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Abstract
A hybrid multi-objective evolutionary algorithm (MOEA) for solving nonlinear multi-objective opti-
mization problems that relies on a pattern search filter method is proposed. The aim is to reduce the
computational time involved in solving expensive multi-objective problems by improving a subset of
Pareto points. The proposed pattern search filter method relies on two components. Each entry in the
filter aims to measure feasibility and optimality. The feasibility and optimality come directly from each
single-objective nonlinear program problem that is associated to the multi-objective problem. Experi-
ments carried out with a set of nonlinear multi-objective problems show that our pattern search filter
approach is effective in reaching improved Pareto points. A comparison with other techniques known in
the literature is presented.
Keywords: Multi-Objective, Nonlinear Programming, Pattern Search Method, Filter Method.

1. Introduction
Multi-objective optimization problems (MOOPs) arise in engineering and economic applications with
multiple competing objectives. These applications often requires the use of complex “black-box” modeling
routines able to link the design variables with the optimization criteria. This is frequently done through
the resolution of the process governing equations and using expensive numerical methods, such as, finite
differences, finite elements and finite volume elements [1, 2, 3, 4, 5, 6].

It is known that multi-objective evolutionary algorithms (MOEAs) are an excellent tool for solving
this type of problems, where the problem functions are available as oracles, and derivative information
is prohibited to obtain [7, 8]. MOEAs uses a population of potential solutions that evolves during
successive generations by the application of genetic operators, such as selection, recombination, crossover
and mutation [9]. In this technique the concept of non-dominance is used and a trade-off between
the solutions (the Pareto frontier) is obtained [7]. Although MOAEs are good global search methods,
due to their characteristics, there are some problems occurring in engineering area that require a large
number of objective functions evaluations to obtain an acceptable solution - typically of the order of
several thousands. Since this kind of problems appears very frequently in industrial process, it is crucial
to reduce the number of objective functions evaluations to minimize the computational time involved in
solving these expensive MOOPs [10]. A variety of proposals to reduce the number of objective functions
evaluations have been reported in the literature, see for example [10, 11, 12, 13, 14, 15, 16, 18].

This paper aims to develop a hybrid method that combines a MOEA with a local search algorithm.
The goal will be to accelerate the global search of the MOEA through the generation of trial solutions,
using a local search algorithm based on a pattern search filter method (PSFM). More specifically, the
PSFM will perform a local search in the neighborhood of some solutions selected from the Pareto frontier.
A comparison between this hybrid method and two others MOEAs is presented.

2. Multi-Objective Optimization
The multi-objective optimization problem is formally defined as

minimizex∈S f(x)
subject to g(x) = 0

h(x) ≤ 0
(1)

where f(x) = (f1(x), . . . , fM (x)) : RN → RM are the M objective functions, g(x) = (g1(x), . . . , gJ(x)) :
RN → RJ and h(x) = (h1(x), . . . , hK(x)) : RN → RK are the J equality and K inequality constraints,
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respectively. The search space S is defined as {x ∈ RN : xi ∈ [li, ui], i = 1, . . . , n}. The feasible region,
defined by the constraints, is denoted by F = {x ∈ S : g(x) = 0, h(x) ≤ 0}, and we assume that is
nonempty.

Pareto optimal and Pareto dominance are the most common concept of optimality in multiobjective
optimization. Multiobjective optimization seeks to optimize the vector of objective functions over a fea-
sible region in the space of decision variables. For the problem Eq.(1), the Pareto dominance and Pareto
optimal are defined as follows.

Definition 1.(Pareto Dominance)
Given x1, x2 ∈ F , the point x1 is said to dominate the point x2, if fm(x1) ≤ fm(x2) for all m = 1, . . . , M ,
and there exists at least one r ∈ {1, . . . , M} such that fr(x1) < fr(x2).

Definition 2. (Pareto Optimal)
Let x∗ ∈ F be a feasible point with the corresponding criterion vector z∗ = f(x∗).

1. (x∗, z∗) is globally Pareto-optimal if there is no vector x ∈ F , x 6= x∗, with fm(x) ≤ fm(x∗), for all
m = 1, . . . ,M , and fr(x) < fr(x∗) for at least one r ∈ {1, . . . ,M}.

2. (x∗, z∗) is locally Pareto-optimal if there exists a δ > 0 such that x∗ ∈ F is globally Pareto-optimal
in F ∩B(x∗, δ), where B(x∗, δ) is ball of radius δ around x∗.

We designate the set of all Pareto points as P = {z∗ : (x∗, z∗) is a Pareto point}. The optimal solution
of a MOOP is not a single optimal solution but a set of optimal solutions given by all the potential feasible
solutions such that the multiple objective functions cannot be simultaneously improved. In practice it
is impossible to know the actual optimal set and, consequently, the corresponding Pareto optimal front.
Usually, the optimization algorithms find an approximation to this set.

2.1. Multi-Objective Evolutionary Algorithm
Evolutionary algoritms (EAs) are well recognized by its capacity to explore and find Pareto-optimal
fronts for MOOPs [7]. For most problems MOEA outperforms traditional deterministic methods due
to its capacity to explore and combine several solutions to find the Pareto front in a single run. In
MOEA it is desirable to have an homogeneous distribution of the population along the Pareto frontier
simultaneously with an improvement of the solutions along successive generations [2, 7, 17]. Generally
MOEAs replace the selection phase of a traditional EA by a routine able to deal with multiple objectives.

The MOEA adopted in this work is the Reduced Pareto Set Genetic Algorithm (RPSGA) [8]. The
main steps of this algorithm are shown in algorithm 1. Detailed of this algorithm can be found for ins-
tance in [3, 8]. The influence of some important parameters of the algorithm, such as, size of internal
and external populations, number of individuals copied to the external population in each generation and
from the external to the internal population and the limits of the indifference of the clustering technique,
have already been studied. Thus, the values of the parameters inside the RPSGA are the best values
described in [8].

Algorithm 1
0. counterG=0 (inner counter of generations).
1. Random initial population (internal).
2. Empty external population.
3. While not Stop-Condition do

a) Evaluate internal population.
b) Calculate the Fitness of the individuals using clustering.
c) Copy the best individuals to the external population.
d) If the external population becomes full then

- Apply the clustering to this population.
- Copy the best individuals to the internal population.

e) Select the individuals for reproduction.
f) Crossover.
g) Mutation.
h) Archive the best solutions.
i) counterG=counterG+1.

2



3. Pattern Search Filter Method
In this section, we present a hybrid method that combines pattern search method with a filter method.
Pattern search methods constitute a subclass of direct search methods. They are based on the generation
of search directions that span the search space positively. In pattern search methods, exploratory moves
from the current solution to trial points are made along pattern directions with a certain step size, to
minimize a function with non-increasing objective function values. Thus, at each iteration the objective
function is evaluated in a finite set of trial points, in order to find a new point yielding better objective
function values. If these exploraty moves give no improvement, then the step size is decreased to refine
the search. A review of pattern search methods can be found in [19].

The central notion in pattern search methods is the positive spanning. If {d1, d2, . . . , dN} is a basis
in RN , two simple and common examples of positive basis are:

D+ = {d1, d2, . . . , dN ,−∑N
i=1 di} and

D+ = {d1, d2, . . . , dN ,−d1,−d2, . . . ,−dN}.
One of the simplest positive spanning sets is D⊕ = {e1, e2, . . . , eN ,−e1,−e2, . . . ,−eN}, where ei ∈ RN is
the ith unit vector in RN .

One technique to find a single Pareto point is to minimize one objective to achieving a given goal
on all other objectives. Thus, in order to incorporate a local search based on a filter technique in the
RPSGA, problem Eq.(1) is reformulated into M single-objective nonlinear program (NLP) of the form

minimizex∈S fm(x)
subject to g(x) = 0

h(x) ≤ 0
fj(x) ≤ fmaxk

j , j = 1, . . . , M and j 6= m

(2)

where fmaxk
j is the maximum value of the objective function fj at iteration k, and m = 1, . . . ,M . For

notational simplicity, the NLP (2) can be rewritten as follows:

minimizex∈S fm(x)
subject to g(x) = 0

c(x) ≤ 0
(3)

where the inequality constraints c : RN → RK+M−1 are functions c = (h1, . . . , hK , fj(x)− fmaxk
j , . . .) for

j = 1, . . . , M and j 6= m.
The filter methods were originally proposed by Flecther and Leyffer [20], as an alternative to merit

functions, to guarantee global convergence in algorithms for nonlinear programming. In the filter method
the main idea is to interpret the NLP Eq.(3) as a bi-objective optimization problem with two goals:
the minimization of a measure of the constrained violation θfm(x) =

∥∥(g(x), c(x)+)T
∥∥ (with ‖a+‖ =

‖max(a, 0)‖ for some norm) and the minimization of the objective function fm(x).
The filter technique attempts to minimize both functions, but a certain emphasis is placed on the

first objective, θfm , since convergence to a feasible point must be ensured. Filter methods are based on
the concept of dominance, borrowed from multiobjective optimization. The filter Ffm is defined as a
finite set of pairs (θfm(xl), fm(xl)), that correspond to a collection of previous iterates xl ∈ S, with the
additional requirement that no filter entry is dominated by any of the others.

The filter method proposed in this paper, to improve a subset of points S = {x1
k, . . . , xs

k} selected from
the Pareto frontier at iteration k, will deal with problem Eq.(1) through the M reformulated problems
of the form Eq.(3).

Therefore, for each xi
k ∈ S (with i = 1, . . . , s) the PSFM method employs a backtracking strategy

generating a decreasing sequence of step-length control parameters

αi,l ∈ (0, α0], l = 0, 1, . . . ,

until a set of acceptance conditions are satisfied. In this approach, a trial point xi
k(αi,l) = xi

k + αi,ld, for
d ∈ D+, might be acceptable by the filter, if it leads to sufficient progress in one of the two measures
compared to the current iterate,

θfm(xi
k(αi,l)) ≤ (1− γθ)θfm(xi

k) or fm(xi
k(αi,l)) ≤ fm(xi

k)− γfθfm(xi
k). (4)
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However, to prevent convergence to a feasible but nonoptimal point, the above criteria are replaced
by requiring only sufficient progress in the objective function, whenever the current iterate has θfm(xi

k) ≤
θmin

fm
, for some positive constant θmin

fm
. Thus, if θfm(xi

k) ≤ θmin
fm

is true, the trial point has to satisfy:

fm(xi
k(αi,l)) ≤ fm(xi

k)− γfθfm
(xi

k), (5)

in order to be acceptable. Iteration l will be designated a f -type iteration if the trial point satisfies this
condition. Besides requiring sufficient decrease with respect to the current iterate, the trial point xi

k(αi,l)
is accepted only if it is acceptable by the current filter.

At the beginning of each optimization process, the filter is initialized as follows:

F1
fm

= {(θfm
, fm) ∈ R2 : θfm

≥ θmax
fm

} (6)

for some nonnegative constant θmax
fm

, and is updated whenever the accepted trial point satisfies condition
(4) by

F i+1
fm

= F i
fm
∪ {(θfm

, fm) ∈ R2 : θfm
≥ (1− γθ)θfm

(xi
k), fm ≥ fm(xi

k)− γfθfm
(xi

k)}. (7)

The filter remains unchanged if (5) holds for the accepted trial point. Algorithm 2 describes the steps
of the PSFM used to improve a set of points selected from the Pareto frontier through of the one of the
M reformulated problems Eq.(3).

Algorithm 2
1. Initialization
Let α tol > 0 be the stopping tolerance.
Let α0 > α tol be the initial value of the step length control parameter.
Let D = D+ be the positive spanning set.
Let {x1

k, . . . , xNsol

k } be the Nsol select points from the Pareto frontier at iteration k.
2. Search Step
For i = 1, . . . , Nsol do

a. If i == 1 then, initialize the filter using (6). Set l = 0 and set αi,l = α0.
b. If there exists d ∈ D such that (θfm(xi

k(αi,l)), fm(xi
k(αi,l))) /∈ Ffm , with xi

k(αi,l) = xi
k + αi,ld, and

((5) or (4)) hold, then:
– Set xi

k+1 = xi
k(αi,l) (accept a new iterate).

– If l is not a f -type iteration, increase the filter using (7). Otherwise, leave the filter unchanged.
c. Otherwise, (θfm(xi

k(αk,l)), fm(xi
k(αk,l))) ∈ Ffm , for all d ∈ D, or ((5) and (4)) does not hold, do

the following:
– Reject the trial point xi

k(αi,l).
– Set αi,l+1 = 1

2αi,l, (contract the step-length control parameter).
– Set l = l + 1.
– If αi,l < α tol, then

- Set xi
k+1 = xi

k (i.e., if not found a point acceptable by the filter)
- Terminate.

In our implementation, the square of the Euclidean norm is used to measure the infeasibility, θfm(x).
The default values for PSFM are: θmax

fm
= 104 maxi=1,...,Nsol

{1, θfm(xi
k)}, θmin

fm
= 10−6, γθ = γf = 10−5,

αtol = 10−6, α0 = 1.0. The positive spanning set is defined as D+ = {β1e1, . . . , βNeN ,−β1e1, . . . ,−βNeN},
where βj = max(xi

kj
− lmink

j , umaxk
j − xi

kj
)/e, where e ∈ {2, 5, 10}, for j = 1, . . . , N . umaxk and lmink

are the maximum and the minimum values of the decision variables at iteration k, respectively. The
PSFM local search procedure is applied at every Ngen generations. The PSFM approach depends on
three parameters: Ngen, Nsol and e. The influence of all these parameters will be analyzed.

4. The Hybrid Multi-Objective Pattern Search Filter Method
The RPSGA approach is combined with the PSFM to form the hybrid method RPSGA&PSFM, which
is expected to have a higher ability to improve a subset of Pareto points. In the RPSGA&PSFM, we
first run the RPSGA a predefined number of generations, Ngen. In each Ngen generations, a set of non-
dominated solutions is selected from the current Pareto frontier and the PSFM is applied to improve
this set. Specifically, we apply the PSFM M times, one per each (NLP) Eq.(3), and M new sets of the
improved solutions are obtained. The hybrid algorithm RPSGA&PSFM is implemented by incorporating
the following steps (Algorithm 3) between the selection and crossover phases in Algorithm 1.
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Algorithm 3
If counterG = Ngen then

- Select the Nsol solutions using the clustering technique: S = {x1
k, . . . , xNsol

k }
- Set Snew = {}
- For m = 1, . . . ,M do

- Considering the NLP (3), respective.
- Apply the PSFM to get new set of solutions, Sfm

, by improving the set S.
- Set Snew = Snew ∪ Sfm

Incorporate Snew, the new solutions generated, in the main population.
Set counterG = 0.

5. Experimental Results and Conclusions
The RPSGA&PSFM approach proposed will be tested using ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6
benchmark problems (see Table in the appendix at the end of the paper). These functions cover various
types of Pareto-optimal fronts, such as convex (ZDT1), non-convex (ZDT2), discrete (ZDT3), multi-
modal (ZDT4) and non-uniform (ZDT6) [7]. The performance of the methods was assessed using the
hypervolume metric [21]. Due to the difficulty in comparing Pareto sets there is no consensus on the
literature about the best metric to be used [7, 21]. However, take into account that, in this case, the
aim is to check the evolution of the algorithm performance along the successive generations, the hyper-
volume metric seems to be a good choice. Hypervolume will be analyzed against the number of objective
functions evaluations, since the goal is to reduce this number in order to get, simultaneously, identical
performance. Due to the stochastic nature of the initial trial solutions it was necessary to perform several
runs for each case study. Thus, an average of hypervolume metric is presented.

Two studies were performed. First, using all test problems, the influence of the algorithm parameters
on the performance was studied. Then, a comparison between RPSGA, RPSGA&PSFM and NSGA-
II algorithms was performed considering the best parameters defined previously. We remark that, the
NSGA-II algorithm is one the most popular MOEAs [17]. Thirty runs for each case have been performed
using the following RPSGA parameters (see [8] for more details): the main and elitist populations
had 100 and 200 individuals, respectively; a roulette wheel selection strategy was adopted; a crossover
probability of 0.8, a mutation probability of 0.05, a number of ranks of 30 and limits of indifference of
the clustering technique of 0.01 were chosen.

Since, in the test problems selected the objectives are to be minimized and the algorithm is prepared
to maximize, the following transformation into the original objective function (f ) is used:

f∗(x) =
1

f(x) + 1
. (8)

In this case the function values were normalized in the interval [0,1]. The hypervolume metric was
calculated using the new objective function search space defined by this transformation. Figures 1-3
show the evolution of the hypervolume metric (average of 30 runs with different seed values) with the
number of evaluations, for the ZDT1 test problem, in function of the parameters: Nsol, Ngen and e.
Identical study was made for each one of the test problems.
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Figure 1: Influence of the Nsol parameter
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Figure 2: Influence of the Ngen parameter
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Figure 3: Influence of the Ngen parameter

As it can be seen in Figures 1-3 the convergence of the RPSGA&PSFM proposed is much higher than
RPSGA alone. For the ZDT1 test problem, the best values of the parameters are: Nsol = 5, Ngen = 5
and e = 2. For the remaining test problems the best parameters are: Nsol = 10, Ngen = 10 and e = 2
for ZDT2 and ZDT3; Nsol = 10, Ngen = 5 and e = 2 for ZDT4; and Nsol = 2, Ngen = 2 and e = 10 for
ZDT6. Thus, these are the values adopted in the remaining runs below.

Figures 4-8 compare the best results obtained by the RPSGA alone, the RPSGA&PSFM and the
NSGA-II approaches. As it can be seen, the most important characteristics of RPSGA&PSFM is the fast
improvements during the initial generations for all test problems. More specifically, the RPSGA&PSFM
method is able to impose high pressure on the search at the beginning of the process, when the distance
to the optimum region is high. Thus, it is clear, from these results, that the application of local search is
strongly relevant at the initial stages of the search. However, this can lead the search to local regions of
the search space. This bias is avoided by a careful balance between the solutions generated by the PSFM
and those generated by the RPSGA. Clearly the hybrid method RPSGA&PSFM outperfoms the other
methods in most of the test problems tested except in the case of the ZDT3.
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Figure 4: Hypervolume versus number of evaluations for ZDT1 test problem
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Figure 5: Hypervolume versus number of evaluations for ZDT2 test problem
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Figure 6: Hypervolume versus number of evaluations for ZDT3 test problem.
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Figure 7: Hypervolume versus number of evaluations for ZDT4 test problem.
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Figure 8: Hypervolume versus number of evaluations for ZDT6 test problems.
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Appendix - Table of test problems

Name N Objective x
ZDT1 30 f1(x) = x(1)

f2(x) = g(x)
(
1−

√
f1(x)
g(x)

)

where g(x) = 1 + 9
∑N

i=2 x(i)

N−1

x ∈ [0, 1]

ZDT2 30 f1(x) = x(1)

f2(x) = g(x)
(

1−
(

f1(x)
g(x)

)2
)

where g(x) = 1 + 9
∑N

i=2 x(i)

N−1

x ∈ [0, 1]

ZTD3 30 f1(x) = x(1)

f2(x) = g(x)
(
1−

√
f1(x)
g(x) −

(
f1(x)
g(x)

)
sin (10πf1(x))

)

where g(x) = 1 + 9
∑N

i=2 x(i)

N−1

x ∈ [0, 1]

ZTD4 10 f1(x) = x(1)

f2(x) = g(x)
(
1−

√
f1(x)
g(x)

)

where g(x) = −9 + 10N +
∑N

i=2

(
x(i) 2 − 10 cos(4πx(i))

)

x(1) ∈ [0, 1]
x(i) ∈ [−5, 5]
(i = 2, . . . , N)

ZDT6 10 f1(x) = 1− exp(−4x(1)) sin6(6πx(1))

f2(x) = g(x)
(

1−
(

f1(x)
g(x)

)2
)

where g(x) = 1 + 9
( ∑N

i=2 x(i)

N−1

)0.25

x ∈ [0, 1]
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