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Abstract
A mixed-integer programming problem is one where some of the variables must have only integer val-
ues. Although some real practical problems can be solved with mixed-integer linear methods, there are
problems occurring in the engineering area that are modelled as mixed-integer nonlinear programming
(MINLP) problems. When they contain nonconvex functions then they are the most difficult of all since
they combine all the difficulties arising from the two sub-classes: mixed-integer linear programming and
nonconvex nonlinear programming (NLP). Efficient deterministic methods for solving MINLP are clever
combinations of Branch-and-Bound (B&B) and Outer-Approximations classes. When solving nonconvex
NLP relaxation problems that arise in the nodes of a tree in a B&B algorithm, using local search methods,
only convergence to local optimal solutions is guaranteed. Pruning criteria cannot be used to avoid an
exhaustive search in the solution space. To address this issue, we propose the use of a simulated annealing
algorithm to guarantee convergence, at least with probability one, to a global optimum of the nonconvex
NLP relaxation problem. We present some preliminary tests with our algorithm.
Keywords: Mixed-Integer Programming, Branch-and-Bound, Stochastic Method.

1. Introduction

Many optimization problems involve discrete and continuous variables that can be modeled as mixed-
integer nonlinear programming (MINLP) problems. For instance, integer variables can represent the
number of workers needed to perform a certain task whereas continuous variables can denote physical
values, such as pressure or temperature. This has led to a wide range of applications in the field of process
systems engineering [8]. In particular, one may find applications which include gas network problems,
nuclear core reloaded problems, cyclic scheduling trim-loss optimization in the paper industry, synthesis
problems, layout problems [1], thermal insulation systems [2]. Other examples are efficient management
of electricity transmission, contingency analysis and blackout prevention of electric power systems [16].

A mixed-integer nonlinear program formulation can be represented as:

min f(x, y)
s. t. gj(x, y) ≤ 0, j ∈ J

x ∈ X, y ∈ Y
(1)

where X ⊆ R
n is assumed to be a convex compact set, Y ⊆ Z

p corresponds to a polyhedral set of integer
points, f : Rn+p → R and g : Rn+p → R

m are continuously differentiable functions, J is the index set of
inequality constraints, and x and y are the continuous and discrete/integer variables, respectively. If the
objective function f and the constraint functions g are convex, the problem is known as convex, otherwise
the problem is a non-convex MINLP [3].

Until now, significant progress has been made in the solution techniques for convex MINLP [1, 4, 8,
5, 19]. However, techniques and solvers for nonconvex MINLP problem have just started to appear in
the literature [15, 17]. Since this kind of problems appears very frequently in industrial processes, it is
crucial to develop solution techniques to efficiently solve nonconvex MINLP problems. This is the goal
of our study: to analyze and propose a method for nonconvex MINLP problems. First, we have been
considering unconstrained MINLP problems, subject only to simple bounds. Our proposal combines two
strategies: a Branch-and-Bound (B&B) method to find integer solutions and the simulated annealing
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search to promote convergence to global solutions of nonconvex nonlinear programming (NLP) relax-
ation problems. A comparison between our proposal and another B&B-type method, which relies on a
deterministic local search method for NLP problem solving – a function available in the Optimization
Toolbox of MATLABTM – is presented.

2. The proposed method

To solve nonconvex MINLP problems we use a B&B-type method. The relaxed NLP problem that
appears at each node of the B&B tree search is solved by a heuristic. Our research focus on problems
with the form:

min f(x, y)
x ∈ X, y ∈ Y (2)

where X = {x ∈ R
n : lx ≤ x ≤ ux} with lx, ux ∈ R

n and Y = {y ∈ Z
p : ly ≤ y ≤ uy} with

ly, uy ∈ Z
p. Most existing methods can be classified into two categories [12]: stochastic methods and

deterministic methods. Stochastic methods sample the objective function for a small number of points,
with an outcome that is random. They are particularly suited for problems that possess no known
structure that can be exploited, and in general do not require derivative information. In these methods, a
probabilistic convergence guarantee can be provided. The simulated annealing method is an example of a
point-to-point stochastic method. On the other hand, deterministic methods exploit analytical properties
of the problem to generate a sequence of points converging to a global solution. They typically provide
a mathematical guarantee for convergence to a minimum in a finite number of steps. The B&B method
is a deterministic method.

In this paper, a new methodology to solve problem in Eq. (2) is presented. It relies on a B&B scheme
and uses a simulated annealing algorithm to guarantee convergence, at least with probability one, to a
global optimum of the nonconvex NLP relaxation problem (that arises in each node of a tree in the B&B
algorithm). A brief description of the two strategies combined in the herein proposed method is presented
below.

2.1. Branch-and-Bound method
Although B&B was originally devised for MILP (Mixed Integer Linear Program), it can be applied to
mixed-integer nonlinear problems too. The reader is referred to one of the first references to nonlinear
Branch-and-Bound [6] and also to MINLP problems (see [13, 14] and the references therein included).

The B&B methodology can be explained in terms of a tree-search. Initially, all integer variables are
relaxed and the resulting NLP relaxation problem is solved. If all integer variables take an integer value
at the solution then this solution also solves the MINLP. Usually, some integer variables take non-integer
values. Next, the algorithm selects those integer variables (which take non-integer values) and branches
on it. Branching generates new NLP problems by adding simple bounds respectively to the new NLP
relaxation problems.

Next, one of these new NLP problems is selected and solved. If the integer variables take non-integer
values, then branching is repeated, generating a B&B tree whose nodes correspond to new NLP problems.
The solution of each subproblem provides a lower bound for the subproblems in the descent nodes of the
tree. This process continues until the lower bound exceeds the current upper bound, the NLP subproblem
is infeasible, or the solution provides integer values for the integer variables. The integer solutions (at
the nodes of the tree) give upper bounds on the optimal integer solution.

This process continues until there are no more nodes to explore.

2.2. The SAHPS Method
To solve the nonconvex MINLP problem we choose an approach that combines the B&B method (de-
scribed above) and a simulated annealing heuristic pattern search (SAHPS) [10], which is used to solve
the nonconvex NLP relaxation problem at each node of the B&B tree search.

Simulated annealing (SA) is one of the most effective metaheuristics for continuous global optimiza-
tion. The SA algorithm successively generates a trial point in a neighborhood of the current solution
and determines whether or not the current solution is replaced by the trial point based on a probability
depending on the difference between their function values.

The SA approach is combined with the heuristic pattern search to form the hybrid method SAHPS
[10]. The SAHPS tries to get better movements through the SA acceptance procedure or by using a
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heuristic pattern search (HPS) procedure. More specifically, a new exploring neighborhood search is
introduced to generate a number of SA trial points. If some of these trial points can be accepted by
the SA acceptance procedure, this means that the search can go further and there is no need to use a
local search method. Otherwise, some iterations of the HPS method are applied to generate more local
exploratory trial points.

The HPS method is based on two main ideas. First, it uses a derivative-free heuristic method to
produce an approximate descent direction at the current solution – the therein denoted approximate
descent direction (ADD) method. Next, uses the ADD method to design a new pattern search method
called the HPS. The ADD method is recalled to obtain an approximate descent direction v at the current
iterate xk. The direction v is computed at xk, after generating m points {yi}mi=1

close to xk, as:

v =
m
∑

i=1

wiei (3)

where

wi =
∆fi

m
∑

j=1

|∆fj |
, ∆fi = f(yi)− f(xk), i = 1, . . . ,m

ei = − yi − xk

‖yi − xk‖
i = 1, . . . ,m.

(4)

If no improvement is obtained along the vector v, then this is used to prune the set D of pattern search
directions to generate other exploratory moves. To check if v is a descent direction for f at xk, a small
step size α > 0 is used, and if f(xk + αv) < f(xk) then v is considered a descent direction. In this case,
the set Dp

k of positive spanning directions in R
n for the pattern search procedure is obtained as

Dp
k =

{

d ∈ D : dTv ≥ β ‖d‖ ‖v‖
}

, for β ∈ (−1, 1) (5)

whereas, if v is not a descent direction, the set Dp
k is obtained from

Dp
k =

{

d ∈ D : dTv ≤ −β ‖d‖ ‖v‖
}

. (6)

In the final stage of the search, a direct search method is applied to refine the best solution obtained
so far. The algorithm uses a modified version of the Nelder-Mead method. All the details about this
method can be found in [10] and the algorithm can be briefly described as below.

SAHPS Algorithm

1. Initialization of the parameters

2. Repeat Global SA Search m1 times (in Step 2.1). If more than mac out of m1 trial points are
accepted, then skip the Local HPS (in Step 2.2) and proceed to Step 3.

2.1. Global SA Search:

2.1.1. Given the iterate xk generate a trial point xSA in its neighborhood using a radius r > 0

2.1.2. Evaluate f on the trial point xSA and test the SA acceptance procedure

2.2. Local HPS: Repeat the following procedures m2 times:

2.2.1. ADD: Compute the direction v, using Eq. (3). If a better movement along direction v is
obtained, with a certain step size ∆k, then proceed to the next iteration of the Local HPS

2.2.2. PS: Obtain Dp
k using either Eq. (5) or Eq. (6)

2.2.3. Parameter update: if an improvement is obtained update xk+1; otherwise decrease ∆k.

3. If the number of iterations in Global SA Search is less than 2n, then go to Step 2.

4. If a typical cooling schedule of SA is completed or the function values of two consecutive improve-
ment trials become close or the maximum number of iterations 50n is exceeded then go to Step 5.
Otherwise decrease the temperature, increase the number of Local HPS repetition (m2) and decrease
the radius (r) for generating SA trials points. Go to Step 2.
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5. Apply the modified Nelder-Mead method to the best point.

3. Numerical Results

The proposed method was implemented in MATLABTM and uses a B&B method combined with the
SAHPS method of Hedar and Fukushima [10]. The MATLAB code of SAHPS was integrated in our
solver and called inside our B&B algorithm (to solve the relaxed NLP in each node of the tree). The
solver is herein called BBSAHPS. The values of the parameters inside the SAHPS are the default values
as described in [10].

A collection of 14 test functions was used to analyze the practical behavior of BBSAHPS. A comparison
with a B&B method that uses a local search method to solve the NLP relaxation problems – fmincon

function from the MATLABTM Optimization Toolbox – is presented. The set of test functions, with the
feasible region, the minimizers and the global minimum are displayed in the appendix at the end of the
paper. For each function the solver was run 100 times (using the same initial point x0). All experiments
were run on a HP 2230s computer with an Intel(R) Core(TM)2 Duo CPU P7370 2.00GHz processor and
3,00 GB of memory.

Some minor changes were made to incorporate the SAHPS method into the B&B algorithm. For
instance, when solving a NLP relaxation subproblem by SAHPS method, the initial approximation x0

is not randomly generated but instead set equal to the optimum solution of its immediately previous
subproblem in the ascent node of the tree, if that solution is feasible for the NLP relaxation subproblem.
Otherwise, x0 is the projection of that solution onto the set defined by the bounds.

Table 1 summarizes the BBSAHPS results obtained for each test problem. Some runs, out of the
100 runs, converged to different global minimizers. For instance, when solving Dixon and Price (DP)
function, 36 runs (out of 100) converged to one global minimizer and in 26 runs (out of 100) the solver
converged to the other global minimizer. The overall percentage of successful runs – converging to a
global solution with mixed-integer variable – is then 62.

In Table 1, the best objective function values “Best f∗” obtained from 100 runs is reported for each
test problem. In order to show more details concerning the quality of the obtained solutions, the average
“Average f∗” and the standard deviation “σ” of the best obtained function values are also reported in
Table 1. Moreover, success rates of obtaining the global minimum “% success”, the average numbers of
CPU time “time” (in seconds), major cycles of the B&B tree “cycles” and function evaluations “f eval.”,
are shown in columns 2–5 of Table 1.

The results obtained by the BBSAHPS method are quite satisfactory, except for problem R2 (Rosen-
brock function) which has only a success rate of 4%. However, it was observed that, if the solution of
the NLP relaxation subproblem is rounded to an approximation with four decimal digits to maintain
feasibility and avoid discarding that solution, the success rate of the BBSAHPS method increases. In
practice, we used this heuristic when solving problems marked with “§” in Table 1. Table 2 shows the
improvement on the success rate obtained for these problems. As it can be seen, the percentage of suc-
cessful runs were improved to 96% with the Rosenbrock function and to 92% with de Beale (B) function.
The success rate slightly improved in the Himmelblau no 3 (HM3) function.

It is noteworthy that the BBSAHPS method has a success rate superior to 85% for 8 problems as
shown in Table 1. With all these functions the BBSAHPS method could successfully find the global
minimum, taking into account the integrality of some variables. Further, the accuracy of the achieved
solutions, in terms of “Best f∗”, is very good, and the standard deviations are close to zero, meaning
that the consistency of our proposed deterministic-stochastic procedure is high. The computational cost
in terms of CPU time required by the proposed BBSAHPS is rather small, as shown in Table 1. The L8

function is the one that requires a larger CPU time when compared with the other functions. We remark
that the L8 function has four variables while the others have only two.

As far as DP function is concerned, and despite the fact that the point x∗ = (1,−
√
2/2)T is not listed

in the literature [7, 12], BBSAHPS method is able to find it, and this is indeed a global minimizer of the
DP function.
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Table 1: Numerical results obtained during the 100 runs and using BBSAHPS

Average
f % success time (s) cycles f eval. Best f∗ Average f∗ σ
B § 46 0.08553 5 991 6.83325× 10−13 4.57638× 10−9 6.65897× 10−12

Boa 99 0.16958 13 2204 0.0× 100 6.58918× 10−13 3.66562× 10−12

Boo 61 0.13181 12 1131 0.0× 100 5.67883× 10−14 3.05624× 10−13

DP 62
36 0.07681 6 744 8.08397× 10−16 4.17957× 10−9 6.60461× 10−9

26 0.07592 6 733 8.78736× 10−14 3.61570× 10−9 3.66593× 10−9

GP 95 0.07050 6 690 3.0× 100 3.0× 100 1.06526× 10−10

f26 87 0.07936 7 966 −3.52386× 10−1 −3.52386× 10−1 1.09059× 10−9

HM3
§ 42 0.09331 8 656 0.0× 100 1.09418× 10−12 3.52609× 10−12

L8 88 0.65901 24 2442 1.49976× 10−32 2.30771× 10−14 1.48765× 10−13

P § 49
19 0.07179 5 918 1.07746× 10−12 1.71264× 10−9 1.60441× 10−9

18 0.07399 5 842 3.63046× 10−12 1.35319× 10−9 1.24148× 10−9

6 0.07104 5 859 1.15036× 10−10 1.76213× 10−9 2.33087× 10−9

6 0.07244 5 865 7.45027× 10−11 1.16198× 10−9 1.85512× 10−9

R2
§ 4 0.10677 9 951 0.0× 100 4.65454× 10−11 8.48159× 10−11

ST1 89
49 0.04737 4 555 −4.07462× 10−1 −4.07462× 10−1 1.66109× 10−9

40 0.04630 4 562 −4.07462× 10−1 −4.07462× 10−1 2.30832× 10−9

ST2 92
49 0.05363 5 610 −1.80587× 101 −1.80587× 101 1.45725× 10−9

43 0.05701 4 593 −1.80587× 101 −1.80587× 101 2.74686× 10−9

ST3 93
52 0.05616 4 643 −2.27766× 102 −2.27766× 102 3.58893× 10−9

41 0.04835 3 573 −2.27766× 102 −2.27766× 102 4.69358× 10−9

T 87 0.06028 5 513 −2.0× 100 −2.0× 100 2.34821× 10−11

Table 2: Improvement in BBSAHPS using the rounded solution of the NLP relaxation subproblem

f % success
B 92
HM3 45
P 59
R2 96

Finally, we compare the results of our study with those of the B&B method with the fmincon solver of
MATLAB. The fmincon parameters assigned to all fourteen executions are equal and set to their default
values. The initial approximation x0 used in each function was the same as that chosen for BBSAHPS.

Table 3 summarizes the results obtained with the B&B method with the fmincon solver for each
test problem. Table 3 reports information similar to that shown in Table 1, concerning the CPU time,
B&B cycles, average number of function evaluations and the best objective function value. The last two
columns are from Table 1, to allow a more expedite comparison between the two methods.
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Table 3: Comparison between B&B with fmincon and BBSAHPS

fmincon

f time(s) cycles f eval. f∗ Best f∗ Average f∗

B 1.35996 5 91 2.02450× 10−7 6.83325× 10−13 4.57638× 10−9

Boa 0.40489 18 83 0.0× 100 0.0× 100 6.58918× 10−13

Boo 0.75533 12 101 0.0× 100 0.0× 100 5.67883× 10−14

DP 0.16860 7 30 1.0× 100 8.08397× 10−16 4.17957× 10−9

GP 0.30107 12 156 3.0× 100 3.0× 100 3.0× 100

f26 2.02499 7 34 −1.52639× 10−1 −3.52386× 10−1 −3.52386× 10−1

HM3 0.16777 9 80 0.0× 100 0.0× 100 1.09418× 10−12

L8 1.16483 52 326 1.49976× 10−32 1.49976× 10−32 2.30771× 10−14

P 0.12354 6 37 4.91198× 10−10 1.07746× 10−12 1.71264× 10−9

R2 0.21735 11 134 0.0× 100 0.0× 100 4.65454× 10−11

ST1 0.10171 1 27 −4.07462× 10−1 −4.07462× 10−1 −4.07462× 10−1

ST2 0.29644 5 109 −1.80587× 101 −1.80587× 101 −1.80587× 101

ST3 0.05574 1 31 −2.27766× 102 −2.27766× 102 −2.27766× 102

T 0.04051 1 3 6.79367× 10−1 −2.0× 100 −2.0× 100

The results shown in Table 3 indicate that BBSAHPS generally outperforms the B&B with fmincon.
We observe that the B&B with fmincon requires less function evaluations but, on the other hand, the
BBSAHPS has higher accuracy. Further, although the BBSAHPS method invokes the objective function
more often than the B&B with fmincon, it is less time consuming.

To illustrate the behavior of the B&B with fmincon when compared with the BBSAHPS method, we
consider the f26 function. Figure 1 is a graphical representation of f26, near the global minimum. B&B
with fmincon stops at −1.52639×10−1 (a local minimum), while BBSAHPS converges to −3.52386×10−1

(the global minimum). We observed that the initial point x0 affects the performance of the B&B with
fmincon. A similar behavior occurred with the DP and Tsoulos (T) functions.

Figure 1: Graphical representation of f26

4. Conclusions and future work

In this paper we have presented a deterministic-stochastic method – BBSAHPS – in which a Branch-
and-Bound procedure is combined with a hybrid global search to find the minimum of MINLP problems
with simple bounds. BBSAHPS method was implemented using MATLABTM and some results are shown
considering 14 test functions. This method is able to find the global optimum, with integer restrictions
for some variables. The performance of the BBSAHPS method is quite satisfactory.

A comparison between BBSAHPS and a local search method (based on B&B and fmincon – a function
from MATLABTM Optimization Toolbox) was presented. The results obtained with B&B and the
classical fmincon are worst than ours, and in some cases, it converged to a local minimum. This is due to
the fact that the NLP relaxation problems – that are solved in the nodes of the B&B tree – are non-convex
and fmincon is not able to detect the global minimum. On the other hand, BBSAHPS method was able
to find the global minimum in all 14 test functions.
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Numerical results indicate that BBSAHPS outperforms the B&B with fmincon. Future developments
will be focused on efficient constraint-handling by the classical filter methodology.
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Appendix - List of test functions

The collection of 14 test functions used in this study are listed below [7, 9, 10, 12, 18].

• Beale function (B)

– Number of variables: n = 2, x1 integer.

– Definition: B(x1, x2) = (1.5− x1(1− x2))
2 + (2.25− x1(1− x2

2))
2 + (2.625− x1(1− x3

2))
2.

– Feasible region: x1 ∈ [−5, 5] , x2 ∈ [−4.5, 4.5].

– Global minimum: x∗ =

(

3,
1

2

)T

and B(x1, x2) = 0.

• Bohachevsky function (Boa)

– Number of variables: n = 2, all integer.

– Definition: Boa(x1, x2) = x2
1 + 2x2

2 − 0.3 cos(3πx1)− 0.4 cos(4πx2) + 0.7.

– Feasible region: x ∈ [−100, 100]
2
.

– Global minimum: x∗ = (0, 0)T and Boa(x
∗) = 0.

• Booth function (Boo)

– Number of variables: n = 2, all integer.

– Definition: Boo(x1, x2) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2.

– Feasible region: x ∈ [−10, 10]
2
.

– Global minimum: x∗ = (1, 3)T and Boo(x
∗) = 0.

• Dixon and Price function (DP)

– Number of variables: n = 2, x1 integer.

– Definition: DP (x1, x2) = 2(2x2
2 − x1)

2 + (x1 − 1)2.

– Feasible region: x ∈ [−10, 10]
2
.

– Global minima: x∗ =

(

1,−
√
2

2

)T

,

(

1,

√
2

2

)T

and DP (x∗) = 0.

• Goldstein and Price function (GP)

– Number of variables: n = 2, all integer.

– Definition:

GP (x1, x2) = (1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2))×

×(30 + (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2))

– Feasible region: x ∈ [−2, 2]
2
.

– Global minimum: x∗ = (0,−1)T and G(x∗) = 3.
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• f26 function (f26)

– Number of variables: n = 2, x2 integer.

– Definition: f26(x1, x2) = 0.25x4
1 − 0.5x2

1 + 0.1x1 + 0.5x2
2.

– Feasible region: x ∈ [−10, 10]
2

– Global minimum: x∗ = (−1.0466805696, 0)T and G(x∗) = −3.5239× 10−1.

• Himmelblau no 3 function (HM3)

– Number of variables: n = 2, x1 integer.

– Definition: HM3(x1, x2) = (x2
1 + x2 − 11)2 + (x1 + x2

2 − 7)2.

– Feasible region: x ∈ [−2, 4]
2

– Global minimum: x∗ = (3, 2)T and HM3(x
∗) = 0.

• Levy no 8 function (L8)

– Number of variables: n = 4, all integer.

– Definition:

L8(x) = sin2 (πy1) +

3
∑

i=1

(

(yi − 1)
2
(

1 + 10 sin2 (πyi+1)
)

)

+ (y4 − 1)2
(

1 + sin2(2πy4)
)

where yi = 1 +
xi − 1

4
, for i = 1, · · · , 4.

– Feasible region: x ∈ [−10, 10]
4

– Global minimum: x∗ = (1, 1, 1, 1)T and L8(x
∗) = 0.

• Parsopoulos function (P)

– Number of variables: n = 2, x2 integer.

– Definition: P (x) = cos2 (x1) + sin2 (x2).

– Feasible region: x ∈ [−5, 5]
2

– Global minima: x∗ =
(π

2
, 0
)T

,
(

−π

2
, 0
)T

,

(

3π

2
, 0

)T

,

(

−3π

2
, 0

)T

and P (x∗) = 0.

• Rosenbrock function (R2)

– Number of variables: n = 2, all integer.

– Definition: R2(x) = (−1 + x1)
2 + 100(x2 − x2

1)
2.

– Feasible region: x ∈ [−5, 10]
2

– Global minimum: x∗ = (1, 1)T and R2(x
∗) = 0.

• Storn function (STm)

– Number of variables: n = 2, x1 integer.

– Definition: STm(x) = 10mx2
1 + x2

2 − (x2
1 + x2

2)
2 + 10−m(x2

1 + x2
2)

4.

ST1 Feasible region: x ∈ [−2, 2]
2

Global minima: x∗ = (0, 1.38695)T, (0,−1.38695)T and ST1(x
∗) = −4.07462× 10−1.

ST2 Feasible region: x ∈ [−4, 4]
2

Global minima: x∗ = (0, 2.60891)T, (0,−2.60891)T and ST2(x
∗) = −1.80587× 101.
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ST3 Feasible region: x ∈ [−8, 8]
2

Global minima: x∗ = (0, 4.70174)T, (0,−4.70174)T and ST2(x
∗) = −2.27766× 102.

• Tsoulos function (T)

– Number of variables: n = 2, all integer.

– Definition: T (x) = x2
1 + x2

2 − cos(18x1)− cos(18x2).

– Feasible region: x ∈ [−1, 1]
2

– Global minimum: x∗ = (0, 0)T and T (x∗) = −2.
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