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AABBSSTTRRAACCTT  

The aging of the population is one of the major transformations being experienced by most 

developed countries over the last century. Although the increase in lifespan expectancy can be 

seen as a success story for public health policies and for socio-economic development, it also 

challenges the society to adapt and promote health and functional capacity of older people. In this 

scenario, the understanding of human aging has become one of the most relevant challenges in the 

modern science. The study of aging has been wrapped up in several theories that attempt to 

identify the primary causes of the stereotypic changes that are observed with age trying to explain 

the dynamic nature of the aging process. Conventionally, aging is seen as a process of progressive 

decline of homeostasis caused by genetic and environmental events. However, the degree to each 

theoretical cause contributes to elucidate the primary cause of aging has been difficult to establish 

and, instead, aging is considered an extremely complex process driven by a variety of different 

mutually interacting mechanisms.  

According to the leading and longstanding "Free Radical Theory of Aging" proposed by 

Denham Harman, in 1956, aging is the result of the damage caused by free radical reactions that 

occur in the cell. In support to this theory, several studies have shown that increases in lifespan, 

mediated by genetic and environmental manipulations, are associated with decreases in the levels 

of intracellular reactive oxygen species (ROS) and oxidative stress. However, it has also been 

suggested that lifespan extension may be associated with increases in the intracellular levels of 

ROS and oxidative stress and that the overexpression of antioxidant defences does not always 

result in a significant extension of lifespan. Thus, increasing evidence started to challenge 

Harman´s theory and have proposed a puzzling involvement of ROS and/or oxidative stress in the 

aging process. 

A particularly active area of aging research has been the influence of diet on longevity and 

age-related diseases. Since the pioneering work of McCay in 1935 in rodents, caloric restriction 

(CR) has repeatedly been shown to extend lifespan and to promote beneficial health effects in 

several model systems. The predictable results of CR in primate models, and inclusively in 

humans, have supported the potential of alternatives to CR in the improvement of health and 

longevity including the rapidly growing area of calorie restriction mimetics (CRM) research. 

However, despite all the background for the benefits observed with CR, the molecular mechanisms 

underlying the CR effects in lifespan extension and aging delay remain enigmatic.  

The use of simple systems with short lifespan, considerable genetic plasticity and easy 

manipulation of diet still remains an advantage towards the study of highly conserved 
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genes/pathways that underlie the effects of CR. By providing two aging paradigms, 

Saccharomyces cerevisiae stands for a unique opportunity to compare and contrast the aging 

processes of both proliferating and non-proliferating cells in a simple single-celled organism and, 

thus, to understand the aging mechanisms of mitotic and post-mitotic tissues in higher organisms. 

The rapidity with which lifespan can be assessed in yeast cells as well as their easy manipulation, 

has allowed the identification of a lifespan regulatory network. In this context, longevity 

regulation has been suggested to involve parallel but partially connected signaling pathways 

controlled by sirtuins, nutrient-sensing signaling pathways and intracellular oxidative status. 

Nevertheless, the mechanistic details underlying such regulation in the CR-mediated extension of 

yeast lifespan are far from being established.  

This work aimed to study the involvement of ROS and oxidative stress in the chronological 

lifespan (CLS)-extending effects of CR in S. cerevisiae. The results obtained show that the CLS-

extending effects of CR are coupled to increase, rather than decrease, in the accumulation of 

intracellular ROS. Furthemore, CR or inactivation of catalases were shown to promote ROS 

accumulation in the form of H2O2, which increased longevity despite the oxidative damage of 

macromolecules. Upon CR or inactivation of H2O2-detoxyfying systems, H2O2 levels induced 

superoxide dismutases which reduce the levels of O2
-
. Increased oxidative stress during CR in the 

form of H2O2 was also suggested by the high sensitivity to H2O2 treatment observed in  wild type-

CR cells. Nevertheless, the exposure of non-CR wild type cells to non-toxic concentrations of 

H2O2 resulted in CLS extension. A pro-longevity role for H2O2 was also suggested to be 

independent of the activation of protective cellular processes by nutrient-sensing pathways 

signaling. For instance, in Δrim15 cells the CLS-extending effect of CR was also shown to be 

promoted by H2O2 increases and O2
-
 reduction comparatively to wild type cells. A different 

approach in which CR was modelled by the inactivation of specific steps of the glycolytic pathway 

also revealed that CLS extension occurred in parallel with increases in H2O2 and decreases in O2
-
 

levels. However, a strain displaying reduced glucose uptake showed CLS extension associated 

with decreases in the accumulation of intracellular ROS levels, rather than an increase in H2O2, 

and increases in oxidative stress resistance.  

Overall, results herein presented challenge the validity of Harman´s theory and provide a 

different paradigm for understanding how oxidative stress, and specific forms of ROS, may impact 

on the aging process. It is proposed that CR may mediate an hormesis-like response in which H2O2 

might be positively acting as second messenger molecule in other pathways operating under yeast 

CLS extension. In this scenario, S. cerevisiae re-emerges as a suitable model by adding new 

insights into the understanding of aging in more complex organisms. 
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RREESSUUMMOO  

O envelhecimento da população é um processo que tem sido observado na maioria dos 

países desenvolvidos ao longo do último século. O aumento da esperança de vida pode ser visto 

como resultado do sucesso das políticas de saúde pública e do desenvolvimento socio-económico, 

no entanto, desafia também a sociedade a adaptar-se e a promover melhores condições de saúde 

bem como a capacidade funcional dos idosos. Neste âmbito, o estudo do envelhecimento tornou-se 

um dos desafios mais relevantes para a ciência moderna. Várias teorias têm procurado identificar a 

principal causa do envelhecimento e das alterações fisiológicas observadas com a idade. 

Convencionalmente, o envelhecimento é visto como um processo de declínio progressivo da 

homeostasia celular regulado por factores genéticos e ambientais. No entanto, a contribuição de 

cada teoria na identificação de uma causa primordial do envelhecimento tem sido difícil de 

estabelecer e, desta forma, o envelhecimento é considerado um processo complexo governado pela 

interacção de diferentes processos. De acordo com a "Teoria dos Radicais Livres" proposta por 

Denham Harman, em 1956, o envelhecimento resulta dos danos celulares resultantes da acção dos 

radicais livres. Diversos estudos suportam essa teoria tendo demonstrado que o aumento da 

longevidade, promovido por manipulações genéticas e ambientais, está associado à diminuição dos 

níveis intracelulares de espécies reactivas de oxigénio (ROS) e de stresse oxidativo. No entanto, 

tem sido também sugerido que a extensão da longevidade pode estar associada a um aumento dos 

níveis de ROS e de stresse oxidativo, e que a sobre-expressão de defesas antioxidantes nem 

sempre resulta num aumento significativo da longevidade. Estes estudos desafiam a teoria de 

Harman propondo um novo envolvimento dos ROS e do stresse oxidativo no processo de 

envelhecimento. 

O estudo da influência da dieta na longevidade e no aparecimento de doenças associadas à 

idade tem sido uma área de intensa investigação. Desde o trabalho pioneiro de McCay em 1935, 

inúmeros estudos sugerem que a restrição calórica (CR) pode prolongar a longevidade e ter efeitos 

benéficos na saúde de vários organismos modelo. Estudos em primatas, incluindo humanos, 

sugerem que abordagens que mimetizam a CR (CRM, caloric restriction mimetics) poderão 

constituir estratégias relevantes na melhoria da saúde e no aumento da longevidade. No entanto, os 

mecanismos moleculares que regulam os efeitos da CR no aumento da longevidade e  no atraso do 

envelhecimento permanecem ainda enigmáticos. 

O uso de seres menos complexos com ciclos de vida curtos e de fácil manipulação genética é 

considerado uma vantagem no estudo de genes/vias filogeneticamente conservados e que regulam 

os efeitos da CR. Apresentado dois modelos de envelhecimento, a levedura Saccharomyces 
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cerevisiae representa um modelo único para comparar e contrastar os processos de envelhecimento 

de células proliferativas e não proliferativas e, por extrapolação, compreender os mecanismos de 

envelhecimento em tecidos mitóticos e pós-mitóticos de organismos superiores. S. cerevisiae 

permitiu a identificação de vários mecanismos envolvidos na regulação da longevidade que são 

controlados por sirtuínas, cinases de resposta aos nutrientes e pelo estado redox da célula. No 

entanto, os efeitos da CR na extensão da longevidade estão ainda pouco estabelecidos. 

Neste âmbito, o presente trabalho teve como objectivo estudar o envolvimento dos ROS e do 

stresse oxidativo durante o aumento da longevidade cronológica na levedura S. cerevisiae, 

promovida pela CR. Os resultados obtidos sugerem que os efeitos da CR no aumento da 

longevidade estão associados a um aumento, e não a uma diminuição, dos níveis intracelulares de 

ROS. Demonstrou-se que a CR bem como a inactivação de catalases, apesar de induzirem um 

aumento de ROS na forma de H2O2, promovem a longevidade. Por outro lado, observou-se que o 

aumento dos níveis de H2O2 promove a actividade das superóxido dismutases e consequente 

redução dos níveis de O2
-
. Apesar de a CR ter conferido às células uma maior sensibilidade ao 

stress oxidativo sob a forma de H2O2, verificou-se que concentrações não tóxicas de H2O2 

promovem um aumento da longevidade em células não sujeitas a CR. Estudos adicionais 

mostraram ainda que o envolvimento do H2O2 na extensão da longevidade é independente da 

activação de processos celulares de defesa mediada por cinases de resposta aos nutrientes. neste 

contexto, os resultados demonstraram que, à semelhança do que foi observado em células de tipo 

selvagem, o efeito da CR no aumento da longevidade está também está associado a aumentos nos 

níveis de H2O2 e à redução nos níveis de O2
- 

em células Δrim15. A extensão da longevidade 

associada a aumentos dos níveis de H2O2 e diminuição de O2
-
 foi também ainda observada quando 

a CR foi induzida pela inibição genética de etapas específicas da via glicolítica. No entanto, o 

efeito da CR induzido pela redução do transporte de glucose através da célula mostrou estar 

associado a uma diminuição dos níveis dos ROS, e não a um aumento dos níveis de H2O2, bem 

como a um aumento da resistência ao stresse oxidativo. Deste modo, os resultados apresentados 

sugerem que a CR pode mediar um efeito hormético do H2O2 que, actuando na sinalização de 

processos celulares específicos, é um factor determinante na regulação da longevidade cronológica 

na levedura. Desta forma, é questionada a teoria de Harman e sugere-se um paradigma diferente 

para a compreensão do envolvimento do stresse oxidativo, e de formas específicas de ROS, na 

regulação da longevidade. Neste cenário, S. cerevisiae mostrou, mais uma vez, ser um modelo 

adequado e promissor na compreensão do envelhecimento em organismos mais complexos. 
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OOBBJJEECCTTIIVVEESS  AANNDD  OOUUTTLLIINNEE  OOFF  TTHHEE  TTHHEESSIISS  

 

Over the last decades, researchers have looked for a single theory that could 

explain the aging process. A leading and longstanding theory posits that aging is a result 

of the accumulation of oxidative damage to macromolecules as organisms age over time 

[1]. However, a direct cause-effect has been difficult to establish between reactive 

oxygen species (ROS) accumulation in the cell and its effect on aging. The budding 

yeast Saccharomyces cerevisiae is considered a valious model in aging-related research. 

Among several advantages, the relative easy and short time with which longevity can be 

quantified in yeast has allowed rapid progress is defining the molecular mechanisms of 

aging in this organism and the identification of important aging regulators. Even though 

some features of yeast aging are specific to this cells, numerous important features have 

been evolutionarily conserved and, thus, enrich the understanding of such regulation in 

more complex organisms. In this context, we aimed to get new insights on the 

involvement of ROS and oxidative stress in the chronological lifespan-extending effects 

of caloric restriction (CR) in S. cerevisiae. 

With the intention to drive the reader through the main achievements, this thesis 

was organized in four chapters: 

In chapter 1, an introduction to the theme is made focusing in the main 

contribution of the aging models and theories to the identification of the conserved 

longevity regulators. A special attention is given to the "Free Radical Theory of Aging" 

and to the use of S. cerevisiae in the study of the chronological lifespan-extending 

effects of CR, particularly in which concerns to its effects on ROS and oxidative stress. 

In chapter 2, all the materials and methods used in this work are referred. 

In chapter 3, results are presented and discussed in two sections. The results 

presented in the section 3.1 show evidence indicating that the CR-effects on S. 

cerevisiae  CLS extension are intimately associated with the intracellular accumulation 

of specific forms of ROS suggesting that specifically H2O2 might be a primordial player 

of an hormetis-like process in the aging process. The involvement of ROS and oxidative 

stress in CLS was further demonstrated within CR mimetics, achieved by targeting 

glucose metabolism, transport and sensing signaling, in section 3.2. 

In chapter 4, the main concluding remarks and future perspectives are pointed out. 
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The proportion of aged people is growing faster than any other age group. Such 

trend is a reflex of the advances in sanitation, housing and nutrition conditions that took 

place over the last century. The discovery of vaccines and antibiotics has contributed to 

a reduction in premature mortality from many infectious and chronic diseases. Although 

population aging can be seen as a success story for public health policies and for 

socioeconomic development, it also challenges society to adapt in order to maximize the 

health and functional capacity of the increasing older people. Data from the World 

Health Organization (WHO) show that in 2000 the global population of people aged 60 

and over was 600 million; by 2025 there will be 1.2 billion and, by 2050, almost 2 

billion. In this scenario, and as proposed by WHO, society must promote „„age-

friendly‟‟ environments that encourage „„active aging by optimizing opportunities or 

health, participation and security in order to enhance quality of life as people age‟‟. The 

practice of a healthy diet and exercise, having a good social environment, not using 

drugs or alcohol and avoiding stress are considered important behaviours that may lead 

to a healthy aging. However, the prolongation of human lifespan with quality is much 

more than just a lifestyle issue being governed by biological processes, heredity, health 

conditions or disease. Specific disciplines including microbiology, physiology, and 

genetics have suggested new strategies for efficient intervention in aging model systems 

that, ultimately, may be used to prevent aging and age-related diseases in humans. 

Nevertheless, and despite such multidisciplinary efforts, the understanding of aging 

mechanisms remains one of the most relevant challenges for the modern science. 

 

 

  

1.1 STUDY OF AGING: LESSONS FROM MODEL SYSTEMS 

 Over the last century much of the challenge in understanding human aging has been 

wrapped up in an attempt to identify the primary causes of the stereotypic changes that 

are observed with age. Increasing evidence from aggregation studies in centenarians 

suggest a genetic predisposing for longer longevity and survival advantage [2, 3]. 

However, humans age in unique ways depending on several factors including gender, 

cultural background, lifestyle, geographical location and whether they live in 

industrialized or developing countries. In this scenario, studying such a multifactorial 

biological process in humans still represents a major challenge in the aging field. 
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 Relevant findings in human aging have been gleaned from clinical observations of 

people with premature aging syndromes, the progerias. For instance, studies conducted 

in patients with Hutchinson Gilford progeria syndrome (HGPS) have revealed that 

several cellular and molecular alterations observed during the course of this disease are 

also detected during the so-called normal aging including genome instability, telomere 

attrition, premature senescence and altered stem cell homeostasis [4]. Such studies, 

together with genetic and epidemiological association studies in different age groups, 

may represent an opportunity to identify genetic and environmental key determinants in 

the regulation of human aging and longevity. However, ethical concerns as well as the 

duration of human‟s lifespan still represent major limitations for the development of this 

type of approaches. In this scenario, research on non-human primates have obvious 

benefits to take aging research closer to human and provide a more reliable and 

worthwhile knowledge than non-primates models [5-7]. Nevertheless, the 

expensiveness of their maintenance as well as their extended lifespan may limit their 

utility in aging research. As an alternative, studies in more simple mammals, such as 

rodents, which display genetic plasticity and close position to humans on the 

evolutionary scale, may represent an advantage in aging research when compared to 

simpler models. Yet, the duration of their lifespan may be still considered a limitation 

for their utilization in aging research.  

Despite aging studies with humans [4] and primates [5] are currently being 

performed the ultimate causes of aging stay largely unknown. Important clues of aging 

regulation have resulted from the integration of several models and theories. Over the 

last decades, the use of model systems has been extremely revealing in predicting how 

changes in specific genetic and environmental factors may modulate longevity and 

affect the aging process. Much of the understanding of the aging process have resulted 

from studies conducted in simple and short-lived systems including mice [8], nematodes 

(Caenorhabditis elegans) [4], the fruit fly (Drosophila melanogaster) [5, 6] and the 

single-celled budding yeast (Saccharomyces cerevisiae) [9]. When compared to 

mammals, these systems have shorter lifespans, are easily maintained in laboratory 

conditions, are smaller and have simpler physiology. In addition, the advanced genetic 

tools available for these models have made possible the identification of an ever-

growing number of pathways that govern longevity. For instance, C. elegans was one of 

the first organisms linking growth signaling to longevity by showing that mutations in 

the insulin/insulin growth factor-1 (Ins/IGF-1) receptors, or in downstream components 
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of the phospatidylinositol 3-Kinase (PI3K)-PDK-Akt pathway, promote longevity 

(reviewed in [10, 11]). Relative to more simple systems such as yeast, the nematode 

model has been particularly useful in unravelling the pathways regulating the aging 

process of specific cell types and organs [11]. The fly model has also been particularly 

important in the establishment of the evolutionary conservation of mechanisms 

regulating tissue-specific aging, particularly in which concerns to sex-specific events 

[12]. 

Of the invertebrate eukaryotic model organisms, the single-celled yeast S. 

cerevisiae is the simpler and most amenable microorganism to genetic and molecular 

manipulations. Supporting its utilization for aging research, accumulating evidence 

indicate that a subset of pathways influencing longevity in yeast are evolutionary 

conserved among eukaryotes, including the sirtuins which were firstly linked to aging in 

this model [13]. Yeast cells divide very fast, have short lifespan and present amenable 

genetic manipulation. Thus, a large amount of biological material for physiological, 

biochemical, molecular and genetic analysis can be easily and rapidly obtained. On the 

other hand, being at the same time a cell and an organism, key insights into the genetic 

and environmental factors that can control cellular and organismal aging have resulted 

from studies in this model [10, 14-16]. Two different models can be assessed during 

yeast aging; the replicative lifespan (RLS) and the chronological lifespan (CLS) (Fig. 1) 

(reviewed in [17]). RLS measures the number of mitotic events that an individual 

mother cell can undergo before senescence assuming that the probability of a yeast cell 

to divide again decreases exponentially [18, 19]. On the other hand, CLS measures the 

time that non-dividing yeast cells maintain their viability in a depleted culture or in 

water [20, 21]. Studies focusing these two paradigms stand for a unique opportunity to 

compare and contrast the aging processes of both proliferating and non-proliferating 

cells and, thus, be used as a model to study the aging mechanisms of mitotic and post-

mitotic tissues in higher organisms.  

The extrapolation for mammals based on considerably short-lived systems 

developed for laboratory research may be awkward. Despite the inherent risk, the use of 

simple model systems have revealed to be of particular relevance in the identification of 

a number of genes/pathways involved in longevity [22-24], that are evolutionary 

conserved among the eukaryotic kingdom and, ultimately, are the basis for research into 

aging in mammals and particularly humans [25-27]. 
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Figure 1 - Two aging paradigms exist in yeast cells. The replicative lifespan (A) is a measure of the 

proliferative capacity of a cell, taking advantage of the asymmetric division in which a daughter cell can 

be easily differentiated from the mother. Chronological lifespan (B) measures the time that a yeast cell 

can maintain viability in the culture medium in a post-replicative state. (Figure from [17] with 

adaptations). 

 

 

1.1.1 LONGEVITY REGULATION BY THE CONSERVED NUTRIENT-SENSING SIGNALING 

PATHWAYS  

 The capacity of organisms to deal with changes in their environment is essential 

to their survival and reproductive success. Changes in environmental factors such as 

food supply, require an adaptation in energetic processes including growth, metabolism 

and reproduction. Evidence from genetic studies conducted in different model systems 

have implicated specific nutrient-sensing signaling pathways in lifespan regulation and 

suggest that mechanisms modulating aging are evolutionary conserved (reviewed in [22, 

25]). In the presence of nutrients and growth factors three major conserved nutrient-

sensing signaling pathways are activated including the Ins/IGF-1-like, the TOR-S6K 

(TOR, target of rapamycin) and the RAS-AC-PKA (AC, adenylate cyclase; PKA, 

protein kinase A) (Fig. 2). Conversely, growth factors/nutrients restriction in dietary 
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regimens (DR, dietary restriction) or a specific reduction in calories intake (CR, caloric 

restriction) have been shown to promote a decrease in the activity of those major 

pathways and their activation of specific transcription factors in higher eukaryotes (e.g. 

the Forkhead FoxO transcription factor FOXO) and in yeast (e.g. Msn2p, Msn4p and 

Gis1p) which, in turn, regulate the expression of enzymes and proteins involved in 

protective and metabolic activities that extend lifespan (Fig. 2).  

 Pioneering studies in the nematode model have linked growth/nutrient-sensing 

signaling to longevity through a major axis of longevity regulation, the conserved 

Ins/IGF-1 pathway (reviewed in [11]). It has been shown that, in response to food 

restriction and crowding, the Ins/IGF-1 pathway mediates the formation of long-lived 

dauers which exhibit arrested development, reproductive immaturity and resistance to 

oxidative stress. Conversely, when food or stress conditions are re-established dauers 

become fertile adults with normal lifespan. This mechanism was shown to involve the 

reduction in the activity of the Ins/IGF-1 receptor homolog, Daf-2, as well as the 

recruitment and activation of the insulin-PI3K, resulting in the activation of several 

downstream kinases and specific transcription factors such as FOXO-like transcription 

factor Daf-16 [28] known to regulate genes involved in several cellular protective 

processes including stress response, antimicrobial activity and detoxification of 

xenobiotics and free radicals (reviewed in [29]) (Fig. 2). Reduced levels of IGF-1 and of 

the downstream targeted Akt/PKB kinases have also been demonstrated to mediate 

cellular protection mechanisms and the extension of lifespan in more complex 

eukaryotes including flies and mammals (reviewed in [11, 22, 29]) (Fig. 2). It was 

recently shown that Drosophila mutants for specific insulin-like peptides in 

neuroendocrine cells of the brain are significantly longer-lived than controls [30]. Also, 

flies carrying mutations in the insulin-like receptor (InR) are sterile dwarfs and females 

show increased lifespan [31]. In mammals, growth hormone (GH) and insulin-like 

pathways have linked hormonal control to aging in association with an increase of 

antioxidant defences and increased stress resistance (reviewed in [32]). Although not 

displaying any growth defects, lack of insulin-receptor in adipose tissue was also shown 

to promote lifespan in mice [33]. In humans, either mutations that impair IGF-1 receptor 

function and genetic variants in the insulin receptor gene were found to be more 

frequent in a cohort of centenarians [34]. On the other hand, long-lived Japanese men 

were shown to share a genetic variation within the FOXO3A gene, that functions in the 

conserved IGF-1 signaling pathway [3]. This genetic association was replicated in a 
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caucasian population from Germany showing that it is not population specific [2]. 

However, more studies are needed to establish the beneficial effects of manipulating the 

Ins/IGF-1pathway in humans. 

 

 

 

Figure 2 - Longevity is regulated by major nutrient-sensing signaling pathways including TOR-S6K, 

RAS-AC-PKA and the insulin/insulin growth factor 1-like (Ins/IGF-1-like) pathway. A decrease in the 

activity of these pathways upon dietary restriction (nutrient/calorie restriction) culminates in the 

activation of specific transcription factors (e.g. GIS1, MSN2/4, HIF-1, DAF-16 and FOXO) that regulate 

protective and metabolic activities that increase lifespan involving, for instance, heat shock proteins 

(HSPs); endoplasmatic reticulum (ER) stress and autophagy proteins; apoptosis; xenobiotic metabolism; 

translation regulation and antioxidant enzymes such as superoxide dismutase and catalase [22, 35] (Figure 

from [22]). 

 

  

In response to nutrients and growth factors the Ins/IGF-1 pathway and its 

downstream components of the PI3K-PDK-Akt pathway interconnect with another 

major pathway linked to longevity regulation, the conserved TOR-S6K pathway [36, 
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37] (Fig. 2). The TOR kinase is a phospatidylinositol-related kinase specifically 

inhibited by the macrolide rapamycin and known to regulate various cellular processes, 

including initiation of mRNA translation, ribosome synthesis, expression of 

metabolism-related genes and autophagy [38]. In C. elegans, the worm ortholog of the 

mammalian mTOR-interacting protein Daf-15 has been shown to integrate the Ins/IGF-

1 and TOR signaling pathways in the regulation of larval development, metabolism and 

longevity [36]. In mammals and flies, TOR functions downstream of the Ins-PI3K 

pathway and cooperates in the regulation of cell growth and proliferation in response to 

growth factors, hormones and cytokines [39, 40]. An extension of lifespan was also 

observed in flies when TOR pathway was pharmacological inactivated with rapamycin 

or upon overexpression of dominant-negative dTOR variant or TOR-inhibitory dTsc1/2 

proteins [41, 42]. In mammals, the inhibition of the mTOR pathway has also been 

associated with lifespan extension and reduced incidence of age-related diseases 

including immune and motor dysfunction as well as insulin resistance [43]. In yeast 

TOR signaling pathway has been associated to amino acid sensing in a PI3K-

independent manner [37]. In this model two mTOR homologous, TOR1 and TOR2 

kinases complexes, have been identified [44]. While TORC1 mediates the growth-

related signaling in a rapamycin-sensitive manner, TORC2 signaling is rapamycin-

insensitive and is required for controlling the cell-cycle-dependent organization of actin 

cytoskeleton [44]. Inhibition of the TOR1 with rapamycin was firstly shown to increase 

yeast CLS [45] and has recently been found to increase lifespan in mice [46]. A high 

throughput assay to measure the CLS of individual yeast deletion mutants identified 

several long-lived strains carrying deletions of genes implicated in the TOR pathway 

[45, 47]. The downregulation of TOR and Sch9p, a ribosomal S6 kinase homologue in 

yeast which shares high sequence identity with the mammalian kinases Akt/PKB 

(protein kinase B), have been shown to operate in a pathway downstream of nutrient 

availability to extend CLS [20]. Deletion of SCH9 has since been shown to increase 

yeast RLS similarly, and to increase longevity in nematodes, flies and mice [48].  

Studies in yeast have revealed that, together with TOR-Sch9p, the RAS-AC-PKA 

pathway is another key nutrient-sensing pathway involved in longevity regulation [20, 

49, 50]. This pathway has been involved in the regulation of several downstream 

processes including ribosome biogenesis and translation, changes in the metabolism of 

amino acid/carbon source utilization, autophagy and stress response (reviewed in [22, 

51, 52]). A decrease in the activity of TOR-Sch9p and RAS-AC-PKA pathways is 
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known to drastically increase yeast lifespan by converging in the activation of the 

Rim15p kinase and in the induction of several cellular defence processes [20, 45, 53-57] 

(Fig. 2). Mutations in CYR1 or RAS2, which operate within the RAS-AC-PKA pathway, 

were shown to extend yeast CLS [20, 21]. CYR1 encodes for adenylate cyclase (AC) 

which, in turn, stimulates cyclic adenosine monophosphate (cAMP)-dependent PKA 

activity, required for cell cycle progression and growth. Decreased activity of PKA 

pathway has also been implicated in yeast RLS extension [49]. However, whereas the 

effect of the cAMP/PKA pathway on CLS was suggested to require Msn2p/Msn4p and 

Sod2p and to be associated with increased stress resistance, its effect on RLS appears to 

be independent from stress resistance and dependent on the expression of the Sir2p 

deacetylase, an important aging regulator [56]. Nevertheless, the deletion of SOD1 or of 

both SOD1 and SOD2 has been shown to dramatically decrease yeast CLS [58] and 

RLS [59]. Mutations in the RAS2 gene, triggering loss of function have been described 

as doubling yeast CLS [60]. Although deletion of SCH9 or downregulation of proteins 

of the PKA signaling pathway were shown to extend both RLS and CLS in yeast [20, 

49, 61], there are a number of genetic manipulations that increase CLS and do not 

increase the RLS. For instance, the deletion of RAS2 extends the CLS whereas it 

shortens RLS, in contrast to the RLS-extending effects of the deletion of RAS1 [50]. 

However distinct, the mechanisms that regulate yeast CLS and RLS may be 

interconnected as suggested by the reduction in RLS in chronologically aged cells [62]. 

On the other hand, and contrary to most long-lived mutants in higher eukaryotes, long-

lived RAS2-null yeast cells show a small increase in cell size comparatively to wild type 

cells [54], suggesting that lifespan extension may be not associated with dwarfism in 

response to nutrients [25]. Nevertheless, together with Akt, RAS proteins have also 

been shown to promote aging in mammals being one of the key mediators of IGF-I 

signaling [63, 64]. Similar to what has been observed in yeast cells, disruption of type 5 

adenylate cyclase (AC5) in mice, which is predominantly expressed in the heart and 

brain, also promotes stress resistance and longevity [65].  

A valious contribution of the yeast model in aging research relies on the fact that 

these cells established, for the first time, a link between specific NAD
+
-dependent 

protein deacetylases, the sirtuins, and aging. In yeast, Sir2p is a key determinant of 

longevity [13]. The activity of these proteins were shown to extend yeast RLS by 

inhibiting the progressive enlargement and fragmentation of the nucleoli in old cells 

resulting from the accumulation of toxic extrachromossomal ribosomal DNA circles 
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(ERCs) [13]. ERCs self-replicate and are retained by the mother-cell nucleus leading to 

an exponential increase in their copy number during aging [66]. Subsequent discoveries 

have revealed that activation of Sir2p orthologues can as well extend lifespan in 

nematodes and flies and sirtuin activators are being explored for their beneficial effects 

in several disease models (reviewed in [11, 67]). For instance, in C. elegans, the over-

expression of the sirtuin gene SIR-2.1 extends lifespan by activating DAF-16/FOXO 

which mediates an oxidative stress response [68]. In Drosophila, the over-expression of 

SIR2 has been associated with the prevention of cell death [69], however, further studies 

are needed to elucidate the role of sirtuins in flies longevity. In mammals, sirtuins have 

gained significant attention for their impact on mammalian physiology, since they may 

provide novel targets for treating age-related diseases and, perhaps, extend human 

lifespan (reviewed in [70]). A proper cause-effect relationship between sirtuins and 

lifespan has been difficult to achieve, however, studies in mice have suggested that anti-

aging effects of resveratrol, a plant polyphenolic compound, may occur through sirtuin-

dependent processes [71]. Despite the fact that the effects of resveratrol in delaying the 

onset of several mammalian diseases are associated with sirtuins, the aspects of such 

relationship remain contradictory [72]. It has been recently shown that resveratrol 

requires the NAD
+
-dependent deacetylase sirtuin 1 (SIRT1) to induce the pro-longevity 

effects of autophagy in human cells and in C. elegans [73]. On the other hand, similar 

lifespan-extending and autophagy-inducing effects observed under treatment with 

spermidine, a polyamine found in citrus and soybean which inhibits acetylases, were 

shown to be independent of SIR-2.1 (nematodes) and SIR2 (yeast) and associated with 

the inhibition of acetylases [74]. These studies suggest that these two agents may trigger 

autophagy through distinct primary targets, however, they can synergistically induce 

autophagy by stimulating convergent (de)acetylation reactions and, thus, balancing the 

acetylproteome [74]. Nevertheless, the effective downstream targets of these kinases are 

still difficult to identify due to their overlapping roles in regulating several cellular 

responses to nutrient exposure. In yeast cells, it has been recently suggested that sirtuins 

may extend RLS by avoiding H4 lysine 16 acetylation and loss of histones at specific 

subtelomeric regions [75]. However, the contradictory findings regarding involvement 

of sirtuins in lifespan extension still suggest that there are additional and yet unknown 

pathways regulating aging [76]. 

The yeast model has allowed the identification of yeast-specific molecules that 

modulate aging, particularly concerning the effects of two by-products of alcohol 
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fermentation ; acetic acid (pro-aging) and glycerol (anti-aging) [77, 78]. Mutations in 

the TOR-Sch9p and RAS-AC-PKA pathways have been shown to extend yeast CLS by 

mediating the accumulation of glycerol or by reducing the toxic effects of acetic acid 

that promotes cell death [78-80]. However, the identification of specific metabolic 

products, such as acetic acid, as limiting factors of yeast CLS under standard conditions 

may rise questions regarding the validity of this system as a model for studying aging in 

higher eukaryotes [77, 78].  

Overall, studies conducted in different model systems have shown that mutations 

in genes affecting endocrine signalling, metabolism, stress response and telomeres 

increase the life span, providing the identification of the major evolutionary conserved 

players underlying the mechanistic regulation of the aging process.  

 

 

1.2. THEORIES OF AGING 

A key question remains related with the different regulators of aging and longevity. 

Why living systems age? Over the last century, several theories have contributed to 

answer this question (Fig. 3). In the late 19
th

 century, and soon after the development of 

the Darwin's theory of evolution in 1858, August Weismann proposed an evolutionary 

approach to the problem of aging by hypothesizing that a limited lifespan should be 

viewed as an evolutionary advantage for the species (reviewed in [81]). In this context, 

specific death mechanisms of natural selection would determine death of older members 

of a population to avoid competition for supplies with younger counterparts. Following 

theories by Peter Medawar ("Mutation Accumulation Theory"), George Williams 

("Antagonist Pleiotropy Theory") and Thomas Kirkwood ("Disposable Soma Theory") 

have further supported a role of natural selection in determining aging (reviewed in 

[82]) (Fig. 3). According to Medawar aging would result from the accumulation of 

mutations that are not subjected to natural selection throughout life. On the other hand, 

Williams hypothesized that natural selection would favour genes that confer short-term 

benefits to the organism in detrimental of genes with long term benefits. In this line of 

thought, Kirkwood suggested that natural selection would favour a strategy that ensure 

continued reproductive success early in life; investing less resources in the maintenance 

of somatic cells and tissues after reproduction. However, evidence have emerged 

suggesting that the antagonism reproduction/longevity may not be absolute. For 

instance, no loss in reproductive capacity has been observed in long-lived Drosophila 
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[83]. Also, in eusocial insects the switch during adult life from a normal worker to a 

reproductive gamergate has been shown to be associated with significant increase in 

lifespan [84]. 

 The evolutionary theories may explain the evolution of aging through the 

interaction between mutations and natural selection that would result in the elimination 

of the oldest and less-competitive members of a population. However, over the last 

century, several other causes have been proposed and aging was viewed as a result of 

the accumulation of damage/errors at molecular, cellular and system levels which, in 

turn, may have evolutionary implications for reproduction and survival (Fig. 4) 

(reviewed in [82]). According to the "Gene Regulation Theory" senescence is a result of 

changes in gene expression [85]. Many genes have been associated to aging and some 

have shown lifespan-extending effects on animal models, however, their associations 

with human aging are far from validated. A genetic predisposing for increased longevity 

and survival advantage has also been suggested in humans. For instance, a genome-

wide scan of linkage study carried out in American centenarians and their siblings has 

revealed that exceptional old age may be associated with predisposing loci in 

chromosome 4 at D4S1564 [86]. On the other hand, aging may be seen as a reflex of the 

accumulation of errors and a decline of the fidelity in the genetic machinery and 

resulted altered proteins over time ("Error Catastrophe Theory") [87]. For instance, 

altered DNA replication as a result of the loss of helicase function has been 

demonstrated in patients with premature aging disorders [88].  

Several cellular processes have also been associated with age including 

programmed cell death (PCD) in aged tissues ("Apoptosis Theory") and the 

accumulation of normal injury ("Wear-and-tear Theory") (reviewed in [82]) (Fig. 3 and 

4). For instance, neuronal cell death has been associated with age-related 

neurodegenerative diseases [89]. Apoptotic events have also been demonstrated in both 

muscle and fat tissue during Drosophila aging [90] and in chronologically aged yeast 

cells [91]. However, it was suggested that mutation in pro-apoptotic caspase genes has 

no effect in C. elegans lifespan extension [92] and that the over-expression of caspase 

inhibitors results in the reduction of adult Drosophila lifespan [93]. Therefore, 

suggesting that other cellular processes should also be considered in the aging process. 

 Much of the comprehension of the aging process has resulted from the work by 

Leonard Hayflick and Paul Moorhead, in 1965, suggesting that cell´s senescence is a 

reflex of the limited replicative lifespan ("Cell Senescence Theory of Aging") (Fig. 3). 
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Moreover, some decades later, in 1998, Andrea Bodnar and colleagues proposed a 

mitotic clock that signals cell senescence which is determined by the loss of telomeric 

DNA through incomplete replication of the chromosome ends ("Telomere Theory of 

Aging") (Fig. 3). Ever since, increasing evidence have implicated telomeres in aging 

and different age-related phenotypes (reviewed in [94]). Pioneering findings on the first 

cloned sheep, that died at the age of six, demonstrated that telomeres were found to be 

shorter than those expected for its age [95]. Studies in engineered mice have shown that 

longer telomeres are associated with lifespan extension [96]. However, and unless 

genetically modified, such mice do not resist to cancer. 

 

 

 

Figure 3. In the last century different theories have been presented in the light of the existing discoveries 

from evolutionary, genomic and molecular genetic studies on aging and longevity [82, 94, 97].  
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 The shortening of telomeres has also been demonstrated in humans with progeria 

when compared with healthy individuals of the same age [98]. Taking into 

consideration that progerias may not faithfully reproduce the process of natural aging, 

such evidence remain controversial. A major role for telomeres in aging has also been 

associated with the restorative capacity of tissue stem cells and, ultimately, their fate 

[97], leading the formulation of the "Stem Cell Theory of Aging" (Fig. 3 and 4). 

Overall, increasing evidence support the involvement of telomere biology of aging and 

human diseases. In this context, new insights into the telomere biology outcomes in the 

aging process have recognized Elizabeth Blackburn, Carol Greider and Jack Szostak 

with the attribution of the 2009 Nobel Prize in Physiology or Medicine, for their 

pioneering research showing that telomerase, the enzyme that adds telomeres to the end 

of the chromosome, might have a critical role in protecting telomere shortening 

associated with the aging process and with multiple aging-associated diseases and 

conditions. 

Despite a tune regulation of specific molecular and cellular processes, aging has 

also been suggested to be determined by changes at a more complex physiological level, 

including alterations in metabolism (Fig. 4). For instance, changes in the 

neuroendocrine control of homeostasis or a decline of immune function, have been 

associated with aging (reviewed in [82]) (Fig. 4). Growth hormone (GH), known to 

promote growth in children and to play a central role in adult metabolism, has been 

already described as a key player in delaying aging and age-related phenotype 

(reviewed in [22]). Also, changes in energy metabolism have been suggested to mediate 

the aging process. This idea was firstly suggested early in the 20
th 

century by Max 

Rubner who, by comparing long (tortoises) and short-lived (mice) species, proposed the 

"Rate of Living Theory of Aging" (Fig. 3 and 4). According to Rubner and followers, 

the faster an organism uses oxygen the shorter it lives and, thus, aging would be 

promoted by increased metabolism upon increased nutrient availability [99]. 

Nevertheless, it has also been suggested that metabolic rates, when correctly normalized 

for body size, do not correlate with maximum lifespan in mammals [100]. Despite such 

controversial evidence, this theory has later provided a background for explaining the 

lifespan-extending effects of restricted diet regimens in several organisms [101-105]. In 

this context, a decrease in nutritive/caloric availability would extend lifespan by 

promoting a decrease in the amount of energy metabolized. Some decades later, in 
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1956, Denham Harman provided a molecular basis for Rubner´s theory by suggesting 

that a decrease in energy metabolism would prevent aging by avoiding the intracellular 

accumulation of free radicals and its cumulative damage to the cell [1] and, ultimately, 

to the organism (reviewed in [82]) (Fig. 3 and 4). Ever since, the longstanding "Free 

Radical Theory of Aging" of Harman has supported a involved role for free radicals in 

aging and longevity regulation. This topic will be focused with further detail in the next 

section. 

Overall, a number of theories have been proposes in order to identify the causes of 

aging and of the onset of several age-related phenotypes throughout life. However, the 

degree to each theory contributes to elucidate the primary cause of aging is still a topic 

of strong research. Therefore, the difficulty in identifying a single or primordial cause 

for aging suggests that aging is a very complex and multifactorial process. 

 

 

 

Figure 4. Aging is regulated by a multiplicity of mechanisms which operate at different biological levels. 

Different molecular events may culminate in specific cellular alterations which, in turn, may contribute to 

a decline at organ/system level with evolutionary repercussions for reproduction and longevity [82, 94, 

97].  
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1.2.1 "FREE RADICAL THEORY OF AGING"   

One of the most plausible and acceptable explanations for the mechanistic basis of 

aging is the longstanding “Free Radical Theory of Aging", proposed by Denham 

Harman in the mid-1950s which hypothesizes that aging and age-related diseases are the 

consequence of free radical-induced damage to cellular macromolecules throughout life 

[1, 106] (Figs. 3 and 4). A multiplicity of cellular endogenous and exogenous sources of 

reactive oxygen species (ROS) generation are considered including mitochondrial and 

peroxisomal metabolism, and chemical and environmental insults (Fig. 5) ([107, 108]; 

reviewed in [109]).  

 

 

 

Figure 5 – Sources of reactive oxygen species (ROS), key metabolic pathways, enzymes for these species 

and resulted cellular damage. O2
-
·, superoxide anion radical; H2O2, hydrogen peroxide; OH, hydroxyl 

radical; ONOO-, peroxynitrite; SOD, superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase). 

(Figure from [107] and [108] with adaptations). 
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Different cellular enzyme systems are possible sources such as NAD(P)H oxidase, 

xanthine oxidase, uncoupled endothelial nitric oxide (NO) synthase (eNOS), 

arachidonic acid metabolizing enzymes including cytochrome P-450 enzymes, 

lipoxygenase and cyclooxygenase, and the mitochondrial respiratory chain [107, 110, 

111] (Fig. 5). Although mitochondrial respiration originates most intracellular ROS in 

the majority of mammalian cells types (reviewed in [112]), peroxisomes are ubiquitous 

organelles that also control the synthesis and degradation of ROS and, thus, contribute 

to the maintenance of cellular ROS homeostasis [113, 114]. Even though peroxisomes 

probably do not generate near the amount of ROS that mitochondria their contribution 

to oxidative imbalance during aging has not been discarded. In this scenario, recent 

findings suggest that biochemical processes ruled by peroxisomes, such as hydrogen 

H2O2 turnover by a major H2O2-detoxyfing system, catalase, may also play a critical 

role in regulating cellular aging (reviewed in [115]).  

In mitochondria, ROS are generated as by-products of respiration during the 

electron transport through respiratory chain complexes and are formed as necessary 

intermediates of metal catalyzed oxidation reactions. Under conditions in which the 

activity of the complexes I and/or III is highly reduced, a significant proportion of 

electrons are directly diverted to molecular oxygen, leading to the formation of the 

radical superoxide anion (O2
-
). As a membrane impermeable and charged molecule, O2

-
 

represents a particular damaging molecule. However, O2
-
 may be rapidly converted to 

H2O2 by copper/zinc superoxide dismutase (Cu/ZnSod, Sod1p) in the cytoplasm and in 

the mitochondrial intermembranar space; and by manganese superoxide dismutase 

(MnSod, Sod2p) in the mitochondrial matrix [116] (Fig. 5). Relative to other ROS 

species, H2O2 is more stable, long-lived and less reactive, however, it may diffuse from 

mitochondria leading to a cumulative oxidative damage effect [117]. H2O2 may be 

converted to water by catalase and glutathione peroxidase (GPx) systems [116] or can 

also be transformed in other ROS such as hydroxil anions (HO-), singlet oxygen (
1
O2) 

and hypochlorite (ClO
-
). In addition it may react with nitrogen-derived free radicals 

such as nitric oxide (NO) to produce peroxynitrite (ONOO-). In the presence of 

transition metals (e.g., copper and iron), H2O2 can generate the highly reactive OH via 

the Fenton reaction or the Haber-Weiss reaction, which is short-lived, highly reactive, 

and contribute significantly to local damage. 

In addition to antioxidant enzymes, there are several non-enzymatic small 

antioxidant molecules that play a role in detoxification including vitamins C and E and 
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glutathione. A primary mechanism to reduce H2O2 and lipid peroxides to water and 

corresponding alcohols, respectively, uses reduced glutathione (GSH) and is mediated 

by glutathione peroxidase. Therefore, the ratio of the oxidized form of glutathione 

(GSSG) and the reduced form (GSH) is considered a dynamic indicator of the oxidative 

stress of an organism. However, and despite these defences, sustained high levels of 

ROS surpassing the antioxidant capacity of the cell results in oxidative stress and, 

ultimately, in the indiscriminate damage to cellular components (lipids, DNA, proteins, 

mitochondrial components) compromising cell function and promoting cellular aging 

and death (reviewed in [107]) (Fig. 5).  

In 1972, Harman extended his original hypothesis proposing that mitochondria, by 

generating and consuming most of the intracellular oxygen, may control lifespan [118]. 

Several studies have supported the oxidative damage theory by establishing correlations 

between aging, oxidative stress and levels of antioxidant defences including superoxide 

dismutases (Sods) and, to a slighter extent, of catalases (reviewed in [119]). Due to the 

established emphasis of oxidative damage theory in O2
-
 most studies have focused on 

SOD genes. For instance, in long-lived worms, a genetic link between stress 

responsiveness and lifespan has also been established based on their resistance to 

oxidative stress and age-dependent increase of Sods and catalase activities [120]. In 

addition, lack of peroxisomal catalase was shown to induce a progeric phenotype in this 

organism [121]. Also, interventions extending C. elegans lifespan have been associated 

with induced mitochondrial respiration and increased oxidative stress resistance [122, 

123]. However, it has also been demonstrated that loss of Cu/ZnSOD1 gene does not to 

reduce lifespan [124] and that its overexpression does not promote significant increases 

in C. elegans lifespan [125]. In the fly model, the overexpression of either Cu/ZnSOD 

[126, 127] or MnSOD [128] has been shown to promote a slight extension of lifespan. 

An extension of lifespan was also demonstrated in transgenic Drosophila expressing 

SOD [129] alone, or in combination with catalase [130]. However, as in the nematode 

model, a direct relationship between mitochondrial ROS production longevity has been 

difficult to establish in the fly model [131, 132]. A similar controversy has been 

suggested in mice. For instance, it has been reported that individuals expressing 

mitochondrially-targeted catalase display a 21% increase in lifespan [133]. However, 

the overexpression of Cu/ZnSOD, MnSOD, catalase or a combination of Cu/ ZnSOD 

and MnSOD, or Cu/ZnSOD and catalase had no effect in mice lifespan [134]. 

Furthermore, it has been demonstrated that a decrease in MnSOD activity gene causes 
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increased levels of DNA damage, but does not accelerate aging in mice [135]. On the 

other hand, in the exceptional long-lived mole rats several markers of oxidative damage 

have been described in all tissues, comparatively to mice or rats whose lifespans are 

much shorter [136]. A recent study conducted in ants suggests that increased stress 

resistance displayed by the oldest reproducing gamergates and socially isolated workers, 

is not coupled to increased catalase activity or glutathione levels [84]. Therefore 

suggesting that, as already demonstrated for other organisms, increased lifespan may be 

not directly coupled to higher levels of antioxidants systems. Overall these data support 

pioneering studies in the yeast model which have shown, for more than a decade ago, 

that the deletion of SOD1 or of both SOD1 and SOD2 dramatically reduces CLS [58] 

and RLS [137]. However, and as observed in other model systems, a controversial 

involvement of antioxidant defences in longevity has also been demonstrated in yeast. 

For instance, the overexpression of both SOD1 and SOD2 or catalase promote a minor 

increase in mean survival, indicating that many other systems such as DNA-repair genes 

may important in yeast longevity modulation [20, 79]. Therefore, although the 

abrogation of antioxidant defence systems promote yeast aging [61, 138], the 

corresponding overexpression of these systems appear to have no significant effect in 

increasing maximum longevity survival.  

Overall, studies conducted in different model systems that intended at dropping 

oxidative damage through manipulations of antioxidant enzyme systems have yielded 

inconclusive results so far being difficult to establish if this process promotes aging in 

complex organisms. There is considerable evidence from a variety of model systems 

indicating that in vivo oxidative damage is highly correlated with biological aging, 

nevertheless, increasing evidence have emerged challenging and failing to support the 

longstanding inverse relationship between ROS/oxidative stress and the aging process 

[109, 136, 139, 140]. In contrast to the pro-aging effects assigned to ROS, recent 

evidence indicate that specific forms of ROS may alter gene/protein expression and act 

as secondary messenger molecules in varying intracellular signaling pathways that 

modulate several cellular processes [36, 49]. For instance, low concentrations of H2O2 

have been associated with the extension of human skin keratinocytes lifespan, being this 

effect accompanied by an increase in telomere length [141]. Moreover, although O2
-
 

may inhibit telomere elongation [142] it has been demonstrated that SODs can extend 

mammalian cells lifespan by promoting telomere maintenance [143]. In the long-lived 

Ames dwarf mice it has been suggested that vascular endothelial cells produce more 
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H2O2 than those of normal littermates [144]. Increases in the intracellular steady-state 

production of H2O2 by SOD2 overexpression have also been shown to block the 

activation of cellular processes required for programmed cell death [145]. These 

findings suggest that ROS-mediated mechanisms may act as a pro-survival response or 

contribute to death. A paradoxical induction of a stress response to increased 

metabolism has also been referred in mice suggesting that it might also be relevant to 

multicellular eukaryotes for reasons widely unresolved [146, 147]. However, few 

studies exist providing a molecular explanation for this paradoxical involvement of 

ROS in aging regulation, being still uncertain whether ROS are a cause or a 

consequence of the aging process.  

 

 

1.3  LONGEVITY REGULATION BY CALORIC RESTRICTION 

 Over the last decades, studies conducted in model organisms have produced a 

wealth of knowledge showing an interaction between gene variants and environment in 

determining longevity. After the pioneering studies in rats by McCay, in 1935, showing 

that rats fed with a restricted diet dramatically extends mean and maximum lifespan 

[102], different dietary restriction (DR) protocols were shown to promote longevity and 

delay the onset of several age-related diseases including cancer, diabetes and 

cardiovascular disease in rats and mice [148]. Ever since DR, and specifically caloric 

restriction (CR), is well established as nutritional manipulation known to increase 

lifespan in all model systems (Fig. 6) and to delay the onset or reduce the frequency of 

several age-related diseases in mammals including diabetes, cancer and cardiovascular 

disorders (reviewed in [22, 149]).  

As previously referred (Section 1.1.1), many of the mutations that extend lifespan 

have been shown to decrease the activity of the nutrient-sensing signaling pathways 

such as Ins/IGF-like and TOR pathways. DR has been proposed to act by reducing the 

activity of various signal transduction pathways either directly or through the decrease 

in the activity of nutrient-sensing pathways (reviewed in [22, 29]) (Figs. 2 and 6). For 

instance, in yeast, the CLS-extending effects of CR have been demonstrated either by 

reducing asparagine or glutamate levels in the culture medium [45]; by transferring cells 

from medium to water (reviewed in [21]) or by mutational inactivation of Shc9p and 

Tor1p [20, 45] as well as of proteins involved in RAS protein signal transduction 

(Cyr1p and Ras2p [61]). The RLS-extending effects of CR have also been observed 
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under reduction in the glucose [56, 76] and amino acids [150] levels in the culture 

media; and by mutational inactivation of proteins involved in glucose metabolism (e.g. 

Hxk2p [56]) and glucose/nutrients-mediated signaling (e.g. Gpa2p [56]; Sch9p and 

Tor1p [53]) (reviewed in [151]). In the nematode model, CR can be imposed by 

reducing the bacterial food in the medium or mutating genes involved in feeding 

behaviour (e.g. EAT2) (reviewed in [152]). In flies, DR may be imposed by reducing the 

availability of live yeast in the diet or by the dilution of nutrients in the medium 

(reviewed in [153]). In this case, lifespan is extended by DR and, thus, without a 

specific reduction in calories content. In mice and rats, DR can be imposed by alternate 

day feeding (reviewed in [154]) or by a reduction in food/nutrient intake [148].  

  

 

 

Figure 6 - Experiments on dietary restriction and genetic or chemical alteration of nutrient-sensing 

signaling pathways have been shown to extend lifespan from yeast to humans. Little is known about the 

long-term effects in humans. (Figure from [22]).  
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 CR studies in primates are still underway and CR effects has been suggested to 

promote beneficial health effects similar to rats and mice [148]. A study conducted in 

rhesus monkeys, in the Wisconsin National Primate Research Center, has shown that 

animals submitted to a low-calorie diet have a healthier life and may possibly live 

longer than their normal dieting counterparts [7] (Figs. 6 and 7). Monkeys on a 

restricted diet looked visibly younger, with eyes less sunken, coats thicker and posture 

less cramped when compared with those in normal diet conditions (Fig. 6). In humans, 

studies on CR longevity are already ongoing and it seems that, as for CR-rodents, this 

intervention may reduce the risk factors of many age-related diseases including 

cardiovascular disease and cancer and provides important and sustained beneficial 

effects against obesity, insulin resistance, inflammation, oxidative stress and 

hypertension (reviewed in [22, 155]). Also, an association between low-calorie diet, 

lifestyle and beneficial health along with longevity has already been suggested in 

Okinawan centenarians [156]. However, despite the existing studies pointing to a 

positive effect of CR on lifespan and risk factors for age-related diseases, the direct 

effect of CR on extension of longevity and in the amelioration of the age-related 

markers in humans are still under strong debate. 

  

 

 

Figure 7 - A caloric restriction diet promotes a healthier phenotype (A, B) when compared to normal diet 

conditions (C, D). Monkeys on a restricted diet looked visibly younger, with eyes less sunken, coats 
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thicker and posture less cramped when compared with their dieting counterparts. Study that has been 

conducted in Wisconsin National Primate Research Center. (Figure from [6] with adaptations). 

 

  

 

 Overall, studies focused in DR and reduced activity of nutrient-sensing signaling 

pathways suggest that they may delay aging by similar mechanisms, that have been 

evolutionary conserved (Fig. 2). Yet, the metabolic and molecular mechanisms that 

underlie the different effects of CR on aging and longevity remain to be further 

clarified. 

 

 

1.3.1 CR EFFECTS IN LONGEVITY: LINKING NUTRIENT-SENSING AND ANTIOXIDANT 

DEFENCES 

An unifying aspect of the conserved nutrient-sensing signaling pathways is the 

activation of stress responses and particularly the induction of antioxidant defences 

(reviewed in [22]). For instance, in worms, Daf-16 regulates genes involved the 

detoxification of xenobiotics and free radicals (reviewed in [29]) (Fig. 2). In mammals, 

GH and insulin pathways have linked hormonal control to aging in association with an 

increase antioxidant defences (reviewed in [32]). For instance, in mice, mutations that 

promote deficits in Ins/IGF-1-like signaling have been shown to extend lifespan and to 

increase oxidative stress resistance [157, 158]. In Drosophila, the accumulation of 

sestrins which are induced by the chronic TOR activation was shown to be inhibited by 

the expression of the ROS scavengers including catalase and peroxiredoxin [159]. A 

decrease in nutrient-sensing signaling by TOR-Sch9p and RAS-AC-PKA pathways has 

also been shown to drastically increase yeast lifespan by converging in the induction of 

SOD2 by Rim15p activation ([54], reviewed in [22]) (Fig. 2). Overall, these evidence 

support to the Harman's theory of aging [106] and suggest that the ability that cells have 

to cope appropriately with the effects of oxidative stress may underlie the CR effects 

mediated by decreased nutrient-sensing signaling. However, CR has also been shown to 

further increase the lifespan of the already long-lived mice [160] or of Ins/IGF-1 

signaling-impaired flies [161], raising the possibility that CR may implicate other pro-

survival mechanisms not exclusively focused in nutrient-sensing.  
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It has been demonstrated that CR induces ROS scavenging activity by inducing 

catalase activity [162] and the transcripts levels of SOD1 and SOD2 in rodents [163]. In 

yeast, CR reduces ROS production despite the increased respiratory activity in such 

conditions [164]. Nevertheless, CR was also shown to promote ROS production [165-

167]. On the other hand, it has been demonstrated that changes in ROS production or in 

antioxidant defence systems fail to regulate lifespan in various model organisms 

including C. elegans [125] mice [168] and naked mole rats [136]. In Drosophila CR is 

not capable of a primarily decrease in ROS production [132], suggesting no correlation 

between mitochondrial ROS production and lifespan in this organism. These findings 

suggest a link between increased respiration, high ROS production and an adaptive ROS 

defence response, supporting the notion that CR may promote longevity based on a 

secondary response to ROS-related stress originated in mitochondria, defined as 

mitochondrial hormesis [169]. Moreover, it is suggested that ROS itself may promote 

ROS defence and ultimately increase lifespan. This idea was further supported by a 

study in C. elegans showing that co-treatment of animals with different antioxidants 

fully abolished the life-extending effects of CR [139]. Interestingly, this study provided 

a direct evidence for a crucial role of increased ROS formation in lifespan extension.  

In addition to targeting nutrient-sensing signaling or inducing a hormesis-like 

mechanism CR effects in longevity may also be explained in the light of an 

evolutionary theory. According "Disposable Soma Theory" (reviewed in [82],[170]), 

individuals with genomes that respond to food shortages by directing energy 

expenditure to somatic maintenance rather than reproduction, would have an increased 

ability to survive. Based on this assumption, CR would induce a response that reflects 

an evolutionary advantage with respect to survival during periods of unpredictable, 

short-term food shortage. In addition, and taking into consideration that survival also 

depends on the ability to cope with several stresses induced by the unpredictable food 

shortages in wild, it may also be reasonable that such evolutionary adaptation would be 

in line with the hormesis hypothesis.  

Despite the different hypotheses proposed, the underlying mechanisms for the CR 

effects in delaying aging and promoting longevity are still elusive. Oxidative stress may 

play a major role in aging, however, it is still necessary to understand how CR mediates 

the involvement of antioxidant defences and of specific forms of ROS in longevity 

regulation. Therefore, a more detailed knowledge of the role of redox regulation and 
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mitochondrial function in CR in simple model systems may be of particular interest and 

may contribute to advances in the biology of aging.  

 

 

1.3.2 CALORIC RESTRICTION EFFECTS ON S. cerevisiae LIFESPAN EXTENSION 

 CR is the most efficient manipulation known to extend lifespan in several species 

from yeast to mammals [151]. In yeast, CR can be modelled by reducing the glucose 

concentration in the culture media, from 2% to 0.5%, or by different genetic models of 

CR which are suggested to mimic the physiologic response of the cell under glucose 

limitation [56, 171]. Although reduction of the glucose content in the media culture 

from 2% to 0.5% results in both RLS and CLS extension [56, 76, 172-176] there is still 

some controversy concerning the optimal level of restriction imposed and its effects on 

yeast lifespan extension [177, 178]. In this scenario, it has been suggested that a more 

severe CR approach (0.05% glucose) mediates lifespan extension by the induction of a 

separate set of genes comparatively to moderate CR conditions [53, 76, 179]. In 

addition to glucose limitation, a different CR protocol refers the reduction of amino acid 

availability in the culture medium which has also been found to increase yeast RLS 

[150]. Overall, studies using both RLS and CLS models suggest an interesting parallel 

linking CR to longevity by overlapping, but distinct, molecular pathways. 

Studies conducted in different yeast backgrounds have shown that CR may 

promote a 30-50% RLS extension [56, 76, 172-174, 180, 181]. Although the 

mechanisms by which CR extends yeast RLS are far from being completely understood, 

it has been initially suggested that CR delays aging by activating Sir2p and, thus, 

protecting mother cells from nucleolar damage by the accumulation of toxic rDNA 

circles [56]. This suggestion was further supported by studies showing that the deletion 

of SIR2 prevents lifespan extension by growth on low glucose [181] or in genetic 

models of CR including mutants in hexokinase 2 gene (HXK2) and in glucose-sensing 

genes involved in RAS-AC (GPR1 and GPA2) and cAMP-PKA signaling (CDC35) 

[181]. On the other hand, the overexpression of SIR2 was shown to be sufficient to 

increase RLS [13]. A role for sirtuins in yeast lifespan has also been associated with the 

fact that upon glucose limitation S. cerevisiae shifts from fermentation to respiration, 

resulting in increased transcription of respiratory genes and a higher rate of oxygen 

consumption. It has been suggested that in yeast cells, after exhaustion of glucose, Sir2p 

activation is induced either by increasing cellular NAD
+
 levels [172] or decreasing 
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cellular NADH [182]. On the other hand, it has also been reported that CR may not 

change NAD
+
 levels [174]. The additive effect in lifespan extension observed in yeast 

cells overexpressing SIR2 and grown in glucose restriction conditions suggest that CR 

effects in lifespan may be independent of Sir2p and regulated by parallel pathways still 

undefined [76].  

A role for oxidative damage in limiting yeast RLS has also been suggested. It has 

been shown that deletion of SOD1 shortens RLS [137]. Upon low glucose conditions, 

the overexpression of the antioxidants methionine sulfoxide reductases has also been 

shown to extend yeast RLS [183]. In the presence of oxygen these reductases were 

shown to increase RLS independently of the RLS-extending effects of CR. However, 

under complete anaerobic conditions RLS was reduced, not affected by reductase 

activity and further reduced by CR. As most ROS ultimately result from oxygen, it is 

suggested that ROS may not limit yeast RLS. On the other hand, an age-related 

accumulation of oxidative damage to macromolecules by ROS, such as protein 

carbonylation, has also been described during replicative aging [184]. During 

chronological aging the interaction between ROS, antioxidants and efficiency of energy 

production in lifespan regulation has also been investigated and considerable evidence 

exist that oxidative stress limits yeast CLS. For instance, protein carbonyls have been 

shown to accumulate and to depend on the rate of mitochondrial ROS production [185, 

186]. On the other hand, as previously referred, CLS has been shown to be reduced 

upon deletion of the antioxidant genes SOD1 and SOD2 [58, 187] or by the activation of 

Sod2p associated with the lifespan-extending effects of nutrient-sensing signaling 

pathways [20, 60].  

Although a limited role for oxidative stress in RLS has been suggested, most 

evidence suggest that it is an important determinant in CLS. Such a different impact of 

oxidative stress and ROS production in both replicative and chronological aging 

paradigms may be viewed as reflex of differences in mitochondrial respiration. In effect, 

a yeast mutant lacking SOD2 was shown to grow as well as wild-type strain in 

logarithmic phase on glucose medium, in which mitochondrial electron flux is lower 

and the consequent production of ROS is not physiologically significant [58, 187]. On 

the other hand, cells lacking SOD2 were shown to die more rapidly comparatively to 

wild-type cells in the postdiauxic phase [58, 187]. ROS production during increased 

mitochondrial metabolism may induce cellular and systemic damage, remaining as the 

underlying cause of aging [1].  
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CR also has been shown to be capable of preventing the longevity limitations 

associated with the absence of mitochondrial DNA as demonstrated by the RLS-

extending effects of CR in respiratory-deficient yeast [177]. On the other hand, the 

compensatory signaling pathway that responds to loss of mitochondrial fuction through 

alterations in nuclear gene expression, the retrograde response, has been implicated in 

yeast RLS extension [188]. TOR signaling inhibition has been suggested to involve 

retrograde response through changes in nuclear gene expression [189]. For instance, the 

inhibition of TOR signaling with rapamycin has been shown to upregulate respiration 

by the induction of the expression of tricarboxylic acid cycle (TCA) enzymes and 

proteins involved in oxidative phosphorylation [190, 191]. However, whether TOR 

signaling or other CR model extends lifespan through this mechanism is still a matter of 

debate [192].  

As previously referred in Section 1.1.1, a decrease in the activity of the conserved 

nutrient-sensing signaling pathways is known to extend lifespan extension in response 

to nutrient limitation. In this context, many of the mutations in TOR-Sch9p and RAS-

AC-PKA pathways have been demonstrated to represent genetic mimetics of CR. For 

instance, deletion of SCH9 [61, 171] or reduced PKA activity [49] are known to 

promote RLS extension. A similar decrease in the activity of Sch9p and PKA has been 

associated with the lifespan extending effects of CR modelled by growth on glucose 

restriction [171]. It has also been suggested that CR and a decrease in TOR signaling 

may act in the same pathway to regulate yeast longevity [53]. In effect, a genome-wide 

study has involved the nutrient-sensing kinases Tor1p and Tor2p in RLS in response to 

nutrients [53, 151] which regulate some of the downstream targets of Sch9p and PKA, 

including genes involved in autophagy, cell cycle progression and the stress-responsive 

transcription factors Msn2p/Msn4p [193]. The requirement of a Msn2/Msn4p-mediated 

stress response to extend lifespan during CR has been suggested by evidence showing 

that the deletion of MSN2 or MSN4 does not fail to prevent RLS extension in these 

conditions [49]. Also, a reduction in protein translation or ribosome production has been 

suggested as essential for the CR effects in RLS, as demonstrated by the RLS extension 

upon deletion of individual ribosomal protein genes [53]. On the other hand, the 

decreased activity of these two pathways is known to drastically increase yeast lifespan 

by converging in the activation of the Rim15p kinase and its induction of antioxidant 

systems [20, 45, 53-57].  
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The budding yeast S. cerevisiae has been extensively used as a model system 

allowing the identification of important lifespan regulators and the enrichment 

understanding of such regulation in multicellular organisms [10, 14]. Taking into 

consideration the evolutionary conservation in longevity determinants and signaling 

pathways from yeast to mammals, studying aging in a simple model system as S. 

cerevisiae represents a valious opportunity to a better knowledge to human aging and 

age-related diseases. The recent finding that highly conserved nutrient-sensing signaling 

kinases modulate aging in both replicative and non-replicative yeast cells through 

different downstream elements suggest a possible mechanism by which CR might delay 

aging in both mitotic and post-mitotic cell of higher eukaryotes. An investment in the 

identification of genes and alternative mechanism(s) that operate in parallel with the 

components of the nutrient-sensing signaling pathways in this simple model will 

provide direction for research in the CR. For instance, it is still necessary to identify 

additional mediators of redox regulation during CR effects in complex organisms and, 

ultimately, in humans. 

 

 

1.3.3 CALORIE RESTRICTION MIMETICS (CRM)  

Important advances have been made searching for calorie restriction (CR) 

mimetics (CRM) that would develop the same biological pathways without requiring 

people to go on severe diets for prolonged periods. Although the field of CRM is still in 

its youth the identification of CRM candidates may be a promising strategy to target the 

metabolic and stress response pathways affected by CR. Therefore it is possible to 

produce the CR-like effects on longevity without dropping food intake or restricting 

calories (reviewed in [194]).  

Extended longevity and improved health conditions may be obtained in response 

to a perceived reduction in energy production (reviewed in [195]). It has been suggested 

that inhibiting energy utilization as far upstream as possible might offer a broader range 

of CR-like effects. In this context, the inhibition of glycolysis has emerged as a strategy 

to mimic the metabolic effects of CR [194]. Pioneering studies in this field have 

identified 2-deoxyglucose (2-DOG), a glycolytic inhibitor, as a candidate for 

developing CRM by providing a remarkable phenotype of CR [194]. More recently it 

was shown that application of 2-DOG extends lifespan in C. elegans [139] and in yeast 

[172]. Deletion of HXK2, which encodes the glycolytic enzyme hexokinase II, has also 
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been suggested to promote yeast RLS [49]. HXK2 has also been associated with 

longevity control based on its involvement in a signaling pathway important for 

maintaining glucose repression [196]. Moreover, the pretreatment of cultured fetal 

hippocampal neurons with iodoacetate, which inhibits the glycolytic enzyme 

glyceraldehyde-3-phosphate (GAPDH), has also shown potential as a CRM strategy 

providing protection against several stresses [197]. On the other hand, many different 

targets for CRM development have been proposed at more downstream steps including 

sirtuin activators and mTOR inhibitors (reviewed in [195]).  

The use of antioxidants as CRM has also been suggested as having benefits to 

human health. For instance, it has been shown that the p53 tumour suppressor controls 

the expression of antioxidant genes and that p53 null mice display increased oxidative 

stress [198]. In addition, lifespan and carcinogenesis in p53 null mice has been shown to 

be  rescued by the administration of pharmacological doses of the antioxidants [198]. 

Therefore, it is suggested that rather than manipulating antioxidant enzymes, it would 

be particularly interesting to manipulate the signaling pathways that control intracellular 

ROS levels. But, is it prudent to artificially modulate the fragile balance between 

oxidative stress and antioxidants? Results from ongoing clinical trials and additional 

studies will be necessary to extend our knowledge on the impact of antioxidant 

supplements on human health. Meanwhile, a major question remains to be answered: is 

oxidative stress the main cause of aging and age-related diseases or rather a 

consequence? Ideally, we should have more data to address these questions. 
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22..  MMAATTEERRIIAALLSS  AANNDD  MMEETTHHOODDSS  

2.1 STRAINS 

 Saccharomyces cerevisiae strains BY4742, CEN.PK and W303 as well as the 

respective knockouts in the studied genes used in this study are represented in Table 1.  

 

Table1 - Saccharomyces cerevisiae strains used in this study. 

Strain Genotype/phenotype Source 

BY4742 wt MAT α his3∆1 leu2∆0 lys2∆0 ura3∆0 Euroscarf 

BY4742 cta1 Mat ; his31; leu20; lys20; ura30; 

YDR256c::kanMX4 

Euroscarf 

BY4742 ctt1 Mat a; his31; leu20; lys20; ura30; 

YGR088w::kanMX4 

Euroscarf 

BY4742 

cta1ctt1 

Mat a; his31; leu20; lys20; ura30; 

YGR088w::kanMX4::cta1::URA3 

V. Costa 

BY4742 CTA1 oex MAT α his3∆1 leu2∆0 lys2∆0 ura3∆0::pUG35CTA1 This study 

BY4742 CTA1 

(empty vector) 

MAT α his3∆1 leu2∆0 lys2∆0 ura3∆0::pUG35 This study 

BY4742 pex13 Mat a; his3∆1; leu2∆0; lys2∆0; ura3∆0; 

YLR191w::kanMX4 

Euroscarf 

BY4742 pexx14 Mat a; his3∆1; leu2∆0; lys2∆0; ura3∆0; 

YGL153w::kanMX4 

Euroscarf 

BY4742 BY4742 rho0 This study 

CEN.PK113-7D wt MATa, prototrophic  P.Koetter 

W303-1A wt MATa ura3-1 leu2-3,112 his3-11,15 trp1-1 can1-100 

ade2-1 ade3::hisG 

V. Costa 

W303-1A cta1 alpha leu2 ura3 his3 trp1 V. Costa 

BY4742 hxk2 Mat a; his3∆1; leu2∆0; lys2∆0; ura3∆0; 

YGL253w::kanMX4 

Euroscarf 

BY4742 pfk2 Mat a; his3∆1; leu2∆0; lys2∆0; ura3∆0; 

YMR205c::kanMX4 

Euroscarf 

BY4742 tdh2 Mat a; his3∆1; leu2∆0; lys2∆0; ura3∆0; 

YJR009c::kanMX4 

Euroscarf 

BY4742 tdh3 Mat a; his3∆1; leu2∆0; lys2∆0; ura3∆0; 

YGR192c::kanMX4 

Euroscarf 

BY4742 pdc1 Mat a; his3∆1; leu2∆0; lys2∆0; ura3∆0; 

YLR044c::kanMX4 

Euroscarf 

CEN.PK 

KOY.PK21C83 wt 

MATa MAL2-8c SUC2; auxothrophic  

Strain displaying high glucose transport characteristics * 

L.Gustafsson 

CEN.PK 

KOY.TM6*P 

Strain displaying low glucose transport characteristics * L.Gustafsson 

CEN.PK  

KOY. HXT 7P 

Strain displaying high/intermediate glucose transport 

characteristics * 

L.Gustafsson 

BY4742 rim15 Mat a; his3D1; leu2D0; lys2D0; ura3D0; 

YFL033c::kanMX4 

Euroscarf 

* Strains producing functional chimeras between the hexose transporters Hxt1 and Hxt7 and with altered 

glucose transport/uptake characteristics (strains description in [199]).  

(Wt, wild type; oex, overexpression). 
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2.1.1 GENERATION OF rho0 STRAINS  

The BY4742 rho0 strain used for lifespan analysis and fluorescence microscopy 

was generated by treatment with ethidium bromide. In a standard experiment cells are 

washed cells with sterile 10 mM KPO4, pH 7 and inoculated into 10 ml of 10 mM KPO4 

phosphate, pH 7 buffer containing 10 µg/ml ethidium bromide. After incubation for 1 

hour with shaking (150rpm) at 26ºC cells are spread on YPD plates for single colonies 

growth. Small colonies should correspond to respiratory deficient mutants. Each 

experiment was determined for more than one rho0 isolate in order to verify the 

observed phenotype. Absence of mitochondrial DNA was verified by fluorescence 

microscopy of log phase cells stained with DAPI and by the absence of growth on the 

non-fermentable carbon source, glycerol. 

 

 

2.2.  MEDIA 

Cells were maintained in YEPD agar medium consisting of 0.5% yeast extract, 1% 

peptone, 2% agar and 2% glucose. All experiments were performed in synthetic 

complete (SC) medium containing 0.67% yeast nitrogen base without amino acids 

(Difco Laboratories, Detroit, MI) supplemented with the appropriate amino acids and 

bases for which the strains were auxotrophic (50µg ml
-1 

histidine, 50µg ml
-1 

lysine, 

300µg ml
-1 

leucine, 100µg ml
-1 

uracyl, 100µg ml
-1

 tryptophan and 100µg ml
-1

 adenine). 

Calorie restriction (CR) was accomplished by reducing the glucose concentration from 

2% to 0.5% or to 0.05% in the initial culture medium. In a standard experiment, 

overnight cultures were grown in either media and inoculated into flasks with a ratio 

volume/medium of 3:1 at 26C with shaking at 150 rpm. Growth was monitored by 

measuring the turbidity of the culture at 640 nm (OD640) on a spectrophotometer 

(Genesys 20/Thermo Spectronic) and viability was determined by counting colony-

forming units (CFUs) after 2 d of incubation at 26 ºC on YEPD agar plates. For growth 

in buffered medium, a citrate phosphate buffer (64.2 mM Na2HPO4 and 17.9 mM citric 

acid) adjusted to pH 6.0 was added to the medium before inoculation. 

 

 

2.3 CHRONOLOGICAL LIFESPAN ASSAY  
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 Yeast chronological lifespan (CLS) was measured as previously described [46-

48]. In a standard experiment, overnight cultures were grown in SC medium containing 

different concentrations of glucose and then inoculated into flasks containing medium 

with the same concentration of glucose at a volume ratio of 1:3. These cultures were 

then incubated at 26 °C with shaking at 150 rpm. Cultures reached stationary phase 2–3 

d later and this was considered day 0 of CLS. Survival was assessed by counting 

colony-forming units (CFUs) after 2 d of incubation of culture samples at 26 °C on 

YEPD agar plates beginning at day 0 of CLS (when viability was considered to be 

100%) and then again every 2–3 d until less than 0.01% of the cells in the culture were 

viable. 

 

 

2.4 CONSTRUCTION OF THE CTA1 OVEREXPRESSING AND CTA1CTT1 DOUBLE 

MUTANT STRAINS  

To construct the CTA1 overexpressing strain, CTA1 was amplified by PCR with 

the following primers: F (CCGGTCTAGAATGTCGAAATTGGGACAAGA) and R 

(CCGGAAGCTTGGAGTTACTCGAAAGCTCAG) using genomic DNA isolated from 

Saccharomyces cerevisiae wild-type cells as template. The resulting fragment was 

cloned into the XbaI–HindlII site of the plasmid pUG35 (EUROSCARF), producing the 

plasmid pUG35CTA1. The wild-type S. cerevisiae strain BY4742 was transformed by 

the lithium acetate method with plasmid pUG35CTA1 to produce the strain 

overexpressing CTA1 (“MET-CTA1”) or with the plasmid pUG35 to produce the 

“empty-vector” control strain. Double CTA1CTT1 mutant cells were obtained by CTT1 

disruption in the Δcta1 strain. A deletion fragment, containing URA3 gene and CTT1 

flanking regions, was amplified by PCR using genomic DNA isolated from W303 

Δctt1::URA3 cells and the following primers: F (ATGGGGATAGAACCTCCGTTAT) 

and R (GAATTTAAAGTTTTCTCTGCTGG). Cells were transformed by 

electroporation and Δcta1ctt1 mutants were selected in minimal medium lacking uracil. 

Gene disruption was confirmed by the analysis of catalase activity in a native gel. 

Double mutants lacking both Cta1p and Ctt1p activity were selected. 

 

 

2.5 PHARMACOLOGICAL TREATMENTS 
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Pharmacological inhibition of catalases was accomplished by treating cells at day 

0 of CLS with10 mM 3- amino-1,2,4-triazole (3AT) (Sigma), which binds covalently to 

the active center of the active tetrameric heme-containing form of catalases [200, 201]. 

Pharmacological inhibition of glutathione synthesis was accomplished by treating cells 

at day 0 of CLS with 1 mM L-buthionine-sulfoximine (BSO) (Sigma), which indirectly 

inhibits glutathione synthesis by interacting with -glutamylcysteine synthetase [202, 

203].  

The study of the ectopic effects of hydrogen peroxide (H2O2) on CLS was 

performed by treating non-CR (2% glucose) wild-type cells with 0, 0.2, 0.3, and 1 mM 

H2O2 (Merck) beginning at day 0 of CLS and survival was measured as described 

before. For hydrogen peroxide (H2O2) treatment, yeasts cell were grown until mid-log 

phase in liquid media and then harvested and suspended (10
6 

cells/ml) in fresh medium 

followed by the addition of 0, 0.5, 1, 1.5 and 2 mM H2O2 and incubation for 200 

minutes at 26°C with stirring (150 r.p.m.) in the dark, as previously described [204]. For 

acetic acid treatment yeast cells were grown until mid-log phase in liquid media and 

then harvested and suspended (10
6 

cells/ml) in fresh medium followed by the addition 

of 0, 80, 120, 160 and 180 mM of acetic acid and incubation for 200 minutes at 26°C 

with stirring (150 r.p.m.) in the dark, as previously described [80]. After treatments, 

approximately 300 cells were spread on YPD agar plates and viability was determined 

by counting colony-forming-units (c.f.u.) after 2 days of incubation at 26°C. 

The pharmacological inactivation of nutrient-sensing signalling pathways was 

performed treating cells with 10 µM manumycin, 3 µM wortmannin and 1 µM 

rapamycin (for RAS, PKA and TOR inhibition, respectively). A diluted solution of each 

compound was directly administrated to cells at day 7 of CLS. 

 

 

2.6 FACS ANALYSIS OF INTRACELLULAR REACTIVE OXYGEN SPECIES 

Levels of intracellular ROS were measured using dihydrorhodamine 123 (DHR) 

or 2‟,7‟-dichlorodihydrofluorescein diacetate (H2DCFDA) (Molecular Probes), 

compounds that are capable of detecting H2O2 [205]. Briefly, aliquots were taken at 

selected time points and DHR was added to a final concentration of 15 µg/mL and cells 

were incubated for 90 min at 26 °C. For H2DCF-DA staining cells were incubated with 

a final concentration of 10 µM for 90 min at 30 °C. Cells were then washed twice in 

PBS and analyzed by flow cytometry. FACS analysis used an EPICS XL-MCL 
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(Beckman– Coulter) flow cytometer equipped with a 15 mW argon laser emitting at 488 

nm. The green fluorescence was collected through a 488-nm blocking filter, a 550-nm 

long-pass dichroic with a 525 nm band pass. Data acquired from a minimum of 30,000 

cells per sample at low flow rate were analyzed with the Multigraph software included 

in the system II software for the EPICS XL-MCL version 1.0. Intracellular superoxide 

anions were measured using dihydroethidium (DHE) (Molecular Probes). Aliquots of 

cells were collected at indicated time points and DHE was added to a final concentration 

of 5 µM from a 5-mM stock in DMSO. After incubation for 10 min at 30 °C, cells were 

washed once with 0.5 mL PBS, resuspended in 50 µL PBS, and added to 1 mL PBS. 

After briefly sonicating the suspension, DHE signals were measured using a 

FACSCaliber2 flow cytometer (BD-Biosciences) with a 488-nm excitation laser. 

Signals from 25,000 cells/sample were captured in FL3 (>670 nm) at a flow rate of 

5,000 cells/s. For specific experiments, DHR signals were measured using a 

FACSCaliber flow cytometer to capture signals in FL1 (530 nm ± 15 nm) from 25,000 

cells/sample at a flow rate of 5,000 cells/s. Data collected with the FACSCaliber2 flow 

cytometer were processed with Flowjo software (Tree Star) and quantified with WinList 

software (Verity Software House). 

 

 

2.7 PROTEIN EXTRACT PREPARATION, SUPEROXIDE DISMUTASE, AND CATALASE 

ACTIVITY ASSAYS  

For determination of catalase and superoxide dismutase activities, yeast extracts 

were prepared in 25 mM Tris buffer (pH 7.4) containing a mixture of protease 

inhibitors. Protein content of cellular extracts was estimated by the method of Lowry 

using BSA as a standard. Briefly, for determination of catalase activity 30 µg of 

proteins were separated by native PAGE and catalase activity was analyzed in situ in the 

presence of 3,3′-diaminobenzidine tetrahydrochloride (Sigma), using the 

H2O2/peroxidase system [206]. The gel was incubated in horseradish peroxidase 

(Sigma) (50 µg/ mL) in 50 mM potassium phosphate buffer (pH 6.7) for 45 min. H2O2 

was then added to a final concentration of 5 mM and incubation was continued for 10 

min. The gel was then rapidly rinsed twice with distilled water and incubated in 0.5 

mg/mL diaminobenzidine in 50 mM potassium phosphate buffer until staining was 

complete. Superoxide dismutase activities were measured on the basis of their ability to 

inhibit reduction of nitro blue tetrazolium to formazan in nondenaturing polyacrylamide 
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gels [207]. Sod2p activity was distinguished from Sod1p activity on the basis of the 

ability of 2 mM cyanide to inhibit Sod1p, but not Sod2p. Quantification of band 

intensities was performed by densitometry using Quantity One Basic software from 

Bio-Rad. 

 

 

2.8 WESTERN-BLOT ANALYSIS 

 For detection of protein levels by Western-blot it total cell extracts, aged cells 

were collected and disrupted using glass beads and lysis buffer [1% v/v triton X-100, 

120 mM NaCl, 50 mM Tris-HCl pH 7.4, 2mM EDTA, 10% v/v glycerol, 1mM PMSF 

and Complete Mini protease inhibitor cocktail (Roche, Germany)]. Of total protein, 40 

µg was resolved on a 10% SDS gel and transferred to a nitrocellulose membrane for 90 

min at 100V. Membranes were then probed with the following antibodies: polyclonal 

rabbit anti-Pex14p (1:5000), monoclonal mouse anti-porin (1:5000) (Invitrogen) and 

monoclonal goat anti-actin (1: 5000). Correspondent HRP-conjugated IgG secondary 

antibodies were used at a dilution of 1:5000 and detected by enhanced 

chemiluminescence. The anti-Pex14p and anti-actin antibodies were kindly supplied by 

Prof. Wolfgang Girzalsky and Prof. Campbell Gourlay, respectively. 

 

 

2.9 DETERMINATION OF OXIDATIVE DAMAGE  

To measure levels of carbonylated proteins, samples of total cell protein were 

derivatized by mixing aliquots with one volume of 12% (wt/vol) SDS and two volumes 

of 20 mM 2,4-dinitrophenylhydrazine in 10% (vol/vol) trifluoroacetic acid (a blank 

control was treated with two volumes of 10% (vol/vol) trifluoroacetic acid alone) [208]. 

After incubation for 30 min at room temperature in the dark, samples were neutralized 

and proteins (0.15 µg) were slot blotted onto a poly-vinylidene fluoride membrane 

(Hybond-PVDF, GE Healthcare). The PVDF membrane was probed with rabbit IgG 

anti-DNP (Dako) (1:5,000 dilution) and goat anti-rabbit IgG linked to horseradish 

peroxidase (Sigma) (1:5,000 dilution) by standard techniques. Detection of derivatized 

proteins was accomplished by chemiluminescence, using reagents contained in a RPN 

2109 kit (GE Healthcare). The membranes were exposed to a Hybond- ECL film (GE 

Healthcare) for 15 s to 1 min, and the film was developed. Quantitative analysis of 

carbonyls was performed by densitometry using Quantity One Basic software from Bio-
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Rad. Autofluorescence signals indicating oxidative damage to proteins and lipids were 

collected from 25,000 cells/sample using a FACSCaliber2 flow cytometer as described 

above for DHE measurements, except that cells were not stained with DHE after the 

PBS wash step. 

 

 

2.10 EPIFLUORESCENCE AND CONFOCAL MICROSCOPY 

Epifluorescence microscopy was performed using an Olympus BX61 microscope 

equipped with a high-resolution DP70 digital camera and an Olympus PlanApo 60×/oil 

objective, with a numerical aperture of 1.42. Total magnification 600×. (Bar, 5 μm.)  

Yeast cells either expressing Cta1p–GFP and DsRedSKL were washed twice with PBS 

buffer (pH 7.4) and subsequently examined using a confocal laser-scanning microscope.  

 

 

2.11 STATISTICAL ANALYSIS  

Data are reported as mean values of at least three independent assays and 

presented as mean ± SD or mean ± SEM. The arithmetic means are given with SD with 

95% confidence value. Statistical analyses were carried out using Student‟s t-test. *P < 

0.05 was considered statistically significant. 

 

 

  



  
 

44 

 

    



  
 

45 

 

 

 

 

 

 

 

 

 

 

 

CCHHAAPPTTEERR33..    

RREESSUULLTTSS  AANNDD  DDIISSCCUUSSSSIIOONN  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



  
 

46 

 

   



  
 

47 

 

  

  

  

  

  

  

  

  

  

  

SSEECCTTIIOONN  33..11    

CCAALLOORRIICC  RREESSTTRRIICCTTIIOONN  EEXXTTEENNDDSS  SSaacccchhaarroommyycceess  cceerreevviissiiaaee  

CCHHRROONNOOLLOOGGIICCAALL  LLIIFFEESSPPAANN  AASSSSOOCCIIAATTEEDD  WWIITTHH  IINNCCRREEAASSEESS  

IINN  RREEAACCTTIIVVEE  OOXXYYGGEENN  SSPPEECCIIEESS  AACCCCUUMMUULLAATTIIOONN  

  

  

   



  
 

48 

 

  
 

 

 

 

 

 

 

 

 

 

The results presented in this section were partially published as follow: 

 

Mesquita A., Weinberger M., Silva A., Sampaio-Marques B., Almeida B., Leão C., Costa V., 

Rodrigues F., Burhans W.C., Ludovico P. Caloric restriction or catalase inactivation extends yeast 

chronological lifespan by inducing H2O2 and superoxide dismutase activity. Proc Natl Acad Sci U 

S A. 2010 Aug 24;107(34):15123-8. 

 

 

 

National congresses: 

 Mesquita, A., Silva, A., Sampaio-Marques, B., Logarinho E., Leão, C., Rodrigues, F. and 

Ludovico, P. 2010. Reactive oxygen species generation during chronological lifespan in 

Saccharomyces cerevisiae. XVIII Jornadas de Biologia das leveduras "Professor Nicolau van 

Uden", Lisboa, Portugal. (Oral communication by Mesquita, A.) 

 Mesquita, A., Silva, A., Sampaio-Marques, B., Logarinho E., Leão, C., Rodrigues, F. and 

Ludovico, P. 2009. Oxidative stress during chronological lifespan in Saccharomyces 

cerevisiae. MicroBiotec09, Vilamoura, Portugal. (Oral communication by Mesquita, A.). 

 

 

  



  
 

49 

 

3.1. CALORIC RESTRICTION EXTENDS Saccharomyces cerevisiae 

CHRONOLOGICAL LIFESPAN ASSOCIATED WITH INCREASES IN REACTIVE 

OXYGEN SPECIES ACCUMULATION  

 

 

3.1.1 CALORIC RESTRICTION EXTENDS S. cerevisiae CHRONOLOGICAL LIFESPAN 

ASSOCIATED WITH AN INCREASED FRACTION OF CELLS DISPLAYING HIGH 

INTRACELLULAR LEVELS OF REACTIVE OXYGEN SPECIES, PARTICULARLY H2O2 

While CR in worms, flies and mammals usually requires a complex food source 

limitation, in yeast, moderate CR is commonly modelled by reducing the glucose 

content in the media culture from 2% to 0.5% [56, 76, 172-175]. However, there is still 

some controversy in the optimal level of restriction imposed and its effects on lifespan 

extension [177, 178]. A more severe glucose restriction (0.05%), associated with a fully 

respiratory metabolism and lower specific growth rates (Fig. 1B), has been suggested to 

induce a separate set of genes that also mediate lifespan extension [53, 76, 179]. In this 

study, and taking into consideration that these two CR approaches may signal different 

CLS regulation pathways, cells were grown in either 0.5% and 0.05% glucose 

concentrations in specific CR experiments described hereafter. As expectable, CLS 

measured by the survival of non-dividing stationary phase S. cerevisiae cells was clearly 

extended by CR (0.5% and 0.05% glucose) comparatively to cells grown in non-CR 

conditions (2% glucose) [56, 76, 172-175], being this effect independent of the genetic 

background (Fig. 1A-D). In addition, CLS extension was dependent on the level of 

glucose restriction, being higher in cells upon severe restriction (0.05% glucose) 

comparatively to cells grown in moderate glucose restriction (Fig. 1A-D). Therefore, 

using different genetic backgrounds, these results established the CLS-extending effects 

of both CR approaches in the budding yeast S. cerevisiae. 

A leading hypothesis on the mechanisms trough which CR prevents aging is that 

it decreases reactive oxygen species (ROS) generation and therefore their oxidative 

damage effects [209-211]. Therefore, CR is suggested to mitigate the destructive effects 

of ROS which, according to the free radical theory proposed by Harman, are primordial 

aging promoters [1]. In this scenario, and taking into consideration that ROS and 

oxidative stress have also been previously suggested as crucial negative regulators of 

yeast CLS [187, 212, 213], we evaluated whether the S. cerevisiae CLS-extending 
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effects of CR are linked with increases of ROS production. To answer this question, 

CLS experiments were followed by measurements of the intracellular ROS levels by  

 

Figure 1 - CR (0.05% and 0.5% glucose) extends S. cerevisiae CLS comparatively to non-CR conditions 

(2% glucose). Survival of BY4742 (A), CEN.PK (C) and W303 (D) cells was measured by cell viability 

over time beginning the day cultures reached stationary phase (day 0) and expressed as % of survival 

compared with survival at day 0 (100%). (B) Growth curves, specific growth rates (µ) and glucose 

concentrations of BY4742 cells cultured in SC medium upon severe (0.05% glucose), moderate (0.5% 

glucose) and non-CR conditions (2% glucose). Values are means ± SD of three independent experiments. 

 

 

flow cytometry and epifluorescence microscopy techniques, using dihydrorhodamine 

123 (DHR) and 2′,7′ dichlorodihydrofluorescein diacetate (DCF); two probes commonly 

employed for detection of hydroperoxides, lipid hydroperoxides, peroxynitrites and 

hydroxyl radicals [214-217]. However, because DCF fluorescence is known to be 

modulated in an artifactual manner by changes in cellular pH or by cytosolic esterases 

which hydrolyze the acetate groups of the probe, rather than by oxidation [Molecular 

Probes], DHR was preferentially used in most of the experiments described hereafter. 

Surprisingly, and differently from what has been mostly suggested [187, 212, 213], our 

results revealed that the CLS-extending effects of CR occur in parallel with increases, 

rather than decreases, in the intracellular ROS levels (Fig. 2), as detected by staining 
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cells with both the fluorescent probes DHR (DHR positive cells) (Fig. 2A-D) and DCF 

(DCF positive cells) (Fig. 2E, F). Furthermore, the intracellular levels of ROS 

accumulation were dependent on the level of glucose restriction, being higher in cells 

upon severe conditions (0.05% glucose) comparatively to moderate conditions (0.5% 

glucose) (Fig. 2A). 

 

 

Figure 2 - The CLS-extending effects of CR occur in parallel with increased levels of intracellular ROS 

accumulation in S. cerevisiae wild type cells. Intracellular ROS accumulation detected by FACS 
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measurements of fluorescence of the probes dihydrorhodamine 123 (DHR) (A, C and -D) and 2′,7′-

dichlorodihydrofluorescein diacetate (DCF) (E,F). (B) Photomicrograph of S. cerevisiae DHR-stained 

wild-type cells at day 3 of CLS during moderate CR conditions (0.5% glucose). Arrowheads indicate cells 

displaying bright green fluorescence and correspond to cells with high intracellular ROS levels, 

designated DHR positive cells. Arrows indicate cells that did not stain with DHR. Cells were visualized 

by epifluorescence microscopy using an Olympus BX61 microscope equipped with a high-resolution 

DP70 digital camera and an Olympus PlanApo 60×/oil objective, with a numerical aperture of 1.42. Total 

magnification 600×. (Bar, 5 μm.) Three to five biological replicas of each experiment were performed. 

Statistical significance (*P < 0.05) was determined by Student‟s t-test. Bar graphs indicate mean ± SEM 

(%) or ± SD fluorescence/cell (% or arbitrary units, respectively) measured in 30,000 cells/sample in 

three independent experiments. ROS levels were evaluated both by the number of stained cells (% of cells 

displaying high ROS accumulation) and by the concentration of probe per cell (mean channel 

fluorescence).  

 

 

As these two probes are not oxidized by superoxide (O2
-
) to any significant extent 

[216, 218], increases in the fluorescent product could be interpreted, at a first glance, as 

intracellular changes in hydrogen peroxide (H2O2). These results are supported by 

recent studies that challenge and fail to support the longstanding inverse relationship 

between ROS/oxidative stress and the aging process [109, 136, 139, 140]. For instance, 

higher levels of oxidative stress were suggested in long-lived naked mole rats 

comparatively to physiologically age-matched mice [136]. In the nematode model 

Caenorhabditis elegans, it has also been suggested that the lifespan-extending effects of 

CR occur in parallel with the induction of mitochondrial respiration and increases in 

oxidative stress [139]. In mammals specific forms of ROS have been shown to function 

as essential secondary messengers in several intracellular signaling pathways [109] and 

specifically H2O2 has been recently implicated as a cell-survival signaling molecule 

[140]. These controversial data suggest that new experimental designs should be 

performed to a better understanding of the involvement of specific forms of ROS in the 

CLS-extending effects of CR. 

 

 

3.1.2 PEROXISOMES AND MITOCHONDRIA ARE INVOLVED IN THE CLS-EXTENDING 

EFFECTS OF CR ASSOCIATED WITH HIGH INTRACELLULAR ROS 

Having in mind the previously results suggesting a dual role for ROS in the CLS-

extending effects of CR we next focused on the involvement of mitochondria, a major 
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organelle implicated in ROS production and scavenging. As mitochondria are a major 

source of ROS in the cell, we next asked whether diminishing mitochondrial function 

compromises CLS and its effects on CLS extension by CR. For that, we produced a 

isogenic wild type strain lacking mitochondrial DNA (rho0 cells) and assessed for its 

survival in both CR and non-CR conditions (Fig. 3A). In addition, measurements of 

intracellular ROS accumulation were performed (Fig. 3B and C).  

 

 

 

Figure 3 - CR extends CLS of S. cerevisiae BY4742 rho0 cells in SC medium associated with increased 

intracellular ROS levels. (A) Survival of BY4742 rho0 cells measured by cell viability at 2- to 3-d 

intervals beginning the day cultures reached stationary phase (day 0) and expressed as % of survival 

compared with survival at day 0 (100%). (B) Intracellular ROS accumulation in wild type rho0 cells 

detected by FACS measurements of fluorescence of the probe dihydrorhodamine 123 (DHR). (C) 

Photomicrograph of S. cerevisiae DHR-stained BY4742 rho0 cells at day 3 of CLS during moderate CR 

conditions (0.5% glucose). Cells displaying bright green fluorescence correspond to cells with high 

intracellular ROS levels, designated DHR positive cells. Cells were also stained with propidium iodide 

(red fluorescence) to have an indication of cell survival, as it is excluded by viable cells but can penetrate 

cell membranes of dying or dead cells. Cells were visualized by epifluorescence microscopy using an 

Olympus BX61 microscope equipped with a high-resolution DP70 digital camera and an Olympus 

PlanApo 60×/oil objective, with a numerical aperture of 1.42. Total magnification 600×. (Bar, 5 μm.) 

Three to five biological replicas of each experiment were performed. Statistical significance (*P < 0.05) 

was determined by Student‟s t-test. Bar graphs indicate mean ± SEM (%) measured in 30,000 

cells/sample in three independent experiments. 
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The results revealed that lack of functional mitochondria resulted in a reduction of 

CLS (Fig. 3A) comparatively to the correspondent wild type cells (Fig. 1A), 

consistently with the essential pro-longevity role [138]. However, CR was still able to 

promote a clear extension of CLS in rho0 cells (Fig. 3A) associated with increased 

levels of intracellular ROS accumulation (Fig. 3B). Altogether, these data pointed to the 

hypothesis that the CLS-extending effects of CR were not exclusively dependent of 

mitochondria, or mitochondrial-derived ROS, and could be associated with an 

extramitochondrial source of ROS.  

Cellular ROS generation results from a number of processes and organelles 

besides mitochondria which are critical for normal cell function (reviewed in [109]). 

Peroxisomes are ubiquitous organelles that, by being able to control the synthesis and 

degradation of ROS, contribute to the maintenance of cellular ROS homeostasis [113, 

114]. Following this line of thought, we hypothesised that peroxisomal production of 

ROS was contributing to the CLS-extending effects of CR previously observed. In a 

first approach we aimed to address the effect of compromising peroxisomal function in 

the CLS-extending effect of CR. To tackle this task, we used two strains mutated in 

PEX13 and PEX14, which encode proteins involved in the peroxisomal import system, 

and thus with altered peroxisomal function [219]. The results obtained revealed an 

extension of CLS in Δpex13 and Δpex14 cells comparatively to wild type cells under 

non-CR conditions (Fig. 4A and C). In addition, the longer CLS observed in Δpex13 

and Δpex14 cells was accompanied by an increased fraction of cells containing high 

ROS levels under non-CR conditions from day 6 on (Fig. B and D). However, 

mutations in PEX13 and PEX14 resulted in a decrease in CLS during moderate CR 

conditions (0.5% glucose) comparatively to wild type cells (Fig. 4A and C). On the 

other hand, the shorter CLS observed in Δpex13 and Δpex14 cells under moderate CR 

conditions was accompanied by a decreased fraction of cells containing high ROS 

levels (Fig. 4A and C). Thus, suggesting that functional peroxisomes or, at least, 

peroxisomal-derived ROS may be required for the CLS-extending effects of moderate 

CR observed in wild type cells. Similar to non-CR conditions, the severest CR 

conditions (0.05% glucose) promoted an extension of CLS in both Δpex13 and Δpex14 

(Fig. 4A and C) associated with increases in the intracellular ROS levels at day 12 

(Fig.4B and D), probably reflecting the increase of mitochondrial ROS production 

associated with a fully respiratory metabolism.  
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In an opposite approach, peroxisome's biogenesis was promoted in wild type cells 

and its effects in CLS were addressed (Fig. 4E). The results showed that CLS was 

promoted in wild type cells cultured in peroxisome's biogenesis inducing media (0.5% 

oleate and Tween 80 as energy and carbon sources) comparatively to those grown in 2% 

glucose (Fig. 4E). However, the CLS-extending effects of oleate were not so drastic as 

those promoted by both CR conditions (Fig. 4E). Overall, the findings herein described 

raise the hypothesis that peroxisomes or, at least, peroxisomes-derived ROS may be 

involved in the CLS-extending effect of CR. Interestingly, recent findings suggest that 

biochemical processes ruled by peroxisomes, such as hydrogen H2O2 turnover, may also 

play a critical role in regulating cellular aging (reviewed in [115]). It has also been 

suggested that pexophagy, an autophagy-related process for selective degradation of 

oxidatively damaged and dysfunctional peroxisomes, may have a key role in the 

maintenance of the population of peroxisomes during the aging process [220, 221]. 

 

 

 

Figure 4 - Impaired peroxisomal function extends S. cerevisiae CLS associated with increases in 

intracellular ROS levels, in severe (0.05% glucose) and non-CR (2% glucose), but not in moderate CR 

(0.5% glucose). Survival of BY4742 Δpex13 (A), Δpex14 (C) and oleate (0.5%) grown cells (E) 
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measured by cell viability at 2- to 3-d intervals beginning the day cultures reached stationary phase (day 

0) and expressed as % of survival compared with survival at day 0 (100%). (B) Intracellular ROS 

accumulation in Δpex13 and Δpex14 cells detected by FACS measurements using dihydrorhodamine 123 

(DHR). Values are means ± SD of three independent experiments. Statistical significance (*P < 0.05) was 

determined by Student‟s t-test. As for most of the comparative groups differences are statistically 

significant, only not significant (ns) are marked.  

 

 

Based on the approaches used we may speculate about a specific positive role of 

peroxisomes, or a pro-longevity role of H2O2 in the CLS-extending effects of CR. On 

the other hand, and as peroxisome's biogenesis also resulted in CLS extension, it may be 

reasonable to consider that it may be a result of the great increase in ROS production or, 

at least, a result of a pexophagy process that protects cells from aged and damaged 

peroxisomes. Therefore, peroxisomes could elicit an anti-aging cellular program based 

on the hypothesis that H2O2 levels are maintained below a specific threshold level that 

may induce an adaptative response to oxidative stress. In this context, these findings 

may provide new insights into the role of peroxisomes, and H2O2, leading us to 

speculate about a "pexo-hormesis" mechanism by which CR extends CLS in S. 

cerevisiae. 

Taking into account that peroxisomes contribute to the maintenance of 

extraperoxisomal ROS levels and the suggestion that they might be involved in the S. 

cerevisiae CLS-extending effects of CR, we attempted to investigate the involvement of 

a major H2O2-metabolizing enzyme present in this organelle, the peroxisomal catalase 

(Cta1p). It has been suggested that Cta1p may not be only targeted to peroxisomes but 

also efficiently co-imported into mitochondria, when cells are cultivated under 

respiratory growth conditions where Cta1p functions as scavenger of mitochondrial 

derived H2O2 [222]. In this line of thought, we raised the question of the relevance of 

Cta1p localization to the observed CLS-extending effects of CR. For that purpose, we 

used a wild type strain in which Cta1p was fused to GFP and harbouring a plasmid with 

dsRED target to mitochondria. Similar to wild type cells (Fig. 1A) CR was 

demonstrated to extend CLS in cells expressing Cta1p-GFP (Fig. 5A). The confocal 

microscopic analysis revealed that, in non-CR conditions, Cta1p is not co-localized to 

mitochondria being imported to peroxisomes during the first days of CLS (Fig. 5B). In 

this conditions Cta1p was barely detected after day 6, probably as a result of the 

compromised trafficking into peroxisomes during the aging process [223].  
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Figure 5 - Cta1p is not co-localized to mitochondria during the S. cerevisiae CLS-extending effects of 

CR. (A) Survival of a wild type strain co-expressing Cta1p-GFP and DsRed, measured by cell viability at 

selected time points and beginning the day cultures reached stationary phase (day 0) and expressed as % 

of survival compared with survival at day 0 (100%). Values are means ± SD of three independent 

experiments. (B) Confocal microscopy of a wild type strain co-expressing Cta1p-GFP and DsRed for 
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mitochondrial localization, at the selected time points. Insets are 200% magnifications; upper inset- 

mitochondria, lower inset- catalase. 

 

 

In CR conditions (0.5%), and in contrast to what others have suggested for cells 

grown under respiratory or respiratory/fermentative conditions [222], no co-localization 

of Cta1p was observed in mitochondria. The co-localization of Cta1p in mitochondria 

was only observed in some cells under severe CR conditions (0.05%) (Fig. 5B), 

probably as a result of the fully respiratory growth conditions where Cta1p may 

function as scavenger of mitochondrial derived H2O2.Overall, these results discarded the 

contribution of peroxisomes to the CLS-extending effects of CR exclusively based on 

the mitochondrial co-localization of Cta1p. However, it is still necessary to confirm the 

involvement of peroxissomes in the CLS extension as previously suggested by growing 

cells in the peroxisome's induction media (oleate) (Fig. 4E).  

To further understand the involvement of peroxisomes in CLS,. we investigated 

whether the CLS-extending effects of CR could be coupled to an increase in 

peroxisomal biogenesis relative to mitochondria. For that we evaluated, in CR and non-

CR conditions, the expression levels of Pex14p and Porin, two membrane proteins 

present in peroxisome and in mitochondria, respectively (Fig.6). The results 

demonstrated that both moderate and severe CR (0.5% and 0.05% glucose, respectively) 

promote the induction of Pex14p expression (Fig. 6A and B) suggesting an increase in 

the biogenesis of peroxisomes, rather than an increase in the mitochondria mass (Fig. 

6A and C). Similar results were obtained in severe CR conditions (0.05% glucose). 

However, the increase in the ratio Pex14/Porin expression relative to non-CR conditions 

was not so evident as for moderate CR (0.5% glucose). This result may explain the great 

increase in mitochondria mass associated with the fully respiratory metabolism of these 

severe CR-restricted cells, particularly from day 6 on (Fig. 6A-C). These results 

obtained raise the possibility that peroxisomes, despite their negative role previously 

suggested in non-CR conditions (Fig. 4A and C), may have a positive contribution to 

the CLS-extending effects of CR in S. cerevisiae (Fig. 4A, C and E; Fig. 6). Or, at least, 

the negative effects of aged peroxisomes may be counteracted in CR conditions. Such 

positive contribution was suggested to be associated with increased levels of 

peroxisomes-derived ROS, further supporting a more complex role of ROS in the aging 

process and challenging the free-radical theory of aging [1]. Moreover, a major role for 
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Cta1p in the CLS-extending effects of CR, based on its co-localization in mitochondria, 

was discarded 

 

 

 

 

Figure 6 - CR promotes increases in the ratio of Pex14p/Porin protein expression in S. cerevisiae cells. 

(A) Quantification of band intensity by densitometry (BioRad Quantity One Software). (B) Western-blot 

analysis of the levels of Pex14p of chronological aged cells. The Western blot results shown represent the 

results from a number of attempts which showed similar trends. The expression levels was normalized by 

the expression level of actin.  

 

 

3.1.3 INACTIVATION OF CATALASES MIMICS THE CLS-EXTENDING EFFECTS OF CR BY 

PROMOTING AN INCREASE IN H2O2 LEVELS  

Although our previous results did not suggest a major involvement of Cta1p in the 

CLS-extending effects of CR, we further aimed to test the involvement of catalases in 

such process. In C. elegans, it has been demonstrated that the specific loss of 

peroxisomal catalase resulted in a progeric phenotype associated with alterations in 

ROS generation, changes in peroxisome morphology and reduction in the organism's 

lifespan [121]. The same study showed similar effects in S. cerevisiae strains in which 
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lack of Cta1p, but not cytosolic catalase (Ctt1p), decreased the viability of yeast by 15-

fold [121]. On the other hand, loss of Ctt1p was suggested to have a moderate effect on 

S. cerevisiae CLS, even though its levels are highly induced during the stationary phase 

of growth [58]. Even though catalases do not seem to be important under fermentative 

growth conditions, their involvement in cellular survival under extreme conditions, such 

as oxidative stress, has been suggested in respiratory growth conditions [224, 225].  

In a first approach we evaluated the impact of CR in the activity of both Cta1p 

and Ctt1p, the two main H2O2-scavenging enzymes present in S. cerevisiae cells (Fig. 

7).  

 

 

Figure 7 - CR induces the activity of both peroxisomal (Cta1p) and cytosolic catalase (Ctt1p) in wild 

type, rho0, Δpex13, Δpex14  and oleate grown S. cerevisiae cells (BY4742 background) during CLS, 

although more evident in severe CR (0.05% glucose). Results shown represent the results from a number 

of attempts, which showed similar trends.  

 

The results showed that the CLS-extending effects of CR observed in wild type, 

rho0, Δpex13, Δpex14 and oleate grown cells (Figs. 3 and 4) are associated with 

increased activity of both Cta1p and Ctt1p, comparatively to non-CR conditions (Fig. 

7). However, and despite the higher activity of peroxisomal catalase observed in these 
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strains in CR conditions, we previously shown that they still display increases in 

intracellular ROS, specifically H2O2 accumulation (Fig. 2; Fig 3B and C; Fig. 4B and 

D). Thus, suggesting that their increased antioxidant activity may not be primarily 

determinant in the CLS-extending effects of CR in S. cerevisiae. This hypothesis was 

further supported as CLS was also extended by mutational inactivation of CTA1 (Fig. 

8A).  

 

 

Figure 8 - Genetic and pharmacological inactivation of catalases extends S. cerevisiae CLS by increasing 

intracellular levels of ROS. Survival of Δcta, Δctt1 and 3AT-treated cells (A, C and E, respectively) was 

measured at 2- to 3-d intervals beginning the day cultures reached stationary phase (day 0) and is 

expressed as % of survival compared with survival at day 0 (100%). Percentage of Δcta, Δctt1 and 3AT-

treated cells (B, D and F, respectively) exhibiting high levels of intracellular ROS was detected by FACS 

measurements using DHR123. Values are means ± SD of three independent experiments. Statistical 

significance (*P < 0.05) was determined by Student‟s t-test. Due to the number of comparative group 
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showed in each graphic, none of the statistic differences are noted. Globally, genetic and pharmacological 

inactivation of catalases in non-CR conditions resulted in a statistically significant increase in intracellular 

ROS accumulation (with the exception of the following comparative group: Δctt1 2%/wt2% at day 0).  

 

 

Furthermore, the longer CLS of Δcta1 cells was further extended by CR (Fig. 

8A), suggesting that other mechanism(s), rather than the H2O2-detoxyfying capacity of 

catalase, may be contributing to the CR effect in S. cerevisiae CLS extension. Similar 

results were obtained using the CTT1 knockout strain and by pharmacological inhibition 

of catalases with 10 mM 3-amino-1,2,4-triazole (3AT) (Fig. 8C and E, respectively). 

The CLS-extending effects of inactivating catalases was further confirmed in a different 

background (W303), although more moderated when compared with BY4742 

background, and upon deletion of both CTA1 and CTT1 genes in BY4742 background 

(Fig. 9). The manipulation of catalase activity was further confirmed by the abolishment 

of catalase activity in CR-cells treated with 3AT and by the induction of its activity in 

cells overexpressing CTA1, particularly evident in non-CR conditions (Fig. 10). 

 

 

 

 

Figure 9 - The deletion of Cta1p (peroxisomal catalase) in W303 cells (A) or of both Cta1p and Ctt1p 

(cytosolic catalase) in BY4742 cells (B) extends S. cerevisiae CLS. Cells viability was measured at 2- to 

3-d intervals beginning the day cultures reached stationary phase (day 0) and is expressed as % of 

survival compared with survival at day 0 (100%). Values are means ± SD of three independent 

experiments. 

 

 

 



  
 

63 

 

 

Figure 10 - CR induces the activity of the peroxisomal catalase Cta1p, as well as the cytosolic catalase 

Ctt1p. The pharmacological inhibition of catalase with 10 mM 3-amino-1,2,4-triazole (3AT) resulted in 

complete inhibition of CR-induced Cta1p and Ctt1p activity. Overexpression of CTA1 resulted in a 

substantial increase in Cta1p activity in CR and non-CR conditions. Results shown represent the results 

from a number of attempts, which showed similar trends. 

 

 

According to the free radical theory, CR may revert aging by decreasing ROS 

generation and oxidative damage to cellular components [209-211]. However, our 

results have shown that CLS extension by CR is associated with increases in ROS 

levels. These results corroborate, however, similar trends obtained in yeast [166] and in 

C. elegans [139] in which it was shown that glucose availability promotes survival rates 

in parallel with formation of ROS, induction of catalase activity and posterior increases 

of oxidative stress resistance [139, 166]. As suggested by those studies, our results 

might raise the hypothesis that ROS, and specifically H2O2, may activate a cell anti-

aging program or trigger a pro-aging route at concentrations beyond a specific 

threshold.  

Despite the increases in catalase activity in CR conditions our results propose that 

catalases may exert detrimental effects on S. cerevisiae CLS, challenging the well 

described effects of these enzymes in the promotion of lifespan in other models [58, 

121, 226, 227]. In this context, to further study the involvement of catalases in CLS, we 

simultaneously investigated the intracellular ROS levels associated within the 

manipulation of these enzymes during the CLS-extending effects of CR (Fig. 8). The 

results obtained show that the longer CLS of Δcta1 cells was accompanied by an 

increased fraction of cells containing high levels of intracellular ROS under non-CR 

conditions (Fig. 8A and B). Under CR conditions, the fraction of Δcta1 cells exhibiting 

high intracellular ROS levels was similar to CR wild-type cells or non-CR Δcta1 cells at 

day 6 and lower at day 12 (Fig. 8B). A similar increase in intracellular ROS levels were 

also detected in Δctt1 compared with wild-type cells and in 3AT treated cells (Fig. 8F). 
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Thus, suggesting that both CR and catalases inactivation might promote yeast CLS by 

similar mechanism involving increases in intracellular ROS levels or, at least, in H2O2. 

This hypothesis was further supported by the overexpression of CTA1 in wild type cells 

which had effects opposite to those associated with inactivation of catalases, resulting in 

decreased CLS in non-CR and CR cells (Fig. 11A) and reduced the fraction of cells 

containing high levels of intracellular ROS (Fig. 11B). The fraction of cells containing 

high intracellular levels of ROS was also reduced (albeit to a lesser extent) in cells 

harbouring the empty vector, which may be a reflex of the specificity of different 

medium content required to maintain plasmids in these but not other experiments.  

 

 

Figure 11 - CR shortens S. cerevisiae CLS of CTA1 overexpressing wild-type cells. (A) CLS is extended 

in of CTA1 overexpressing cells (“MET-CTA1”) comparatively to cells transformed with an empty vector 

and is this effect is associated with low levels of intracellular ROS (B), as detected by FACS 

measurements using DHR123. Cells viability was measured at 2- to 3-d intervals beginning the day 

cultures reached stationary phase (day 0) and is expressed as % of survival compared with survival at day 

0 (100%). Values are means ± SD of three independent experiments. Statistical significance (*P < 0.05) 

was determined by Student‟s t-test. 

 

 

An involvement of H2O2 in the CLS-extending effects of CR was also suggested 

by the pharmacological inhibition of the synthesis of glutathione with 1mM buthionine 

sulfoximine (BSO) in wild type cells and, thus, upon H2O2-induced glutathione 

synthesis (Fig. 12). As for catalases inactivation (Fig. 8A, C and E), treatment of wild 

type cells with BSO promoted a drastic extension of CLS, particularly demonstrated 

under non-CR conditions (Fig. 12A). However, treatment of Δcta1(Fig.12B) and Δctt1 
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(Fig.12C) cells with BSO did not result in the extension of CLS suggesting, once more, 

that increases in the H2O2 levels are crucial for CLS extension.  

 

 

 

Figure 12 - Inactivation of glutathione peroxidase (GpX) with BSO extends S. cerevisiae CLS in wild 

type (A), but not in Δcta (B) or Δctt1 (C) cells. Cell viability was measured at 2- to 3-d intervals 

beginning the day cultures reached stationary phase (day 0) and is expressed as % of survival compared 

with survival at day 0 (100%). The percentage of cells exhibiting high levels of intracellular ROS was 

detected by FACS measurements of fluorescence of 123 (DHR). Values are means ± SD of three 

independent experiments. 
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Overall, the results based on the genetic and pharmacological inactivation of 

H2O2-metabolizing systems, catalases and GPx, combined with the specificity of the 

probes used for ROS detection, pointed to a pro-longevity role of H2O2 in CLS 

extension by CR. However, it is well established that superoxide anion (O2
-
) is 

generated during CLS and plays a major role in the age-associated death of yeast and 

other eukaryotic [213]. Following this line of thought, during the CLS experiments 

described hereafter we simultaneously evaluated the intracellular levels of O2
-
 

associated to the CLS-extending effects of CR. For that purpose, we used 

dihydroethidium (DHE), which detects this form of ROS [228]. The results obtained 

show that, in non-CR conditions, O2
-
 levels increased in wild-type cells from day 0 to 

day 3 of stationary phase, whereas H2O2 levels remained unchanged (Fig. 13A). 

However, in CR conditions, a significant reduction in O2
-
 levels compared with levels in 

non-CR cells was detected, despite a pronounced increase in H2O2 in the same cells. 

Similar to the effects of CR in wild-type cells, O2
-
 levels were decreased and H2O2 

levels were increased in Δcta1 compared with wild-type cells at day 0 and day 3 of 

stationary phase (Fig. 13A). Accordingly, treatment of wild-type cells with 3AT (Fig. 

13B) or upon mutational inactivation of both CTA1 and CTT1 (Δcta1ctt1 cells) (Fig. 

14A and B).also promoted a reduction in O2
-
 levels at the same time that it increased 

intracellular H2O2 levels in the same cells. Therefore, these results suggest that the 

longevity-promoting effects of intracellular H2O2 during CR or catalase inactivation are 

related to inhibition of the accumulation of O2
−
. 

The role of ROS in processes that lead cells to acid and oxidative-induced 

programmed cell death is well recognized [204, 213, 229]. Extrinsic factors such as 

acetic acid are known to cause oxidative stress and, during chronological aging [78, 79, 

230, 231]. Acetic acid toxicity is considered a primary cause of chronological 

senescence under standard growth conditions [78]. In this context, we speculated 

whether the CLS-extending effects of increased H2O2 levels induced by CR could rely 

on changes in acetic acid levels. Thus, we eliminated the effect of acetic acid by 

buffering the aging medium (Table 1) and measured ROS levels during CLS 

experiments. The results revealed that the CR effects of CR in CLS are also associated 

with increases in H2O2 as well as a reduction of O2
-
 levels in buffered medium (Fig. 15). 

In accordance, the inhibition of the accumulation of O2
- 
levels

 
was observed in buffered 

medium in wild-type cells in stationary phase [77]. Therefore, suggesting that in the 
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studied conditions other mechanism (s) signalled by glucose, rather that acetic acid, 

may be underlying the CR effects in S. cerevisiae CLS extension. 

 

 

 

 

Figure 13 - The longevity-promoting effects of high intracellular H2O2 levels induced by CR or 

inactivation of catalases are accompanied by a reduction in the chronological age-dependent 

accumulation of O2
-
. (A) FACS measurements of O2

- 
using dihydroethidium (DHE) in parallel with 

measurements of H2O2 using DHR123 in wild-type (gray histograms) and Δcta1 (green histograms) cells 

at day 0 and day 3 of stationary phase. Bar graphs indicate mean ± SD fluorescence/cell (arbitrary units) 

measured in 25,000 cells/sample in three independent experiments. (B) FACS measurements of O2
-
 

(DHE) and H2O2 (DHR123) in wild-type cells in the absence (gray histograms) or presence (green 

histograms) of the catalase inhibitor 3AT at day 0 of stationary phase. Bar graphs indicate mean ± SD 

fluorescence/cell (arbitrary units) of three independent experiments. Statistical significance (*P < 0.05) 

was determined by Student‟s t-test. 
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Figure 14 - Mutational inactivation of CTT1 or of both catalases CTA1 and CTT1 mimics the CLS 

extending effects of CR in parallel with high intracellular H2O2 levels and reduction in the chronological 

age-dependent accumulation of superoxide anions (O2
-
). FACS measurements of O2

-
using DHE in 

parallel with measurements of H2O2 using DHR123 at day 0 of CLS in Δctt1 (A) and Δcta1ctt1 (B) cells. 

Bar graphs indicate mean ± SD fluorescence/cell (arbitrary units) measured in 30,000 cells/sample in 

three independent experiments. Statistical significance (*P < 0.05) was determined by Student‟s t-test. 

 

 

 

Table 1 – pH of aging cultures 

 SC 2% SC 0.5% 

BY4742 2.95 (± 0.02) 3.16 (± 0.02) 

BY4742 cta1 2.93 (± 0.01) 3.10 (± 0.03) 

BY4742 ctt1 2.93 (± 0.00) 3.26 (± 0.06) 

BY4742 cta1ctt1 2.96 (± 0.00) 3.16 (± 0.01) 

Cells were inoculated into the indicated medium and pH was measured at 72 hours of aging. Data is 

presented as mean pH of three biological replicates with standard deviation in parentheses. 
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Figure 15 - CR-induced increases in intracellular H2O2 accompanied by a reduction in the accumulation 

of O2
-
 occurs independently of changes in levels of acetic acid as demonstrated in cells cultured in 

buffered medium. FACS measurements of superoxide anions using dihydroethidium (DHE) in parallel 

with measurements of H2O2 using dihydrorhodamine 123 (DHR) in wild-type cells cultured in buffered 

medium (citrate phosphate buffer, pH 6.0) at days 0, 3, and 6 of stationary phase. Bar graphs indicate 

mean ± SD fluorescence/cell (arbitrary units) measured in 30,000 cells/sample in three independent 

experiments. Statistical significance (*P < 0.05) was determined by Student‟s t test. 

 

 

3.1.4 INCREASED H2O2, INDUCED BY CR OR CATALASE INACTIVATION, INDUCES 

SUPEROXIDE DISMUTASE ACTIVITY  

In S. cerevisiae, most evidence provided until now based on the overexpression of 

superoxide dismutases (Sods), which scavenge O2
-
 [61, 138, 232] is still favouring 

ROS, and particularly O2
-
, as important determinants of chronological aging. Also, the 

induction of the transcription of both SOD1 and SOD2 genes [233, 234], as well as 

increases in levels of the corresponding proteins [233], have been suggested upon 

ectopic application of sublethal concentrations of H2O2. In this context, we explored 

whether the reduction in O2
- 
levels that accompanies increases in intracellular H2O2 is 

triggered by the induction of superoxide dismutases (Sods) activity. For that, we 

measured the activities of Sod1p and Sod2p, as well as the mRNA expression levels of 

SOD1 and SOD2 under CR and non-CR conditions in wild type and in catalases 
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mutants. The results showed that CR or CTA1 deletion resulted in minor increases in 

Sod1p activity at day 0 that were not detected at day 3 of stationary phase (Fig. 16 A 

and B). Nevertheless, at day 6 both CR and deletion of CTA1 increased the activity of 

Sod1p (Fig. 16A and B).  

 

 

 

Figure 16 - Superoxide dismutase activity is induced by intracellular H2O2 in stationary phase wild type 

and Δcta1 cells. (A) In situ determination of superoxide dismutases (Sods) activity as measured as 

previously described. (B) Quantification of fold increases in Sod1p (Cu,ZnSOD) and Sod2p (MnSOD) 

activity under indicated conditions in wild-type and Δcta1 cells. Sod1p and Sod2p activity at each time 

point was normalized to activity in wild-type cells under non-CR conditions (2% glucose). Values 

indicate mean ± SEM from three independent experiments. Statistical significance (*P < 0.05) was 

determined by Student‟s t-test. 
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CR or deletion of CTA1 increased the activity of Sod2p at day 0 compared with 

wild-type cells in non-CR conditions. Larger increases in Sod2p activity were induced 

by CR conditions in wild-type cells at day 3 and day 6. Deletion of CTA1 also induced 

large increases in Sod2p activity at day 3 and day 6 under non-CR conditions and under 

CR conditions at day 3 (Fig. 16A and B). Thus, suggesting that H2O2 may reduce O2
-
 by 

inducing Sod activity, as further confirmed similar observations in Δctt1 cells at these 

same time points (Fig. 17).  

 

 

Figure 17 - Superoxide dismutase activity in induced by intracellular H2O2 in stationary phase wild type 

and Δctt1 cells. (A) In situ determination of Sods activities in stationary phase wild-type and Δctt1 cells. 

(B) MnSOD (Sod2p) activity detected in the presence of 2 mM potassium cyanide, which inhibits Sod1p 

activity. (C) Quantification of fold increase in Sod1p and Sod2p activity in wild-type and Δctt1 cells. 

Sod1p and Sod2p activities measured at each time point were normalized to the activity of wild-type cells 

under non-CR conditions (2% glucose). Values indicate mean ± SEM from three independent 

experiments. Statistical significance (*P < 0.05) was determined by Student‟s t test. 
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The contribution of Sods was further studied by analyzing the expression levels of 

both SOD1 and SOD2 (Fig. 18). Although not conclusive for the effects of catalase 

mutation in SOD genes expression, a similar trend was observed from day 3 on for 

SOD2 expression being observed increased levels of SOD2 expression in CR conditions 

(Fig. 18). These results probably reflect the fact that overexpressing a gene that encodes 

a Sodp can potentially generate detrimental or beneficial effects [232].  

 

 

 

Figure 18 - Induction of SOD1 and SOD2 mRNA expression by intracellular H2O2. SOD1 and SOD2 

expression at each time point was normalized to activity in wild-type cells under non-CR conditions (2% 

glucose). Values indicate mean ± SEM from three independent experiments. Statistical significance (*P < 

0.05) was determined by Student‟s t-test.  

 

In general, these findings point out that intracellular H2O2 induced by CR or by 

inactivation of catalase activity induces Sods activity in budding yeast, especially 

Sod2p activity. Furthermore, and consistent with our results, others have shown that 

ectopic exposure to H2O2 induces higher levels of Sod2p compared with Sod1p [233, 

235, 236]. Consistently with our results, it has already been suggested that that 

inhibition of O2
-
 by H2O2 may be a conserved feature of the quiescent state that is 

enhanced by CR. For instance, reduced levels of O2
-
 were also detected in parallel with 

elevated levels of H2O2 in wild-type but not SOD2-defective mouse cells driven into 

quiescence by contact inhibition [237]. Also, it was recently reported that in a mouse 

model of inflammatory responses in the lung, genetic or pharmacological inactivation 
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of catalase in neutrophils induces intracellular H2O2 that inhibits the superoxide-

dependent inflammatory responses of these cells [238, 239]. It is proposed that H2O2 

exerts its anti-inflammatory effects in mouse neutrophils by inducing Sodp activity and 

leading to a reduction in levels of O2
-
 that promote inflammation.  

Overall, and consistently with other studies, our findings in S. cerevisiae cells 

suggest that H2O2, by inducing Sodp activity and, therefore, reducing O2
-
 levels may 

contribute to the understanding of important aspects of aging. 

 

 

3.1.5 INCREASED H2O2, INDUCED BY CR OR CATALASE INACTIVATION, IS ASSOCIATED 

WITH OXIDATIVE DAMAGE TO MACROMOLECULES  

According to the Harman´s free radical theory oxidative damage to 

macromolecules is a primary factor in the aging process [1]. In yeast, many 

interventions that increase CLS were shown to promote resistance to oxidative stress, 

avoiding the damage to proteins and mitochondria that is known to accumulate in 

chronological-aged cells [240, 241]. Our observations showed that under different 

experimental conditions, H2O2 levels are increased while O2
- 
levels are decreased in the 

same cells (Fig. 13). To determine the overall impact these divergent changes in 

different types of ROS have on oxidative damage, we examined levels of protein 

carbonylation, which is a form of oxidative damage, already shown to accumulate 

during chronological aging [185, 186]. Our results revealed that protein carbonylation 

was increased in cta1 cells compared to wild type cells at day 0 of CLS (Fig. 19A). In 

addition, CR promoted an increase in protein carbonylation in wild type cells at day 0. 

A similar increase in protein carbonylation was observed in ctt1 cells at this time point 

(Fig. 20). Nevertheless, CR conditions decreased protein carbonylation in wild type and 

cta1 cells at day 6 (Fig. 19A). We also measured changes in cellular autofluorescence 

as an indication of global oxidative damage to proteins and lipids [242, 243] (Fig. 19B). 

Similar to the increased protein carbonylation detected in cta1 compared to wild type 

cells (Fig. 19A), autofluorescence of cta1 cells was increased at day 0 and day 3 (Fig. 

19B). In contrast, CR led to a reduction in autofluorescence of wild type cells at these 

time points (Fig. 20B), similar to the effects of CR on protein carbonylation in wild type 

cells at day 6 (Fig. 20A). CR also reduced the autofluorescence of cta1 (Fig. 19B) and 

ctt1 cells (Fig. 20B). 
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Figure 19 - Effects of increased H2O2 induced by CR or by inactivation of CTA1 on oxidative damage to 

macromolecules. (A) Oxidative damage was assessed by measuring levels of oxidized proteins 

(carbonyls) in stationary phase wild-type and Δcta1 cells under non-CR and CR conditions. Levels of 

carbonyls were normalized at each time point to wild-type cell values under non-CR conditions (2% 

glucose). (B) Oxidative damage to proteins and lipids measured as autofluorescence of stationary phase 

wild-type and Δcta1 cells under non-CR and CR conditions. Histograms are representative of data 

collected at day 3. Values indicate mean ± SEM from three independent experiments. Statistical 

significance (*P < 0.05) was determined by Student‟s t-test. 

 

 

Together, the results from oxidative damage assessment established that CR 

extends S. cerevisiae CLS in parallel with a reduction in oxidative damage to 

macromolecules despite the induction of higher levels of H2O2. In contrast, the CLS-

extending effects of inactivating catalases are accompanied by parallel increases in 

levels of both H2O2 and oxidative damage, especially under non-CR conditions. Despite 

the observed increase in oxidative damage to macromolecules, our findings propose that 

both CR or inactivation of catalases induce oxidative stress in the form of H2O2 which, 

by inducing superoxide dismutases (Sods) that reduce levels of O2
−
, .promote S. 

cerevisiae longevity. 
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Figure 20 - Effects of increased H2O2 induced by CR or by inactivation of CTT1 on oxidative damage to 

macromolecules. (A) Oxidative damage was assessed by measuring levels of oxidized proteins 

(carbonyls) in stationary phase wild-type and Δctt1 cells under non-CR and CR conditions. Levels of 

carbonyls were normalized at each time point to wild-type cell values under non-CR conditions (2% 

glucose). (B) Oxidative damage to proteins and lipids measured as autofluorescence of stationary phase 

wild-type and Δctt1 cells under non-CR and CR conditions. Histograms are representative of data 

collected at day 3. Values indicate mean ± SEM from three independent experiments. Statistical 

significance (*P < 0.05) was determined by Student‟s t-test. 

 

 

 

3.1.5 ECTOPIC EXPOSURE OF S. CEREVISIAE CELLS TO H2O2 MIMICS THE CLS-

EXTENDING EFFECTS OF CR  

Based on the results previously described, the pro-longevity role for H2O2 is 

clearly recognized. However, we further asked whether the ectopic application of H2O2 

would extend CLS of non-CR wild-type cells. Given that H2O2 is a well established 

inducer of programmed cell death in yeast [204], cells were treated with a range of 
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concentrations that are likely to be far less than those that induce toxic effects. Exposure 

of wild type cells to the lowest H2O2 concentrations tested did not alter CLS compared 

with cells that were not exposed to H2O2 (Fig. 21A).  

 

 

Figure 21 - Ectopic exposure cells to non-toxic concentrations of H2O2 promotes S. cerevisiae CLS 

extension. Wild type (A) and Δcta1 (B) cells, cultured in 2% glucose medium, were treated with H2O2 

over a range of concentrations from 0mM to 1mM. Cell viability was measured at 2- to 3-d intervals 

beginning the day cultures achieved stationary phase (day 0) and is expressed as % survival compared 

with survival at day 0 (100%). Values indicate mean ± SEM from three independent experiments. 

Statistical significance (*P < 0.05) was determined by Student‟s t-test. 

 

Figure 22 - Ectopic exposure of non-CR S. cerevisiae cells to H2O2 promotes the induction of Sod2p, but 

not Sod1p, activity in wild type cells. Sod1p and Sod2p activity at each time point was normalized to 
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activity in wild-type cells under non-CR conditions (2% glucose). Values indicate mean ± SEM from 

three independent experiments. Statistical significance (*P < 0.05) was determined by Student‟s t test. 

 

 

However, the exposure of wild type cells to 1 mM H2O2 resulted in a significant 

increase of CLS. The effects of H2O2 were also observed in Δcta1 cells for all the 

concentrations used, although in a lower extent (Fig. 21B). In addition, exposure of wild 

type cells to 1mM H2O2 also resulted in an increase in Sod2p but not Sod1p activity 

(Fig. 22), similar to what was observed in CR or upon catalases inactivation. Therefore, 

despite the resulting oxidative stress, specific concentrations of H2O2 were suggested to 

mediate a "hormesis-like" induction of stress resistance response by Sods. 

The approaches described in this section aimed to better understand how CR 

impacts oxidative stress and longevity in the model system S. cerevisiae. We showed 

that either CR or inactivation of catalases promote CLS extension by increasing H2O2 

levels which, in turn, activate Sods and inhibit the intracellular accumulation of O2
-
. In 

addition, we demonstrated that the increases in H2O2 in catalase-deficient cells extend 

CLS despite parallel increases in oxidative damage. As a result, we suggest a role for 

hormesis effects of H2O2 in promoting longevity. According to the hormesis theory, 

little doses of a toxin might have a long-term useful consequences as a way of 

conditioning the organisms toward more efficient stress responses [244]. Although this 

results may challenge the free radical theory of aging, it has already been suggested that 

ROS may be lifespan promoters mediating a secondary stress resistance response and, 

ultimately, extending lifespan. For instance, a study conducted in C. elegans has shown 

that a decrease in glucose availability, by glycolysis inhibition with DOG, increases 

respiration and ROS production, induces the activity of antioxidant enzymes and 

extends lifespan [139]. Also, food restriction was shown to promote mitochondrial 

biogenesis by inducing the expression of endothelial nitric oxide synthase (eNOS) in 

rodents, suggesting that NO may also play an essential role in CR-induced mechanisms 

and may be involved in the extension of lifespan in mammals [245]. In S. cerevisiae, 

glucose reduction in the media culture is known to promote a shift from fermentation to 

respiration, described as resulting in increased resistance to ROS and in  extend lifespan 

extension [172]. Interestingly, it was recently shown that the pre-treatment of S. 

cerevisiae cells with the oxidant menadione promotes an adaptative response in which 

Sod1p activity is increased, resulting in CLS extension [246]. Overall, our findings 
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challenge the free radical theory of aging, which posits oxidative damage to 

macromolecules as a primary determinant of lifespan, and mark out a beneficial 

hormesis-like role of H2O2 in promoting longevity and, thus, opening new perspectives 

for the understanding aging and age-related diseases in humans. For instance, the 

administration of antioxidants is becoming a matter of debate and it has already been 

suggested that antioxidants may abrogate the beneficial effects of physical exercise in 

healthy humans, through inhibition of the ROS-mediated activation of endogenous anti-

oxidant capacity [247]. Therefore, interventions aimed at reducing intracellular ROS 

accumulation may not necessarily promote longevity and may rather shorten lifespan in 

eukaryotes.  
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SECTION 3.2 Saccharomyces cerevisiae CHRONOLOGICAL LIFESPAN 

EXTENSION BY CALORIC RESTRICTION MIMETICS MIGHT BE ASSOCIATED 

WITH INCREASES IN REACTIVE OXYGEN SPECIES ACCUMULATION  

 

The length of restriction required for an effective antiaging strategy for humans is 

still considered a challenge, due to unpleasant side effects and health disadvantages 

[248]. In order to accomplish these limitations, the identification of CR mimetics 

(CRM) candidates has emerged as a new strategy to target the metabolic and stress 

response pathways affected by CR and, thus, producing the CR-like effects on longevity 

(reviewed in [194]). Based on this perspective, our aim in this section was to contribute 

to a better comprehension of the impact of ROS/oxidative stress in S. cerevisae CLS 

using different CRM approaches. For that, we tested whether manipulating glucose 

uptake, specific enzymatic steps of glycolysis and glucose-sensing signaling also 

impacts oxidative stress and its involvement in the CLS-extending effects of CR. 

 

 

3.2.1 REDUCED GLUCOSE UPTAKE EXTENDS S. cerevisiae CLS ASSOCIATED WITH 

DECREASES IN INTRACELLULAR ROS 

In a first approach, and as we aimed to target glucose uptake into the cell, we used 

three strains producing functional chimeras between the hexose transporters Hxt1p and 

Hxt7p each of which displaying distinct glucose transport characteristics [199]. In the 

following experiments we used three strains described as displaying low (KOY.TM6*P 

), intermediate/high (KOY.HXT7P) and high (KOY.PK2IC83) glucose uptake [199]. 

The results showed that a reduction in the glucose uptake into the cell (strain 

KOY.TM6*P) resulted in CLS extension, comparatively to intermediate/high 

(KOY.HXT7P) and high (KOY.PK2IC83) glucose uptake and higher growth rates (Fig. 

23A and B). Thus, modelling CR by interfering with glucose uptake had similar effects 

in CLS to those observed upon reduction of glucose concentration in the culture media 

(Fig.1, Section 1).  

Simultaneously, we evaluated the intracellular ROS accumulation in these cells. 

In accordance to Harman´s theory [209-211], but in contrast to our results presented in 

Section 1, the CLS-extending effects observed upon reduction of glucose uptake into 
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the cell were associated with decreases in both the intracellular levels of H2O2 and O2
- 

(Fig. 24 A-C), as determined by staining cells with DHR and DHE, respectively.  

 

 

Figure 23 - Decreased glucose uptake into the cell (strain KOY.TM6*P) promotes CLS extension of cells 

when compared to cells displaying intermediate/high (strain KOY.HXT7P) and high (strain 

KOY.PK2IC83) glucose uptake. (A) Growth curves and specific growth rates (µ) of CEN.PK cells 

cultures in SC medium (2% glucose). Cell viability was measured at 2- to 3-d intervals beginning the day 

cultures reached stationary phase (day 0) and is expressed as % of survival compared with survival at day 

0 (100%). Values are means ± SD of three independent experiments. Statistical significance (*P < 0.05) 

was determined by Student‟s t test. Growth curves represented are the results from a number of attempts, 

which showed similar trends. 

 

 

During chronological aging yeast cells must deal with oxidative stress caused by 

H2O2 and O2
-
, and with extrinsic factors, such as acetic acid that results in cell death 

[78, 80, 204, 249]. For instance, it has been shown that different chronologically long-

lived cell types and CR models, such as Δsch9, Δcyr1-1, as well as SOD overexpressing 

cells, are known to exhibit increased resistance to oxidative stress [20, 60]. On the other 

hand, oxidative stress has been suggested as a secondary effect of acetic acid induced 

cell death and a cause of chronologic aging [78, 80]. In this context, we tested the 

susceptibility of late-exponential cells submitted to CR, modelled either by reduction of 

glucose in the culture medium or by decreased glucose uptake, upon treatment with 

H2O2 [204] and acetic acid [80] (Fig. 25). The results demonstrated that low glucose 

uptake (KOY.TM6*P) confers higher resistance to both oxidative (Fig. 25A) and acid 

stresses (Fig. 25B) comparatively to those displaying intermediate (KOY.HXT7P) and, 

particularly significant compared with high (KOY.PK2IC83) glucose uptake. However, 

although displaying increased resistance to high concentrations of acetic acid (Fig. 



  
 

83 

 

25D), CR-cells demonstrated increases sensitivity to oxidative stress by H2O2, when 

compared to non-CR cells (Fig 25C). 

 

 

 

Figure 24 - Reduced glucose uptake into the cells (KOY.TM6*P) promotes CLS extension associated 

with decreased intracellular ROS accumulation. FACS measurements of (A and C) H2O2 (DHR 

fluorescence) and of (B and C) O2
- 
(DHE fluorescence) in cells displaying high glucose (KOY.PK2IC83), 

intermediate (KOY.HXT7P) and low (KOY.TM6*P) uptake. Cell viability was measured at 2- to 3-d 
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intervals beginning the day cultures reached stationary phase (day 0) and is expressed as % of survival 

compared with survival at day 0 (100%). Values are means ± SD of three independent experiments. Bar 

graphs indicate mean ± SEM (%) fluorescence/cell measured in 30,000 cells/sample in three independent 

experiments. Statistical significance (*P < 0.05) was determined by Student‟s t test. 

 

 

 

 

 

Figure 25- CR modelled by decreased glucose uptake (KOY.TM6*P) promotes resistance to both (A) 

oxidative and (B) acid stresses when compared to higher glucose uptake conditions (strains KOY.HXT7P 

and KOY.PK2IC83) . CR induces resistance to the lowest H2O2 concentrations tested (C)and to the 

highest concentrations of acetic acid (D). Viability was measured after 200 minutes of treatment with 

(A,C) H2O2 and (B,D) acetic acid during exponential phase and is expressed as % survival compared with 

survival of cells not submitted to each stress inducer (100%). Values are means ± SD of three 

independent experiments. Bar graphs indicate mean ± SEM (%) fluorescence/cell measured in 30,000 

cells/sample in three independent experiments. Statistical significance (*P < 0.05) was determined by 

Student‟s t test. In A) and B) statistical significant differences are only noted between strains displaying 

low (KOY.TM6*P) and high (KOY.PK2IC83) glucose uptake into the cell. 

 

 

Overall, these results suggest that the reduction of glucose uptake into the cell 

may mimic CR effects in CLS extension by triggering a broadly acting mechanism, 

associated with decreases in the levels of ROS accumulation and enhanced stress 

protection [106, 194]. However, these results discarded previously suggested hormesis-
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like effect for H2O2 in CLS-extension, as supported by the higher susceptibility of 

KOY.TM6*P cells to this specific forms of ROS. Decreased glucose uptake into the cell 

may trick the organism into a CR state and thereby activating the protective 

mechanisms that are induced in CR, including the activation of Sods. However, further 

studies are needed to establish hexose transporters as possible candidates as CRM and 

to identify similar, or parallel, route(s) whereby CR extends CLS in S. cerevisiae. For 

instance, it has been suggested that the PKA pathway controls glucose intake through 

the regulation of hexose transporters responsible for glucose import in S. cerevisiae 

[250]. Thus, it would be of particular interest to understand, for instance, if the 

involvement of glucose-sensing signaling pathways in S. cerevisiae chronological aging 

regulate specific steps of glucose metabolism. On the other hand, further studies are 

needed identify a role of ROS in the span-extending effects associated with decreased 

glucose consumption, metabolism and sensing. In this context, and as it will be 

presented, we further studied the involvement of mutations affecting glucose 

metabolism and signaling in S. cerevisiae CLS. 

 

 

3.2.2 MUTATIONAL INACTIVATION OF SPECIFY STEPS OF GLYCOLYSIS EXTENDS S. 

cerevisiae CLS ASSOCIATED WITH DECREASES IN INTRACELLULAR ROS, 

PARTICULARLY H2O2  

 

Several studies suggest that targeting glycolysis could invoke beneficial effects in 

lifespan similar to CR. For instance, pre-treatment of fetal hippocampal neurons with 

iodoacetate acid, which inhibits the glycolytic enzyme glyceraldehyde-3-phosphate 

(GAPDH), has shown potential as a CR mimetics providing protection against several 

stresses [197]. Also, increased expression of hexokinase 2, which might contribute to 

enhanced aerobic glycolysis, has been demonstrated in most immortalized and 

malignant cells [251]. In C. elegans, inhibition of glycolysis with 2-deoxyglucose (2-

DOG) has been shown to promote significant increases in lifespan associated with a 

ROS-dependent induction of stress resistance [139]. In yeast, as Hxk2p acts in a 

signaling pathway important for maintaining glucose repression, it has also been linked 

to longevity control [196]. In addition, mutational inactivation in HXK2 is known to 

extend yeast RLS, being considered a well established genetic model for studying the 
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CR effects in lifespan [56]. This suggestion was further supported by studies showing 

that the deletion of SIR2 prevents lifespan extension by growth on low glucose [181] or 

in genetic models of CR including mutants in hexokinase 2 gene (HXK2) as well as in 

glucose-sensing genes involved in RAS-AC (GPR1 and GPA2) and cAMP-PKA 

signaling (CDC35) [181]. However, little is known about the genetic mimetics of CR 

that could result in S. cerevisiae CLS extension.  

In this context, we aimed to identify specific steps of glucose metabolism that 

could mimic CR-effects in CLS extension. The results presented indicate that all the 

mutants in the glycolytic pathway tested promoted the extension of CLS when 

compared to wild type strain (Fig. 26A).  

 

 

Figure 26 - Genetic inactivation of specific enzymes involved in glucose metabolism extends S. 

cerevisiae CLS by increasing intracellular H2O2 levels and decreasing O2
-
 levels. (A) Survival of wild 

type, Δhxk2, Δpfk2, Δtdh2, Δtdh3 and Δpdc1 cells assessed by cell viability, measured at 2- to 3-d 

intervals beginning the day cultures reached stationary phase (day 0) and is expressed as % of survival 

compared with survival at day 0 (100%). FACS measurements of (A) H2O2 (DHR fluorescence) and of 

(B) O2
-
 (DHE fluorescence) in wild type, Δhxk2, Δpfk2, Δtdh2, Δtdh3 and Δpdc1 cells. Bar graphs 

indicate mean ± SEM (%) fluorescence/cell measured in 30,000 cells/sample in three independent 

experiments. Values of survival are means ± SD of three independent experiments. With the exception of 

Δhxk2 cells at day 3, all mutants showed statistically significant increases in intracellular H2O2 

comparatively to wild type cells. Globally, statistically significant decreases in O2
-
 levels were observed 

for all mutants in comparison to wild type cells. 
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The higher extension of the CLS was associated with deletion of genes that 

encode hexokinase (Hxk2p), phosphofructockinase (Pfk2p), and glyceraldehyde-3-

phosphate dehydrogenase (GAPDH; Tdh2p and Tdh3p isoforms) (Fig. 26A). On the 

other hand, the abrogation of pyruvate descarboxylase (Pdc1p) extended CLS, although 

not so drastically when compared the other mutants. However, and contrary to that 

observed upon decreased glucose uptake, the results demonstrated that the CLS-

extending effects globally observed in those mutants are associated with increases in the 

intracellular H2O2 levels (Fig. 26B) and decreases in O2
- 

levels (Fig. 26C), as 

determined by staining cells with DHR and DHE, respectively. In addition, the CLS-

extending effects associated with all these mutants were shown to be associated with 

increased resistance to both oxidative and acid stresses at all time points tested, with the 

exception of Δpfhk2 upon low doses of acetic acid (Fig. 27). These results suggest that 

CRM by targeting specific enzymes involved in glucose metabolism may promote 

oxidative metabolism and extend lifespan. Accordingly, previous findings showed that 

the deletion of HXK2 extends lifespan similar to growth in 0.5% glucose and in 

association with a significant increased in the respiration rate (3-fold) [56]. 

 

 

 

 

Figure 27 - Genetic inactivation of specific enzymes involved in glucose metabolism promotes resistance 

to both oxidative and acid stresses. Cell viability was measured after 200 minutes of treatment with (A) 

H2O2 and (B) acetic acid during exponential phase and is expressed as % survival compared with survival 

of cells not submitted to each stress inducer (100%). Values are means ± SD of three independent 

experiments. Bar graphs indicate mean ± SEM (%) fluorescence/cell measured in 30,000 cells/sample in 

three independent experiments. With the exception of Δpfk2cells treated with acetic acid (80 mM), all 

mutants showed statistically significant increases resistance to H2O2 and acetic acid comparatively to wild 

type cells.  
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Both CRM by reduction of glucose uptake and the abrogation of specific 

glycolytic enzymes were shown to impact CLS. In addition, an involvement of H2O2 in 

this effect was suggested within the abrogation the specific glycolytic enzymes tested. 

However, and contrary to CR- wild type cells, Δhxk2, Δpfk2, Δtdh2 and Δtdh3 cells 

showed increased resistance to H2O2 treatment. Thus, suggesting that H2O2 may be a 

key signalling molecule as previously suggested, however, its CLS-extending effects 

may depend on the concentrations that are perceived by the cells. The data suggest that 

CRM interventions aimed at decreasing ROS formation do not necessarily promote 

longevity and may rather reduce lifespan. 

  

 

3.2.3 REDUCED GROWTH SIGNALING BY Rim15p INACTIVATION EXTENDS S. cerevisiae 

CHRONOLOGICAL LIFESPAN ASSOCIATED WITH INCREASES IN H2O2 LEVELS 

There is a general agreement that nutrient-sensing pathways are responsive to 

nutrient deprivation, modulate longevity in evolutionarily different organisms and 

mediate at least various longevity benefits associated with CR [149]. New insights into 

the molecular mechanisms of CR have been provided by the development of many CR 

genetic models in which pro-growth glucose-regulated kinases have been deleted. For 

instance, the reduction of the activity of target of rapamycin (TOR) [53], protein kinase 

A (PKA) [56, 252] or Sch9p [53, 252] is known to resemble CR effect on both yeast 

RLS and CLS. Accordingly, in our model, the pharmacological inhibition of these 

pathways mimicked CR and induced a reversion in the death  phenotype of non-CR 

wild type cells from day 7 on (Fig. 28). This effect was demonstrated to be independent 

of the pathway inhibited, suggesting that they may interconnect in CLS regulation. This 

question is not simply answered since these kinases have overlapping roles in regulating 

several cellular responses to nutrient exposure. As nutrients levels become limiting, 

reduced activity of these kinases leads to a reversal of these phenotypes with emphasis 

placed on oxidative stress response pathways, including ROS-detoxifying enzymes. For 

instance, in mammalian, both ROS and hyperactivation of the nutrient‐sensing TOR-

S6K kinase cascade have been associated to aging and age‐related diseases as well as to 

the anti‐aging effect of CR [253]. In yeast, it has been proposed that inhibition of TOR 

signaling causes derepression of respiration during growth in glucose [47]. Therefore, 

the subsequent increase in mitochondrial oxygen consumption is suggested to limit 

intracellular oxygen and ROS-mediated damage during glycolytic growth, leading to 
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CLS extension. Previous findings from our lab demonstrated that Δtor1 cells display 

increased survival rates associated lower intracellular ROS levels upon acid treatment 

[254], suggesting a causal involvement of the TOR pathway during acetic acid-induced 

apoptosis. However, the link between growth signaling, ROS and lifespan is complex 

and still remain controversial.  

 

 

 

Figure 28 -  Pharmacological inactivation of RAS, PKA and TOR kinases with manumycin, wortmannin 

and rapamycin, respectively, extends CLS in BY4742 wild type cells cultured in 2% glucose, 

comparatively to non-treated cells. Survival was assessed by cell viability, measured at 2- to 3-d intervals 

beginning the day cultures reached stationary phase (day 0) and is expressed as % of survival compared 

with survival at day 0 (100%). Values are means ± SD of three independent experiments.  

 

 

 

The nutrient-sensing signaling pathways involving Ras2p, Tor1p, and Sch9p are 

known to converge on the inhibition of Rim15p activity and its induction of Sod2p [54]. 

In this context, we aimed to study the involvement of glucose-sensing through Rim15p 

in CLS and oxidative stress (Fig. 29). As for wild type cells (Fig. 29 A and C), CR-

Δrim15 cells were shown to accumulate higher intracellular H2O2 levels (Fig. 29B), and 

decreased O2
-
 levels (Fig. 29D), when compared to non-CR conditions. Therefore, these 

results suggest that Rim15p might be not necessary to the H2O2 induction of Sods 

during the CLS-extending effects of CR, previously demonstrated in Section 3.1. 

Similarly, a Rim15p-independent mechanism in yeast CLS has also been suggested 

based on evidence showing that the inactivation of Sch9p, Tor1p and Ras2p which, 
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unlike CR, does not promote the reduction in O2
- 

levels as a result in H2O2 increases 

and, thus, of activation of Sods [255].  

Overall, these results suggest that the hormesis-like effect for H2O2 in CLS-

extension may be independent of the regulation of CLS by nutrient-sensing pathways 

and, particularly, of Rim15p and its regulatory protective effect for entry in stationary 

phase. It has been observed that the CLS-extending effects associated with the reduced 

activity of nutrient-sensing signalling pathways are associated with increases in both 

respiration and cellular resistance to a variety of stresses [47, 55, 256]. An important 

unanswered question, however, is which downstream targets of these kinases are most 

important for the regulation of lifespan in yeast and other organisms.  

The different CRM approaches described in this section suggest that a pro-

longevity role of ROS, rather than a negative role recognized for many decades [1] may 

underlie the CLS-extending effects associated with decreased glucose consumption, 

metabolism and sensing. Accordingly, increasing evidence have suggested that 

decreasing ROS formation do not necessarily promote longevity and may rather reduce 

lifespan in multicellular eukaryotes (reviewed in [257]). Therefore, a better 

comprehension of the impact of growth signaling in ROS/oxidative stress as modulators 

of the aging process in the budding yeast S. cerevisiae may help to elucidate the 

regulation of such a complex and multifactorial process in higher eukaryotes. 
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Figure 29 - Similar to wild type cells the inhibition of the growth signaling pathway Rim15p promoted 

increases in H2O2 (DHR fluorescence) (A and B) and a reduction in the intracellular O2 accumulation 

(DHE fluorescence) levels (C and D), as demonstrated by FACS measurements. Bar graphs indicate mean 

± SEM (%) fluorescence/cell measured in 30,000 cells/sample in three independent experiments. Values 

of survival are means ± SD of three independent experiments. 
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44..  CCOONNCCLLUUDDIINNGG  RREEMMAARRKKSS  AANNDD  FFUUTTUURREE  PPEERRSSPPEECCTTIIVVEESS  

 Since the pioneering observations by McCay and colleagues, in 1935, caloric 

restriction (CR) is a well established intervention that extends lifespan in a variety of 

model systems [101-105]. In this context, a lifespan regulatory network composed of 

parallel but partially connected signalling pathways controlled by nutrient-responsive 

pathways, sirtuins and oxidative stress regulation has been suggested [209-211, 258]. 

However, the mechanisms that trigger the outcomes of CR on lifespan have been 

difficult to establish. Initially, the background for the effects of CR was based on the 

"Rate of Living" theory proposed by Max Rubner in 1908. In that context, CR would 

extend lifespan by reducing the nutritive/caloric availability and, thus, the amount of 

energy metabolized. Some decades later Denham Harman provided a molecular 

perspective for the aging process suggesting that increases in the metabolic rate would 

favour the formation of free radicals and its cumulative damage to the cell and, 

ultimately, to the organism [1]. Based on the integration of both theories it has been 

suggested that CR functions by slowing metabolism and thereby slowing the generation 

of reactive oxygen species (ROS) [10, 106, 258].  

Although it has been suggested that an inverse correlation between levels of 

mitochondrial ROS and lifespan exists [209-211, 258], a causative effect of ROS-

induced oxidation in limiting lifespan has been difficult to establish due to inconsistent 

or null effects of antioxidants [104, 259]. In yeast, CR mimic by reducing the glucose 

concentration in the culture medium has been shown to extend both replicative lifespan 

(RLS) and chronological lifespan (CLS) [45, 56, 60, 212]. Apparently ROS may not 

limit RLS [172] but the pharmacological and genetic evidence provided until now still 

favour a role for ROS in both RLS and CLS [164]. Contrary to the general belief, our 

results demonstrated that the CLS-extending effects of CR are associated with an 

increase, rather than decrease, in the intracellular ROS levels. In a first approach, a pro-

longevity role for H2O2 was suggested based on the combined use of probes that can 

distinguish between hydrogen peroxide (H2O2) and superoxide anions (O2
-
). This 

hypothesis was further supported by the CLS extension observed after the 

genetic/pharmacological inactivation of H2O2-detoxyfying systems, catalase and 

glutathione, and in chronological aged wild type cells treated with non-toxic 

concentrations of H2O2. Such involvement of H2O2 in CLS extension was further 

confirmed by the reduction of the intracellular H2O2 levels in cells overexpressing 
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CTA1. On the other hand, the pro-longevity role of H2O2 observed in catalase mutants, 

and in contrast to CR-cell cells, occurred associated with an increase in oxidative 

damage. These findings may challenge the Harman's theory, however, increased 

oxidative damage is well established in long-lived naked mole rats [136]. In this 

context, it has been suggested that a secondary stress response may be induced as a 

result of the primary response to an augment in ROS formation during increased 

mitochondrial metabolism, resulting in a reduction of the stress levels and an extension 

of lifespan [123, 260-263].  

In yeast, an involvement of ROS in lifespan extension has been mainly based on 

the pharmacological inhibition of respiratory chain [164] and on the deletion of SOD 

genes [138, 213]. For instance, mutation of SOD1 has been demonstrated to decrease 

yeast RLS [137] and accelerate chronological aging [58, 187]. Accordingly, it has been 

shown that the mutation of copper/zinc-containing SOD decreases lifespan in flies [264] 

and in mice [265]. Nevertheless, it was previously reported in yeast that, despite 

increases in the activity of both Sod enzymes, CR conditions were associated with ROS 

production [166]. Thus, suggesting that ROS may act as second messengers to regulate 

SOD activity. In agreement, increases of ROS levels were also associated to C. elegans 

longevity [139] and a paradoxical induction of stress response to increased metabolism 

has been further suggested in mice [146, 147]. On the other hand, it has been recently 

observed that glutathione-dependent SOD1 activation is crucial for CLS extension by a 

mild oxidative stress pre-treatment [246]. However, none of those studies have 

addressed if a specific form of ROS have benefits for lifespan. Our results revealed that 

the mechanism whereby CR extends CLS involves the induction of Sod2p activity by 

H2O2. Based on these results we suggest that Sods are, therefore, targets of a H2O2-

induced stress response triggered by CR that confers hormesis-like protective effects 

against aging by reducing the levels of O2
-
.  

In this context of aging research, most studies have been highly 

compartmentalized and mainly concerned with mitochondria formation of ROS. 

Although mitochondria are the main source of ROS production it is nowadays well 

accepted that ROS are originated by a number of other cellular organelles besides 

mitochondria [109]. In this context, we assessed CLS in rho0 cells in both CR and non-

CR conditions. Our results showed that in non-CR conditions rho0 cells have a reduced 

CLS comparatively to wild type cells, suggesting the protective role for this organelle in 

CLS. However, as for wild type cells, the CLS-extending effects of CR were shown to 
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be associated with increased intracellular ROS levels and, thus, suggesting that other 

ROS sources may be involved in CLS. The extension of CLS in cells lacking functional 

peroxisomes associated with an increase in intracellular ROS accumulation suggested 

an negative contribution of this organelle to CLS. However, peroxisomes were also 

shown to be required for the CLS-extending effects of moderate CR and, thus, calling 

into question a dual role for peroxisome and/or peroxisome-derived ROS, and 

particularly H2O2, in S. cerevisiae CLS extension.  

Altogether, the results led us to theorize about a major involvement of increased 

H2O2 levels CLS extension, mimicking the effect of CR in cells grown in non-CR 

conditions and promoting their survival. On the other hand, while some ROS, such as 

O2
-
, appear to be extremely detrimental to biological systems others, and especially 

H2O2, may be key signalling molecules depending on the concentrations that are 

perceived by the cells. In fact, H2O2 has been well recognized as an important signalling 

molecule [266, 267] that may influence cell proliferation, cell death and the expression 

of genes [268-270], besides to be involved in the activation of several nutrient 

signalling pathways. Data herein presented suggest that Rim15p is not necessary to the 

induction of Sods by H2O2 during the CLS-extending effects of CR. As for wild type, in 

Δrim15 cells the CLS-extending effects of CR were associated with H2O2 increases and 

O2
-
 reduction. Also, although CR can extend CLS by inhibiting the accumulation of 

acetic acid [78], the hormesis-like mechanism by which H2O2 extends CLS was 

demonstrated in buffered medium. Thus, suggesting that such effect may be 

independent of an acetic acid-mediated mechanism. On the other hand, increased 

resistance to high acetic acid concentrations was observed in exponential CR-cells. 

Therefore, suggesting that additional mechanisms may exist whereby CR extends yeast 

CLS associated to redox signaling. For instance, in glucose limiting conditions, 

respiration-induced oxidative stress and ROS production were shown to extend fission 

yeast lifespan by inducing an adaptive response in a mitogen-activated protein (MAP) 

kinase Sty1-dependent manner [271]. Moreover, such adaptative mechanism was 

suggested to be associated with increases in stress defences by H2O2.  

The impact of ROS and oxidative stress in S. cerevisiae CLS was further studied 

within CR mimetics by interfering with glucose metabolism and sensing signaling. A 

similar mechanism whereby increases in H2O2 promote the extension of CLS was 

suggested upon mutational inactivation of specific glycolytic enzymes including 

Hxk2p, Pfk2p and GAPDH, but not within the reduction of the glucose uptake. These 
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results are supported by existing evidence showing that deletion of HXK2, which is 

expected to mimic the effect of growth in low glucose, promotes increases in 

respiration rate and RLS extension [56]. On the other hand, Hxk2p has been linked to 

longevity control by acting in a signaling pathway important for maintaining glucose 

repression [196]. Accordingly, in C. elegans, the inhibition of glycolysis with 2-deoxy 

glucose was shown to induce respiration and increases lifespan [139], reflecting 

previous results in yeast [172]. In this context, our results suggest that CR mimetics 

(CRM), may operate in parallel mechanism(s) beyond those involving TOR-Sch9p and 

RAS-AC-PKA nutrient-sensing signaling pathways observed with general CR, to 

extend S.cerevisiae CLS (Fig. 1). 

In contrast to the general belief that CR extends lifespan by reducing the 

production of ROS our data called into question a novel role for augmented ROS levels, 

and particularly H2O2, in S. cerevisiae CLS extension. Although the exact action of 

hormetic levels of ROS and their interplay as signals in CR-mediated lifespan extension 

still remains elusive, it has been suggested it likely may be conserved in other 

organisms. For instance, low concentrations of H2O2 have already been associated with 

the extension of RLS in human skin keratinocytes, being this effect accompanied by an 

increase in telomere length [141]. On the other hand, the activation of Sods by H2O2 has 

been shown in cultured rat glomerular cells [272]. In addition, Sods were also 

implicated in telomere maintenance during RLS extension of mammalian cells [143] by 

counteracting the inhibition of telomere elongation by O2
-
 [142]. A role for H2O2 in the 

inhibition of O2
-
 was further suggested by the high levels of O2

- 
and decreases in H2O2 

in SOD2-defective mouse cells driven into quiescence by contact inhibition [237]. More 

recently, it was reported in a mouse model of inflammatory responses in the lung that 

genetic or pharmacological inactivation of catalase in neutrophils induces intracellular 

H2O2 that inhibits the O2
-
-dependent inflammatory responses of these cells [238, 239]. 

Thus, once more, proposing that H2O2 exerts its anti-inflammatory effects in mouse 

neutrophils by inducing Sods activity and reducing O2
-
-mediated inflammation.  

Overall, these findings suggest mechanisms that challenge the validity of the 

"Free Radical Theory" and provide a different paradigm for understanding how 

oxidative stress impacts aging and health. For instance, it has been recently reported that 

administration of antioxidants may abrogate the advantageous effects of physical 

exercise in healthy humans, through inhibition of the ROS-mediated activation of 

endogenous antioxidant capacity [247]. Consistent with the hormesis hypothesis, the 
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ROS signal may induce ROS defence mechanisms which culminate in the extension of 

lifespan (Fig. 1).  

 

 

 

Figure 1. The CLS-extending effects of CR may be independent of the established CR signaling trough 

the conserved Sch9p‐, Tor1p‐,and RAS‐dependent pathways and of the induction of oxidative stress 

defences by Rim15p [54]. As an alternative, CR may extend CLS by an hormesis-like mechanism in 

which CR induces H2O2 that activates Sods and reduces the levels of O2
-
, ultimately resulting in increased 

lifespan. Furthermore, this mechanism is suggested to be independent of the acetic acid effects on CLS. A 

mechanism involving the CLS-extending effects of increased H2O2 levels is also suggested upon deletion 

of specific glycolytic enzymes, but discarded within reduced glucose uptake into the cell. Overall, it is 

suggested that different routes may mediate the CR-mediated extension in yeast CLS. (Figure from [255] 

with adaptations). 

 

 

In this scenario, antioxidants may prevent this adaptive response and abolish the 

extension of lifespan. Thus, interventions aimed at decreasing ROS formation may not 
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necessarily promote longevity and may rather reduce lifespan. Due to the inconsistent 

effects of antioxidants and taking into consideration that ROS production may be a 

double-edged sword, the findings herein presented uncover a new link between ROS 

and longevity. In this context, it is still necessary to depict the molecular pathways that 

are mediating the ROS benefits in yeast lifespan in order to obtain a more complete 

understanding of how CR could be acting in extending longevity in higher organisms. 
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