
Visual Programming with Interaction Nets

Abubakar Hassan, Ian Mackie, and Jorge Sousa Pinto

1 Department of Informatics, University of Sussex, Falmer, Brighton BN1 9QJ, UK
2 LIX, École Polytechnique, 91128 Palaiseau Cedex, France

3 Departamento de Informática/CCTC, Universidade do Minho, Braga, Portugal

Abstract. Programming directly with diagrams offers potential advan-
tages such as visual intuitions, identification of errors (debugging), and
insight into the dynamics of the algorithm. The purpose of this paper
is to put forward one particular graphical formalism, interaction nets,
as a candidate for visual programming which has not only all the de-
sired properties that one would expect, but also has other benefits as a
language, for instance sharing computation.

1 Introduction

Interaction nets were introduced in 1990 [8]. The theory and practice of interac-
tion nets have been developed over the last years to provide tools to program and
reason about interaction net programs. For instance, a calculus [3], notions of
operational equivalence [4], encodings giving implementations of rewriting sys-
tems such as term rewriting systems [2] and the lambda calculus [5, 9]. However
the visual programing aspect of this language has been neglected. The purpose
of this paper is to take a fresh look at this formalism from a visual programming
perspective and demonstrate that it is a suitable language to develop programs
for the following reasons:

– It is a diagrammatic programming language where both programs and data
are given the same status: they are both given by diagrams in the same
formalism.

– Computation is rule based: the programmer explains the algorithm in terms
of rules which are applied by the runtime system. From this perspective, it
could be classified as a declarative language.

– All the computation is expressed by the rules: there are no external mecha-
nisms performing parts of the computation, and consequently the diagrams
give a full description.

– The rewrite rules transform the diagrams, and this gives a trace of the com-
putation directly at each step. An application to algorithm animation would
be a by-product of the approach.

Interaction nets are not new. They have been applied very successfully to
representing sharing in computation. In the present paper this is not a feature
that we particularly want to develop, but nevertheless it is a convenient plus

point that we will come back to later. The purpose of this paper is to show,
through examples, that interaction nets are not only a good example of a visual
programming language, but they have features that could make them a viable
programming paradigm when appropriate tools are developed.

Work closest to ours is in the area of Visual Functional Programming which
has addressed different aspects of visual programming. The Pivotal project
[6] offers a visual notation (and Haskell programming environment) for data-
structures, not programs. Visual Haskell [12] more or less stands at the opposite
side of the spectrum of possibilities: this is a dataflow-style visual notation for
Haskell programs, which allows programmers to define their programs visually
(with the assistance of a tool) and then have them translated automatically to
Haskell code. Kelso’s VFP system [7] is a complete environment that allows to
define functional programs visually and then reduce them step by step. Finally,
VisualLambda [1] is a formalism based on graph-rewriting: programs are defined
as graphs whose reduction mimics the execution of a functional program. As far
as we know none of these systems is widely used.

In the next section we introduce the formalism. We then give two examples
of the use of this language. We conclude the paper with a discussion about other
features of interaction nets, including parallelism, sharing, and perspectives for
use as programming language in the larger scale (hierarchical nets).

2 Interaction Nets

We begin by defining the graphical rewriting system, which is a generalisation of
interaction nets found in the literature (see [8] for instance). We have a set Σ of
symbols, which are names of the nodes in our diagrams. Each symbol has an arity
ar that determines the number of auxiliary ports that the node has. If ar(α) = n
for α ∈ Σ, then α has n + 1 ports: n auxiliary ports and a distinguished one
called the principal port.

����
α

?

@ �
· · ·x1 xn

Nodes are drawn variably as circles, triangles or squares, and they optionally
have an attribute, which is a value of base type: integers and booleans. We write
the attribute in brackets after the name: e.g. c(2) is a node called c which holds
the value 2. A net built on Σ is an undirected graph with nodes at the vertices.
The edges of the net connect nodes together at the ports such that there is only
one edge at every port. A port which is not connected is called a free port.

Two nodes (α, β) ∈ Σ×Σ connected via their principal ports form an active
pair, which is the interaction nets analogue of a reducible expression (redex). A
rule ((α, β) =⇒ N) replaces the pair (α, β) by the net N . All the free ports are
preserved during reduction, and there is at most one rule for each pair of agents.
The following diagram illustrates the idea, where N is any net built from Σ.

����
α ����

β-�
@

�

�

@

...
...

x1

xn

ym

y1

=⇒ N
...

...
x1

xn

ym

y1

If either (or both) of the nodes are holding a value, then we can use these
values to give different right-hand sides of the rule by labelling the arrow with
a condition. The condition can be built out of the usual boolean operators (<,
>, =, ! =, etc.). However, the conditions must be all disjoint (there cannot be
two rules which can be applied). Each alternative must of course give a net
satisfying the property given above for the case without attributes. The most
powerful property that this system has is that it is one-step confluent: the order
of rewriting is not important, and all sequences of rewrites are of the same
length and equal (in fact they are permutations). This has practical aspects: the
diagrammatic transformations can be applied in any order, or even in parallel,
to give the correct answer.

We next explain how to represent a simple data structure using interaction
nets. In the next section we give two examples of algorithms over these data.
We can represent a memory location, containing an integer i, simply as a cell
holding the value. We can represent a list of cells with the addition of a nil node.

�m(i) � nil

In the diagram above, the m node has one principal port that will be used to
interact with it, and one auxiliary port to connect to the remaining elements
of the list. The nil node just has one principal port, and no auxiliary ports. To
simplify the diagrams, we often just write the contents of the node and omit the
name when no confusion will arise. For example, here is a list of 4 elements:

1 2 3 4 nil� � � � �

We remark that this diagrammatic representation of the dynamic list data
structure is not the same as what one would usually draw, as the arrows are
not pointers, but they represent the principal ports which dictates how we can
interact with the data structure.

3 Examples: Sorting

Suppose that we wanted to insert an element into a sorted list. In Java we might
write the code given below

static List insert(int x, List l) {

if (isEmpty(l) || x <= l.head) return cons(x, l);

else {

l.tail = insert(x, l.tail);

return l;

}

}

When teaching dynamic data structures, we might begin by drawing a di-
agram for this algorithm, which would consist of the list before the insertion,
then a number of modifications of the diagram, yielding the final diagram. To
derive the code above from such a diagram is not an automatic process, and is of
course subject to error. In interaction nets we would simply write the program
directly as the rules needed to transform the data structure:

x nil-� =⇒ x nil�

x y-� x≤y
=⇒ x y� �

x y-� x>y
=⇒ y x� -

These three rules explain all the computation. We leave the reduction of the
following net as an exercise for the interested reader, which will rewrite to the
list of 4 elements given above using three applications of the above rules. The
implementation of insertion sort is a straightforward extension to this example.

3 1 2 4 nil-� � � �

If we compare the interaction rules with the Java program we find that we
can follow them step-by-step. However, the three diagrams contain all the im-
plementation details—there are no notions of procedures (methods), conditions,
recursion, etc. as syntax, as they are all absorbed into the rules. The relationship
between Java programs and interaction nets is not the purpose of this paper; in
general we will find that the Java version will contain very different control in-
formation than the interaction nets version. However, it is worth remarking that
the interaction net program can be seen as directly manipulating the internal
data structure, which is one of the main features of this approach.

Our next example to demonstrate how easily one can program with interac-
tion nets also brings out the relationship between the diagrammatic representa-
tion of the algorithm and the intuition of the algorithm. We give an implemen-
tation of the Quicksort algorithm, using again the linked list structure. We need
some auxiliary rules to concatenate two lists, and also to partition a list into two
lists. We begin with concatenation, which can be expressed in Java as follows:

static List concat(List l1, List l2) {

if (isEmpty(l1)) return l2;

else {

List l = l1;

while (isCons(l.tail)) l = l.tail;

l.tail = l2;

return l1;

}

}

The algorithm performed in both interaction nets and the Java version is essen-
tially the same: traverse the first list and connect its last element to the start of
the second list. This is given by the first two rules below. We also give the three
rules for the partition of a list, which is the core of the Quicksort algorithm,
splitting a list into two lists.

nil

app

6
? =⇒

x

app

6
? =⇒

x

app

?

6

part(x)

nil

6
? =⇒

nil nil

6 6

part(x)

y
6
? y≤x

=⇒

y
6

part(x)

?

part(x)

y
6
? y>x

=⇒

y
6

part(x)

?

We can now put together the main algorithm for Quicksort which is given by
the following two rules. QS is the node to represent Quicksort, and we use app
and part from above.

nil

QS

6
? =⇒

nil

6

x

QS

6
? =⇒

app

QS QS

? ?

6?
x

part(x)

?

It is worth pointing out some salient features of this implementation of the
Quicksort algorithm:

1. The graphical representation of the problem is directly cast into the graphical
language. The algorithm given can be understood as programming directly
with the internal data structures, rather than some syntax describing it.

2. All rewrite steps correspond to steps in the computation: there is no need
to introduce additional data structures and operations that are not part of
the problem.

3. Because of point 1 above, if we single-step the computation we get an ani-
mation of the algorithm directly from the rewriting system.

4 Discussion

When learning data structures in programming languages, specifically dynamic
structures with pointers, we find that the diagram used to explain the problem
and the code are very different. In particular, the diagrams do not always show
the temporal constraints, and therefore converting the diagrammatic intuitions
into programs can be quite difficult. With interaction nets we draw the diagrams
once, and this gives the program directly. Because of the confluence result, it
does not matter which order we apply the rules, thus eliminating the temporal
constraints. It is the programmer that draws the diagrams, and the diagrams
explain all of the computation (nothing is replaced by code, like while loops,
etc.). The diagrams are then implemented directly (and moreover, they are data
structures that are well adapted to implementation).

There are a number of textual programming languages for interaction nets
in the literature (see for instance [8, 3, 10]), and one of the future developments
needs to be tools to offer a visual representation of these. Being able to convert
the textual representation to diagrams would be a useful tool for debugging, but
this does not offer the ability to directly manipulate nets and rules in a uniform
way. Some developments are currently underway to address these issues, and
preliminary experiments show that this direction is an exciting way to write
programs like the ones described in this paper. Nevertheless, this is a topic of
current research very much in its infancy.

What we have presented leads to a very direct form of visual programming.
We can imagine tools to display animations of traces of executions which will
follow the intuitions of the programmer (each step is one rule). Because interac-
tion nets explain all the elements of the computation it is also a useful debugging
tool as well as an educational tool for data structures.

Interaction nets have been used for representing sharing in computation. This
is obviously still valid in the graphical approach. Having a language which is at
the forefront or research into optimal computations is clearly an advantage. As
we have hinted above, they are also amenable to parallel computations: the one
step confluence property of rewriting together with the fact that all rules are
local means that we can apply all redexes at the same time [11]. Interaction nets
may therefore have potential to represent parallel algorithms visually.

The next developments that are needed are tools to offer direct manipulation
of interaction nets to investigate the potential as a programming language and
study usability issues. This relies on the development of editing tools and tech-
niques to write modular programs, hierarchical structures, etc. The development
of such an environment will be the subject of a future paper.

5 Conclusion

Interaction nets are a graphical (visual) programming language used successfully
in other branches of computer science. Our aim in this paper was to demonstrate
by example that they are well adapted to visual programming, with the main goal

to introduce this formalism to the diagrams community through examples, and
hint as some of the possible potential of this formalism that is currently under
development. We have achieved this by extending the interaction net formalism,
and given some new example programs to exhibit these extensions.

Acknowledgements. This work was partially supported by CRUP, Acção In-
tegrada Luso-Britânica N.B-40/08, and the British Council Treaty of Windsor
Programme.

References

1. L. Dami and D. Vallet. Higher-order functional composition in visual form. Tech-
nical report, 1996.

2. M. Fernández and I. Mackie. Interaction nets and term rewriting systems. Theo-
retical Computer Science, 190(1):3–39, January 1998.

3. M. Fernández and I. Mackie. A calculus for interaction nets. In G. Nadathur,
editor, Proceedings of the International Conference on Principles and Practice of
Declarative Programming (PPDP’99), volume 1702 of Lecture Notes in Computer
Science, pages 170–187. Springer-Verlag, September 1999.

4. M. Fernández and I. Mackie. Operational equivalence for interaction nets. Theo-
retical Computer Science, 297(1–3):157–181, February 2003.

5. G. Gonthier, M. Abadi, and J.-J. Lévy. The geometry of optimal lambda reduc-
tion. In Proceedings of the 19th ACM Symposium on Principles of Programming
Languages (POPL’92), pages 15–26. ACM Press, Jan. 1992.

6. K. Hanna. Interactive Visual Functional Programming. In S. P. Jones, editor, Proc.
Intnl Conf. on Functional Programming, pages 100–112. ACM, October 2002.

7. J. Kelso. A Visual Programming Environment for Functional Languages. PhD
thesis, Murdoch University, 2002.

8. Y. Lafont. Interaction nets. In Proceedings of the 17th ACM Symposium on Princi-
ples of Programming Languages (POPL’90), pages 95–108. ACM Press, Jan. 1990.

9. I. Mackie. Efficient λ-evaluation with interaction nets. In V. van Oostrom, edi-
tor, Proceedings of the 15th International Conference on Rewriting Techniques and
Applications (RTA’04), volume 3091 of Lecture Notes in Computer Science, pages
155–169. Springer-Verlag, June 2004.

10. I. Mackie. Towards a programming language for interaction nets. Electronic Notes
in Theoretical Computer Science, 127(5):133–151, May 2005.

11. J. S. Pinto. Parallel Implementation with Linear Logic. PhD thesis, École Poly-
technique, February 2001.

12. H. J. Reekie. Realtime Signal Processing – Dataflow, Visual, and Functional Pro-
gramming. PhD thesis, University of Technology at Sydney, 1995.

