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ABSTRACT

Cracking is responsible for the vast majority ofserary non-linear behaviour,
due to the low tensile strength of the material.sbfay features orthotropic
behaviour with material axes normal and paralleth® bed joints, being the
response straightforward for tension normal tolibé joints and rather complex
for tension parallel to the bed joints. This papddresses the formulation and
implementation of coupling between a micro-mechanmmogenisation model

and an isotropic damage model for the masonry coems. The non-linear

homogenisation formulation requires an improveénmal deformation mode of
the masonry basic cell, with respect to previouskaoFinally, the model is

validated with a comparison with numerical res@tsilable in the literature,

using interface modelling.
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1. Introduction

Masonry is a heterogeneous material that consistsnits and joints.
Units are such as bricks, blocks, ashlars, adotvegular stones and others.
Mortar can be clay, bitumen, chalk, lime/cemengdasortar, glue or other.
The huge number of possible combinations generbtedhe geometry,
nature and arrangement of units as well as theacteistics of mortars
raises doubts about the accuracy of the term “mg&orstill, much
information can be gained from the study of regut@sonry structures, in
which a periodic repetition of the microstructurecors due to a constant
arrangement of the units (or constant bond).

The difficulties in performing advanced testingtbis type of structures
are quite large due to the innumerable variatiohsnasonry, the large
scatter ofin situ material properties and the impossibility of refroing it
all in a specimen. Therefore, most of the advarequerimental research
carried out in the last decades concentrated gk lirblock masonry and its
relevance for design. Accurate modelling requiresc@mprehensive
experimental description of the material, whichmsgemostly available at
the present state of knowledge, see e.g. CUR (188d)Lourenco (1998)
for a review.

The present paper focuses on a particular posgitof non-linear
analysis of masonry structures, making use of ha@misgtion techniques.
Cracking is responsible for the vast majority of soray non-linear
behaviour, due to the low tensile strength of thetemal. The problem of
simulating the composite behaviour of masonry un@gsion must be
addressed along the masonry material axes, namelgitection defined by

the parallel and the normal to the bed joints. liogchormal to the bed
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joints is usually simple to describe as the crdokalise in the unit-mortar
interface. Loading parallel to the bed joints iffidult to describe and
simulate because the response results from a crgmpieraction of the
interface and unit, both in the case of a steppadkcthrough head and bed
joints, and in the case of a straight crack througit and head joints.
Therefore, in the present paper, a homogenisationuiation based on the
observation of the deformation of masonry, Zucclimd Lourenco (2002)
is extended with a damage model and is validatedhi® case of masonry
under uniaxial tension parallel to the bed joiMAth this development, the
obtained model is able to reproduce the behavidumost masonry

structures, in which non-linearities are due tackirg.

2. Modelling Masonry Structures

In general, the approach towards the numericaksgmtation of masonry
can focus on the micro-modelling of the individeamponents, viz. unit
(brick, block, etc.) and mortar, or the macro-mbdgl of masonry as a
composite, Rots (1991). Depending on the level ofueacy and the
simplicity desired, it is possible to use the fallog modelling strategies,
see Fig. 1:

* Detailed micro-modelling - units and mortar in tjuents are
represented by continuum elements whereas themaoriar
interface is represented by discontinuum elements;

» Simplified micro-modelling - expanded units areresented by
continuum elements whereas the behaviour of theamgints

and unit-mortar interface is lumped in discontinugilements;



* Macro-modelling - units, mortar and unit-mortareiriace are
smeared out in a homogeneous continuum.

In the first approach, Young's modulus, Poissoatso rand, optionally,
inelastic properties of both unit and mortar arketainto account. The
interface represents a potential crack/slip plark witial dummy stiffness
to avoid interpenetration of the continuum. Thisal@es the combined
action of unit, mortar and interface to be studieder a magnifying glass.
In the second approach, each joint, consisting offtan and the two unit-
mortar interfaces, is lumped into an average iat&rfwhile the units are
expanded in order to keep the geometry unchangeasoMy is thus
considered as a set of elastic blocks bonded ®npat fracture/slip lines at
the joints. Accuracy is lost since Poisson's effettthe mortar is not
included. The third approach does not make a distin between individual
units and joints but treats masonry as a homogeneanisotropic
continuum. One modelling strategy cannot be preterover the other
because different application fields exist for micand macro-models. In
particular, micro-modelling studies are necessaoy dgive a better
understanding about the local behaviour of massetioctures.

It is noted that different levels of sophisticatioan also be adopted to
create structural models, namely structural compbm®dels or continuum
structural models (macro-modelling approaches) atidcontinuum
structural models (a micro-modelling approach).fitufities of conceiving
and implementing macro-models for the analysis asonry structures arise
especially due to the intrinsic complexity of foraming anisotropic
inelastic behaviour. Only a reduced number of agthided to develop

specific models for the analysis of masonry stmegpe.g. Dhanasekar et al.
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(1985), Lourenco et al. (1998), Berto et al. (20@&)jng different inelastic
criteria for tension and compression. Thereforee thomogenisation
techniques shown in Fig. 2, which permit to estblonstitutive relations
in terms of averaged stresses and strains frorggbmetry and constitutive
relations of the individual components, can represe step forward in
masonry modelling, mostly because of the posgpbild use standard
material models and software codes for isotropitenedls.

The most popular homogenisation approach replabes complex
geometry of the basic cell by a simplified geometoythat a close-form
solution of the homogenisation problem is possiblg, Pande et al. (1989)
and Maier et al. (1991). The homogenisation hazigdy been performed
in two steps, head (or vertical) and bed (or hariah) joints being
introduced successively. The use of two separatefenisation steps does
not explicitly account for the regular offset of riteal mortar joints
belonging to two consecutive layered unit coursekich results in
significant errors in the case of non-linear analys

To overcome these issues, micromechanical homage@msapproaches
that consider additional internal deformation meusms have been
derived, independently, by van der Pluijm (1999péz et al. (1999) and

Zucchini and Lourenco (2002).

3. Formulation of the micro-mechanical model

3.1 General
As shown in Zucchini and Lourenco (2002), the meatsd properties
of an orthotropic material equivalent to the basiasonry cell can be

derived from a suitable micromechanical model vihke introduction of



appropriate deformation mechanisms, which take actmount the staggered
alignment of the units in a masonry wall. The unknanternal stresses and
strains can be found from equilibrium equationghat interfaces between
the basic cell components, with a few ingeniousimggions on the cross
joint behaviour and on the kinematics of the basit deformation. The
equivalent properties of the homogenised materetteen easily derived by
forcing the macro-deformation of the model and led material to be the
same, meaning that both systems must contain the staain energy. Fig. 3
shows the geometry considered in the present gapéhe basic masonry
cell and its components.
3.2. Equilibrium egquations

As referred before, this paper addresses spedyfitad problem of a
basic masonry cell under tensile loading paratiehte bed joint. When the
basic cell is loaded only with normal stresses, theromechanical model
of Zucchini and Lourengo (2002) assumes that abslstresses and strains
inside the basic cell can be neglected, exceptritpdane shear stress and
strain (i andé&,y) in the bed joint and in the unit. The non-zerestes and
strains have been assumed to be constant in eachdel component, with
the exception of the normal stregg in the unit, which is a linear function
of x and accounts for the effect of the shegrin the bed joint, and with the
exception of the shear stregg, in the unit, which is linear iy. For the
undamaged (elastic) basic cell, the following linegstem of 20 equations
and 24 variables (the internal and boundary stseasd strains) has been
obtained in the case of tension parallel to the fwedt, Zucchini and

Lourenco (2002):



(1) 62 =6) —0of, — Interface brick-head joint

X “ % 2h
(2) oy, =0, Interface brick-bed joint
3) ho2 +2to2, +h(F: +0?, |2;ht )=2(h+t)o®.  Right boundary
(4) loy, +to2, =0 Upper boundary
(5) 2the? +2(1 —t)tel +2lhe® +4t%c> =0 Front boundary
(6) 2te,, +hed =hel +2te] Upper boundary
(7) te2 +lg2 =2ted +(1 —t)el, Right boundary
(8) e =gl Front boundary
9) e =g Front boundary
el = ot v (ot + ot )]
Ek
(10) £ :Ei[agy v (0% +0~ ) k=b,1,2
k
e = ok - fos + ot )
Ek
£ ™ Em
(11) ey 07
(12) J)l(y = ZGleiy

where, as shown in Fig. #,s half of the unit lengthh is half of the unit
height andt is half of the bed joint width. Here alsg, is the Young
modulus,G is the shear modulus,is the Poisson coefficient,is the strain
component ana is the stress component. Unit, bed joint, headtjand
cross joint variables are indicated throughout gaper, respectively by the

superscriptd, 1, 2 and 3, as shown in Fig. &, and £> are the mean

value of the normal stresg,, and of the normal straix,, in the unit,



respectively.c?, is the uniform normal (macro) stress on the faufethe

homogenised basic cell perpendicular to the bed.joi
In Egs.(1)-(12) the four unknown stresses andrsdrai the cross joint can

be eliminated by means of the following assumptions

13) ef,y :Eeiy , e =Es>l<x
3 E3
(14) oy = %0’; , o0y =0,

The unknowns, left in the equation system of thelehoare then the six
normal stresses and strains of the three compofigmts head joint and bed
joint) and the shear stress and shear strain ifbédejoint, amounting to a
total of 20 unknowns.

The last two equations of the system (Egs.(11)}(h2\ve been derived
introducing the shear deformation of the bed jothe elastic mismatch
between the normad strains in the unit and in the joints is resporesitoir
the shear in the bed joint because of the staggdigriment of the units in a
masonry wall, see Fig. 5 and Zucchini and Louref2®2). It is noted that

the shear deformation of the unit was neglectatierderivation of Eq.(11).

3.3.  Improved unit model

Application of the model described above to nordinanalysis has shown
that, for thin mortar joints, e.g. as in the casd.aurenco et al. (1999),

where the ratio between the thickness of the jana the height of the unit,
t/h, is as low as 0.005, the results deviate fromstiiation obtained by a

full micro-modelling finite element analysis. Inighcase, it has been found

that neglecting the shear deformation of the wast,done by the original



model, leads to an overestimation of the masorifiness. An improved
shear mechanism of the basic cell, in the casewhal stress parallel to the
bed joint, has therefore been developed, using r@ medined model for the
shear deformation of the unit.

The stress problem of a single unit subjected ¢oldlading conditions
shown in Fig. 6 are first addressed. Such assupaating conditions are of
interest for tensile behaviour of the basic celiapal to the bed joint. The
next step is to find an approximation of the st&sain fields in the unit,

capable of reproducing the following boundary ctinds:

(15) U a'xyde =la,, (16) U o,dx| =0
(17) U Jxxdyj =hol! (18) [Jﬁ o, dy| =hg?

(19) (u,),., =const.

Here, u represents the horizontal displacements in thé, amd bl, b2
represent the left and right edges of the unit(XH5].reflects directly the
symmetry of the cell problem, while Eq.(19) is jfisd also by the

symmetry of the cell problem, see Fig. 3. The sk&ass at the boundary is

known only by its resultank,, = lo},. Because, in the basic cell, the shear

oy
stress in the bed joimriy and the normal stregs, are assumed respectively

constant irx and iny, equilibrium at the unit interfaces is imposedyosis a
global (average) condition, cf. EQ.(15) and Eq.{I8), and not locally.
Eq.(15) and Eq.(17)-(18) define the average stsesaehe sides of the unit
due to the interaction of the unit with the bouryddmhese boundary stresses

are used to formulate the internal equilibriumhad tell, see Section 3.2.



For simplicity, a bilinear form for the shear ssewill be assumed, as
(20) o,, = (a+bx)(c+dy)
and therefore

(21) j;axydx = I(a + bl—zj(c + dy)

which, after introducing Eq.(16), yields

(22) c=0.
. I
The last result is due to the fact t){aﬂ+ bij cannot be equal to zero,

otherwise EQq.(15) would not be satisfied. In aiksimway, it is possible to

obtain from Eq.(15)

(23) d=-——"—

ou
In this new deformation mode, the gradiegil will be neglected. Thus,
X

integration of the continuum mechanics relation

o ou
(24) g =9 _1 ou, 294 DE ou, |
Y26 2oy ox ) 2\ oy

with the introduction of Eq. (20) and Eq.(22), lsdd

2

25  u =—(a+ bx)y7+ £ (%)

d
G
Here,f(x) represents any function independeniy.oThe displacement iR,

at x=1, is independent frony, as indicated in Eq.(19), therefore the

following relations must hold:
(26) a=-bl and f()=u,.
Introducing Eq.(26.1) in EqQ.(23), it is possibledtatain
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(27) d=—2=2

and finally, replacinga andd in Eq.(25), the horizontal displacemeut

reads

_ %[, XY
(28) u, = G(l Ijh+f(x).

With this result and Eq.(24), the shear stiggseads

- X1y

Eq.(24) is clearly an approximation which chardets the new
deformation mode of the unit in the basic cell. Roghe impossibility of
obtaining an explicit solution for the boundaryuwalproblem, the adequacy
of the adopted assumptions and of the adopted mescthacan only be
assesseda posteriori, from a comparison with a micro-modelling finite
element solution. The problem of the single uniFig. 6 has been analysed
by FEM for a length to height ratio of the uhith=1+3 and a thickness
ratio of the unit equal to six, as in the masoneprgetry of Lourenco et

al.(1999). Fig. 7 shows the relative error on

(30) g;y — (ux)xzo,y=h2_h(ux)x=0,y=0

0.1
introduced by the unit modetZy :%), compared to the FEM results. In

such a way, it is observed that the displacemesitl fcalculated from
Eq.(28) is in good agreement with the finite elem@sults, with an error
less than 5% for any ratib/ h > 1, even if some deformation yndoes

Ooccur.
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The normal stress xcan be found, from continuum mechanics, as

0
(31) 90, +& =0
ox oy

which can be easily integrated. This operationltesu

32 291X,
(32) UXX—TX( Ej a(y)

where g(y) is any function independent of Then, by means of the

boundary conditions given by Eq.(17)-(18), it ispible to obtain :
h

33)  [a(y)dy=hop
0

and

(34) loy, +hoy, =hoy!

which shows that the stress field in the unit §atsthe equilibrium in the
direction, as required.

The original deformation mode of the basic catider tension parallel to
the bed joint, can now be improved by taking intcaunt the shear
deformation in the unit, given by Eq.(28). The nimdi mechanism is
shown in Fig. 8, cf. with Fig. 5, wher&x, is the average displacement at
the unit-head joint interface. This average disphaent, by means of

Eq.(28), reads:

h
qudy 1
h
35 M, =(T,),, =S =-29 4 £(0).
3G,
Y
0 x=0

From Fig. 8, it is straightforward to observe thia¢ following relations

hold:
(36) DX, = AX, —AX, — A
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(37) Mx, =te2, Ax, =te?
(38) A = (UX)X:O - (ux)x:O,y:—h
where £ indicates the normal strain on the right side. Gteaight centre

line) of the unit, see Fig. 6. Then, Eq.(38), byameof Eq.(28) and Eq.(35),

yields :

2hot

39 A=—2
(39) 3G,

Finally, the shear deformation of the bed jointa@ading to the mechanism

shown in Fig. 8 and Eq.(36), can now be derived as:

1 =£AX1 Dgfx_gb _h ot

XX

40 E
(40) Y22t 4 6G,

where £”? has been approximated by the average strain iarte . .

This last equation replaces now Eq.(11) in thegioal system of
equations of the micromechanical model. The onfiedénce is due to the
term A, given by Eq.(39), which reduces the deformatiorthef bed joint,
producing a lower overall stiffness of the basidl. céhis effect can be
significant for high ratio$ / t of the cell and for high stress levels in the bed
joint, e. g. when the stiffness of the head joshighly degraded and the
bed joint still possesses considerable stiffnesst ahould be expected in

the case of non-linear analysis.

4. Extension of the formulation to accommodate inelastic behaviour

To simulate the inelastic deformation of masonry tension, the
micromechanical model, detailed in the previougisechas to be coupled

with a non-linear constitutive model. Here, damagechanics has been
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adopted to represent the inelastic behaviour ofceikebasic components.
Because the three-dimensional micromechanical mattiinpts to simulate
the discrete internal structure of the basic catid implicitly the global
anisotropic behaviour, the damage in each homogeneisotropic
component (joint or unit) must be taken into act¢olihe advantage of this
approach is that, for each component, an isotrgpadar damage model,
with a single parameter, can be utilised, with olrgigains in simplicity and
easiness of implementation.

4.1. Formulation of the isotropic damage model

Continuum damage mechanics allows an effective laiom of the
progressive deterioration of the mechanical progertunder increasing
loading, in quasi-brittle materials such as cotgreocks and masonry. The
dissipative effects of micro-cracking in the makare taken into account
by means of internal state variables, which affeet material strength and
stiffness. In this work an isotropic damage modéh a single damage
variable in tension for each component of the basit has been adopted,
see e.g. Mazars(1986), Mazars and Pijaudier-Cdl9&9), and Scotta et al.
(2001). The proposed model, for each componentebasic cell, consists
of:

a) Scalar damage model

The damagedoy and undamageds (or effective) stress tensors are
correlated, according to continuum damage mechgloycthe relation:

(41) 6, =(1-d)De = @-d)e

whered is a scalar value, ranging from 0 to 1 and repr@asg the local
damage parametdp, is the elastic stiffness matrix a@ds the strain tensor.
b) Limit damage surface

14



The limit damage surface is given by
(42) o =o,

where ¢ is the equivalent effective stress, a scalar fanctof the

undamaged stress, and, is the tensile strength of the given cell

component.
¢) Equivalent effective stress
The equivalent effective stress is here definedhasmaximum principal

tensile stress

(43) og=o0, (Rankine criteria)

d) Damage evolution law
In this work, the explicit function, proposed byiv@r et al. (1990) for

concrete-like materials, is adopted:
L7
(44) d=1—"—_teA[ ) 6, <7 <0
2

where A is a parameter chosen to reproduce the observpdrimental
behaviour, and the irreversibility of the damagecess is accounted for by
updating the damage coefficient only for increasialyes.

e) Correlation with fracture parameters

For mode | fracture (head joint) it is shown in Bacet al. (2001) that the

damage model parameter @an be related to the specific fracture energy in

uniaxial tensiory' (N/m?) of the material by

o1t
@ o =% 1ex]
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whereE is the Young modulus. Introducing the charactieristernal length

|
of fracturel, =G—|, whereG' is the mode | fracture energy (N7m), it is
g

straightforward to obtain:

G'E 1)
llo? 2

(46) A =(
1O
Similarly, an explicit relation for the fracture engy in shear can be found.
The uniaxial damage model for mode Il fracturehaf bed joint becomes:
r=2G¢,,
@7 d :1—%;{1—"5]
r=(1-d)r
By integration of the deformation energy on thel fsrain path, it is

possible to obtain

ws) o' =% (Lij

Gl2 A

which yields a damage model parameter in shearj@et] As equal to

@ e

whereG is the shear modulu§' is the fracture energy in modedi,is the

I
shear strength an = G—” .
g

4.2. "Damaged" equilibrium equations
Under increasing loading, the elastic micromechalmuodel of the cell has
to be modified to take into account the materigjrddation of the cell and

the consequent reduction of the load carrying dapat each component.
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A single damage coefficient model has been assudaoreshch joint and the
unit. The strain equations are unaffected by tlesgmce of damage in the
cell, while the stress equilibrium of damaged stessat the interfaces can
now be rewritten in terms of the undamaged streBganeans of Eq.(41).

The equilibrium of the unit, Eq.(34), becomes

(50) @rlaiy +r°glt =rgf?

where it is assumed that the shear stress actsoontlge bed-unit interface
(I-t) and the notationr' =(1-d') is introduced, withi = 1, 2 orb,
respectively head joint, bed joint or unit.

If o° is linear inx, its mean value is given by

bl + b2
R

and it is possible to obtain

| -t)
52 oy =r°c; +—( r'o,
( ) X X 2h Xy

The formulation of the improved unit model, dedvim Section 3, can
still be applied to a damaged basic cell with thesig boundary conditions.
Thus, manipulation of Egs.(15)-(18), referred tandged stresses, results

in, cf. Egs.(29),(39):

o XYY s
@ o,=driYe

2h rt
54 A=——0
4) 3G, r°
Finally, the system of Eqgs.(1)-(12) can be reaast

(55) r’c’ =r°s., —lz;htrlaiy Interface brick-head joint
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(56)

(57)

(58)

(59)

(60)
(61)
(62)

(63)

(64)

(65)

(66)

Interface brick-bed joint
hr?e2 +2tr%3 +h(r°a?, +|24htrlaiy) =2(h+t)o?
Right boundary
Ir’c>, +tr’c2 =0 Upper boundary
2thr?c2 + 2(1 —titr'el + 2lhr°e? +4t%r%:3 =0

Front boundary

2te,, +hed =hel +2te] Upper boundary
te2 +1gl =2ted +(I —t)el Right boundary
e =gl Front boundary
g2 =g Front boundary
el =10k v o}, + ot )

K
£y, :i[a'y‘y —vk(a'x‘x+a'z‘z)] k=b1,2

Ek
2 b 1
gl _gxx_gxx_ h r_a.l

1 1
O, =2G&,,

Egs.(55) and (57) have been obtained by means ¢5Xgqgwhile the shear

strain equation, Eq.(65), is the equivalent of &g)( when Eq.(54) is taken

into account.

In the damaged cell model the different joints éndlie same Young

modulus and differ only for the damage coefficiehhe four unknown

stresses and strains in the cross joint can beargted, in the system of

Egs.(55)-(66), by means of the following relatiocis,Egs.(13)-(14),

18



r

(67) ey =€l : el =Lel
3 r3
rl
6  oi=dh  ol=lol

r
These equations assume that the cross joint belawespring connected in
series with the bed joint in thedirection, connected in series with the head
joint in they-direction and connected in parallel with the beidtjin thez-
direction. EQ.(68.2) represents the equilibrium the cross-bed joint
interface. At last, in order to reduce the numbfenrcknowns to twenty, as
the number of equations in the above system, stiisnecessary to define
the damage in the cross joint. The stress-sttaibe $n the cross joint does
not play a major role in the problem, because ©f&ihall volume ratio, so
the adopted approximation is the average of theagenn the head and bed
joint, given by

1 2

r-+r

2

(69) ré=

The average shear stresses on the four sides ahthean be calculated

from the shear stress in the bed joint by mearisqof63):

v _h/o) = _ R
(70) o,(x=0y=-h/2)=0,(x=1/2y= h)—rbaxy

o,(x=1,y=-h/2)=0,(x=1/2,y=0)=0

4.3. Iterative coupled algorithm

The micromechanical model of the internal structafra damaged masonry
cell has been coupled with the isotropic scalar agenmodel of its

components, using the algorithm shown in Fig. 9 dhbter loop is a cycle

related to the incremental loading steps, as usustain driven problems,

19



in which the normal cell strain parallel to the hemht is increased. The cell

boundary conditions of the problem are:

The system of Eq.(55-66) has been written for alera with imposed
stresses on cell faces, which are satisfied byetls&ess equilibrium

equations in the axis directions. In the straiivair problem defined by

Eq.(71), on the contrary, the cell stres§ is now an unknown variable,

while the cell strain £ is the known term. A governing system of
equations for the new problem can then be obtanyeeplacing the stress

equilibrium equation along thedirection, Eq.(57), with the strain relation
in x:

(72) (1 +t)ed = (1 -t)el, +2ted,

The unknown homogenized cell stres§ can be obtained, after solution of

the system, by means of Eq.(57). Local snap-baeke been traced using
special procedures, where the crack opening orslickng displacement
serves as a control parameter. In these particifaations the system of
equations is reformulated with the head joint strar bed joint strain
respectively as known increasing terms and the Ilyemiaed straig,

becomes an unknown variable of the problem. Snak-leehaviour (a
phenomenon observed experimentally for quasi-bnittaterials) means that
the total elongation of the basic cell temporardgcreases while the
material damage increases. The inner loop is aative process, in which

at each cycle the equation system of equilibriunsalved to obtain the

20



unknown effective stresses and strains, making okethe damage
coefficients from the previous iteration. The damagefficients can then
be updated, by means of the damage model, frometestresses and the
process is iterated until convergence of the caefits, within an input
tolerance. Finally, the damaged internal stressdéka cell components and
the unknown homogenized stress parallel to the jbied can be derived

from the values of the converged internal stresses.

4.4. Definition of the crack opening width

Damage models usually assume a uniform distribugfamicrocracks in the
damaged material. Therefore, a clearly defined umigrack with a well-
defined opening width does not exist. Here, opemhthe head joint in a
single basic cell is given by:

(73) A = 2t(e? - £2)

where £, see Fig. 10, is the elastic component of thelastiain in the
head joint, calculated with the elastic stiffness:

74 ef=(-d,)el

Therefore, it is possible to obtain:

(75) Au™ = 2td,£?

and similarly

(76) AU = 8td,e,

It should be noted that the displacement of thelheiat accounts both for

the contribution of the head and bed joint fracdurEBurthermore, it is

crack head

stressed that the crack opening is not 2Au™ unless we assume a

perfect symmetry with the neighbouring basic celisplying bed joint
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fracture for the entire length of a unit. Actually, the fracture, as in
Lourenco et al. (1999), localizes only on half fily. 11), the contribution
to the head joint displacement due to the beddractill come only from

one basic cell, leading therefore to:

(77) AT = 28U - AU = 4t(d,e? - 2d e )

5. Results

The algorithm described in the present paper has lmplemented in a
numerical program for the simulation of a masorely ender normal tensile
stresses. In order to check its performance, therithm has been tested in
the fracture problem of an infinitely long wall werdtensile loading parallel
to the bed joint (Fig. 12), which has been analysetlourenco et al. (1999)
with a sophisticated finite element interface moblased on multisurface
plasticity. This model consists of two half unitsthe vertical direction and
of two and a half units in the horizontal directidn the middle of the
specimen a potential crack/slip line through headl lzed joints is included.
The unit dimensions are 960600 x 100 mni. With the new model, only
the central basic cell in the wall is representad, such approach does not
introduce any qualitative difference with the onigii problem, because the
relation between tensile stress and crack opersngdependent from the
specimen length.

The two models can be compared exactly in the oasero dilatancy
angle. In this case there is no vertical compressibthe bed joint and
therefore the shear strength of the mortar in tbal@nb friction model is

constant and equal to the initial cohesion of thietj The adopted material
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properties are given in Table 1. With these dagauthit will not fail, so only
mortar fracture data are required. The basic ergefetilure mechanisms of
head and bed joint are different, shear for theedadnd tension for the
former, so the two joints have been given differparameters in the
damage model to reproduce these different behasziolihe required
damage parameters and A (Section3.4) for the mortar can be obtained by
means of Eq.(46) and (49) from the fracture ensrgigth the characteristic
lengthsl; andls given by the head and bed joint thickness (3 nmasulting

in: A = 0.078, A = 0.084 Using such values, the exponential softening

obtained, respectively, in tension and shear cdewiith the curves:
(78) o =0, exp{—%Autj , T =0, ex;{— gfl Ausj

The results of the proposed coupled damage-homsgem model are

shown in Fig. 13, where they are compared with BV analysis of
Lourenco et al. (1999) in the case with zero diaya angle. The
calculations have been performed with a convergantsance on the
damage coefficients equal to 1%. The damage megebduces with good
agreement the FEM analysis of the cell degradatahthe two peaks of the
failure load. The head joint is the first to fail fension and the bed joint
takes its place in the load carrying mechanismhef ¢ell. The load is
transferred through bed joint shear from unit te tither, with the cell
showing regained elastic behaviour for increasoagl$, until final failure of
the bed joint in shear. The residual load carryagacity is zero because

there is no vertical compression, and therefor&intion effect.
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The composite fracture energy of masonry, parédlehe bed joint, can
be calculated in the homogenized cell as the apatepy weighted sum of

the fracture energies of bed and head joints:

_2hG' +( -t)G"
2(h+1)

=0.047 N/mnfxmm

This value can be compared with the area undestitess-crack opening
plots in Fig. 13. The result shows that both themage model

(G L 0.045N/mn?xmm) and the FEM analysisG(C 0. 0AFmm?xmm)

are very close to the expected value. The mairerdiffce is in the elastic
stiffness of the cell with failed head joints, wit the damage model is
about 15% higher than in the FEM analysis and cefléhe same difference

for the failure load of the bed joint.

6. Conclusions

Recently, a micro-mechanical homogenisation teakmifpr masonry has
been successfully developed, Zucchini and Lour¢B62), by introducing
new additional deformation modes in the model, ltegy from the
staggered alignment of the units in the compodite.this paper, an
improved additional deformation mode is consideréd formulation is
derived and the algorithm is applied to a non-ling@blem. The problem
considered is the simulation of the behaviour bfaic cell up to complete
failure, under tensile loading parallel to the p&dt.

The simulation has been accomplished by couplivgy dlastic micro-
mechanical model with a scalar damage model fartgoand units and by

means of an iterative solution procedure to cateulthe damage
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coefficients. The numerical algorithm is descrilaed tested in the fracture
problem of a masonry wall under restrained shriekadready analysed by
Lourenco et al. (1999) using a detailed FEM simafatThe comparison of
the results shows the good agreement of the nevwogenmsation technique
with the FEM solution and its capability to reprodu the main

characteristics of masonry failure in tension. Tikia first step in the road to

produce a reliable and versatile tool for non-lme@asonry simulations.
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Table |

E v O G' Os G"

(N/mn) (N/mn?) | (N/mnPxmm)|  (N/mn?) | (N/mmPxmm)

Mortar 1000 0.2 0.50 0.01 0.75 0.05
Unit 5000 0.2 1.3 - - -
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