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Abstract. In this work we carried out the modelling, the discretization and the numerical

simulation of a vacuum breaker. We present a mathematical model of the multi-physical

problem involving mechanical, electrical and electromagnetic phenomena. The finite el-

ement method is employed in conjunction with a technique of domain decomposition to

solve the mechanical problem and the electrical problem while a direct integration of the

Biot-Savart formula allows to compute an approximation of the magnetic field, hence the

Lorentz-Laplace forces.
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1 INTRODUCTION

A vacuum circuit breaker is a device that allows the cutting of electrical power. The
apparatus core is essentially constituted of two electrodes, one of them being mobile and
subject to a mechanical force produced by a spring, maintaining the contact between
the two electrodes (see figure 2 left). The current passing between two electrodes is
determined by the extension of the contact zone and generated Lorentz-Laplace forces in
areas bordering the contact, but not yet in contact. Due to the curved geometry of the
electrodes, Lorentz-Laplace forces are opposite and cause the repulsion of the electrodes.
When the intensity reach a critical value, the forces separate the two electrodes and the
circuit is breaking. For a given intensity, the equilibrium position and the contact area
result from the balance between the spring constraint and the repulsive Lorentz-Laplace
deriving from the electric and magnetic fields.
To determine the equilibrium, we have to consider three sub-problems, namely, the me-
chanical problem, the electrical problem and the magnetic problem. Indeed (see diagram
in figure 1), the spring force in conjunction with the Lorentz-Laplace force determine the
displacement of the two bodies and the contact area. From the contact area, we deduce
the current density distribution and the electric field. With the current density, we com-
pute the magnetic field and we deduce the Lorentz-Laplace force with the electric and the
magnetic field.

Figure 1: The circuit-breaker modelling: a coupling of three mathematical sub-problems

The goal of the present article is to present the modelling and the numerical simulation of
each subgroup. In section 1, we present the multi-physical model for the circuit breaker
divided in three sub-models. Section 2 is dedicated to the numerical method employed in
each sub-model. We present the discretization of the mechanical problem using the finite
element method coupled with the Mortar method. We also employ the finite element
method to compute the electrical current assuming that the contact area is given. At
last, we present the numerical method to compute the magnetic field based on the Biot
and Savard formula to evaluate the Lorentz-Laplace forces. The section 3 concerns the
numerical simulations for each sub-model of the vacuum circuit breaker.
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2 MATHEMATICAL FORMULATION

We consider two electrodes in contact, as in figure 2. The bottom one is constituted by
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Figure 2: The circuit-breaker and the geometry

a piece of copper named Ωb fixed on a support foundation denoted by ΓB, the interface
between the electrode and its support. The lateral sides of the electrode Ωb (denoted by
Γb
L) are free of constraint.

A second upper electrode, characterized by domain Ωa is maintained in contact with Ωb

applied a force on the upper side of Ωa, named ΓU . To determine the force, we assume
that the spring force is uniformly applied on the ΓU face with a prescribed constraint.
Since Ωa is mobile, the force will change with the displacement of Ωa. Like in Ωb, the
lateral sides (denoted by Γa

L) are free and no force or displacement are prescribed.
At last, we denote by Γa

C and Γb
C respectively the two boundaries which are opposite and

represent the potential contact between the two electrodes. We denote by nℓ the outward
normal vector and by tℓ the tangential vector such that

(

tℓ, nℓ
)

is a positive oriented basis

of Ωℓ, ℓ = 1, 2.
Since the contact boundaries are not fixed, we shall introduce a common parametrization
of the contact interface. To this end, we begin to consider the initial situation where two
bodies are not submitted to any constraint such that the potential contact area Γa

C is in
front of the potential contact area Γb

C but no contact holds. To characterize Γa
C and Γb

C
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we introduce a local parametrization of the two boundaries χa and χb defined on interval
I = [0, 1] by

χa : I → Γa
C ; χb : I → Γb

C ;

ξ 7→ χa(ξ) ξ 7→ χb(ξ).
(1)

For instance, we denote by na = n
(

χa(ξ)
)

and nb = n
(

χb(ξ)
)

the respective parametriza-

tion of the outward normal vectors of Γa
C and Γb

C . Since the electrode have a small cur-
vature with respect to the dimension of the electrode, we assume that they are collinear
to the Ox2 with na + nb = 0.
In the other hand, the interface displacements are perpendicularly and any contact point
Y = (y1, y2), in the new configuration when one applies forces, corresponds to a point
Xa = (xa1, x

a
2) ∈ Γa

C and a point Xb =
(

xb1, x
b
2

)

∈ Γb
C such that xa1 = xb1 = y1, in the initial

configuration. At last, we denote by g the initial gap between the two electrodes defined
on I given by

g(ξ) =
(

χa(ξ)− χb(ξ)
)

nb(ξ). (2)

2.1 MECHANICAL PROBLEM

We assume that the two bodies are elastic and we denote by ε (u) the strain tensor for
any displacement u(x) with respect to x in the initial configuration. The conservation of
the impulsion reads

−div σ(u) = f in Ω

where f represents the body force. In our case, f will be constituted by the gravity and
the Laplace forces. Using the classical elasticity framework for isotropic linear material
with the Hooke’s law, the stress tensor writes

σ = σ(u) =
(

λtr(ε(u))II + 2µε(u)
)

, (3)

where II denotes the 2-identity matrix, and the Lamé positive constants λ and µ are given
by (cf [4])

µ =
E

2(1 + ν)
and λ =

Eν

(1 + ν)(1− 2ν)
,

with the Young’s modulus E > 0 and the Poisson ratio ν ∈ ]0, 1/2[. At the lateral sides

Γa and Γb, no force and displacement are prescribed so we state σ nℓ = 0 on Γa
L ∪ Γb

L.
The bottom part of the electrode is fixed so we required that no displacement occur and
we state u = 0 on ΓB. The upper part is controlled by the spring and the normal force is
governed by

naTσ na = −κ(u · na + α)

where −κα is the initial force applied to the electrode while −κ(u ·na) represents the force
due to the displacement . Moreover we require that no lateral movement takes place, so
we state u · t = 0 on ΓU to prevent the horizontal movement.
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Now we deal with the contact interface condition. For a given configuration (spring and
body force ) the interfaces Γa

C and Γb
C move and we obtain two new interfaces Γ̂a

C and Γ̂b
C

which are partially in contact and the new configuration presents a commune interface

A = Γ̂a
C ∩ Γ̂a

C .

The active set is characterized by the interval J , such that for any ξ ∈ J :

(ua.na) ◦ χa(ξ) + (ub.nb) ◦ χa(ξ) = g(ξ), (4)

and

(taTσ(ua)na) ◦ χa(ξ) = (tb
T
σ(ub)nb) ◦ χb(ξ) = 0, (5)

(naTσ(ua)na) ◦ χa(ξ) = (nbTσ(ub)nb) ◦ χb(ξ) < 0. (6)

On the free part of the interface, characterized by ξ ∈ I\J , (no contact) we have:

(ua.na) ◦ χa(ξ) + (ub.nb) ◦ χb(ξ) < g(ξ)

(naTσ(ua)na) ◦ χa(ξ) = (nbTσ(ub)nb) ◦ χb(ξ) = 0

(taTσ(ua)na) ◦ χa(ξ) = (tb
T
σ(ub)nb) ◦ χb(ξ) = 0

Note that the contact boundary is unknown and J has to be also determined.

2.2 ELECTRICAL PROBLEM

We model the current density J ℓ, the electrical field Eℓ and the scalar electrical potential
V ℓ
e in each electrodes, ℓ ∈ {a, b} by

Eℓ = −grad V ℓ
e , J ℓ = σEℓ,

to obtain the classical potential formulation

−∇ · (σ∇V ℓ
e ) = 0, (7)

with σ represents the electrical conductivity. We prescribe the current of intensity I0 on
boundary ΓU and assume a uniform repartition of the density current such that we have

Ja · na =
I0
|ΓU |

on ΓU where |ΓU | represent the length of the interface.

We also prescribe the null potential on the bottom interface setting V b
e = 0 on ΓB. At

last, since no current crosses the lateral interfaces, we set
∂V ℓ

e

∂n
= 0 on Γℓ

L.

Since we solve the scalar potential in each sub-domain, we have to prescribe the electrical
condition on the active subset and the free subset for the contact interface. As for the

lateral side, we prescribe
∂V ℓ

e

∂n
= 0 on Γℓ

C \ A while we enforce the continuity of the

electrical potential and the current on the active set

V b
e − V a

e = 0 on A (8)

J b · nb + Ja · na = 0 on A. (9)
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2.3 MAGNETIC PROBLEM

The calculation of the magnetic field B of current system is carried out with the BiotSavart
formula for two-dimensional geometries Ω ∈ R

2 as [6]. The magnetic field at a point x is
given by

B (x) = −
1

2π

∫

Ω

j(y) ∧ ∇ ln(|y − x|)dy, (10)

for a current j flowing in the direction of ~e1 and ~e2. Equation (10) writes

B (x) =
~e3
2π

∫

Ω

det[j(y), (x− y)]

|x− y|2
dy. (11)

3 DISCRETISATION AND NUMERICAL METHODS

Let us denote by T ℓ
h the triangulation in cell C of the domain Ωℓ with ℓ = a, b and

Th = T a
h ∪ T b

h . In this study, we assume that the two domains are symmetric such that
the nodes on the on each contact zone Γa

C and Γb
C correspond and we introduce the interval

I to provide a common parametrization of the two contacts interfaces. Mh denote the
mesh of interval I such that the nodes of I, Γa

C and Γb
C corresponds. In future works, we

intend to remove this constraint employing the Mortar technique [1, 2] or the three-field
domain decomposition method [3].

3.1 MECHANICAL PROBLEM

At rest, the two contact interfaces are given by the χℓ(ξ) functions from which we deduce
the gap function (2). The configuration at rest correspond to the reference configuration.
After applying the spring pressure, the gravity and the Lorentz-Laplace forces, we obtain
a new configuration characterized (in the reference configuration) by an active zone Aℓ ⊂
Γℓ
C . One has to provide the active zone such that relations (4) and (5) have to be both

satisfied with the constraint condition (6).

ΓC
a

ΓC
b

I

A

ξ l ξ r

Figure 3: The contact zone: before applying forces (left), after applying forces (right)

To solve the mechanical problem, we use a domains decomposition technique [5]. To this
end, we denote by Aℓ

k ⊂ Γℓ
C a candidate for the active zone characterized by Jk = [ξkl , ξ

k
r ]

where χℓ(ξkl ) correspond to two opposite nodes of Γℓ
C on the left of the contact zone and

χℓ(ξkr ) correspond to two opposite nodes on the right.
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3.1.1 The Lagrange Multiplier problems

For the meshes T a
h , T

b
h and Mh we consider the associated discrete spaces

V
a
h = {ϕ = (ϕ1, ϕ2) continuous linear piecewise on Ωa such that (ϕ1)|ΓU

= 0},

V
b
h = {ϕ = (ϕ1, ϕ2) continuous linear piecewise on Ωb such that (ϕ)|ΓB

= (0, 0)T},

Wh(J
k) = {ψ continuous linear piecewise on Jk}.

Moreover, for any ψ ∈ Wh(J
k), Πk

ℓ (ψ) denotes the projection of ψ on the contact bound-
aries Aℓ

k such that Πk
ℓ (ψ)(P ) = 0 for all the nodes in Γℓ

C \ Aℓ
k. We propose the iterative

procedure to determine the configuration when enforcing relations (4) and (5). To this
end, we denote by Un ∈ Wh(J

k) a given normal displacement on Jk, we consider the
Lagrangian augmented problem, for ϕ ∈ V

a
h

∫

Ωa

σ(uh) : ε(ϕ) dx+κ

∫

ΓU

(uah.n
a)(ϕ.na) ds =

∫

Ωa

f.ϕ dx+κα

∫

ΓU

(ϕ.na) ds+

∫

Aa

k

Πk
a(λ

a
h)ϕ2 ds

where λah is Lagrange multiplier associated to the normal displacement constraint, for all
ψ ∈ Wh

∫

Aa

k

(uah.n
a)Πk

a(ψ) ds =

∫

Jk

Unψ dξ.

The second Lagrangian augmented problem writes for all ϕ ∈ V
b
h

∫

Ωb

σ(uh) : ε(ϕ) dx =

∫

Ωb

f.ϕ dx+

∫

Ab

k

Πk
b (λ

b
h)ϕ2 ds

where λbh is Lagrange multiplier associated to the normal displacement constraint, for all
ψ ∈ Wh

∫

Ab

k

(ubh.n
b)Πk

b (ψ) ds =

∫

Jk

(g − Un)ψ dξ

to satisfy condition (4). The contact problem is solved if one can determine the normal
displacement Un such that λah = λbh on Jk.

3.1.2 Resolution of the contact problem for Jk given

We proceed with the description of the iterative procedure to solve the contact problem.
Let U (m)

n be a predicted displacement, we compute the associated Lagrange multipliers
λah and λbh given by section 3.1.1. Then we consider the two problems

∫

Ωa

σ(wa
h) : ε(ϕ) dx+ κ

∫

ΓU

(wa
h.n

a)(ϕ.na) ds =

∫

Aa

k

Πk
a(λ

a
h − λbh)ϕ2 ds
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and
∫

Ωb

σ(wb
h) : ε(ϕ) dx =

∫

Ab

k

Πk
b (λ

a
h − λbh)ϕ2 ds.

We then set for each node ξj of Mh

U (m+1)
n (ξj) = U (m)

n (ξj)−
θ

2

[

(wa
h.n

a) ◦ χa(ξj) + (wb
h.n

b) ◦ χb(ξj)
]

.

For θ > 0 small enough, the procedure converges to the solution (see [5]).

3.1.3 Determination of J

For a given Jk we solve the contact problem but the constraint (6) which predict a negative
normal stress on the contact is not necessary achieved. The strategy consists in taking
J0 = I as the initial guess and if (6) is not satisfied with Jk, we reduce the domain
removing the first and the last node of Jk to construct Jk+1.

3.2 ELECTRICAL PROBLEM

We now assume that the active zone A is given and we consider two sub-problems and
we denote by Vh the interface potential at the contact zone define on A as a continuous
linear piecewise function. We formulate the discrete problem in the following way.
Find V a

h continuous, linear piecewise on Ωa such that

∫

Ωa

∇V a
h .∇φ dx =

∫

ΓU

Ja(s)φ(s) ds (12)

with V a
h = V on A. To satisfy to current density continuity, we consider the second

problem find V b
h continuous, linear piecewise on Ωb such that

∫

Ωb

∇V b
h .∇φ dx = −

∫

A

σ∇V a
h .n

b (13)

with V b
h = 0 on ΓB.

We then deduce the voltage Vh → G(Vh) = V b
h on A which provide a one-to-one map on

the nodes of A.
The solution of the electrical problem is reached when G(Vh) = Vh and we solve the fix
point problem using the iterative procedure

V k+1
h =

V k
h +G(V k

h )

2
(14)

setting V 0
h = 0.
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3.3 MAGNETIC PROBLEM

Let jℓ = σ∇V ℓ
h the constant piecewise approximation of the density current on each cell

and Pi a node of the mesh. We compute the magnetic field at the node with

Bi = B(Pi) =
~e3
2π

∑

Ck∈Th

|Ck|
det[j(Mk),MkPi]

|MkPi|2

where Mk is the centroid of cell Ck, |Ck| the cell area and j(Mk) the constant vector in
Ck. From the magnetic field, we deduce an approximation of the Lorenz-Laplace force

f(Pi) = σE(Pi) ∧ Bi

where E(Pi) is an interpolation at node Pi with the piecewise constant vectors Ek =
∇Vh|Ck

on the neighbour cells.

4 NUMERICAL RESULTS

We present some numericals results obtains with the schemes presented in the previous
section. We consider a problem where the the gravity and the Lorentz-Laplace forces can
be neglected with respect to the spring pressure characterized by κ = 108 and α = −0.05.
We first solve the contact problem to determine the active zone A. Figure 4 shows the
displacement vectors for the two elastic bodies (left) and we present on the right a zoom
in the contact zone. From, the contact interface previously computed by the mechanical

Figure 4: Displacement : global view (left), zoom at the contact interface (right)

problem, we solve the density current problem where we prescribe I0 = 20 kA. Figure 5
gives the density current distribution in the two domains and the zoom view clearly show
the half loop of the electric current in the vicinity of the contact zone which is responsible
of the repulsion forces.
In figure 6, we plot the e3 component of the magnetic field. Since the current flows to
the bottom, we check that the magnetic field is positive on the left side (red area) and
negative on the right side (blue area).
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Figure 5: Current density distribution : global view (left), zoom at the contact interface (right)

Figure 6: Magnetic field distribution (componant following e3):global view (left), zoom at the contact
interface (right)

5 CONCLUSIONS

We have presented a two-dimensional model of the vacuum disjunctor where we have taken
into account the mechanical, the electrical and the electromagnetic problems. Numerical
schemes have been designed to compute an approximation for each sub-problem. The
next step consists in linking the three sub-problems via the Laplace-Lorentz force to
provide the equilibrium solution for a high current intensity where the repulsive force are
predominant to determine the contact area.
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