fernandez-Lafuente 2010, Fukuda et al. 2009, Mbaraka and Shanks 2006, Sharma et al. 

2001). 

Nevertheless, the direct esterification of sugars with fatty acids catalyzed by lipase is 

a very complex procedure, due to the low solubility of sugars in organic media (Lortie 

1997).  

 

1.3.1 Influence of water 

Water activity (aw) has been described as an important parameter to optimize organic 

reactions in aqueous and non-aqueous systems and can be adjusted by a number of 

methods. In enzymatic reactions, aw determines the equilibrium position of the hydrolase 
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reaction in low water systems (Adamczak and Bornscheuer 2009, Matsue and Miyawaki 

2000). 

Lipase-catalyzed esterification in organic solvents is a reaction in which water plays 

a crucial role (Giacometti et al. 2001). The nature of the organic solvents and the amount 

of water in the system influence the enzymatic reactions in non-aqueous reactions, thus a 

minimal amount of water is necessary to ensure the enzymes’ optimal conformation and 

activity (Yaropolov et al. 2007). On the other hand, high water content reduces the reaction 

stability, the particles of enzyme present in the medium could be covered by a layer of 

water, thus preventing the contact of a lipophilic substrate (i.e. fatty acid) with the enzyme 

(Chamouleau et al. 2001). According to Adachi and Kobayashi (2005), the water should be 

removed in order to direct the reaction towards the product, so a maximum ester yield 

could be obtained, as illustrated in Figure 1.1. 

 

R C

O

OH

+ R1 OH R C

O

O R1

+ H2O

H
+

K1

K2

 

Figure 1.1 Schematic representation of the general esterification reaction with the production of 
ester and water where, the condition Keq>>1 or k1>>k2 must be fulfilled. 

 

 

Several methods for removal of the water formed during the reaction have been 

reported, such as evaporation under reduced pressure, azeotropic distillation, use of 

molecular sieves and the use of sodium sulphate (Izák et al. 2005, Xuehui and Lefu 2001, 

Yan et al. 1999).  

The influence of aw is best predicted and analyzed in terms of its thermodynamic 

activity instead of water concentration (Chowdary and Prapulla 2002). According to 

Gandhi et al. (2000), this is readily observed from the effect of water content on the 

catalytic activity of lipase. The lipase presented a similar optimum at thermodynamic aw of 

about 0.55 when used in solvents ranging from hexane to pentanone.  
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In contrast, Awang and co-workers (2000) reported that aw ranging from 0.09 to 0.96 

did not have a marked relevance on the yields of the synthesized ester in the esterification 

of dihydroxy stearic acid with octanol catalyzed by Rhizomucor miehei and Novozyme 435 

lipases. 

Studies conducted by Chowdary and Prapulla (2002), with the lipases from Rhizopus 

oryzae, Mucor javanicus, Aspergillus niger and Penicillium roqueforti, demonstrated that 

at higher levels of water activity (aw 0.96), the enzymes promoted higher ester yields, 

probably due to protein aggregation, and the highest yield rates at lower levels of water 

activity (aw 0.33). 

Thus, the optimum aw also depends on the type of support used for immobilization, 

as well as on the type of solvent used in the reaction, i.e., the optimum water requirement 

is dictated by the biological source of the enzyme, the organic solvent, and, possibly, the 

type of support used (Gandhi et al. 2000). For example, the effect of butanol, water and 

water-butanol ratio on the activity of immobilized Mucor miehei (Lipozyme™) was 

studied at various temperatures. The immobilized enzyme exhibited better stability than the 

free enzyme (Gandhi et al. 1997). 

 

1.3.2 Influence of solvent system 

Enzymatic reactions using organic solvents provide several advantages of industrial 

interest, such as increased solubility of non-polar substrates, reversibility of the 

thermodynamic equilibrium of the hydrolysis reactions, suppression of water-dependent 

side reactions, modification of substrate specificity and enantioselectivity, among others 

(Doukyu and Ogino 2010). 

Depending on the miscibility of an organic solvent with water, and the relative 

proportion of solvent and water in the medium, there are three main types of organic 

solvent systems that can be used: water plus water-miscible organic solvent system 

(organic co-solvent system); water plus water-immiscible organic solvent system (two 

phase system or biphasic system); and nearly anhydrous organic solvent system (Davison 

et al. 1997, Ogino 2008). 
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The first organic solvent system is produced when water-miscible co-solvents are 

added to the medium to improve the solubility of compounds that are insoluble in aqueous 

systems and can reduce the mass-transfer limitations, leading to faster reaction rates for 

hydrophobic compounds. The increasing concentration of organic co-solvent would always 

lower the enzymatic activity, due to direct contact of the organic solvent with the enzyme. 

Moreover, the advantage of improving the solubility of the substrate is compensated by the 

achievement of a high enzymatic activity (Khmelnitsky et al. 1988, Ogino 2008). 

The second organic solvent system consists of two phases, an aqueous phase 

containing a dissolved enzyme and another phase of an immiscible organic solvent 

(Khmelnitsky et al. 1988). The aqueous phase forms a separate layer in contact with the 

layer of the organic solvent. In this system, the enzymatic reaction occurs in the aqueous 

phase containing the enzyme. A hydrophobic substrate, such as steroids or fats, is mostly 

located in organic solvent layer and partitioned into the aqueous phase. The substrate is 

converted by the enzyme, and then the product is extracted into the organic solvent phase. 

This system is advantageous for the synthesis of esters due to the shift of the reaction 

towards synthesis (Ghatorae et al. 1994, Ogino 2008, Wu et al. 1993).  

Finally, in the last organic solvent system, involving lyophilization, immobilization 

or modifications with amphipathic compounds, the enzymes are required for solubilisation 

purposes (Castro and Knubovets 2003, Klibanov 2001). Lyophilization causes a reversible 

damage in the enzyme structure (Lee and Dordick 2002). Co-lyophilization with additives 

such as carbohydrates, polymers, and salts prevents this damage and activates the lipases. 

The lipase lyophilized or precipitated from an aqueous solution at its optimum pH exhibits 

a high activity. In this system, lyophilized lipases often exhibit a high thermal stability, but 

show far lower catalytic activity than in water. The water content (water activity) in the 

system is essential to have sufficient lipase activity. It is generally known that hydrophobic 

solvents result in a higher lipase activity comparing to hydrophilic ones. Conformational 

mobility of lipases at such low water content is generally restricted. Therefore, the proteins 

are more rigid in this type of system than in water. This system has been demonstrated to 

be very useful in various enzymatic processes, such as in the synthesis and 

transesterification of esters, peptide synthesis, and transformation of various hydrophobic 

compounds (Serdakowski and Dordick 2008). 
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1.4 Sugar ester biosurfactants 

Surfactants, biosurfactants, emulsifiers, bioemulsifiers, carbohydrate esters (sugar 

esters) or fatty acid esters are compounds that contain surface-activity and have a high 

emulsifying capacity. Among these, are named biosurfactants, the compounds that are 

obtained as metabolic products of bacteria, fungi or yeasts or produced through microbial 

enzymes (Banat et al. 2000, Nitschke and Pastore 2006, Reddy et al. 2009, Xie et al. 2007, 

Yin et al. 2009). 

According to the literature, there are a large number of synthetic surfactants 

(Worakitkanchanakul et al. 2008). However, these synthetic surfactants present some 

drawbacks, such as their costs, availability and environmental impact. Therefore, the 

enzymatic synthesis, using lipases as biocatalyst, appears to be an interesting green 

alternative for the production of some sugar ester biosurfactants (Kiran et al. 2010). Table 

1.3 shows some of the most common groups of surfactants of natural and synthetic origin. 

 

Table 1.3 Natural and synthetic surfactants  

Natural Synthetic 
Biosurfactants Alkyl and aryl ether carboxylates 
Fatty acid amides  Alkyl aryl sulfates 
Fatty acid amines Alkyl aryl ether sulfates 
Derived protein Alkyl phenol ethoxylate 
Sucrose esters Co-polymers of ethyl oxide/propylene 
Sulfates of natural fatty alcohols Ethoxylated fatty acids 

 

 

In general, there are numerous advantages of the biosurfactants over their chemical 

counterparts, such as biodegradability (easily degradable in water and soil, which makes 

them suitable for applications such as bioremediation and wastewater treatment), low 

toxicity, selectivity, biocompatibility, ecological acceptability and effectiveness at extreme 

temperature and pH conditions (Batista et al. 2006, Chamouleau et al. 2001, Costa et al. 

2006, Ghojavand et al. 2008, Luna-Velasco et al. 2007, Park et al. 2004, Thanomsub et al. 

2006, Tsavas et al. 2002, Yin et al. 2009). Furthermore, the biosurfactants are odorless, 

biocompatible, and can be produced from renewable sources, thus at lower costs (Shin et 

al. 2009, Yutaka and Kitagawa 1998). 
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1.4.1 Properties 

Biosurfactants possess several important physical and chemical properties, such as 

foaming, emulsifying and stabilizing capacities, low critical micellar concentration, 

detergent solubility, dispersion, power, among others. These properties are very important 

in evaluating its performance (Deleu and Paquot 2004, Lee et al. 2008). 

The most important feature of any given biosurfactant is its ability to reduce the 

surface tension of a liquid medium (Ahimou et al. 2001, Bognolo 1999, Desai and Banat 

1997, Ghojavand et al. 2008, Lee et al. 2008, Nguyen et al. 2008, Pletnev 2001). For 

example, a sugar ester biosurfactant, such as sophorolipid esters can effectively reduce the 

surface tension of water to values below 38.7 mN/m (Maier 2003, Mulligan 2005, Zhang et 

al. 2004). According to Busscher and co-workers (1994), a decrease larger than 8 mN/m of 

the surface tension is an indicative of biosurfactant production. 

Besides, some biosurfactants are considered as food emulsifiers. Typically, the 

biosurfactants are molecules bearing a hydrophilic and a hydrophobic part. The 

hydrophobic part consists of fatty acid, whereas the hydrophilic part may consist of 

glycerol or one of its ester derivatives resulting from the reaction with organic acids such 

as lactic, citric, acetic, or tartaric acid (Figure 1.2). Food industries are extremely interested 

in these additives since they can safely be consumed by humans in quantities up to 125 mg 

kg-1 body weight per day. Additionally, they have useful properties that improve the 

production of some food products, such as bakery commodities (Suman et al. 2009). 

 

 

Figure 1.2 Chemical structures of mono- and diacylglycerol esters of fatty acids emulsifiers where 
typically R = lauric acid, myristic acid, palmitic acid, oleic acid, and stearic acid and A = diacetyl 

tartaric acid, acetic acid, lactic acid, and citric acid (adapted from Suman et al. 2009). 
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The potential of sugar ester biosurfactants in food industry is high although it is 

important that they accomplish specific acceptance criteria, present certified performances 

and comply with the existing restrictions (Makkar and Cameotra 2002, Suman et al. 2009). 

 

1.4.2 Applications 

Natural food emulsions exist long before food processing. A good example is milk, a 

natural emulsion/colloid in which fat is stabilized by a milk-fat-globule membrane. The 

development of technologies for processing oils, such as refining, bleaching, and 

hydrogenation, has led to the development of new food emulsifiers (Kinyanjui et al. 2003).  

Manufacturers employ two types of emulsifiers or foaming agents in food, namely: 

LMWE (Low Molecular Weight Emulsifiers), such as mono-diglycerides, phospholipids, 

among others and macromolecules, such as proteins and hydrocolloids (Patino et al. 2008). 

The emulsifier film adsorbed at the oil-water or air-water interface is the source of many of 

the unique properties of food dispersions, particularly their stability and interactions, which 

translate into the shelf-life and textural properties so desired by manufacturers and 

appreciated by consumers (Sánchez et al. 2005). Therefore, there is a variety of segments 

of the food industry in which sugar ester biosurfactants may be used, namely in the 

production of aromas and maturation of cheeses, bakery products, cakes, biscuits, 

mayonnaise and sauces, instant products, sausages, among others (Liese et al. 2000, 

Pandey et al. 1999, Plou et al. 2002, Saxena et al. 1999, Sharma et al. 2001).  

The main emulsifiers used by the food industry are monoglycerides and esters of 

lactic acids (Kamel 1997). Monoglycerides are widely used as anti-staling agents and 

account for approximately one third of the emulsifiers used in the baking industry. These 

compounds can also act as mild dough conditioners, leading to improved dough machining 

properties, enhanced slicing performance and superior bread quality (Sawa et al. 2009, 

Stauffer 2000).  

Esters of lactic acid are part of the aroma array of cheeses made from goats’ and 

ewes’ milk (e.g., Feta, Manchego, Serra da Estrela and Roncal), but the number and type 

of esters found vary between cheese varieties (Mukdsi et al. 2009). Among the esters 

identified in these cheeses, the ethyl esters of the straight-chain fatty acids of C2-C10 are 

most frequently found (Liu et al. 2004). These esters, which are potent flavour compounds 
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at less than 5 ppm, are important for development of the characteristic “fruity” type 

flavours such as ethyl butanoate and ethyl hexanoate (Moio and Addeo 1998). 

Several studies have been reported on the use of sugar ester biosurfactants in bakery 

products. In the last years, the bakery industry became more demanding regarding the 

increase of products shelf-life and consistent quality through the use of food additives. 

These additives, including emulsifiers, enzymes, soy flour, oxidants and reductants, are 

essential for improving dough machinability, reducing resting time, and improving baked 

goods’ shelf-life. Furthermore, these additives increase the volume and aeration thus 

reducing the stickiness, improve texture and shelf-life of starch-containing products, crumb 

whiteness, aroma and flavour (Haros et al. 2002, Leon and De Barber 2002, Makkar and 

Cameotra 2002, Moayedallaie et al. 2010, Nitschke and Costa 2007, Suman et al. 2009).  

Sugar ester biosurfactants are used to assist blending and emulsification of 

ingredients, to control the agglomeration of fat globules, stabilize aerated systems, modify 

rheological properties of wheat dough, improve consistency, and to interact with the 

components of the flour and other ingredients in the mix for softer crumb improving the 

palatability. According to their chemical structure, emulsifiers can interact and form 

complexes with starch, protein, shortening, and water. Interaction of an emulsifier with the 

protein can improve the strength and allow better retention of carbon dioxide (Colla et al. 

2010, Demirkesen et al. 2010, Makkar and Cameotra 2002, Nitschke and Costa 2007, 

Suman et al. 2009). An improvement of dough stability, texture, volume and preservation 

of bakery products was obtained by the addition of rhamnolipid surfactants (Haesendonck 

et al. 2004). 

According to Sawa and co-workers (2009), mixing properties, bread quality and 

crumb firmness during bread storage were strongly influenced by the type and level of 

monoglyceride added to flour during bread processing. Polyunsaturated monoglycerides 

showed the greatest strengthening effects on dough properties.  

Additionally, emulsifiers can be added to cereal flours in order to produce specific 

desired characteristics, such as soft structures. In fact, during extrusion, emulsifiers form 

complexes with amylose that affect texture, cell distribution, and density of the extruded 

products. Furthermore, emulsifiers act as lubricants for the melted dough reducing the 

specific mechanical energy (De Pilli et al. 2007). In bakery and ice cream formulations, the 
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sugar ester biosurfactants act by controlling consistency, delaying staling and solubilizing 

flavor oils; they are also utilized as fat stabilizers and anti-spattering agents during cooking 

of oil and fats (Kosaric 2001).  

 

 

1.5 Conclusions 

The synthesis of sugar ester biosurfactants can be accomplished chemically or 

enzymatically. The chemical process occurs with low selectivity and leads to a mixture of 

sugar esters with different degrees of esterification require toxic organic solvents and is 

performed at high temperatures. Also, the use of these solvents is being gradually restricted 

in many industrial applications. This issue can be overcome using a biological catalyst, 

such as immobilized lipases, and organic solvents that do not leave toxic residues in the 

final reaction products. Enzyme immobilization is advantageous, namely due to the 

possibility of reusing the catalyst the use in continuous processes; ease of handling; higher 

thermal and chemical stability of the enzyme; regeneration and ease of recovery; and 

reduction of operational costs. 

Sugar ester biosurfactants can be synthesized from sugars and fatty acids using 

lipases. These compounds present numerous advantages as compared to their chemical 

counterparts, such as biodegradability, low toxicity, selectivity, biocompatibility, 

environmental acceptability and effectiveness under extreme conditions of temperature and 

pH. Therefore, sugar ester biosurfactants have a variety of potential applications, including 

pharmaceuticals, detergents, cosmetics and food industry. In the food industry, these 

compounds can be used in the production of aromas and maturation of cheeses, bakery 

products, cakes, cookies, mayonnaise and sauces, instant products, sausages, among others. 

Sugar ester biosurfactants are expected to gain a significant market share due to 

increasing knowledge; metabolic, systems and synthetic biology efforts to increase 

production yields and product diversity; and improved downstream technologies that 

facilitate product recovery. 
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Chapter 2 

 
Maximization of fructose esters 
synthesis by response surface 
methodology 
 

 “O sucesso é a soma de pequenos esforços – 

repetidos dia sim, e no outro dia também”. 

(Robert Collier) 

 

In this section, enzymatic synthesis of fructose fatty acid ester was performed in organic 

solvent media, using a purified lipase from Candida antartica B immobilized in acrylic 

resin. Response surface methodology with a central composite rotatable design based on 

five levels was implemented to optimize three experimental operating conditions 

(temperature, agitation and reaction time). A statistical significant cubic model was 

established. Temperature and reaction time were found to be the most significant 

parameters. The optimum operational conditions for maximizing the synthesis of fructose 

esters were 57.1 ºC, 100 rpm and 37.8 h. The model was validated in the identified optimal 

conditions to check its adequacy and accuracy, and an experimental esterification 

percentage of 88.4% (±0.3%) was obtained. These results showed that an improvement of 

the enzymatic synthesis of fructose esters was obtained under the optimized conditions. 
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2.1 Introduction 
 

Sugar esters are non-ionic biosurfactants that consist of a carbohydrate moiety as 

hydrophilic group and one or more fatty acids as lipophilic component. By controlling the 

esterification degree and the nature of fatty acid and sugar, it is possible to synthesize sugar 

esters within a wide range of properties.  

An increasing interest in the production of sugar esters has been reported, since they 

can be used as surface-active components in many industrial fields, as cosmetics, health-

care, pharmaceuticals and food industries (Nakamura 1997, Watanabe 1999). Furthermore, 

these compounds have certain advantages over synthetic surfactants, such as being 

prepared from renewable sources; tasteless, odorless, stable over a broad pH range and 

non-irritant. In food industry, fructose esters can be used in the production of aromas and 

maturation of cheeses, bakery products, cakes and biscuits, mayonnaise and sauces, instant 

products and sausages, among others (Tarahomjoo and Alemzadeh 2003). In addition, 

sugar esters properties as antibiotics (Marshall and Bullerman 1994), antitumorals (Okabe 

et al. 1999) and insecticides (Chortyk et al. 1996) are well reported and might open new 

markets. For the past few years, several researchers have investigated the lipase-catalyzed 

synthesis of sugar containing acrylic esters for their biomedical applicability (Chang and 

Shaw 2009, Park and Chang 2000, Staples et al. 2000). Moreover, these compounds are 

biodegradable, biocompatible and essentially non-toxic (Naoe et al. 2001, Torres and 

Otero 2001).  

Sugar esters can be synthesized either by chemical or enzymatic processes. Chemical 

production of sucrose esters is usually base-catalyzed at high temperatures, has a low 

selectivity, forming colored derivatives as side-products (Nakamura 1997). Enzymes have 

been successfully applied to the regioselective transformations of mono- and 

oligosaccharides, including acylation, deacylation and oxidation reactions. The enzyme-

catalyzed synthesis of sugar esters provides regio- and stereoselective products (Cruces et 

al. 1992, Riva et al. 1998, Soedjak and Spradlin 1994). Previously, sugar esters were 

synthesized mostly by esterification in aqueous media causing hydrolytic side reactions. To 

prevent these side reactions, solvents such as pyridine and dimethylformamide were used 

as reaction media (Ferrer et al. 1999). However, the solubility of sugars and the activity of 

enzyme were decreased due to the increased hydrophobicity introduced by these organic 
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solvents in the reaction system. In addition, the use of sugar esters as food additives and 

pharmaceuticals was incompatible with the use of these toxic solvents. Due to the high 

regiospecificity of enzymes, enzymatic synthesis is characterized by the production of a 

more defined product sugar monoester, whereas chemical process usually leads to a 

mixture of sugar polyesters (Maugard et al. 1997). Therefore, various sugar esters (e.g. 

fructose or sucrose esters) can now be prepared by a single reaction step employing 

enzymes - lipase - as a biocatalyst (Roy and Chawla 2001, Sabeder et al. 2006, 

Tarahomjoo and Alemzadeh 2003).  

Enzymatic synthesis in organic medium is based on the ability of lipases to catalyze 

reverse hydrolysis, i.e., the formation of ester bonds. These reactions take place in a 

medium presenting a low water activity and allow much higher conversions in a shorter 

time. In these conditions, the thermodynamic equilibrium of the reaction is shifted towards 

synthesis reaction instead of hydrolysis. The enzymatic process yields up to 80% 

conversion within 8 h of incubation, and synthesis can be performed in a batch reactor at a 

temperature as low as 64 ºC in presence of microbial lipase like Candida antartica. 

Enzymatic synthesis of fructose fatty acid esters is showed in Figure 2.1. 

 

 

Figure 2.1 Lipase-catalyzed syntheses of fructose fatty acid esters (Sabeder et al. 2006). 

 

 

The enzymatic esterification of sugar esters is gaining importance due to mild 

reaction conditions and excellent selectivity associated with lipase-catalyzed reactions. 

Therefore, the optimization of sugar ester synthesis is very important for its economical 

manufacturing (Adnani et al. 2010).  
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Nevertheless, several factors can affect both the conversion yield and the rate of 

esterification. These factors include the reaction solvent, reaction temperature, reaction 

time, the type and concentration of the acyl donor, enzyme content and initial substrate 

concentration. Thus, it is difficult to search for the major factors and to optimize them as 

several parameters are involved (Lundstedt et al. 1998).  

The classical method of optimization involves changing one variable at a time, 

keeping the others at fixed levels. Being single dimensional, this laborious and time 

consuming method often does not guarantee determination of optimal conditions, neither 

takes into account possible interactions among various operational factors. Experimental 

design and optimization are tools that enable building models and evaluating the 

significance of the different factors considered, as well as their interactions. Furthermore, 

with these models, a small number of experimental trials are used to search the optimal 

factor levels that conduct to the desired response (Adnani et al. 2010, Montgomery 1997). 

The aim of this work is to optimize, using a response surface method (RSM), the 

operational conditions (temperature, agitation and reaction time) that maximize the 

synthesis of fructose esters. Therefore, a 2k full-factorial central composite design, based 

on a preliminary design that used five factors (temperature, agitation, reaction time, 

fructose concentration and enzyme concentration) (data not shown) was conducted. 

Fructose esters are synthesized by esterification of oleic acid with fructose using a lipase 

from C. antarctica type B (CALB) immobilized in acrylic resin. 

 

 

2.2 Material and Methods 

2.2.1 Materials 

All chemicals used were analytical grade. The commercial triacylglycerol lipase 

from Candida antartica B immobilized in acrylic resin (CALB) (Novozym 435) was 

purchased from Sigma-Aldrich (Sigma-Aldrich Co., St. Louis, MO). 
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2.2.2 Methods 

2.2.2.1 Synthesis of fructose esters 

The fructose esters synthesis experiments (esterification reactions) were conducted in 

flasks by adding oleic acid (0.5 mmol), fructose (0.6 mmol), CALB (12.5 mg), sodium 

sulfate anhydrous (0.1 g) and ethanol 99% (0.6 mL). The flasks were incubated for 

different reaction times under controlled agitation and temperature. The synthesis 

procedure has been previously described by Sabeder and collaborators (2006). 

 

2.2.2.2 Experimental design & data analysis 

The optimal temperature, agitation and reaction time levels for maximizing the 

synthesis of fructose esters were studied using a 2k full-factorial design with 3 factors and 

3 replicates of the central point. Based on previous experiments (data not shown) and 

studies, the amounts of the reactants showed no significant effect on the esterification 

percentage. 

The initial experimental design was augmented using an additional central composite 

design allowing the optimization of those experimental conditions of operation by means 

of a response surface methodology. Since the new runs were made after a period of 15-

days from the initial ones, to control day-to-day variation, blocking technique was 

considered. Therefore, a new block of experimental data was included, consisting in nine 

other experimental points, being three of them replicates of the initial central point. The 

other six new points, also called star points, were introduced to make the central composite 

design rotatable, setting the distance from the central design equal to ±1.682. The 

parameters range was chosen according to previous experiments and reported knowledge 

on the optimum conditions for enzymatic synthesis of fructose esters (Sabeder et al. 2006, 

Shieh et al. 1996, Yan et al. 2001, Zaks et al. 1985). In total, the 3 independent factors 

(temperature, agitation and reaction time corresponding to the actual factors x1, x2 and x3, 

respectively) were studied at 5 levels (±1.682; ±1 and 0) and a set of 20 experiments were 

carried out randomly (Table 2.1). 
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Table 2.1 Experimental range and levels of the factors tested in the 23 full factorial central 
composite rotatable design 

Variable 
 

Symbol 
 Coded (Xi) variable level  
-1.682 -1 0 +1 +1.682 

Temperature (ºC) x1 46.6 50 55 60 63.4 
Agitation (rpm) x2 58 75 100 125 142 
Reaction time (h) x3 3.8 12 24 36 44.2 

 

 

For the statistical treatment, the actual factors were coded according to the following 

equation (1): 
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where Xi is the coded value of the independent factor, xi is the real value of the independent 

factor, x0 is the real value of the independent factor at the central point and ∆xi is the step 

change value. 

It is expected that the behavior of the system could be explained by a quadratic or 

cubic equation (2), which is used for predicting the optimal esterification percentage point 

(Y), based on the coded values of the independent factors (Xi): 
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where Y is the predicted response, which takes into account the block correction (αblock is 

equal to the value of the block 1 or block 2 correction for the experimental data obtained at 

the first or second block of essays, respectively); the β’s are first, second and third order 

parameters whose values are to be determined using multiple linear regression model 

(MRLM) and the statistically significant ones selected using a stepwise method. The first 

order parameters are related with the screening process, the second order with the model 
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curvature and the third order parameters due to asymmetry issues. Furthermore, to ensure 

that the model is hierarchical parameters could be included in the final model regardless 

their statistical significance. X1 X2 and X3 are the coded independent factors and ε is a 

random error term of the regression model. 

Design-Expert 6.0.6., Trial version and Statistical Package for Social Sciences 

(SPSS), version 14, were used for the experimental design and regression analysis of the 

experimental data. The significance of the regression model was evaluated using analysis 

of variance (ANOVA). The quality of the fit obtained using the regression model equation 

was statistically checked by means of two diagnostic residuals: the multiple or adjusted 

coefficient of determination (R2 or R
2
adj, respectively) and the predicted coefficient of 

determination (Q2). The R2-values describe the goodness of fit, giving an idea of how well 

current runs can be reproduced by the mathematical model. The Q
2-value describes the 

goodness of prediction, showing how well new experiments can be predicted using the 

mathematical model. R2 and Q2 values higher than 0.75 and 0.60 indicate that the model is 

good, and Q
2 values lower than 0.25 indicate that the model is useless (Mandenius and 

Brundin 2008). 

The discrimination ability of the model was also inferred by calculating the adequate 

precision value, which compares the range of the predicted values at the design points to 

the average prediction error. A value greater than 4 is envisaged to assure adequate model 

discrimination. The significance of the regression coefficients was tested using a t-test. 

Also, the required non multi-collinearity condition between the independent variables was 

evaluated using the variance inflation factor (VIF). Values lower than 10 should be 

obtained to ensure that the independent variables are not collinear. Finally, the contour 

plots obtained from the fitted quadratic or cubic model were also used to infer about the 

optimal experimental conditions keeping the independent factors within the experimental 

range studied. To validate the optimal operation condition levels that maximize the 

synthesis of fructose esters, 3 additional experimental trials were carried out at the optimal 

operating conditions to confirm the predicted esterification value obtained by the analysis 

of the response surface. 
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2.2.3 Characterization of the product 

After the esterification reactions procedure described above, the product obtained 

was characterized according to the techniques described below. 

 

2.2.3.1 Quantification of fructose esters 

The ester content was calculated taking into account the residual fatty acid amount in 

the reaction mixture, which was determined by the volumetric method. Briefly, 0.1 g of a 

sample from the reaction mixture was diluted in 20 mL of 0.1 wt% phenolphthalein 

solution in absolute ethanol, and then titrated with a sodium hydroxide solution (0.1 mol/L) 

(Leitgeb and Knez 1990).  

 

2.2.3.2 Fructose ester purification and characterization 

At the end of the esterification reaction, the lipase, together with the sodium sulfate 

anhydrous (non reactive species), were removed by filtration using filter paper with a pore-

size of 60-µm (Macherey-Nagel Inc.). Afterwards, the ethanol was evaporated from the 

reaction media using a rotoevaporator. The remaining product (fructose ester) was then 

analyzed and identified by thin layer chromatography (TLC), using a chloroform/hexane 

(1:1, v/v) mixture for elution. Subsequently, the fructose ester spot was identified with 

iodine according to Ducret and collaborators’ work (1995). 

Additionally, the purified reaction product was characterized by infrared 

spectroscopy (IR). The solid product was crushed with a mulling agent, nujol. 

Subsequently, a thin film of the mull was applied on the surface of a NaCl cell and 

measured. Infrared absorption spectra were recorded on a Bio-Rad model FTS 165 

spectrophotometer with a spectral band between 450 and 4000 cm-1. 
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2.3 Results and Discussion 

Sugar esters have been attracting a considerable interest in several fields, such as 

food industry, mainly due to their advantages as compared to synthetic surfactants 

(Nakamura 1997, Tarahomjoo and Alemzadeh 2003, Watanabe 1999). Sugar esters can be 

synthesized either by chemical or enzymatic processes, although enzymatic esterification 

of sugar esters is gaining importance due to mild reaction conditions and excellent 

selectivity associated with lipase-catalyzed reactions (Sabeder et al. 2006).  

The rate of esterification, as well as the conversion yield, is affected by a number of 

factors such as the solvent, temperature, time, type and concentration of the acyl donor, 

enzyme content and initial substrate concentration (Polat and Linhardt 2001, Roy and 

Chawla 2001, Sarney et al. 1996, Shieh et al. 1996, Yan et al. 2001). Consequently, as 

several parameters are involved, the optimization of the esterification rate and conversion 

yield can be very laborious if no alternative approaches, such as experimental design and 

optimization tools, are used (Lundstedt et al. 1998). Even using an experimental design to 

build models and study interactions among different factors, when a great number of 

factors is used the optimization may be difficult to assess.  

Based on this discussion, a preliminary design was conducted with five factors 

(temperature, agitation, reaction time, fructose concentration and enzyme concentration) 

(data not shown) and, although the ratio substrate/enzyme has been reported as an 

important factor (Sabeder et al. 2006), the significance of substrate and enzyme 

concentrations were found to be not significant, as well as their interactions. Also, it is well 

known that water concentration is a critical factor in ester synthesis reactions catalyzed by 

lipases, since an excess of water would favor the reverse reaction, i.e., the hydrolysis of 

ester bonds. Nevertheless, in the current work this factor was excluded from the design 

since a desiccant (sodium sulfate anhydrous) was added to the reaction medium in order to 

prevent the reverse reaction. Therefore, a response surface methodology (RSM) with a 

three-factor-five-level central composite rotatable design (CCRD) was employed for 

modeling and optimization of the enzymatic esterification of fructose esters.  

The influence of three operating variables, namely temperature, agitation and 

reaction time, on the esterification process was evaluated by means of a 23-full factorial 

rotatable central composite design. In total 20 runs were carried out, being six of them at 
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the central point. The ranges of values of the variables used in the augmented experimental 

design were 46.6-63.4 ºC, 58-142 rpm and 3.8-44.2 h, respectively (Table 2.1). 

A statistically significant cubic polynomial model (P<0.0001) was fitted to the 

experimental data (Table 2.2) with an R2-value and an R2
adj-value of 0.9995 and 0.9981, 

respectively. 

 

Table 2.2 Experimental design and results (experimental and model prediction) obtained using the 
23 full factorial central composite rotatable design used for the optimization of the synthesis 
of fructose esters 

Run Block Temperature 
(ºC) 

Agitation 
(rpm) 

Time 
(h) 

Esterification (%) 
Experimental Model Prediction* 

1 1 60 75 12 67.24 67.15 
2 1 50 125 12 64.79 64.70 
3 1 50 75 36 79.62 79.53 
4 1 55 100 24 84.84 84.92 
5 1 60 125 12 75.77 75.68 
6 1 50 75 12 85.91 85.82 
7 1 55 100 24 84.35 84.92 
8 1 60 75 36 87.45 87.36 
9 1 60 125 36 86.16 86.07 
10 1 55 100 24 84.81 84.92 
11 1 50 125 36 79.77 79.68 
12 2 55 100 24 83.48 83.10 
13 2 55 100 24 83.25 83.10 
14 2 55 100 24 83.37 83.10 
15 2 55 100 44.2 84.34 84.47 
16 2 55 142 24 85.42 85.55 
17 2 55 100 3.8 78.19 78.32 
18 2 55 58 24 85.32 85.45 
19 2 63.4 100 24 54.84 54.97 
20 2 46.6 100 24 71.96 72.09 

(*) Model predicted values include block corrections. 

 

 

Two data blocks were considered for establishing the model allowing controlling 

day-to-day variation between the first 11 experimental runs and the last 9, corresponding to 

the initial design and to the augmented design, respectively. The model had no lack of fit 

(P=0.0227), an adequate model discrimination (adequate precision value of 96.4) and a Q2-

value of 0.7056, showing a very satisfactory predictive performance of the model. 
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The main effects, quadratic and cubic effects and interactions of the three operating 

variables on the esterification percentage were evaluated. Globally, all effects evaluated 

were statistically significant (P≤0.0020) except agitation (P=0.8625). However, since 

second and third order interaction parameters involving agitation were statistically 

significant, agitation was included in the final form of the cubic model to ensure a 

hierarchical model. The parameters of the final cubic model estimated using the response 

surface methodology and their standard errors are shown in Table 2.3. 

 

Table 2.3 Regression parameters of the optimal cubic model selected using a stepwise method, for 
the 23 full factorial central composite design 

Factor β’s coefficient (coded factors) Standard errors P-values 
Intercept 84.0 0.2 <0.0001 

X1 4.1 0.2 <0.0001 
X2 0.03 0.2 0.8625* 
X3 6.6 0.2 <0.0001 

2
1X  -6.9 0.1 <0.0001 
2
2X  0.9 0.1 0.0004 
2
3X  −0.6 0.1 0.0020 

X1 X2 3.5 0.1 <0.0001 
X1 X3 2.7 0.1 0.0001 
X2 X3 1.4 0.1 <0.0001 

3
1X  −3.2 0.1 <0.0001 
3
3X  −1.7 0.1 <0.0001 

2
2

1 XX  −1.8 0.2 0.0004 
X1 X2 X3 −3.9 0.14 <0.0001 

(*) Parameter with no statistical significance included in order to keep a hierarchical model. 

 

 

Considering the results obtained Eq. (2) takes the simpler form of: 
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Also, no statistical evidences of multi-collinearity were found since the variance 

inflation factor (VIF) values calculated for all the terms included in the model (linear, 

quadratic and cubic terms) were lower than 5. The predicted values were in good 
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agreement with the experimental values (Table 2.2), showing that the cubic model could be 

used to predict and optimize the esterification percentage by determining the optimal 

operating conditions (temperature, agitation and reaction time).  

The optimization process was carried out based on the contour plots and the 3-D 

response surface (Figure 2.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Response surface described by the model for an agitation set equal to 100 rpm (central 
point), in the region explored experimentally: (A) contour plots showing the predicted esterification 

percentage; (B) 3-D surface. 

 

 

For optimization purposes agitation was set equal to 100 rpm (equal to the value of 

the initial design central point), since this effect was not statistically significant. Under this 

agitation, the fitted surface showed a possible maximum point, based on the contour plots 

analysis.  

The predicted maximum esterification percentage was equal to 89.8% (±0.4%) for a 

temperature of 57.1 ºC and a reaction time of 37.8 h. Three model validation experiments 
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were carried out at those optimal operating conditions and showed good correspondence 

between experimental (88.4% ±0.3%) and predicted maximum esterification percentage.  

Furthermore, according to Figure 2.2 and model predictions, the conversion of fatty 

acid into ester after 3.5 h, 57.1 ºC and 100 rpm is about 78%. However, after 37.8 h under 

the same temperature and agitation conditions, conversion reaches 89.8%. Thus, from a 

practical point of view it would be beneficial to stop the reaction after 3.5 hours instead of 

waiting for the optimum reaction time to be reached (37.8 h) because it would cause a 

pronounced decrease in productivity (moles of ester per hour). It is important to notice that, 

before the optimization of the operational conditions for the enzymatic synthesis of 

fructose ester, the maximum esterification percentage obtained was 74.3%±0.2%, for 72 h, 

40 ºC and 250 rpm. Also, enzymatic process yields up to 80% conversion have been 

reported for the synthesis of sugar esters using a lipase from C. antartica (Roy and Chawla 

2001, Sabeder et al. 2006, Tarahomjoo and Alemzadeh 2003).  

Afterwards, the esterification product obtained at the validated maximum point was 

analyzed by TLC and IR spectroscopy in order to confirm the synthesis of the fructose 

ester according to the reaction scheme presented in Figure 2.1, since ethyl oleate is a 

possible by-product of the reaction that occurs in the presence of ethanol and oleic acid 

(Bousquet et al. 1999, De et al. 1999, Foresti and Ferreira 2005, Habulin et al. 1996, 

Hazarika et al. 2002).  

The TLC plate is illustrated in Figure 2.3, where a spot with a retention factor (Rf) 

(distance traveled by the compound divided by the distance traveled by the solvent) of 0.5 

was found to correspond to the fructose ester. The fructose ester Rf value was found to be 

in accordance with previous reports (Khaled et al. 1991, Pyo and Hayes 2008). 
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Figure 2.3 Thin-layer chromatography of the fructose ester. Lane (A) corresponds to the product 

synthesized at the validated maximum point of the design, namely the fructose ester. Lane (B) 
corresponds to a control experiment where no enzyme was used, thus no fructose ester was formed. 

Lane (C) corresponds to a standard of ethyl oleate. 

 

 

Several authors reported higher Rf values (Rf~0.9) for ethyl oleate ester (Bousquet et 

al. 1999, De et al. 1999, Khaled et al. 1991, Seino et al. 1984), as confirmed also by TLC 

in the current work (Figure 2.3 – lane C). Furthermore, the fructose ester was analyzed by 

infrared spectroscopy (Figure 2.4) and the band peaks obtained confirmed the presence of 

an ester: 1741 cm-1 (C=O, ester); 2923 cm-1 (CH); 1463 cm-1 (CH2); 1178 cm-1 (C=C) 

(Seino et al. 1984). Therefore, it was possible to conclude that the product synthesized at 

the maximum point of the experimental design corresponds to the expected fructose ester. 
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Figure 2.4 Infrared absorption spectra of the fructose ester obtained in the optimized conditions for 
enzymatic synthesis. 

 

 

Despite the enzymatic synthesis of highly biodegradable surfactants from renewable 

resources (sugar and fatty acids) has been widely investigated (Polat and Linhardt 2001, 

Sabeder et al. 2006), statistical design of experiments and RSM have been only applied in 

a few studies (Shieh et al. 1996, Yan et al. 2001). Therefore, the current work can be 

regarded as a useful input for the development of more efficient processes for the 

enzymatic synthesis of fructose esters. However, it is important to refer that the results of 

such optimization are more limited in application than those which come from a more 

mechanistic standpoint, and therefore the optimum conditions found are only valid under 

the same experimental domain and reaction system used. 
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2.4 Conclusions 
 

The modeling and optimization of immobilized C. antartica B catalyzed 

esterification reaction to synthesize fructose ester was successfully performed using a 

response surface methodology based on a central composite rotatable design (R2 and Q2 

equal to 0.9995 and 0.7056, respectively). Furthermore, fructose ester was confirmed to be 

the product of the esterification process by TLC and IR spectroscopy. The effects of three 

main reaction operating parameters (temperature, agitation and reaction time) and of their 

interactions were evaluated over the given ranges. The results obtained showed that the 

established cubic model can be used to predict the esterification percentage under any 

given conditions within the experimental range. Moreover, under the optimized operating 

conditions an effective enhancement of the synthesis of fructose esters was achieved. An 

88.4% (±0.3%) esterification percentage was obtained in a 37.8 h experiment conducted at 

57.1 ºC and 100 rpm, which corresponds to an improvement of about 15% comparing to 

the values previously reported in the literature. Finally, this study can be seen as an 

effective contribution to the development of more efficient bioprocesses for industrial 

synthesis of fructose esters. 
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Chapter 3 

 
Enzymatic synthesis of sugar ester 
biosurfactants catalyzed by Candida 
antarctica type B 
 

“Quem não sonha não realiza. Quem não 

ousa não conhece seus limites”. 

(Arquimedes Bastos) 

 

Sugar ester biosurfactants are compounds that exhibit surface activity and have high 

emulsifying capacity; therefore they are widely used in various industrial fields, 

especially in the food industry. This work consists on the production of sugar esters by 

enzymatic synthesis using fructose, sucrose or lactose, fatty acids (oleic or linoleic 

acids), and as solvents, ethanol or ethyl acetate. The esterification reactions catalyzed by 

a lipase from Candida antarctica type B were conducted for 72 h at 40 °C and 250 rpm. 

Parameters including esterification yield, surface tension and emulsification index were 

determined. The synthesis of sugar esters was confirmed by thin layer chromatography. 

Lactose ester synthesized using linoleic acid and ethanol presented the highest 

esterification yield (83.5%) compared to the other sugar esters and experimental 

conditions used. However, the fructose esters obtained showed a higher performance 

regarding the ability to reduce surface tension (35.8 mN/m) and to stabilize an emulsion 

(emulsification index for 2 minutes (58.4%), 24 hours (56.2%) and 48 hours (54.4%)). 

Although further work is required in order to improve fructose esters synthesis yields, 

these results are promising and suggest an opportunity for its use in the food industry.  
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3.1 Introduction 
 

Synthesis of sugar esters can be carried out either chemically or enzymatically. The 

chemical process occurs with a low selectivity and leads to a mixture of sugar esters with 

different degrees of esterification; it requires toxic organic solvents and is conducted at 

high temperatures, which causes coloration of the final products (Ferrer et al. 2005, Yoo et 

al. 2007).  

Enzymatic synthesis of these sugar esters constitutes an interesting alternative, since 

enzymes present a greater specificity than more conventional forms of organic reactions, 

thus more differentiated sugar esters can be obtained (Ogawa and Shimizu 2002). The 

enzymatic method is also usually conducted at low temperatures, leading to a reduction of 

the required number of steps in the reaction, lack of racemization and minimal protection 

due to regio-specificity (Kim and Shin 2001). Furthermore, enzymatic reactions provide 

several advantages of industrial interest, such as increased solubility of hydrophobic 

substrates, suppression of water-dependent side reactions, alteration of substrate-, regio-, 

and stereo-specificity, recovery and reusability of enzyme, often enhanced thermostability 

in nearly anhydrous organic solvent system, elimination of microbial contamination, 

potential for enzymes to be used directly in a chemical process, among others (Doukyu and 

Ogino 2010).  

Nevertheless, some problems have been reported regarding the enzymatic synthesis 

of sugar esters. The choice of solvents for enzymatic esterifications of underivatized sugars 

with fatty acids is very difficult, because one reactant (sugar) is polar and the other (fatty 

acid) is non polar. In addition, most enzymes are quickly inactivated under hydrophilic 

organic solvents (e.g., pyridine, dimethyl sulfoxide, and dimethyl formamide) which are 

able to dissolve high concentrations of both sugars and fatty acids (Degn and Zimmermann 

2001, Ganske and Bornscheuer 2005, Lee et al. 2008). Also, the use of these solvents is 

being progressively restricted for many industrial applications, namely for food 

applications (Rojas-Melgarejo et al. 2006, Sabeder et al. 2005). To overcome this 

limitation, organic solvents that leave no toxic residues in the final product of the reaction 

have been proposed (Ferrer et al. 2005).  

Several lipases have been used for the enzymatic synthesis of sugar esters, namely 

the ones from Acinetobacter sp., Arthrobacter sp., Aspergillus sp., Aspergillus niger, 
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Aspergillus oryzae, Bacillus laterosporus and Candida antarctica (Ferrer et al. 2005, 

Pandey et al. 1999).  

Sugar esters are non-ionic biosurfactants that consist of a carbohydrate moiety as 

hydrophilic group, and one or more fatty acids as lipophilic component. By controlling the 

esterification degree and the nature of the fatty acid and sugar, it is possible to synthesize 

sugar esters within a wide range of properties. Biosurfactants are compounds that present 

surface-activity and have high emulsifying capacity, thus are widely used in various 

industrial areas, including in pharmaceutical, cosmetic, detergent and food industry. 

Moreover, they are tasteless, odorless and non-toxic, therefore present a high potential for 

food applications, such as in the production of aromas, maturation of cheeses, bakery 

products and sauces (Liese et al. 2000, Pandey et al. 1999, Plou et al. 2002, Saxena et al. 

1999, Sharma et al. 2001, Szuts et al. 2007). Sugar esters have been used as sweetening 

agents and surfactants, as well as in the delivery of physiologically active agents 

(Somashekar and Divakar 2007). Recently, some sugar esters have been found to possess 

antitumor and antibiotic activities (Villo et al. 2010). 

Aiming at its application in the food industry, this work reports the enzymatic 

synthesis of sugar ester biosurfactants by C. antarctica type B (CALB) lipase, using 

different combinations of sugars (fructose, sucrose and lactose), fatty acids (oleic acid and 

linoleic acid) and solvents (ethanol and ethyl acetate). The esterification yields were 

determined and sugar esters synthesis was confirmed by thin layer chromatography (TLC). 

Furthermore, all sugar esters were characterized regarding their surface activity and 

emulsification index. 

 

 

3.2 Material and Methods 

3.2.1 Materials 

All chemicals used were analytical grade. Triacylglycerol lipase purified from C. 

antartica B immobilized in acrylic resin (CALB) (Novozym 435) was purchased from 

Sigma-Aldrich (Sigma-Aldrich Co., St. Louis, MO). 
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3.2.2 Methods 

3.2.2.1 Esterification reactions 

The synthesis experiments were conducted in flasks (100 mL) by adding 0.5 mmol 

fructose, sucrose or lactose; 0.5 mmol oleic acid or linoleic acid; 22.5 mg CALB; and 0.6 

mL ethanol or ethyl acetate (99%), according to Table 3.1. 

 

Table 3.1 Summary of the reaction schemes studied in the current work 

Samples Solvents Fatty acids Carbohydrates 
A 

Ethanol 

Oleic acid 

Fructose 

B Sucrose 
C Lactose 

D 

Linoleic acid 

Fructose 

E Sucrose 

F Lactose 

G 

Ethyl acetate 

Oleic acid 
Fructose 

H Sucrose 
I Lactose 

J 
Linoleic acid 

Fructose 
K Sucrose 
L Lactose 

 

 

Sodium sulfate anhydrous (0.1 g) was added to all reactions in order to prevent the 

occurrence of hydrolysis of the ester bonds. For the reaction to occur, the flasks were 

incubated at 40 ºC and 250 rpm for 72 h. The synthesis procedure has been previously 

described by Sabeder and collaborators (2006). At the end of the esterification reaction, the 

lipase, together with the desiccant sodium sulfate anhydrous (non reactive species), were 

removed by filtration using filter paper with a pore-size of 60-µm (Macherey-Nagel Inc.). 

Afterwards, the solvent was evaporated from the reaction media using a rotoevaporator. 

Three independent reactions were conducted for each experimental condition above 

described. 
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3.2.2.2 Thin Layer Chromatography (TLC) 

The obtained products (sugar esters) were identified by TLC, using commercial 

plates (Merck) coated with a 0.25 mm layer of silica gel (Khaled et al. 1991). A mixture of 

chloroform/hexane (1:1, v/v) was used for elution. Subsequently, the sugar esters spots 

were identified with iodine according to Ducret and collaborators’ work (1995). 

 

3.2.2.3 Esterification yields 

The sugar esters content was quantified by calculating the residual fatty acid amount 

in the reaction mixture, which was determined by the volumetric method described 

elsewhere (Leitgeb and Knez 1990). Briefly, 0.1 g of sample from the reaction mixture 

were diluted in 20 mL of 0.1 wt% phenolphthalein solution in absolute ethanol, and then 

titrated with a standardized 0.1 mol/L aqueous sodium hydroxide solution. Measurements 

were done in triplicate. 

 

3.2.3 Characterization of the product 

After the esterification reactions, the sugar esters obtained were characterized 

according to the techniques described below. 

 

3.2.3.1 Surface tension 

The surface tension was determined at room temperature (25±1 ºC) using the Ring 

method as described elsewhere (Rodrigues et al. 2006). A KRUSS Tensiometer (Kruss 

model K10) equipped with a 1.9 cm Du Nouy platinum ring was used. Measurements were 

done in quintuplicate and results represent the means ± standard deviation. The 

concentration of final product used in these measurements was 30% (v/v).  

 

3.2.3.2 Emulsification index (EI) 

Emulsification index was determined for all the sugar esters obtained. Briefly, 2 ml 

sample and 1 ml of n-hexadecane were homogenized using a vortex for 2 minutes at 25 °C. 
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Next, the emulsion was left to settle for 2 minutes and the height of the emulsion was 

measured (T2). The index was calculated using the equation (1). 

 

Emulsion index (%) = He/Ht x 100                               (1) 

 

where He is the height of the emulsion and Ht is the total height of the liquid.  

To evaluate the stability of the emulsion, these were left to settle for 24 (T24) and 48 

hours (T48). All determinations were performed in triplicate and results represent the 

means ± standard deviation (Cooper and Goldenberg 1987). 

 

3.2.3.3 Statistical analysis 

The data were statically evaluated using ANOVA and Tukey-test at 95% of 

confidence level (ɑ = 0.05). Origin Pro 7.5 software (OriginLab) was used for data 

processing. 

 

 

3.3 Results and Discussion 

3.3.1 Thin Layer Chromatography (TLC) 

According to the TLC results, it was possible to confirm the presence of sugar esters 

(fructose, sucrose and lactose esters) by measuring the retention factor (Rf). All sugar 

esters obtained in this study presented Rf values of 0.5 as shown in the Figure 3.1. 
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Figure 3.1 Thin-layer chromatography of the sugar esters obtained from the different reaction 
schemes. Lane (A) corresponds to fructose ester, lane (B) to sucrose ester and lane (C) to lactose 
ester. Lane (D) corresponds to a control experiment where no enzyme was used, so no sugar ester 

was formed. 
 

 

The results obtained are in accordance with the study by Khaled et al. (1991), that 

reported an Rf = 0.5 for sucrose esters using an elution mixture of 80:10:8:2 

chloroform:methanol:acetic acid:water. Also, Tortorello and Delwiche (1983) reported an 

Rf value of 0.51 for fatty acid esters. Moreover, Pyo and Hayes (2008), reported an Rf = 

0.58 for fructose esters using the same TLC conditions as the ones used in the current 

work. It is important to notice that oleic acid could also be used to produce ethyl oleate, 

however its Rf value has been reported by several authors using the same solvent system as 

being higher (Rf~0.9) (Bousquet et al.1999, De et al. 1999, Khaled et al. 1991, Seino et al. 

1984), thus excluding this possibility. 

 

3.3.2 Esterification yields 

The yields of fructose, sucrose and lactose esters obtained by enzymatic synthesis 

with CALB using two fatty acids (oleic and linoleic) and two solvents (ethanol and ethyl 

acetate) are presented in Figure 3.2. Results represent the average of three independent 

assays ± standard deviation. The experimental conditions of each sample are given in 

section 2.2.1. 
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(a) 

(b) 

(c) 

(d) 

 

Figure 3.2 Sugar esters yields obtained by enzymatic synthesis with CALB using: ethanol, oleic 
acid and fructose, sucrose and lactose as carbohydrates (samples A, B, C) (a); ethanol, linoleic acid 
and fructose, sucrose and lactose as carbohydrates (samples D, E, F) (b); ethyl acetate, oleic acid 
and fructose, sucrose and lactose as carbohydrates (samples G.H, I) (c); and ethyl acetate, linoleic 

acid and fructose, sucrose and lactose as carbohydrates (samples J, K, L) (d). 

 

 

In general, ethanol was found to be a better solvent than ethyl acetate for the 

envisaged esterification reactions producing higher yields independently of the fatty acid 

and carbohydrate used in all the samples. From Figure 3.2a, it was found that oleic acid 

possesses a better performance in the synthesis of fructose (74.3%) and lactose (81.8%) 

esters, samples A and C, respectively. Furthermore, Figure 3.2b shows that, using linoleic 

acid, the highest esterification yield (83.5%) was obtained for sample F consisting of a 

lactose ester. Also, sample D (fructose ester) presented a good esterification yield (63.5%). 

In addition, the differences observed between samples C and F (Figures 3.2a and 3.2b) 

indicate that, linoleic acid is slightly better than oleic acid for the synthesis of lactose 

esters. Overall, it was found that the fatty acids (oleic and linoleic) promoted good yields 

in the synthesis of esters for all carbohydrates tested. Such results can be credited to the 

specificity of the enzyme selected. 

Concerning Figure 3.2c, it was found that using oleic acid, a higher yield for fructose 

ester (62.3%) (sample G) was obtained. For samples H and I (sucrose and lactose esters), 

similar esterification yields were obtained. Moreover, from Figure 3.2d, a significant 
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reduction in the synthesis of sucrose ester (17.4%) (sample K) was found when using 

linoleic acid and ethyl acetate as solvent. However, samples J and L (fructose and lactose 

esters, respectively) showed higher esterification yields, 58.8% and 52.2%, using the same 

conditions. The difference between these samples J, K and L is the type of carbohydrate 

used in the synthesis reaction.  

Regarding the synthesis of fructose esters the best results were found for sample A 

(74.3%), of sucrose esters for the sample B (56.0%) and of lactose esters for sample F 

(83.5%). For all these samples, oleic acid showed a better performance in the synthesis of 

the fructose and sucrose esters, except for lactose esters for which the linoleic acid 

performed slightly better. As for the best solvent, the use of ethanol provided better yields 

than ethyl acetate. 

It is important to notice that the same experimental conditions (amounts of reactants, 

temperature, time and agitation) were used for all the synthesis reactions conducted in this 

work. Therefore, the differences observed in the esterification yields can be explained by 

the different amounts of cis double bonds (unsaturated) present in the chemical structures 

of the fatty acids used. Oleic acid possesses one cis bound, while linoleic acid has two. 

Studies by Selmi et al. (1998) clearly showed that linolenic and linoleic acids are esterified 

more slowly than oleic acid. Also, the authors reported that the higher the number of 

unsaturated bonds, the lower the rate of synthesis, and consequently the lower the final 

esterification yield. Hence, the different yields obtained in the current work when 

comparing reactions conducted with one or the other fatty acid are in perfect agreement 

with the fact that lower unsaturated fatty acids (e.g. oleic acid) are esterified faster than 

higher unsaturated fatty acids (e.g. linoleic acid). 

Sabeder and collaborators (2006) used SP 435 and SP 382 lipases from CALB to 

synthesize fructose esters. The authors obtained 53% and 44% esterification yields, 

respectively, which are lower than the ones obtained in the current work. Both samples 

were catalyzed for esterification using fructose, palmitic acid and 2-methyl-2-butanol. 

Using the same solvent, 2-methyl-2-butanol, Ducret et al. (1996) obtained a lower yield 

(58.1%) of fructose monooleate using similar experimental conditions as the ones used in 

the current study, namely fructose and oleic acid esterification by CALB for 24 h, i.e., the 

higher values reported in this study are justified by the presence of a specific solvent 
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(ethanol and ethyl acetate). Furthermore, Patil et al. (2010) obtained even lower 

esterification and transesterification yields, 12% and 21% respectively, for the production 

of fructose esters. These authors used fructose, oleic acid, sorbitol and ascorbic acid, and 

CALB lipase. Coulon et al. (1995) studied the kinetic of acylation of fructose by 

transesterification or direct esterification. Even if both reactions have a similar initial rate, 

the conversion yield of the transesterification reaction was found to be 1.5 fold higher than 

the direct esterification reaction. When oleic acid methyl ester was used, 65% of fructose 

was converted to fructose ester, against 46% in the presence of oleic acid. 

Walsh et al. (2009) studied the synthesis of sucrose esters using 2-methyl-2-butanol 

as solvent. The authors reported lower sucrose ester yields (20.9%) than the ones found in 

the current study (56.0%), thus ethanol appears to be a better solvent for conducting the 

esterification reaction. According to Habulin et al. (2009), lower yields were also found in 

the synthesis of sucrose palmitate and sucrose laurate in supercritical CO2 conditions (52% 

and 47%, respectively). These lower sucrose ester yields were probably due to a low 

solubility of sucrose in tertiary alcohols. 

Other researchers studied the synthesis of lactose esters, and all reported yields lower 

than the ones obtained in the current study. Wu et al. (2004) using for the enzymatic 

synthesis, lactose, divinyl butanedioate, pyridine (as solvent) and a protease from B. 

subtilis (as biocatalyst), reported a esterification yield of 62%. Wang et al. (2005) 

submitted lactose to transesterification with divinyl hexanedioate in anhydrous pyridine 

catalyzed by an alkaline protease from B. subtilis and reported a yield of 77%. Walsh et al. 

(2009) using CALB in 2-methyl-2-butanol obtained 21.8% of lactose monolaureate. Based 

on these studies, it is possible to conclude that the results obtained in the current work are 

superior regarding the esterification yields. 

 

3.3.3 Surface tension 

The surface tension values measured for the sugar esters synthesized are presented in 

Figure 3.3. The concentration of final product used in these measurements was 30% (v/v) 

and the results represent the average of five independent assays ± standard deviation. The 

experimental conditions of each sample are given in section 2.2.1. 
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(a) 

(b) 

(c) 

(d) 

 

Figure 3.3 Surface tension values for the sugar esters obtained by enzymatic synthesis using 
CALB in the different experimental conditions studied, namely ethanol, oleic acid and fructose, 
sucrose and lactose as carbohydrates (samples A, B, C) (a); ethanol, linoleic acid and fructose, 

sucrose and lactose (samples D, E, F) (b); ethyl acetate, oleic acid and fructose, sucrose and lactose 
(samples G, H, I) (c); and ethyl acetate, linoleic acid and fructose, sucrose and lactose (samples J, 

K, L) (d). Surface tension of water was measured as a control (71.6 mN/m). 
 

 

According to Figure 3.3a, using ethanol and oleic acid in the synthesis reaction, the 

most significant surface tension reduction comparing with the control (34.5 mN/m) was 

obtained for the sucrose ester (sample B). Moreover, the fructose ester (sample A) also 

showed a significant reduction of surface tension (33.4 mN/m). Becerra et al. (2008) 

obtained a surface tension value of 43.1 mN/m for sucrose monoesters synthesized using a 

lauric acid derivative. Thus, the surface activity of the sucrose esters synthesized in the 

current study proved to be superior. Rahman and Herawan (2000) reported a 38.3 mN/m 

surface tension for fructose esters, which is similar to the value obtained in this work. 

Surface activity is a very important feature when food applications are envisaged, since the 

greater the ability of a compound (sugar ester biosurfactants) to reduce surface tension, the 

greater the stability of the emulsion formed. 

Comparing the esters obtained using different solvents (ethanol or ethyl acetate) 

(Figure 3.3b and 3.3d, respectively), it was found that in the presence of linoleic acid, the 

surface tension values for both solvents were higher than the 40 mN/m. However, 

switching the fatty acid to oleic acid and using ethyl acetate as solvent (Figure 3.3c) 
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resulted in the best results regarding surface activity. The fructose ester (sample G) was 

found to possess the lowest surface tension (35.8 mN/m) among all the sugar esters 

synthesized, which was not expected from the previous results (Figure 3.2) since ethyl 

acetate produced the lowest esterification yields, and the reduction of surface tension is 

usually related with the presence of sugar esters. Furthermore, sucrose ester (sample H) 

also presented a reduced surface tension value (36.5 mN/m) in comparison to the others 

samples. Thus, the sucrose esters were found to be potent surface active compounds when 

compared to the other sugar esters synthesized in this work.  

Lactose ester synthesis was found to be the one that gave the highest esterification 

yields (Figure 3.2), however this was not followed by a great decrease in the surface 

tension (values above 40 mN/m). Nevertheless, the results gathered in Figure 3.3 clearly 

show a decrease in the surface tension as compared to water, thus confirming the presence 

of sugar ester biosurfactants. Busscher et al. (1994) suggested that a decrease larger than 8 

mN/m of the surface tension in relation to water is an indicative of biosurfactant activity. 

Accordingly, all the sugar esters produced in this work presented surface activity, thus 

these esters could potentially be used in the food industry. It is important to notice that 

apart from their obvious role as agents that decrease surface and interfacial tensions, hence 

promoting the formation and stabilization of emulsions, biosurfactants can have several 

other functions in food. For example, to control the agglomeration of fat globules, stabilize 

aerated systems, improve texture and shelf-life of starch-containing products, modify 

rheological properties of wheat dough and improve consistency and texture of fat-based 

products (Nitschke and Costa 2007). 

The results (Figure 3.3) clearly showed that ethyl acetate was the solvent that 

promoted the synthesis of sugar esters with lower surface tension values. The same 

behavior was observed for the esters synthesized using oleic instead of linoleic acid. 

Again, a possible explanation is the fact that oleic acid possesses one cis double bond, 

while linoleic acid possesses two cis double bonds, as previously discussed. According to 

Leshem et al. (1988), for a fixed monolayer area in a completely expanded state, an 

increase in the number of cis double bonds causes a concomitant increase in the surface 

tension. Table 3.2 summarizes the best results obtained for the surface tension values of the 

samples studied. 
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Table 3.2 Best results obtained for the surface tension values of the samples studied. The Tukey-
test was used at 95% of confidence level to evaluate the existence of statistical significant 
differences between the different samples 

Samples# Surface tension 
Mean (mN/m)±SD* 

A 38.2±0.2a 

B 37.1±0.4b,c 

G 35.8±0.0b,d 

H 36.5±0.3b 

SD = Standard Deviation; #The experimental conditions of 
each sample are shown in section 2.2.1; *Values with 
different letters present statistically significant differences 
(p<0.05). 

 

 

A statistical significant difference at 5% level of probability could be observed 

between the samples A and B (both synthesized with ethanol), and G and H (both 

synthesized with ethyl acetate). These compounds correspond to fructose esters (samples A 

and G) and sucrose esters (samples B and H), all synthesized using oleic acid as fatty acid. 

For these samples it was found that the low values of surface tension obtained were due to 

the use of the oleic acid, thus resulting in more active fructose and sucrose esters. 

 

3.3.4 Emulsification index (EI) 

The emulsification indexes were determined for all the sugar esters synthesized and 

the results are presented in Table 3.3. Emulsion stability was studied in different time 

points, namely 2 minutes, 24 hours and 48 hours. The experimental conditions of each 

sample are given in section 2.2.1 and the results represent the average of three independent 

assays ± standard deviation. Tukey-test was used at 95% of confidence level to evaluate 

the existence of statistical significant differences between the emulsification indexes 

obtained for the different time points in each sample. 
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Table 3.3 Emulsification indexes determined for the fructose, sucrose and lactose esters obtained 
for the different experimental conditions studied: ethanol, oleic acid and fructose, sucrose 
and lactose as carbohydrates (samples A, B, C) (a); ethanol, linoleic acid and fructose, 
sucrose and lactose (samples D, E, F) (b); ethyl acetate, oleic acid and fructose, sucrose and 
lactose (samples G, H, I) (c); and ethyl acetate, linoleic acid and fructose, sucrose and lactose 
(samples J, K, L) (d). The Tukey-test was used at 95% of confidence level to evaluate the 
existence of statistical significant differences between the different time points in each 
sample 

Group Samples# 

Emulsification index 

Mean (%)±SD* 

2 min 24 hours 48 hours 

a 

A 37.8±0.2a 33.9±0.1b 29.5±0.0c 

B 30.0±0.3a 30.0±0.2a 30.0±0.2a 

C 30.2±0.3a 25.1±0.0b 25.0±0.4b 

b 

D 30.0±0.1a 29.5±0.4a 29.2±0.4a 

E 29.0±0.2a 29.0±0.1a 29.0±0.2a 

F 35.1±0.1a 30.0±0.2b 30.0±0.3b 

c 

G 58.4±0.2a 56.2±0.0b 54.4±0.2c 

H 33.1±0.0a 27.5±0.1b 27.3±0.3b 

I 35.1±0.3a 35.1±0.4a 30.0±0.3b 

d 

J 28.4±0.1a 28.4±0.5a 28.1±0.1a 

K 30.4±0.0a 30.3±0.1a 30.1±0.2a 

L 31.0±0.3a 30.5±0.1a 30.0±0.0a 

SD = Standard Deviation; #The experimental conditions of each sample are shown in Table 
3.1; *Values with different lowercase in the same line present statistically significant 
differences (p<0.05) for each sample in all time points. 

 

 

Two important parameters are used to evaluate the power of a given emulsifier, 

namely the emulsification index (EI) and the emulsion stability (Abu-Ruwaida et al. 1991, 

Cooper and Goldenberg 1987, Singh et al. 2007). According to Table 3.3a, it could be 

observed that the sample with the highest emulsification index was sample A (fructose 

ester), with an EI of 37.8% for 2 minutes. Sucrose and lactose esters (samples B and C, 

respectively) presented similar values (30.0%) for all the time points studied. Furthermore, 

from Table 3.3b, similar values (~29.0%) for fructose and sucrose esters (samples D and E, 
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respectively) were found for all the time points. Lactose ester (sample F) presented the best 

EI value (Table 3.3b) for 2 minutes (35.1%) compared to samples D and E. 

Comparing all the results obtained for the emulsification index test, sample G was 

the one that presented the highest percentage: 58.4% (2 min), 56.2% (24 h) and 54.4% (48 

h). Sample G corresponds to the fructose ester synthesized using oleic acid and ethyl 

acetate. The EI values obtained for this sample are consistent with its surface activity 

previously discussed (Figure 3.3). Samples H and I (sucrose and lactose esters) showed 

values close to 30.0% for all time points. From Table 3.3d, all the samples (fructose, 

sucrose and lactose esters) presented similar EI values for all time points (30.0%).  

In general, the esters obtained from oleic acid showed a better performance regarding 

the emulsification index as compared to the ones obtained from linoleic acid. Furthermore, 

except for sample G, all sugar esters presented similar emulsification index values ranging 

from 25.0 to 37.8% for all time points. Moreover, the solvent that showed better results 

was ethyl acetate, which is also in agreement with the previous results of surface tension 

activity (Figure 3.3).  

The results obtained for each sample at different time points (Table 3.3) showed 

variability at 5% level probability. The emulsions’ stability for samples B, D, E, J, K and L 

showed no statistically significant differences among the different time points. For these 

samples, the emulsions were found to be stable for all the time points studied, thus no 

changes in the emulsification indexes could be observed.  

It is important to notice that these emulsions were found to be stable for several 

weeks (data not shown), which means that these sugar esters provide stability to the 

emulsions over a long time. Although some studies on the use of sugar ester biosurfactants 

have been reported (Nitschke and Costa 2007), to our knowledge this is the first report on 

the emulsification index values for fructose, sucrose and lactose esters under the 

experimental conditions used. The stability of the emulsions conferred by the presence of 

these particular sugar esters is very promising, since they can compete with others obtained 

by chemical via that have been used in the field of food additives (Muller et al. 2002, 

Singh et al. 2007). 
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3.4 Conclusions 
 

In the current work, synthesis of sugar ester biosurfactants catalyzed by CALB, 

using three types of carbohydrates, two types of fatty acids and two organic solvents, was 

studied. According to the results, the highest esterification yield (83.5%) was obtained for 

the synthesis of lactose ester from lactose and linoleic acid in the presence of ethanol, in 

comparison with the other sugar esters and conditions studied. However, the fructose esters 

showed a better performance regarding their surface activity and the ability to stabilize 

emulsions, suggesting that further studies should be conducted in order to maximize their 

synthesis yield. 
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Chapter 4 

 
Production of sugar ester 
biosurfactants by enzymatic synthesis 
using porcine pancreas lipase 
 

“O planejamento é uma ferramenta 

administrativa, que possibilita perceber a 

realidade, avaliar os caminhos, construir um 

referencial futuro, estruturando o trâmite 

adequado e reavaliar todo o processo a que o 

planejamento se destina”. 

(Autor Desconhecido) 

 

Sugar ester biosurfactants and their corresponding emulsification properties result from the 

presence of both hydrophilic and hydrophobic regions on the same molecule. This work 

aimed the study of the effect of several variables (carbohydrates, fatty acids and solvents) 

on the enzymatic synthesis of sugar esters, using porcine pancreas lipase as biocatalyst. 

According to the results obtained, the highest esterification yields (47.6%) were observed 

for sucrose esters, which presented the best performance regarding surface activity (33.4 

mN/m), and formation and stability of emulsions given by their emulsification indexes (2 

min: 58.4%; 24 h: 58.2% and 48 h: 58.1%). Fructose esters also presented good 

esterification yields (41.4%), surface activity (36 mN/m) and emulsification index (above 

50% in some experimental points). In general, the reagents that yielded the best results 

regarding sugar esters formation were oleic acid and ethanol. Several applications of 

sucrose and fructose ester biosurfactants have been suggested for the food industry due to 

their ability to reduce surface tension and form stable emulsions.  
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4.1 Introduction 

Lipases are biocatalysts of great importance in different areas, which may catalyze 

reactions in both aqueous and organic medium. This phenomenon is primarily due to its 

ability to use a wide range of substrates, stability at a large temperature, pH and organic 

solvents ranges, and chemo-regio and enantioselectivity (Borkar et al. 2009, Kim and Shin 

2001, Krajewska 2004, Saxena et al. 2003, Song et al. 2008).  

The most common lipases of animal origin are obtained from porcine pancreas 

(Gupta et al. 2004, Hasan et al. 2006). Porcine pancreas lipase (PPL) has hydrophilic 

amino acid residues inside its core and contains up to 32 water molecules hydrogen bonded 

to several amino acid residues. The surface amino acid residues are more hydrophobic, 

thus conferring stability to the enzyme when in a non-polar medium (Kiran et al. 2001). It 

is important to notice that PPL is one of the cheapest commercially available non-

microbial enzyme (Gogoi et al. 2008). PPL act as biocatalyst in the enzymatic synthesis of 

sugar ester biosurfactants, produced from carbohydrates (Mulligan 2005).  

The sugar ester biosurfactants produced by PPL can be synthesized from renewable 

substrates and present a great diversity. Moreover, these compounds possess structural 

characteristics and physical properties that make them comparable or superior in terms of 

efficiency to their chemical counterparts (Rashedi et al. 2005). They are used in several 

applications based on their ability to reduce surface tension, increase solubility (Mulligan 

2005), and form stable emulsions of oil in water (Kiran and Divakar 2001, Rashedi et al. 

2005). 

Sugar ester biosurfactants present a range of different biological functions/properties, 

thus enabling their potential use in the food industry. Several studies reported their use in 

the manufacture of cereal products (e.g. yeast raised bread, cakes, donuts, pastries and 

desserts), dairy products (e.g. ice cream, cream coffee, liquid and dry whipped toppings) 

and of coconut milk (Benincasa et al. 2004, Kiran and Divakar 2001, Mukherjee et al 

2009, Nayak et al. 2009, Salihu et al. 2009, Tangsuphoom and Coupland 2009, Tugrul and 

Cansunar 2005).  

In this study, it was investigated the synthesis of fructose, sucrose and lactose esters 

catalyzed by PPL. Different fatty acids (oleic and linoleic acid) and solvents (ethanol and 

ethyl acetate) were studied. Additionally, the sugar esters synthesized were evaluated for 



Production biosurfactants using porcine pancreas lipase Chapter 4 

 

Neta, N.A.S. 75 
Universidade do Minho, 2011 

their surface activity and ability to form and stabilize emulsions. The sugar ester 

biosurfactants synthesized in the current work are aimed at applications in the food 

industry. 

 

 

4.2 Material and Methods 

4.2.1 Materials 

All chemicals used were analytical grade. Commercial porcine pancreatic lipase 

(Type II) was purchased from Sigma-Aldrich (Sigma-Aldrich Co., St. Louis, MO). 

 

4.2.2 Methods 

4.2.2.1 Synthesis of sugar esters 

Sugar ester biosurfactants were synthesized through esterification between a 

carbohydrate (fructose, sucrose or lactose) and a fatty acid (oleic or linoleic acids) 

catalyzed by PPL using ethanol or ethyl acetate as solvents. The different reagent 

combinations used are described in the Table 4.1. 

 

Table 4.1 Combinations of carbohydrates, fatty acids and solvents used to synthesize sugar esters 
by porcine pancreas lipase 

Samples Solvents Fatty acids Carbohydrates Sugar esters 
formed 

1 

Ethanol 

Oleic acid 
Fructose Fruest 

2 Sucrose Sucest 
3 Lactose Lacest 
4 

Linoleic acid 
Fructose Fruest 

5 Sucrose Sucest 
6 Lactose Lacest 
7 

Ethyl acetate 

Oleic acid 
Fructose Fruest 

8 Sucrose Sucest 
9 Lactose Lacest 

10 
Linoleic acid 

Fructose Fruest 
11 Sucrose Sucest 
12 Lactose Lacest 
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The synthesis were conducted in flasks containing 0.5 mmol fructose, sucrose or 

lactose; 0.5 mmol oleic acid or linoleic acid; 22.5 mg porcine pancreas lipase and 0.6 mL 

ethanol or ethyl acetate (99%). Sodium sulfate anhydrous (0.1 g) was added to all 

reactions. The flasks were incubated at 40 ºC and 250 rpm for 72 h, according to 

methodology described by Sabeder and collaborators (2006). 

After the esterification reaction, the lipase together with the sodium sulfate 

anhydrous (non reactive species) were removed by filtration using filter paper with a pore-

size of 60-µm (Macherey-Nagel Inc.). Afterwards, the solvent was evaporated from the 

reaction media using a rotoevaporator. All the synthesis experiments were carried out in 

triplicate.  

 

4.2.2.2 Thin Layer Chromatography (TLC) 

Thin-layer chromatography (TLC) was performed on commercial silica gel plates 

(Merck Co. Inc, Damstadt, Germany) pre-coated with a 0.25 mm layer (Khaled et al. 

1991). TLC plates were spotted with the samples from the reaction mixture dissolved in 

ethanol and developed using as mobile phase: chloroform/hexane, 1:1 (v/v). Sugar esters 

spots were visualized with iodine according to Ducret and collaborators’ work (1995). 

 

4.2.2.3 Esterification reactions yields 

The sugar ester biosurfactants content was quantified by calculating the residual fatty 

acid amount in the reaction mixture, which was determined by the volumetric method 

described elsewhere (Leitgeb and Knez 1990). Briefly, 0.1 g of sample from the reaction 

mixture were diluted in 20 mL of 0.1% (w/v) phenolphthalein solution in absolute ethanol, 

and then titrated with standardized sodium hydroxide solution of 0.1 mol/L. Measurements 

were done in triplicate. 

 

4.2.3 Characterization of the sugar ester biosurfactants 

Sugar ester biosurfactants synthesized were further characterized according to the 

following techniques. 
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4.2.3.1 Surface tension 

The surface tension was determined at room temperature (25±1 ºC) using the Ring 

method as described elsewhere (Rodrigues et al. 2006). A KRUSS Tensiometer (Kruss 

model K10) equipped with a 1.9 cm Du Nouy platinum ring was used. The results 

represent the average of five independent measurements ± standard deviation. The 

concentration of final product used in these measurements was 30% (v/v). 

 

4.2.3.2 Emulsions formation and stability 

The sugar esters ability to form and stabilize emulsions was evaluated through the 

determination of the emulsification indexes (EI). Briefly, 2 ml sample and 1 ml of n-

hexadecane were homogenized using a vortex for 2 minutes at 25 °C. Next, the emulsion 

was left to settle for 2 minutes and the height of the emulsion was measured (T2). The 

index was calculated using the equation (1). 

 

EI (%) = He/Ht x 100                               (1) 

 

where He is the height of the emulsion and Ht is the total height of the liquid. To check the 

stability of the emulsions, the samples were left to settle for 24 (T24) and 48 hours (T48). 

All determinations were performed in triplicate and results represent the mean ± standard 

deviation (Cooper and Goldenberg 1987). 

 

4.2.3.3 Statistical analysis and data analysis 

Statistical analysis of the data was conducted using Origin Pro 7.5 (OriginLab) 

software. The data were analyzed and compared through one-way analysis of variance 

(ANOVA) and Tukey-test at 95% of confidence level (p = 0.05).  

 

 

 



Production biosurfactants using porcine pancreas lipase Chapter 4 

 

Neta, N.A.S. 78 
Universidade do Minho, 2011 

4.3 Results and Discussion 

4.3.1 Thin Layer Chromatography (TLC) 

According to the TLC results, it was possible to confirm the presence of sugar 

esters (fructose, sucrose and lactose esters) by measuring the retention factor (Rf). All 

sugar esters obtained in this study presented Rf values of 0.5. The results are in accordance 

with the studies of Khaled et al. (1991) and Pyo and Hayes (2008), that reported Rf values 

of 0.5 and 0.58 for sucrose and fructose esters, respectively. Moreover, Tortorello and 

Delwiche (1983) reported an Rf value of 0.51 for fatty acid esters. 

 

4.3.2 Esterification reactions yields 

Figure 4.1 illustrates the sugar esters yields obtained by enzymatic synthesis with 

PPL using different fatty acids, carbohydrates and solvents combinations. The 

experimental conditions used for each sample are given in Table 4.1 and the results 

represent the average of three independent assays ± standard deviation. 
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Figure 4.1 Yields of the sugar esters obtained using porcine pancreas lipase in the following 
conditions: ethanol, oleic acid, fructose, sucrose or lactose (a); ethanol, linoleic acid, fructose, 
sucrose or lactose (b); ethyl acetate, oleic acid, fructose, sucrose or lactose (c); ethyl acetate, 

linoleic acid, fructose, sucrose or lactose (d). 
 

 

Figure 4.1a (esterification using ethanol and oleic acid) corresponds to the best 

results obtained for the synthesis of sugar esters (samples 1, 2 and 3, respectively). 

Fructose ester showed a yield of 41.4%, sucrose ester of 47.6% and lactose ester of 25.4%. 

Figure 4.1b corresponds to the esterification reaction using ethanol and linoleic acid. 

Sample 4 (fructose ester) presented the highest yield (11.2%) followed by sample 6 

(lactose ester) with a yield of 9.0% and sample 5 (sucrose ester) with a yield of 6.4%. The 

yields obtained for samples 7, 8 and 9, synthesized with ethyl acetate and oleic acid are 

illustrated in Figure 4.1c. For these samples, yields of 21.4%, 14.5% and 4.8% were 

obtained for fructose, sucrose and lactose esters, respectively. Figure 4.1d presents the 

results obtained using ethyl acetate and linoleic acid for the synthesis reactions. The 
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highest yield (13.6%) was again obtained for fructose ester (sample 10). The sucrose ester 

(sample 11) presented a yield of 11.1%, and lactose ester a yield of 7.7%. From these 

results, except for the system with ethanol and oleic acid, fructose ester was the product 

with the highest yield obtained under all the tested conditions 

It is well known that an esterification reaction yield of 100% cannot be achieved 

since only part of the alcohol and fatty acid present will react, resulting in a equilibrium 

between alcohol, fatty acid, ester and water. Therefore, in the present study, the highest 

esterification yield was obtained for sample 2 using sucrose as carbohydrate (47.6%). 

Moreover, sample 1 obtained from fructose also presented a high esterification yield 

(41.4%). The differences observed in the esterification yields of both samples (1 and 2) 

were found to be statistically significant as shown by the Tukey test at 5% level of 

probability. It is also important to notice that for all results presented in Figure 4.1a, the 

samples only differed on the carbohydrate used, therefore the results suggest that the use of 

oleic acid and ethanol (as solvent) is the condition that provides the best esterification 

yields for PPL. 

Plou et al. (2002) suggested that the longer the carbon chain of the fatty acid used in 

the enzymatic esterification reaction, the higher the yield of sugar ester obtained. Ku and 

Hang (1995) reported a fructose ester yield of 24.4% obtained from oleic acid in the 

presence of tertiary butyl alcohol by Byssochlamys fulva NTG9, being this value lower 

than the fructose ester yields obtained in the current study. Moreover, Bagi and Simon 

(1999) conducted a direct esterification for 5 days using PPL immobilized on Sorsilen to 

synthesize fructose butyrate, which yielded 10.6%. The reaction mixture contained 

fructose, acyl donor (butyric acid in esterification, or tributyrin in transesterification) and 

acetonitrile. Although comparisons are hampered by the different experimental conditions 

used in the above mentioned studies, the yields obtained in the present study for fructose 

esters were found to be superior. Additionally, Somashekar and Divakar (2007) used PPL 

as biocatalyst to enzymatically produce sucrose and glucose esters. A maximum yield of 

18% and 8% for glucose and sucrose esters was achieved, respectively. This result was 

also lower comparing the sucrose esters produced this study (samples 2, 8 and 11). 

Kiran and Divakar (2001) reported maximum esterification yields of lactic acid with 

stearic acid (24.4%) and with palmitic acid (22.2%) by PPL, both using ethylmethyl ketone 
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as solvent. Similar lactose ester yields were obtained in the current study using oleic acid, 

lactose and ethanol (25.4% - sample 3). However, the yields obtained for the synthesis of 

lactose esters using ethyl acetate were very low (4.8% - sample 9; 7.7% - sample 12). 

These results are slightly higher than the ones reported by Ku and Hang (1995). These 

authors performed an enzymatic esterification of lactose and linoleic acid in tertiary butyl 

alcohol with lipase from B. fulva NTG9, and found that no lactose ester was synthesized 

(0%). Thus, the lactose ester yield obtained with oleic acid and ethanol in the present study 

(25.4%) was higher than the results obtained by Ku and Hang (1995). This yield is 

comparable to the one reported by Kiran and Divakar (2001), however, the solvent used 

herein (ethanol) can be obtained by renewable sources, such as sugar cane, and is less toxic 

and polluent than ethylmethyl ketone. 

Selmi and collaborators (1998) reported that linoleic acid is esterified more slowly 

than oleic acid because the higher the number of unsatured bonds, the lower the synthesis 

rate and yields obtained. These observations can explain the differences observed for the 

two fatty acids in the present study because, in general, oleic acid showed a better 

performance than linoleic acid. 

 

4.3.3 Surface tension 

Figure 4.2 presents the surface tension values determined for the sugar ester samples 

produced according to Table 4.1. The results represent the average of five independent 

assays ± standard deviation. 
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Figure 4.2 Surface tension values for the sugar esters obtained by enzymatic synthesis using 
porcine pancreas lipase in the different experimental conditions studied: ethanol, oleic acid, 

fructose, sucrose or lactose (a); ethanol, linoleic acid, fructose, sucrose or lactose (b); ethyl acetate, 
oleic acid, fructose, sucrose or lactose (c); ethyl acetate, linoleic acid, fructose, sucrose or lactose 

(d). 
 

 

According to Figure 4.2a, the samples 1, 2 and 3, synthesized in the presence of 

ethanol and oleic acid, presented a surface tension of 36.0 mN/m (sample 1, fructose ester), 

33.4 mN/m (sample 2, sucrose ester) and 36.1 mN/m (sample 3, lactose ester). Also, 

similar results are presented in the Figure 4.2c for the esters synthesized with ethyl acetate 

and oleic acid, where the samples 7, 8 and 9 showed surface tension values of 36.1 mN/m 

(fructose ester), 35.1 mN/m (sucrose ester) and 36.8 mN/m (lactose ester), respectively. 

The surface tension values obtained for the experimental conditions represented by 

the Figures 4.2b and 4.2d were slightly higher than the ones shown in Figures 4.2a and 

4.2c (between 39.8 and 43.9 mN/m). The results suggest that under the same conditions the 
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use of ethanol generally leads to lower surface tension values as compared to ethyl acetate. 

Additionally, the experiments conducted with oleic acid showed lower surface tension 

values than linoleic acid independently of the carbohydrate and solvent used. These results 

are possibly related with the amount of cis double bonds present in the chemical structure 

of the oleic (one bond) and linoleic acid (two bonds). Leshem et al. (1988) reported that, 

an increase in the number of these bonds causes a concomitant increase in the surface 

tension. 

Table 4.2 summarizes the best results for surface tension obtained herein. Data were 

analyzed by the Tukey-test at 5% level of probability. 

 

Table 4.2 Summary of the best results obtained for the surface tension values of the samples 
presented in Figures 4.2a and 4.2c 

Group Samples# Surface tension (mN/m)±SD* 

a 

1 36.0±0.0a 

2 33.4±0.2b,c 

3 36.1±0.2a,d 

c 
7 36.1±0.2a,d,e 

8 35.1±0.2b,f 

9 36.8±0.3b 

SD = Standard Deviation; #The experimental conditions of 
each sample as shown in Table 4.1; *Values with different 
letters present statistically significant differences (p<0.05). 

 

 

According to Table 4.2, no statistical significant differences were observed among 

samples 1, 3 and 7. These samples were synthesized in the presence of oleic acid and 

ethanol (samples 1 and 3, fructose and lactose esters, respectively) or ethyl acetate (sample 

7, fructose ester). Therefore, for these samples the surface tension was found to be 

independent of the type of carbohydrate and solvent used. A surface tension of 38.3 mN/m 

for fructose esters obtained with distillated palm fatty acid, Mucor miehei lipase and tert-

butyl alcohol has been reported (Rahman and Herawan 2000). 

From Figure 4.2 it was possible to observe that the lowest surface tensions 

correspond to sucrose esters synthesized with oleic acid, regardless of solvent used 

(Figures 4.2a and 4.2b).  
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Different surface tension ranges have been reported for sugar esters synthesized from 

different experimental conditions. For example, in the synthesis of sucrose esters with fatty 

acids C12-C16, the range of surface tension values measured was between 31.5 mN/m and 

35.2 mN/m, respectively. For lactose esters, using fatty acids C14-C16, the surface tension 

values were found to be within 38.6 mN/m and 39.5 mN/m (Plou et al. 2002). In summary, 

the sucrose and lactose esters obtained in this study presented high surface activity, thus 

representing promising alternative surfactants to be used in many industrial applications. 

This is very important because the greater the ability of a sugar ester biosurfactant to 

reduce surface tension, the greater the stability of the emulsion formed (Ahimou et al. 

2001, Ghojavand et al. 2008, Lee et al. 2008, Nguyen et al. 2008). 

According to Mulligan (2005), a good surfactant can lower surface tension of water 

from 72 to 35 mN/m. Yanke et al. (2004) found a surface tension value equal of 34.0 

mN/m for sucrose palmitate obtained using methyl palmitate, anhydrous potassium 

carbonate and potassium oleate. Becerra et al. (2008) reported a surface tension value of 

43.1 mN/m for sucrose monoesters using lauric acid derivative. Both works showed higher 

surface tension values than those found in the present study. 

Nitschke and Costa (2007) reported that a decrease in the surface tension promotes 

the formation and stabilization of emulsions, and several other functions in food, such as: 

control of the agglomeration of fat globules, stabilization of aerated systems; improvement 

of texture and shelf-life of starch-containing products, modification of rheological 

properties of wheat dough and improvement of consistency and texture of fat-based 

products. Van Haesendonck and Vanzeveren (2004) suggested the use of sugar ester 

biosurfactants to improve properties of butter cream, croissants and frozen confectionery 

products. Being good surfactants, the sucrose and fructose esters obtained in the present 

study could be further explored for this type of food applications. 

 

4.3.4 Emulsification index (EI) 

The emulsification index (EI) was determined for all sugar esters synthesized 

according to Table 4.1 and the results are gathered in Table 4.3. The results represent the 

average of three independent assays ± standard deviation. 
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Table 4.3 Emulsification indexes determined for the sugar esters obtained for the different 
experimental conditions studied: ethanol, oleic acid and fructose, sucrose and lactose as 
carbohydrates (a); ethanol, linoleic acid and fructose, sucrose and lactose as carbohydrates 
(b); ethyl acetate, oleic acid and fructose, sucrose and lactose as carbohydrates (c); ethyl 
acetate, linoleic acid and fructose, sucrose and lactose as carbohydrates (d) 

Group Samples# 

Emulsification index 
Mean (%)±SD* 

2 min 24 hours 48 hours 

a 
1 55.9±0.0a 53.2±0.2b 50.2±0.3c 
2 58.4±0.1a 58.2±0.0a 58.1±0.4a 
3 38.0±0.2a 35.4±0.1b 33.2±0.0c 

b 
4 55.7±0.0a 55.6±0.4a 54.6±0.0b 
5 56.2±0.1a 56.1±0.0a 56.0±0.4a 
6 33.1±0.0a 32.2±0.3b 30.1±0.4c 

c 
7 53.2±0.4a 50.1±0.1b 48.2±0.0c 
8 56.2±0.0a 55.1±0.4b 52.1±0.2c 
9 33.2±0.3a 31.1±0.0b 30.1±0.4c 

d 
10 50.1±0.0a 50.1±0.1a 49.8±0.0a 
11 52.1±0.4a 50.0±0.1b 48.3±0.2c 
12 31.6±0.0a 31.3±0.1a 31.0±0.4a 

SD = Standard Deviation; #The experimental conditions of each sample are shown in Table 
4.1; *Values with different lowercase in the same line present statistically significant 
differences (p<0.05) for each sample in all times. 

 

An important parameter for evaluating the power of an emulsifier is the EI (Abu-

Ruwaida et al. 1991, Cooper and Goldenberg 1987, Singh et al. 2007). According to Table 

4.3, the EI values obtained for samples 1 (55.9%) and 2 (58.4%) were the highest among 

the sugar esters obtained using oleic acid and ethanol. Samples 1 and 2 correspond to 

fructose and sucrose ester, respectively. However, EI significantly (p<0.05) decreased 

along the time for fructose ester (sample 1). Similar EI values were obtained for samples 4 

(55.7%) and 5 (56.2%), which were synthesized using ethanol and linoleic acid, 

corresponding to fructose and sucrose esters, respectively. Sample 8, a sucrose sugar ester 

obtained using ethyl acetate and oleic acid, also showed similar EI compared to the above 

mentioned samples. The other samples presented lower EI for the 2 minutes assay.  

Comparing the EI values obtained for samples 2, 5, 10 and 12 in the different time 

points (2 min, 24 h and 48 h), no statistical significant differences could be observed, 

indicating that the referred samples showed good emulsion stability.  
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The sucrose ester obtained from sucrose with oleic acid and ethanol (sample 2) 

presented the highest and most stable EI, the highest yield (Figure 4.1a) and the lowest 

surface tension (Table 4.2). Being sucrose a world-wide commodity relatively cheap 

(cheaper than lactose and fructose), these results open new possibilities for the production 

of sugar ester biosurfactants. Furthermore, correlating the surface tension results with the 

emulsification indexes, it was found that fructose (samples 1 and 7) and sucrose esters 

(samples 2 and 8) synthesized from oleic acid showed the best performances.  

In summary, according to emulsification index test (Table 4.3) it is clear that the 

oleic acid and ethanol showed the best performance for surfactant production compared to 

linoleic acid and ethyl acetate. Moreover, compounds with EI values above 50% are 

considered promising emulsifiers, and in the present work all fructose and sucrose esters 

showed EI values above 50% even for the 48 h assay. Although some studies on the use of 

sugar ester biosurfactants have been reported, to our knowledge this is the first report on 

the emulsification index for fructose, sucrose and lactose esters for the experimental 

conditions used.  

Finally, these emulsions were found to be stable for several weeks (data not shown), 

i.e. these sugar esters provide stability to the emulsions over time. Several studies have 

reported the potential of sugar ester biosurfactants for food applications, namely as 

emulsifiers; solubilizers; demulsifiers; wetting agents; foaming or de-foaming agents; 

thickeners; lubricating agents; and as functional ingredients due to their interaction with 

lipids, proteins and carbohydrates (Singh et al. 2007). Other segments of food industry in 

which sugar ester biosurfactants can be used are: the production of aromas and maturation 

of cheeses, bakery products, cakes, biscuits, mayonnaise and sauces, instant products, 

sausages, among others (Liese et al. 2000, Pandey et al. 1999, Plou et al. 2002, Saxena et 

al. 1999, Sharma et al. 2001). 

 

 

4.4 Conclusions 

In this study, sugar esters were enzymatically synthesized from three types of 

carbohydrates, two types of fatty acids and two types of solvents using PPL as biocatalyst. 
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The sucrose esters presented the highest esterification yield (47.6%), and superior surface 

activity (33.4 mN/m), besides their ability to form stable emulsions (EI above 58% for all 

assays). Additionally, fructose esters also showed good results. In general, the best sucrose 

and fructose esters were synthesized from oleic acid using ethanol as solvent, and represent 

promising products for application in the food industry. The use of sucrose and ethanol is 

interesting from the economical and environmental point of view. Sucrose is the cheapest 

carbohydrate among the ones studied herein, and ethanol is non pollutant and non toxic, 

and easily obtained from renewable sources.  
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Chapter 5 

 
Enzymatic synthesis of sugar ester 
biosurfactants and their potential as 
surface-active stabilizers of coconut 
milk emulsions 
 

“Tentar e falhar é, pelo menos, aprender. Não 

chegar a tentar é sofrer a inestimável perda do que 

poderia ter sido. Uma longa viagem começa com 

um único passo". 

(Albino Teixeira e Lao Tsé) 

 

Sugar esters were produced by esterification reactions. They are compounds with 

surfactant properties (biosurfactants), i.e. capable of reducing the surface tension and 

promote the emulsification of immiscible liquids. As with all emulsions, coconut milk is 

not physically stable and prone to phase separation. The aim of this work was to 

evaluate the synthesis of fructose, sucrose and lactose esters from the corresponding 

sugars using Candida antarctica type B lipase immobilized in two different supports, 

namely acrylic resin and chitosan. The enzyme immobilized on chitosan showed the 

highest yield of lactose ester production (84.1%). Additionally, the production of 

fructose ester was found to be higher for the acrylic resin support (74.3%) as compared 

with the chitosan (70.1%). The same trend was observed for the sucrose ester, although 

with lower percentage yields. Sugar esters were then added to samples of fresh coconut 

milk and characterized according to their surface tension, emulsification index and 

particle size distribution. Although the microscopic analysis showed similar results for 

all sugar esters, results indicated lactose ester as the best biosurfactant, with a surface 

tension of 38.0 mN/m and an emulsification index of 54.1%, when used in a ratio of 

1:10 (biosurfactant: coconut milk, v/v) for 48 hours experiments. 

 



Sugar esters synthesized as a potential stabilizer for coconut milk Chapter 5 

 

Neta, N.A.S. 94 
Universidade do Minho, 2011 

5.1 Introduction 
 

Enzymes possess high catalytic activity, unique specificity of action and the ability to 

function under mild operating conditions. Numerous advantages have been associated to 

the use of enzymes, such as for example the production of purer products (monoesters) due 

to the high selectivity of the catalyst and the mild conditions of temperature, pressure and 

pH required for the synthesis, in contrast to the extreme conditions associated with the 

chemical processes. Hence, since the 1970’s there has been considerable interest in enzyme 

technology and much of this is due to the potential of immobilized enzymes (Choudhary et 

al. 2004, Krajewska 2004, Lamb and Stuckey 1999, Rezaei et al. 2007). 

Lipases are an important group of biocatalysts, which not only modify oils and fats, 

but are also used for organic chemistry (Bruno et al. 2005). There are several industrial 

lipase applications in food and flavor production, pharmaceuticals, synthesis of 

carbohydrate esters (or sugar esters), amines, amides, biodetergents, cosmetics and 

perfumery (Hung et al. 2003). 

However, the current market price of lipases is about one order of magnitude higher 

than the energy costs associated with standard processes. Hence, in order to reduce the 

overall process costs, efficient methods for lipase immobilization are required since 

immobilization allows enzyme to be reused, extending its useful active life (Bruno et al. 

2005, Soares et al. 2002, Villeneuve et al. 2000). The immobilized lipase B from Candida 

antarctica (CALB) is an interesting lipase with potential application in a number of 

industrial processes such as: detergents, fungicide, foaming agents, demulsifying, 

solubilizing, emulsifiers, dispersants or in the synthesis of sugar esters used in the flavor 

industry. CALB has been mostly used in the immobilized form commercially available 

from Novo Nordisk (Novozyme 435) (Chang et al. 2008, Foresti and Ferreira 2005, Kose 

et al. 2002, Rodrigues et al. 2008). 

Several immobilization supports have been pursued in order to improve the use of 

enzymes in industrial applications. Chitosan is a natural polymer, with a low cost, 

renewable and biodegradable, highly economic and with an environmental relevance, 

having a high potential as a source of polysaccharides. It has been used as a matrix for 

immobilization of lipase, and it is a good support for enzyme immobilization in the food 

industry since it is non-toxic (food grade). Chitosan is obtained by partial N-deacetylation 
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of chitin, a by-product of the fishing industry, which is the main component of the shells of 

crab, shrimp, and krill. It is available in different forms (powder, gel, fibers and 

membranes) it has high protein affinity and allows an easy derivatization (Alsarra et al. 

2002, Chiou and Wu 2004, Hirano 1999, Saboktakin et al. 2010a,b, Spagna et al. 2001, 

Wu et al. 2010).  

Orrego and collaborators (2010) developed and tested formulations of chitosan 

membranes, verifying that they are efficient as support for the immobilization of lipases 

from Candida rugosa and C. antarctica. Furthermore, according to Hung et al. (2003), the 

immobilization of C. rugosa enzyme using chitosan as support is a promising technique for 

large-scale preparation of immobilized lipases for industrial applications. 

Biosurfactants are compounds with surfactant properties, i.e. capable of reducing the 

surface tension and promote the emulsification of immiscible liquids (Amézcua-Vega et al. 

2007, Banat 2000, Banat et al. 2000, Daoshan et al. 2004, Rodrigues et al. 2006a). 

Moreover, these compounds could replace products already in use in the food industry due 

to their biodegradability (Chamouleau et al. 2001, Park et al. 2004, Tsavas et al. 2002).  

An oil-in-water emulsion formed from the aqueous extract of coconut (Cocos 

nucifera, LINNAEUS) solid endosperm called coconut milk is used as an ingredient in 

cooking in the many tropical countries (Tangsuphoom and Coupland 2009a). As with all 

emulsions, coconut milk is not physically stable and is prone to phase separation. The 

emulsion is relatively unstable because of the large droplet size and the poor emulsifying 

properties of coconut proteins adsorbed at the oil-water interface. To make more stable 

products, emulsifiers are usually added during manufacturing and the stabilized coconut 

milk is preserved by chilling, freezing, pasteurization, or sterilization (Tangsuphoom and 

Coupland 2005, 2009a,b). 

This work reports the use of acrylic resin (commercial) and chitosan as supports for 

immobilization of CALB for the production of sugar ester biosurfactants. Additionally, the 

sugar ester biosurfactants were characterized according to their ability to stabilize coconut 

milk. 
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5.2 Material and Methods 

5.2.1 Materials 

All chemicals used were analytical grade. Commercial coconut milk was purchased 

from a local market (Fortaleza-CE, Brazil); the triacylglycerol lipase purified from C. 

antartica B immobilized in acrylic resin (CALB) (Novozym 435) was purchased from 

Sigma-Aldrich (Sigma-Aldrich Co., St. Louis, MO); powdered chitosan, 85.2% 

deacetylation degree was purchased from Polymar Ind Ltd. (Fortaleza-CE, Brazil); and 

native soluble lipase B from C. antarctica B (Lipozyme® CALB L) was kindly provided 

by Novozymes Latin America Ltd. (Araucária, Brazil). 

 

5.2.1.1 Sample preparation of fresh coconut milk 

Coconuts with 12-14 months’ maturity from ‘ordinary tall’ coconut cultivars were 

used for the extraction of coconut milk. The fresh coconut pulp with added water in 

proportion 3:1 (w/v), respectively, was crushed by cutter (Arno, France) for 5 minutes. The 

viscous exudates resulting from the cutter extraction was squeezed through cheesecloth to 

obtain fresh coconut milk, according to methodology described by Seneviratne et al. 

(2009). Immediately after the fresh coconut milk extraction, surface tension, emulsification 

index and microscopic analysis were performed. 

 

5.2.2 Methods 

5.2.2.1 Preparation and activation of the immobilization support  

In this work, chitosan was used as a solid support for lipase (lipase from C. 

antarctica type B) immobilization, based on the methodology described by Rodrigues et 

al. (2008). Briefly, 4.0 g of powdered chitosan was added to 96.0 mL of a 5% acetic acid 

solution. The obtained solution was dropped into a gently stirred 1M NaOH solution for 24 

h, at room temperature. Afterwards, the mixture was washed with an excess of distilled 

water.  
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The support was activated with glycidol, ethylenediamine (EDA) and glutaraldehyde. 

Activation of chitosan with glycidol was carried out by etherification and further oxidation 

with sodium periodate of the resulting support - glyceril (Guisán 1988), 10 g of Chitosan - 

Glyoxyl gel was reacted with 40 mL of a 2M ethylenediamine solution, pH 10.0 (Cardias 

et al. 1999). Finally, 9 mL of sodium bicarbonate buffer, pH 10.0, containing 5% (v/v) of 

glutaraldehyde, was added to 1 g of chitosan- Glyoxyl - EDA. The mixture was kept under 

agitation for 60 min at 25 ºC for 18 h. After this time, supports were washed with distilled 

water to remove the excess of activating agent. 

 

5.2.2.2 Immobilization of CALB 

CALB was immobilized on chitosan gels, after activation with glycidol, 

ethylenediamine and glutaraldehyde. The immobilization was carried out in 100 mM 

bicarbonate buffer, pH 10.05, at 25 ºC and 5 h, under gentle stirring. In the immobilization 

assays, 109 U per gram of support was used. 

 

5.2.2.3 Lipase activity 

The hydrolytic activity of soluble and immobilized CALB was measured 

spectrophotometrically (410 nm) using p-nitrophenyl butirate (pNPB) as substrate, in 2-

propanol, at pH 7.0 and 25 ºC, according with methodology described in literature 

(Bhatnagar et al. 2005). 

 

5.2.2.4 Sugar ester biosurfactants production 

Sugar ester biosurfactants were produced by esterification reactions. The synthesis 

experiments were conducted in flasks by adding oleic acid (0.5 mmol); fructose, sucrose or 

lactose (0.5 mmol); immobilized lipase (22.5 mg); sodium sulfate anhydrous (0.1 g); 

ethanol 99% (0.6 mL) and incubating the mixture at 40 ºC, 250 rpm for 72 hours. This 

procedure has been previously described by Sabeder and co-workers (2006). At the end of 

the esterification reaction, the lipase, together with the sodium sulfate anhydrous (non 

reactive species), were removed by filtration using filter paper with a pore-size of 60-µm 
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(Macherey-Nagel Inc.). Afterwards, the ethanol was evaporated from the reaction media 

using a rotoevaporator. 

 

5.2.2.5 Thin Layer Chromatography (TLC) 

The obtained products (sugar esters) were identified by thin layer chromatography 

(TLC), using commercial plates (Merck) coated with a 0.25 mm layer of silica gel (Khaled 

et al. 1991). A mixture of chloroform/hexane (1:1, v/v) was used for elution. Subsequently, 

the sugar esters spots were identified with iodine according to Ducret and collaborators’ 

work (1995).  

 

5.2.2.6 Quantification of the sugar esters 

The sugar esters content was quantified by calculating the residual fatty acid amount 

in the reaction mixture, which was determined by the volumetric method described 

elsewhere (Leitgeb and Knez 1990). Briefly, 0.1 g of sample from the reaction mixture 

were diluted in 20 mL of 0.1 wt% phenolphthalein solution in absolute ethanol, and then 

titrated with standardized sodium hydroxide solution of 0.1 mol/L in water. Measurements 

were done in triplicate. 

 

5.2.3 Characterization of the product 

After the synthesis of the sugar ester biosurfactants, these compounds were 

characterized according to the techniques described below. 

 

5.2.3.1 Surface tension 

Surface tension was determined in the commercial coconut milk, the fresh coconut 

milk and the fresh coconut milk with added sugar ester biosurfactants (produced according 

to section 5.2.2.4) at different ratios, such as 1:1, 1:5, 1:10 and 1:100 (sugar ester: coconut 

milk, v/v). The surface tension was determined at room temperature (25±1 ºC) by the Ring 

method as described elsewhere (Rodrigues et al. 2006b). A KRUSS Tensiometer (Kruss 

model K10) equipped with a 1.9 cm Du Nouy platinum ring was used. Measurements were 
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done in quintuplicate and results represent the means ± standard deviation. The 

concentrations of sugar ester biosurfactants used to prepare the different ratios of ester: 

fresh coconut milk was 30% (v/v) and the samples were prepared at 25 °C.  

 

5.2.3.2 Emulsification index (EI) 

EI was determined for the commercial coconut milk, the fresh coconut milk and the 

fresh coconut milk with added sugar ester biosurfactants at different ratios, such as 1:1, 

1:5, 1:10 and 1:100 (sugar ester: coconut milk, v/v). To determine the EI, a 2 mL sample 

and 1 mL of n-hexadecane were homogenized using a vortex for 2 minutes at 25 °C. Next, 

the emulsion was left to settle for 2 minutes and the height of the emulsion was measured 

(T2). The index was calculated using the equation (1).  

 

Emulsion index (%) = He/Ht x 100                               (1) 

 

where He is the height of the emulsion and Ht is the total height of the liquid. To check the 

stability of the emulsions, these were left to settle also for 24 (T24) and 48 hours (T48) 

(Cooper and Goldenberg 1987). All determinations were performed in triplicate and results 

represent the means ± standard deviation. 

 

5.2.3.3 Determination of particle size distribution of coconut milk samples  

Particle size distribution of commercial coconut milk, fresh coconut milk and fresh 

coconut milk with added sugar ester biosurfactants at different ratios, such as 1:1, 1:5 and 

1:10 (biosurfactant: coconut milk, v/v), were determined by optical imaging and drop size 

analysis using an optical microscope. One drop of the sample was transferred to the slide 

and a cover slip was placed over the sample. The samples were analyzed and identified 

using an Olympus model CH31 optical microscope (Olympus, BX51M) with an attached 

camera and objective lens of 50 X (for the fresh coconut milk) and 200 X (for all other 

samples) with 1024x720 of resolution. The Image Pro Plus 6.0 software from Media 

Cybernetics was used to obtain the distribution and size of the particles in the samples. 
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Furthermore, photographs were taken from typical fields to compare the changeability of 

the fat globules (Peamprasart and Chiewchan 2006). 

 

5.2.4 Statistical analysis 

The data were statically evaluated using ANOVA and Tukey test at 95% of 

confidence level (ɑ = 0.05). Origin Pro 7.5 software (OriginLab) was used for processing 

data.  

 

 

5.3 Results and Discussion 

5.3.1 Thin Layer Chromatography (TLC) 

From the TLC analysis, it was possible to verify the presence of the desired sugar 

esters (fructose, sucrose and lactose esters) by measuring the retention factors (Rf). Figure 

5.1 illustrates an example of the TLCs obtained for the sugar esters synthesized.  

 

 

(A) (B) 

 

Figure 5.1 Thin-layer chromatography of sugar esters. Lane (A) corresponds to the product 
synthesized at the given experimental conditions. Lane (B) corresponds to a control experiment 

where no enzyme was used, thus no sugar ester was formed. This Figure shows the result of lactose 
ester. 
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The Rf values obtained for all sugar esters were found to be 0.5 which is in 

accordance with previous reports. Khaled et al. (1991) and Tortorello and Delwiche (1983) 

reported an Rf value of 0.51 for fatty acid esters. Therefore, it was possible to conclude 

that the desired sugar esters were obtained. 

 

5.3.2 Quantification of sugar esters 

Table 5.1 presents the yields of sugar esters obtained from fructose, sucrose and 

lactose, by enzymatic synthesis using lipase from C. antarctica immobilized on the 

chosen supports, namely acrylic resin and chitosan. 

 

Table 5.1 Sugar esters yields obtained by enzymatic synthesis with immobilized lipase from C. 

antarctica type B (CALB) 

CALB Sugar esters Yield (%)±SD* 
Acrylic resin 

fructose ester 
74.3±0.3a 

Chitosan 70.1±0.0b 
Acrylic resin 

sucrose ester 
56.1±0.2c 

Chitosan 55.0±0.3d 

Acrylic resin 
lactose ester 

83.6±0.3e 

Chitosan 84.1±0.3f 

SD = Standard Deviation; *Values with different letters in the same column 
present statistically significant differences (p<0.05). 

 

 

According to Table 5.1, it was possible to observe statistically significant differences 

at 5% level of probability between the two types of supports for all the sugar esters 

produced. The lowest yield was obtained for the sucrose esters. C. antarctica lipase 

showed a better performance for the synthesis of lactose ester using both supports. 

Moreover, the lactose ester yield obtained for the immobilization with acrylic resin 

(83.6%) was found to be much higher than the values that have been reported using other 

methods by Walsh et al. 2009 (21.8%), Wang et al. 2005 (77%) and Wu et al. 2004 (62%). 

Furthermore, the immobilization with chitosan proved also to be an interesting and 

efficient support for the production of lactose ester (84.1%). According to the literature, 

chitosan is a good candidate for the immobilization of lipase when compared to other 
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polysaccharides, such as alginate and agarose (Betigeri 1999). Lipase from C. antarctica 

has been widely reported for the synthesis of sugar esters, being Habulin et al. (2008), 

Iwamoto et al. (2008), Perez-Victoria and Morales (2007), some of the most recent 

examples. 

The yield of fructose ester was found to be higher for the immobilization with acrylic 

resin as compared to the immobilization with chitosan. The same trend was observed for 

the sucrose ester, although with lower yields. Immobilization with acrylic resin yielded 

74.3% of fructose ester, while immobilization with chitosan yielded 70.1%. Although 

being similar, these yields were found to be statistically different and higher than the 

results reported by Sabeder et al. (2006). These authors reported yields of fructose ester of 

53% when using immobilized lipase SP 435 from C. antarctica B, and a yield of 44% 

when using immobilized lipase SP 382 also from C. antarctica B. Moreover, the yields of 

sucrose ester (56.1% in acrylic resin and 55.0% in chitosan) obtained are higher than those 

found by Walsh et al. 2009 (20.9%) using the same biocatalyst. 

The sugar ester yields obtained in the current study were found to be higher than the 

ones that have been previously reported in the literature. Also, immobilization of lipase 

proved to be advantageous due to the ease of recovery of the sugar esters, as well as to the 

possibility of biocatalyst reuse. Further studies on the reusability of the immobilized lipase 

are required in order to confirm the supports’ potential for industrial enzymatic production 

of sugar ester biosurfactants (Kanwar et al. 2007, Nasratun et al. 2009, Pahujani et al. 

2008, Song et al. 2010, Zhang et al. 2010). 

 

5.3.3 Surface tension 

Table 5.2 presents the surface tension values determined for the coconut milk with 

added sugar ester biosurfactants. The Tukey test was used at 95% probability to evaluate if 

there was a statistical significant difference between the surface tensions obtained for the 

different samples.  
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Table 5.2 Surface tension values measured for the fresh coconut milk, the commercial coconut 
milk and the fresh coconut milk with added sugar ester biosurfactants. 

Groups Products Samples 
Sugar ester: coconut 

milk (v/v) 
Surface tension 

Mean (mN/m)±SD*#◊ 

1 
Fresh coconut milk with 

Fructose ester 

A 1:1 39.7±0.3a 

B 1:5 40.0±0.0a, A, 1 

C 1:10 41.1±0.2b, C, 3 

D 1:100 54.3±0.3c 

2 
Fresh coconut milk with 

Sucrose ester 

E 1:1 40.2±0.3a 

F 1:5 40.0±0.0a, A, 1 

G 1:10 41.9±0.2b, D, 4 

H 1:100 54.9±0.2c 

3 
Fresh coconut milk with 

Lactose ester 

I 1:1 38.0±0.0a 

J 1:5 39.2±0.3b, B, 2 

K 1:10 40.0±0.0c, E, 1, 5 

L 1:100 52.1±0.2d 

4 
Fresh coconut milk 

Commercial coconut milk 
M - 52±0.3a 

N - 46±0.2b 

SD = Standard Deviation; *Values in each groups with letters different in the same column present 
significant difference (p<0.05); #Capital letters in the same column indicate comparison between the ratios 
1:5 and 1:10, in each group; ◊Subscripts numbers indicate comparison in the ratios 1:5 and 1:10, between all 
groups. 

 

 

According to Table 5.2, for the fresh coconut milk with fructose ester in the ratios 

1:1 and 1:5 (samples A and B), and for the fresh coconut milk with sucrose ester in the 

same ratios (samples E and F), no statistically significant differences were observed, 

suggesting that similar results could be obtained using a higher dilution, thus with less 

costs if a commercial application is envisaged. For the fresh coconut milk with lactose 

ester, this was not observed since statistical significant differences were found for all the 

ratios studied. 

Comparing the results obtained for all the sugar esters used, it was possible to verify 

that both fructose and sucrose ester at a ratio of 1:5 resulted in the same surface tension 

(40.0 mN/m). Using lactose ester, this surface tension was obtained for a higher dilution 

(1:10), thus meaning that this ester was more efficient in lowering the surface tension of 

the mixture.  
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From the results of the current study, it was found that the addition of each of the 

sugar ester biosurfactants lead to a significant reduction in surface tension of the fresh 

coconut milk. This is very important because the greater the ability of a sugar ester 

biosurfactant to reduce surface tension, the greater the emulsion stability formed in 

coconut milk. Results obtained with fresh coconut milk were better than with commercial 

coconut milk. Therefore, these results open an interesting perspective of the potential 

application of sugar ester biosurfactants in the food industry. To our knowledge this is the 

first report on the use of sugar ester biosurfactants to stabilize fresh milk coconut 

emulsions. 

 

5.3.4 Emulsification index (EI) 

Emulsification indexes (EI) determined for the same samples used for the surface 

tension measurements at different time points are gathered in Table 5.3. 

 

Table 5.3 Emulsification index (EI) determined for fresh coconut milk, commercial coconut milk 
and fresh coconut milk with added sugar esters 

Groups Products Samples 
Sugar esters: 
coconut milk  

(v/v) 

After 2 min After 24 h After 48 h 

%EI±SD* %EI±SD* %EI±SD* 

1 
Fresh coconut milk 
with Fructose ester 

A 1:1 58.9±0.0a 54.6±0.4a 52.4±0.3a 

B 1:5 58.1±0.2a 53.2±0.9a 50.2±0.2b 

C 1:10 58.0±0.0a 52.2±0.3a 49.1±0.0c 

D 1:100 31.4±0.5b 28.1±0.1b 26.6±0.2d 

2 
Fresh coconut milk 
with Sucrose ester 

E 1:1 58.2±0.2a 56.3±0.3a 52.2±0.3a 

F 1:5 58.2±0.2a 55.4±0.1b 52.3±0.1a 

G 1:10 56.2±0.3b 54.2±0.3c 51.1±0.0b 

H 1:100 38.6±0.5c 35.2±0.9d 34.6±0.2c 

3 
Fresh coconut milk 
with Lactose ester 

I 1:1 60.5±0.9a 58.3±0.9a 56.4±0.3a 

J 1:5 59.2±0.9b 58.0±0.0a 56.2±0.2a 

K 1:10 58.2±0.2c 56.3±0.3b 54.1±0.0b 

L 1:100 36.7±0.3d 34.4±0.3c 31.6±0.3c 

4 
Fresh coconut milk M - 37.2±0.5a 33.4±0.0a 29.6±0.3a 

Commercial 
coconut milk 

N - 54.0±0.0b 51.1±0.5b 47.6±0.0b 

SD = Standard Deviation; %EI = percentage of emulsification index (mean); *Values in each groups with 
letters different in the same column present significant difference (p<0.05). 
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An important parameter for evaluating the power of an emulsifier is the EI and the 

emulsion stability (Abu-Ruwaida et al. 1991, Cooper and Goldenberg 1987, Singh et al. 

2007). All emulsions studied showed high EI values, being the EI value above 52% for all 

the ratios sugar ester: coconut milk used (except for 1:100), as well as for all the time 

points evaluated (2 minutes, 24 and 48 hours).  

Regarding the emulsion of fresh coconut milk with fructose ester, no statistical 

significant differences were observed for 48 hours. Therefore, comparing the results 

obtained for the different sugar ester: coconut milk ratios, the best condition studied was 

1:10 for 24 hours with an EI of 52.2% (sample C), since it provides the highest EI at a 

lower concentration ratio. 

Furthermore, for the emulsions with lactose and sucrose esters no statistical 

significant differences were observed for 24 and 48 hours, meaning that these esters 

provide a higher stability to the emulsion comparing with fructose esters. Emulsification 

indexes of 52.3% and 56.2% were obtained at a concentration ratio of 1:5 (the highest 

dilution for which the differences observed have statistic significance) and 48 hours for 

sucrose and lactose esters, respectively.  

For the food industry it is important and necessary to use emulsifiers that comprise 

low-cost and high stability of the emulsion obtained (Shin et al. 2009, Yutaka and 

Kitagawa 1998). According to the results of the current work, the emulsifier that meets 

these characteristics is the lactose ester. In addition to achieving stability for a longer time 

(48 hours), it has a high EI (54.1%) at a low concentration ratio (1:10) (sample K).  

Moreover, even for concentration ratios of 1:10 of all sugar ester biosurfactants 

added to the fresh coconut milk, the results are superior to those found for samples using 

commercial coconut milk. To our knowledge this is the first report on emulsification 

indexes for mixtures of coconut milk with sugar esters.  

 

5.3.5 Particle size distribution of coconut milk samples 

The microstructures of the coconut milk samples from different experimental 

conditions were examined using an optical microscope. Figure 5.2 illustrates the structure 
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of the fresh coconut milk and the fresh coconut milk containing lactose ester in different 

concentration ratios. 

 

 
(a) 

10 µm 

 

  
(b) (c)          (d) 

10 µm 10 µm 10 µm 

 

Figure 5.2 Micrographs (200 X magnification) of the fresh coconut milk (a) and the fresh coconut 
milk with lactose ester in different concentration ratios (fresh coconut milk: lactose ester): 1:1 (b), 

1:5 (c) and 1:10 (d). 

 

 

The micrographs taken from the emulsions obtained with fresh coconut milk with 

fructose and sucrose esters showed similar structures (data not shown). Based on the 

results illustrated on Figure 5.2, it was possible to determine the number of particles and 

their size distribution (Figure 5.3). 
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Figure 5.3 Particle size distribution of the fresh coconut milk (a), the fresh coconut milk with 
lactose ester in different concentration ratios: 1:1 (b), 1:5 (c) and 1:10 (d). 

 

 

From Figures 5.2a and 5.3a, it was found that the coconut fibers possess a variable 

size and are non-uniformly dispersed, showing some aggregates. These results are in 

accordance with the ones reported by Jirapeangtong et al. (2008).  

Figure 5.3b (ratio 1:1 of fresh coconut milk and lactose ester) showed that most of 

the particles were sized between 0 and 10 µm, which explains the stability of the emulsion 

formed. Within this range of sizes, the probability of occurring coalescence of the particles 

is very low, since they are very small and uniform regarding the low volume of the 

dispersed phase. Although this behavior has been observed for the higher concentration 

ratio studied (1:1), it does not preclude its potential use for stabilizing coconut milk. 

Figures 5.3c and 5.3d, showed a highest dispersion of the sugar ester biosurfactants 

globules in the aqueous phase, indicating a lower stability of the product. Other researchers 

reported the use of chemical surfactants to stabilize coconut milk, namely SDS and Tween. 

Tangsuphoom and Coupland (2009a) studied the effect of mixing chemical surfactants 

(SDS and Tween 20) with coconut milk under heat. Coconut milk emulsified with SDS 

was found to be stable in all heating treatments studied, meaning that no change in droplet 

size and no phase separation occurred. According to Seow and Gwee (1997), polysorbates, 
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such as Tween 20 and Tween 60, are widely used to improve the stability of sterilized 

coconut milk products, although typically at somewhat lower levels (around 0.3 wt%) and 

in combination with gums.  

Although some studies on the use of surfactants for the stabilization of coconut milk 

have been reported, to our knowledge this is the first report on the use of sugar ester 

biosurfactants for that purpose. 

 

 

5.4 Conclusions 

The enzymatic synthesis of fructose, sucrose and lactose esters was conducted using 

two different types of supports (acrylic resin and chitosan) for enzyme immobilization of 

CALB. The enzyme immobilized on chitosan presented higher yields (84.1%) in the 

production of lactose ester as compared to the acrylic resin support. Furthermore, the 

lactose ester showed a better performance regarding the decrease of fresh coconut milk 

surface tension and the stabilization of the emulsion as given by the emulsification index. 

The use of CALB immobilized on chitosan presents a promising alternative for the 

enzymatic production of sugar esters due to the possibility of enzyme reuse and economic 

viability. 
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Chapter 6 

 
Conclusions and future perspectives 

 

 

 “Superar o fácil não tem mérito, é obrigação; 

vencer o difícil é glorificante; ultrapassar o 

outrora impossível é esplendoroso”. 

(Alexandre Fonteles) 

 

 

This chapter presents the major conclusions extracted from this thesis. More detailed 

conclusions can be found at the end of each individual chapter. Furthermore, some 

perspectives for future research in this field are discussed. 
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6.1 Conclusions 

The main objective of this thesis was the production of sugar ester biosurfactants 

using non-toxic reagents, namely: (1) lipases - Candida antarctica type B and porcine 

pancreas; (2) sugars - fructose, sucrose and lactose; (3) fatty acids - oleic acid and linoleic 

acid; and (4) solvents - ethanol and ethyl acetate. In this thesis it was sought to define the 

optimal production conditions and to characterize the synthesis products aiming at its 

subsequent incorporation in coconut milk. To achieve these goals, many issues have been 

studied and various strategies have been implemented successfully.  

The main conclusions drawn from this work are presented below: 

•   The synthesis of fructose, sucrose and lactose esters was confirmed by TLC and 

IR spectroscopy; 

•   The modeling and optimization of the esterification reaction to synthesize fructose 

ester by immobilized CALB was successfully performed using a response surface 

methodology based on a central composite rotatable design (R2 and Q2 equal to 

0.9995 and 0.7056, respectively). A cubic model was established that can be used 

to predict the esterification percentage under any given conditions within the 

experimental range studied; 

•   Under the optimized operating conditions an effective enhancement of the 

synthesis of fructose esters was achieved (yield = 88.4%); 

•   Synthesis of sugar ester biosurfactants catalyzed by CALB, using three types of 

carbohydrates, two types of fatty acids and two organic solvents, was studied. The 

highest esterification yield was obtained for the synthesis of lactose ester (yield = 

83.5%) from lactose and linoleic acid in the presence of ethanol, in comparison 

with the other sugar esters and conditions studied. However, the fructose esters 

(yield = 74.3%) showed a better performance regarding their surface activity and 

ability to stabilize emulsions. 

•   Sugar esters were enzymatically synthesized from three types of carbohydrates, 

two types of fatty acids and two types of solvents using porcine pancreas lipase as 

biocatalyst. The sucrose esters presented the highest esterification yield (yield = 
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47.6%) and superior surface activity reduction, besides the ability to form stable 

emulsions. Fructose esters also showed good results.  

•   In general, the best sucrose and fructose esters were synthesized from oleic acid 

using ethanol as solvent, and represent promising products for application in the 

food industry. The use of sucrose and ethanol is interesting from the economical 

and environmental point of view. Sucrose is the cheapest carbohydrate among the 

ones studied herein, and ethanol is a non pollutant and non toxic solvent that can 

be easily obtained from renewable sources.  

•   The enzymatic synthesis of fructose, sucrose and lactose esters was studied using 

CALB immobilized on two different types of supports (acrylic resin and 

chitosan). The enzyme immobilized on chitosan presented higher yields of lactose 

ester synthesis (yield = 84.1%) as compared to the acrylic resin support (yield = 

83.6%). Furthermore, the lactose ester showed a better performance regarding the 

decrease of fresh coconut milk surface tension and the stabilization of the 

emulsion as given by the emulsification index.  

•   The use of CALB immobilized on chitosan presents a promising alternative for the 

enzymatic production of sugar ester biosurfactants due to the possibility of 

enzyme reuse and economic viability. 

•   To obtain a maximum yield of lactose ester it is more advantageous to use CALB 

immobilized on chitosan. On contrary, CALB immobilized on acrylic resin is a 

better option to increase the yield of fructose ester synthesis. 

•   In general, CALB showed better results than the PPL lipase in the synthesis 

reactions, surface tension and emulsification index. 

•   Finally, this study can be seen as a contribution to the development of more 

efficient bioprocesses for industrial synthesis of sugar ester biosurfactants.  
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6.2 Future perspectives 

The results obtained in this thesis provided some interesting perspectives on the use 

of sugar ester biosurfactants in the food industry. Their application in food emulsions, such 

as coconut milk, opened opportunities that worth further exploration. Furthermore, the 

development of new solutions that enable the decrease of the operational costs associated 

with sugar esters production will broaden their potential applications. Some suggestions for 

future work are presented below: 

•   Study of other lipases in the synthesis reactions to evaluate their impact on the 

product yield; 

•   Immobilize lipase using alternative cheap supports such as alginate gels, 

carrageenan and polyacrylamide, alumina, ground kanuma, stalk of sugar cane, 

among others; 

•   Characterize the kinetics of the enzymatic reactions; 

•   Incorporate the sugar ester biosurfactants in other food matrices, such as ice 

cream, fruit juice, cake, bread, among others. 

 

The results gathered in this thesis are promising and have led to new questions that 

warrant further research. 
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