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ABSTRACT 

Cracking is responsible for the vast majority of masonry non-linear behaviour, 

due to the low tensile strength of the material. Masonry features orthotropic 

behaviour with material axes normal and parallel to the bed joints, being the 

response straightforward for tension normal to the bed joints and rather complex 

for tension parallel to the bed joints. This paper addresses the formulation and 

implementation of coupling between a micro-mechanical homogenisation model 

and an isotropic damage model for the masonry components. The non-linear 

homogenisation formulation requires an improved internal deformation mode of 

the masonry basic cell, with respect to previous works. Finally, the model is 

validated with a comparison with numerical results available in the literature, 

using interface modelling. 
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1. Introduction 

 Masonry is a heterogeneous material that consists of units and joints. 

Units are such as bricks, blocks, ashlars, adobes, irregular stones and others. 

Mortar can be clay, bitumen, chalk, lime/cement based mortar, glue or other. 

The huge number of possible combinations generated by the geometry, 

nature and arrangement of units as well as the characteristics of mortars 

raises doubts about the accuracy of the term “masonry”. Still, much 

information can be gained from the study of regular masonry structures, in 

which a periodic repetition of the microstructure occurs due to a constant 

arrangement of the units (or constant bond). 

 The difficulties in performing advanced testing of this type of structures 

are quite large due to the innumerable variations of masonry, the large 

scatter of in situ material properties and the impossibility of reproducing it 

all in a specimen. Therefore, most of the advanced experimental research 

carried out in the last decades concentrated in brick / block masonry and its 

relevance for design. Accurate modelling requires a comprehensive 

experimental description of the material, which seems mostly available at 

the present state of knowledge, see e.g. CUR (1997) and Lourenço (1998) 

for a review.  

 The present paper focuses on a particular possibility of non-linear 

analysis of masonry structures, making use of homogenisation techniques. 

Cracking is responsible for the vast majority of masonry non-linear 

behaviour, due to the low tensile strength of the material. The problem of 

simulating the composite behaviour of masonry under tension must be 

addressed along the masonry material axes, namely the direction defined by 

the parallel and the normal to the bed joints. Loading normal to the bed 
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joints is usually simple to describe as the cracks localise in the unit-mortar 

interface. Loading parallel to the bed joints is difficult to describe and 

simulate because the response results from a complex interaction of the 

interface and unit, both in the case of a stepped crack through head and bed 

joints, and in the case of a straight crack through unit and head joints. 

Therefore, in the present paper, a homogenisation formulation based on the 

observation of the deformation of masonry, Zucchini and Lourenço (2002) 

is extended with a damage model and is validated for the case of masonry 

under uniaxial tension parallel to the bed joints. With this development, the 

obtained model is able to reproduce the behaviour of most masonry 

structures, in which non-linearities are due to cracking.  

 

2. Modelling Masonry Structures 

In general, the approach towards the numerical representation of masonry 

can focus on the micro-modelling of the individual components, viz. unit 

(brick, block, etc.) and mortar, or the macro-modelling of masonry as a 

composite, Rots (1991). Depending on the level of accuracy and the 

simplicity desired, it is possible to use the following modelling strategies, 

see Fig. 1: 

• Detailed micro-modelling - units and mortar in the joints are 

represented by continuum elements whereas the unit-mortar 

interface is represented by discontinuum elements; 

• Simplified micro-modelling - expanded units are represented by 

continuum elements whereas the behaviour of the mortar joints 

and unit-mortar interface is lumped in discontinuum elements; 
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• Macro-modelling - units, mortar and unit-mortar interface are 

smeared out in a homogeneous continuum. 

In the first approach, Young's modulus, Poisson's ratio and, optionally, 

inelastic properties of both unit and mortar are taken into account. The 

interface represents a potential crack/slip plane with initial dummy stiffness 

to avoid interpenetration of the continuum. This enables the combined 

action of unit, mortar and interface to be studied under a magnifying glass. 

In the second approach, each joint, consisting of mortar and the two unit-

mortar interfaces, is lumped into an average interface while the units are 

expanded in order to keep the geometry unchanged. Masonry is thus 

considered as a set of elastic blocks bonded by potential fracture/slip lines at 

the joints. Accuracy is lost since Poisson's effect of the mortar is not 

included. The third approach does not make a distinction between individual 

units and joints but treats masonry as a homogeneous anisotropic 

continuum. One modelling strategy cannot be preferred over the other 

because different application fields exist for micro- and macro-models. In 

particular, micro-modelling studies are necessary to give a better 

understanding about the local behaviour of masonry structures.  

It is noted that different levels of sophistication can also be adopted to 

create structural models, namely structural component models or continuum 

structural models (macro-modelling approaches) and discontinuum 

structural models (a micro-modelling approach). Difficulties of conceiving 

and implementing macro-models for the analysis of masonry structures arise 

especially due to the intrinsic complexity of formulating anisotropic 

inelastic behaviour. Only a reduced number of authors tried to develop 

specific models for the analysis of masonry structures, e.g. Dhanasekar et al. 
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(1985), Lourenço et al. (1998), Berto et al. (2002), using different inelastic 

criteria for tension and compression. Therefore, the homogenisation 

techniques shown in Fig. 2, which permit to establish constitutive relations 

in terms of averaged stresses and strains from the geometry and constitutive 

relations of the individual components, can represent a step forward in 

masonry modelling, mostly because of the possibility to use standard 

material models and software codes for isotropic materials.  

The most popular homogenisation approach replaces the complex 

geometry of the basic cell by a simplified geometry so that a close-form 

solution of the homogenisation problem is possible, e.g. Pande et al. (1989) 

and Maier et al. (1991). The homogenisation has generally been performed 

in two steps, head (or vertical) and bed (or horizontal) joints being 

introduced successively. The use of two separate homogenisation steps does 

not explicitly account for the regular offset of vertical mortar joints 

belonging to two consecutive layered unit courses, which results in 

significant errors in the case of non-linear analysis. 

To overcome these issues, micromechanical homogenisation approaches 

that consider additional internal deformation mechanisms have been 

derived, independently, by van der Pluijm (1999), Lopez et al. (1999) and 

Zucchini and Lourenço (2002). 

3. Formulation of the micro-mechanical model  

3.1. General 

As shown in Zucchini and Lourenço (2002), the mechanical properties 

of an orthotropic material equivalent to the basic masonry cell can be 

derived from a suitable micromechanical model with the introduction of 
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appropriate deformation mechanisms, which take into account the staggered 

alignment of the units in a masonry wall. The unknown internal stresses and 

strains can be found from equilibrium equations at the interfaces between 

the basic cell components, with a few ingenious assumptions on the cross 

joint behaviour and on the kinematics of the basic cell deformation. The 

equivalent properties of the homogenised material are then easily derived by 

forcing the macro-deformation of the model and of the material to be the 

same, meaning that both systems must contain the same strain energy. Fig. 3 

shows the geometry considered in the present paper for the basic masonry 

cell and its components. 

3.2. Equilibrium equations 

As referred before, this paper addresses specifically the problem of a 

basic masonry cell under tensile loading parallel to the bed joint. When the 

basic cell is loaded only with normal stresses, the micromechanical model 

of Zucchini and Lourenço (2002) assumes that all shear stresses and strains 

inside the basic cell can be neglected, except the in-plane shear stress and 

strain (σxy and εxy) in the bed joint and in the unit. The non-zero stresses and 

strains have been assumed to be constant in each basic cell component, with 

the exception of the normal stress σxx in the unit, which is a linear function 

of x and accounts for the effect of the shear σxy in the bed joint, and with the 

exception of the shear stress σxy in the unit, which is linear in y. For the 

undamaged (elastic) basic cell, the following linear system of 20 equations 

and 24 variables (the internal and boundary stresses and strains) has been 

obtained in the case of tension parallel to the bed joint, Zucchini and 

Lourenço (2002): 
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where, as shown in Fig. 4, l is half of the unit length, h is half of the unit 

height and t is half of the bed joint width. Here also, E is the Young 

modulus, G is the shear modulus, ν is the Poisson coefficient, ε is the strain 

component and σ is the stress component. Unit, bed joint, head joint and 

cross joint variables are indicated throughout this paper, respectively by the 

superscripts b, 1, 2 and 3, as shown in Fig. 4. bxxσ and b
xxε are the mean 

value of the normal stress xxσ and of the normal strain xxε in the unit, 
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respectively. 0
xxσ  is the uniform normal (macro) stress on the faces of the 

homogenised basic cell perpendicular to the bed joint.  

In Eqs.(1)-(12) the four unknown stresses and strains in the cross joint can 

be eliminated by means of the following assumptions: 

(13) 2
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23
yyyy ε
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E
ε =        ,     1

3

13
xxxx ε

E

E
ε =  

(14) 1

1

33
zzzz E

E σσ =        ,        13
xxxx σσ =  

The unknowns, left in the equation system of the model, are then the six 

normal stresses and strains of the three components (unit, head joint and bed 

joint) and the shear stress and shear strain in the bed joint, amounting to a 

total of 20 unknowns. 

The last two equations of the system (Eqs.(11)-(12)) have been derived 

introducing the shear deformation of the bed joint: the elastic mismatch 

between the normal x strains in the unit and in the joints is responsible for 

the shear in the bed joint because of the staggered alignment of the units in a 

masonry wall, see Fig. 5 and Zucchini and Lourenço (2002). It is noted that 

the shear deformation of the unit was neglected in the derivation of Eq.(11). 

       

3.3. Improved unit model 

Application of the model described above to non-linear analysis has shown 

that, for thin mortar joints, e.g. as in the case of Lourenço et al. (1999), 

where the ratio between the thickness of the joint and the height of the unit,  

t / h, is as low as 0.005, the results deviate from the solution obtained by a 

full micro-modelling finite element analysis. In this case, it has been found 

that neglecting the shear deformation of the unit, as done by the original 
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model, leads to an overestimation of the masonry stiffness. An improved

 
shear mechanism of the basic cell, in the case of normal stress parallel to the 

bed joint, has therefore been developed, using a more refined model for the 

shear deformation of the unit. 

The stress problem of a single unit subjected to the loading conditions 

shown in Fig. 6 are first addressed. Such assumed loading conditions are of 

interest for tensile behaviour of the basic cell parallel to the bed joint. The 

next step is to find an approximation of the stress-strain fields in the unit, 

capable of reproducing the following boundary conditions: 
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Here, u represents the horizontal displacements in the unit, and b1, b2 

represent the left and right edges of the unit. Eq.(16) reflects directly the 

symmetry of the cell problem, while Eq.(19) is justified also by the 

symmetry of the cell problem, see Fig. 3. The shear stress at the boundary is 

known only by its resultant 1
xyxy lF σ= .  Because, in the basic cell, the shear 

stress in the bed joint 1xyσ  and the normal stress σxx are assumed respectively 

constant in x and in y, equilibrium at the unit interfaces is imposed only as a 

global (average) condition, cf. Eq.(15) and Eq.(17)-(18), and not locally. 

Eq.(15) and Eq.(17)-(18) define the average stresses on the sides of the unit 

due to the interaction of the unit with the boundary. These boundary stresses 

are used to formulate the internal equilibrium of the cell, see Section 3.2. 
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 For simplicity, a bilinear form for the shear stress will be assumed, as 
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with the introduction of Eq. (20) and Eq.(22), leads to 
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Here, f(x) represents any function independent of y. The displacement in x, 

at x = l, is independent from y, as indicated in Eq.(19), therefore the 

following relations must hold: 

(26) bla −=     and    0)( ulf =  .   

Introducing Eq.(26.1) in Eq.(23), it is possible to obtain 
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and finally, replacing a and d in Eq.(25), the horizontal displacement ux 

reads 
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With this result and Eq.(24), the shear stress σxy reads  
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Eq.(24) is clearly an approximation which characterizes the new 

deformation mode of the unit in the basic cell. Due to the impossibility of 

obtaining an explicit solution for the boundary value problem, the adequacy 

of the adopted assumptions and of the adopted mechanism can only be 

assessed, a posteriori, from a comparison with a micro-modelling finite 

element solution. The problem of the single unit in Fig. 6 has been analysed 

by FEM for a length to height ratio of the unit l / h = 1÷3 and a thickness 

ratio of the unit equal to six, as in the masonry geometry of Lourenço et 

al.(1999). Fig. 7 shows the relative error on  

(30) 
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h
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xy 2
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=ε
  

 

introduced by the unit model (
G
xy

xy 2

1
*

σ
ε = ), compared to the FEM results. In 

such a way, it is observed that the displacement field calculated from 

Eq.(28) is in good agreement with the finite element results, with an error 

less than 5% for any ratio l / h > 1, even if some deformation in y does 

occur. 
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 The normal stress in x can be found, from continuum mechanics, as 
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which can be easily integrated. This operation results in  
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where g(y) is any function independent of x. Then, by means of the 

boundary conditions given by Eq.(17)-(18), it is possible to obtain : 
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which shows that the stress field in the unit satisfies the equilibrium in the x 

direction, as required. 

 The original deformation mode of the basic cell, under tension parallel to 

the bed joint, can now be improved by taking into account the shear 

deformation in the unit, given by Eq.(28). The modified mechanism is 

shown in Fig. 8, cf. with Fig. 5, where 2x∆  is the average displacement at 

the unit-head joint interface. This average displacement, by means of 

Eq.(28), reads:  
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From Fig. 8, it is straightforward to observe that the following relations 

hold:  
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where 2b
xxε  indicates the normal strain on the right side (i.e. straight centre 

line) of the unit, see Fig. 6. Then, Eq.(38), by means of Eq.(28) and Eq.(35), 

yields : 
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Finally, the shear deformation of the bed joint, according to the mechanism 

shown in Fig. 8 and Eq.(36), can now be derived as: 
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where 2b
xxε  has been approximated by the average strain in the unit b

xxε .  

 This last equation replaces now Eq.(11) in the original system of 

equations of the micromechanical model. The only difference is due to the 

term ∆, given by Eq.(39), which reduces the deformation of the bed joint, 

producing a lower overall stiffness of the basic cell. This effect can be 

significant for high ratios h / t of the cell and for high stress levels in the bed 

joint, e. g. when the stiffness of the head joint is highly degraded and the 

bed joint still possesses considerable stiffness, as it should be expected in 

the case of non-linear analysis.  

 

4. Extension of the formulation to accommodate inelastic behaviour 

To simulate the inelastic deformation of masonry in tension, the 

micromechanical model, detailed in the previous section, has to be coupled 

with a non-linear constitutive model. Here, damage mechanics has been 
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adopted to represent the inelastic behaviour of the cell basic components. 

Because the three-dimensional micromechanical model attempts to simulate 

the discrete internal structure of the basic cell, and implicitly the global 

anisotropic behaviour, the damage in each homogeneous isotropic 

component (joint or unit) must be taken into account. The advantage of this 

approach is that, for each component, an isotropic scalar damage model, 

with a single parameter, can be utilised, with obvious gains in simplicity and 

easiness of implementation. 

4.1. Formulation of the isotropic damage model 

Continuum damage mechanics allows an effective simulation of the 

progressive deterioration of the mechanical properties, under increasing 

loading, in  quasi-brittle materials such as concrete, rocks and masonry. The 

dissipative effects of micro-cracking in the material are taken into account 

by means of internal state variables, which affect the material strength and 

stiffness.  In this work an isotropic damage model with a single damage 

variable in tension for each component of the basic cell has been adopted, 

see e.g. Mazars(1986), Mazars and Pijaudier-Cabot (1989), and Scotta et al. 

(2001). The proposed model, for each component of the basic cell, consists 

of: 

a) Scalar damage model 

The damaged σσσσd and undamaged σσσσ (or effective) stress tensors are 

correlated, according to continuum damage mechanics, by the relation: 

(41) ( ) σDεσ )1(1 ddd −=−=      

where d is a scalar value, ranging from 0 to 1 and representing the local 

damage parameter, D is the elastic stiffness matrix and εεεε is the strain tensor.  

b) Limit damage surface 
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The limit damage surface is given by 

(42) tσσ =      

where σ  is the equivalent effective stress, a scalar function of the 

undamaged stress, and tσ  is the tensile strength of the given cell 

component. 

c) Equivalent effective stress  

The equivalent effective stress is here defined as the maximum principal 

tensile stress pσ : 

(43) pσσ =       (Rankine criteria) 

d) Damage evolution law 

In this work, the explicit function, proposed by Oliver et al. (1990) for 

concrete-like materials, is adopted:  
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where A is a parameter chosen to reproduce the observed experimental 

behaviour, and the irreversibility of the damage process is accounted for by 

updating the damage coefficient only for increasing values. 

e) Correlation with fracture parameters 

For mode I fracture (head joint) it is shown in Scotta et al. (2001) that the 

damage model parameter At can be related to the specific fracture energy in 

uniaxial tension Ig  (N/m2) of the material by 
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where E is the Young modulus. Introducing the characteristic internal length 

of fracture 
I

I

t
g

G
l = , where GI is the mode I fracture energy (N/m2.m), it is 

straightforward to obtain:  
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Similarly, an explicit relation for the fracture energy in shear can be found. 

The uniaxial damage model for mode II fracture of the bed joint becomes: 
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By integration of the deformation energy on the full strain path, it is 

possible to obtain 
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which yields a damage model parameter in shear (bed joint) As equal to 
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where G is the shear modulus, GII is the fracture energy in mode II,sσ is the 

shear strength and 
II

II

s
g

G
l = . 

  

4.2. "Damaged" equilibrium equations 

Under increasing loading, the elastic micromechanical model of the cell has 

to be modified to take into account the material degradation of the cell and 

the consequent reduction of the load carrying capacity of each component. 
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A single damage coefficient model has been assumed for each joint and the 

unit. The strain equations are unaffected by the presence of damage in the 

cell, while the stress equilibrium of damaged stresses at the interfaces can 

now be rewritten in terms of the undamaged stresses by means of Eq.(41). 

The equilibrium of the unit, Eq.(34), becomes 

(50)
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where it is assumed that the shear stress acts only on the bed-unit interface 

( )tl −  and the notation ( )ii dr −= 1  is introduced, with i = 1, 2 or b, 

respectively head joint, bed joint or unit. 

If  b
xxσ is linear in x, its mean value is given by 
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and it is possible to obtain 
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 The formulation of the improved unit model, derived in Section 3, can 

still be applied to a damaged basic cell with the given boundary conditions. 

Thus, manipulation of Eqs.(15)-(18), referred to damaged stresses, results 

in, cf. Eqs.(29),(39): 
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 Finally, the system of Eqs.(1)-(12) can be recast as 
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−−=  Interface brick-head joint 
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(56) 11
yy

b
yy

b
σrσr =  Interface brick-bed joint 

(57) ( ) 0113322 2
2

2 xxxy
b
xx

b
xxxx th)σr

h

tl
σh(rσtrσhr σ+=−+++  

  Right boundary 

(58) 022 =+ yy
b
yy

b
σtrσlr  Upper boundary 

(59) 04222 3321122 =++−+ zz
b
zz

b
zzzz σrtσlhrσt)tr(lσthr  

  Front boundary 

(60) 321 22 yyyy
b
yyyy thεhεtε ε+=+  Upper boundary 

(61) 132 2 xxxx
b
xxxx t)ε(ltεεltε −+=+  Right boundary 

(62) 1
zz

b
zz εε =  Front boundary 

(63) 2
zz

b
zz εε =  Front boundary 

(64) 

( )[ ]

( )[ ]

( )[ ]k
yy

k
xxk

k
zz

k

k
zz

k
zz

k
xxk

k
yy

k

k
yy

k
zz

k
yyk

k
xx

k

k
xx

E

E

E

σσνσε

σσνσε

σσνσε

+−=

+−=

+−=

1

1

1

  k = b,1,2 

(65) 1
12

1

64 xyb
b

b
xxxx

xy
r

r

G

hεε σε −
−

=  

(66) 1
1

1 2 xyxy εG=σ  

Eqs.(55) and (57) have been obtained by means of Eq.(52), while the shear 

strain equation, Eq.(65), is the equivalent of Eq.(40), when Eq.(54) is taken 

into account.  

 In the damaged cell model the different joints have the same Young 

modulus and differ only for the damage coefficient. The four unknown 

stresses and strains in the cross joint can be eliminated, in the system of 

Eqs.(55)-(66), by means of the following relations, cf. Eqs.(13)-(14), 
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(67) 2

3

23
yyyy ε

r

r
ε =        ,     1

3

13
xxxx ε

r

r
ε =        

(68) 13
zzzz σσ =            , 1

3

1
3

xxxx
r

r σσ =  

These equations assume that the cross joint behaves as a spring connected in 

series with the bed joint in the x-direction, connected in series with the head 

joint in the y-direction and connected in parallel with the bed joint in the z-

direction. Eq.(68.2) represents the equilibrium at the cross-bed joint 

interface. At last, in order to reduce the number of unknowns to twenty, as 

the number of equations in the above system, it is still necessary to define 

the damage in the cross joint.  The stress-strain state in the cross joint does 

not play a major role in the problem, because of its small volume ratio, so 

the adopted approximation is the average of the damage in the head and bed 

joint, given by 

(69) 
2

21
3 rr

r
+=  

The average shear stresses on the four sides of the unit can be calculated 

from the shear stress in the bed joint by means of Eq.(53): 

(70) 
( ) ( )
( ) ( ) 00,2/2/,

,2/2/,0 1
1

====−==

=−===−==

ylxhylx
r

r
hylxhyx

xyxy

xybxyxy

σσ

σσσ
 

 

4.3. Iterative coupled algorithm 

The micromechanical model of the internal structure of a damaged masonry 

cell has been coupled with the isotropic scalar damage model of its 

components, using the algorithm shown in Fig. 9. The outer loop is a cycle 

related to the incremental loading steps, as usual in strain driven problems, 
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in which the normal cell strain parallel to the bed joint is increased. The cell 

boundary conditions of the problem are: 

(71) 

0

0
0

0

0

=

=

∆+=

zz

yy

xxxxxx

σ

σ
εεε

 

The system of Eq.(55-66) has been written for a problem with imposed 

stresses on cell faces, which are satisfied by three stress equilibrium 

equations in the axis directions.  In the strain driven problem defined by 

Eq.(71), on the contrary, the cell stress 0
xxσ  is now an unknown variable, 

while the cell strain   0
xxε   is the known term.  A governing system of 

equations for the new problem can then be obtained by replacing the stress 

equilibrium equation along the x direction, Eq.(57), with the strain relation 

in x:  

(72) ( ) ( ) 310 2 xxxxxx ttltl εεε +−=+  

The unknown homogenized cell stress 0
xxσ  can be obtained, after solution of 

the system, by means of Eq.(57). Local snap-backs have been traced using 

special procedures, where the crack opening or the sliding displacement 

serves as a control parameter. In these particular situations the system of 

equations is reformulated with the head joint strain or bed joint strain 

respectively as known increasing terms and the homogenized strain 0
xxε  

becomes an unknown variable of the problem. Snap-back behaviour (a 

phenomenon observed experimentally for quasi-brittle materials) means that 

the total elongation of the basic cell temporarily decreases while the 

material damage increases. The inner loop is an iterative process, in which 

at each cycle the equation system of equilibrium is solved to obtain the 
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unknown effective stresses and strains, making use of the damage 

coefficients from the previous iteration. The damage coefficients can then 

be updated, by means of the damage model, from the new stresses and the 

process is iterated until convergence of the coefficients, within an input 

tolerance. Finally, the damaged internal stresses in the cell components and 

the unknown homogenized stress parallel to the bed joint can be derived 

from the values of the converged internal stresses. 

 

4.4. Definition of the crack opening width 

Damage models usually assume a uniform distribution of microcracks in the 

damaged material. Therefore, a clearly defined unique crack with a well-

defined opening width does not exist. Here, opening of the head joint in a 

single basic cell is given by: 

(73) ( )∗−=∆ 222 xx
head tu εε  

where ∗2
xε , see Fig. 10, is the elastic component of the axial strain in the 

head joint, calculated with the elastic stiffness: 

(74) ( ) 2
2

2 1 xx d εε −=∗  

Therefore, it is possible to obtain:    

(75) 2
22 x

head tdu ε=∆  

and similarly   

(76) 1
18 xy

bed tdu ε=∆  

It should be noted that the displacement of the head joint accounts both for 

the contribution of the head and bed joint fractures. Furthermore, it is 

stressed that the crack opening cracku∆  is not headu∆2 unless we assume a 

perfect symmetry with the neighbouring basic cells, implying bed joint 
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fracture for the entire length of a unit. Actually, if the fracture, as in 

Lourenço et al. (1999), localizes only on half unit (Fig. 11), the contribution 

to the head joint displacement due to the bed fracture will come only from 

one basic cell, leading therefore to:  

(77) ( )1
1

2
2 242 xyx

bedheadcrack ddtuuu εε −=∆−∆=∆  

 

5. Results 

The algorithm described in the present paper has been implemented in a 

numerical program for the simulation of a masonry cell under normal tensile 

stresses. In order to check its performance, the algorithm has been tested in 

the fracture problem of an infinitely long wall under tensile loading parallel 

to the bed joint (Fig. 12), which has been analysed by Lourenco et al. (1999) 

with a sophisticated finite element interface model based on multisurface 

plasticity. This model consists of two half units in the vertical direction and 

of two and a half units in the horizontal direction. In the middle of the 

specimen a potential crack/slip line through head and bed joints is included. 

The unit dimensions are 900 × 600 × 100 mm3. With the new model, only 

the central basic cell in the wall is represented, but such approach does not 

introduce any qualitative difference with the original problem, because the 

relation between tensile stress and crack opening is independent from the 

specimen length.  

 The two models can be compared exactly in the case of zero dilatancy 

angle. In this case there is no vertical compression of the bed joint and 

therefore the shear strength of the mortar in the Coulomb friction model is 

constant and equal to the initial cohesion of the joint. The adopted material 
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properties are given in Table 1. With these data the unit will not fail, so only 

mortar fracture data are required. The basic expected failure mechanisms of 

head and bed joint are different, shear for the latter and tension for the 

former, so the two joints have been given different parameters in the 

damage model to reproduce these different behaviours. The required 

damage parameters At and As (Section3.4) for the mortar can be obtained by 

means of Eq.(46) and (49) from the fracture energies, with the characteristic 

lengths lt and ls given by the head and bed joint thickness (3 mm), resulting 

in: At = 0.078, As = 0.084. Using such values, the exponential softening 

obtained, respectively, in tension and shear coincide with the curves: 

(78) 






 ∆−= tI
t

t u
G

σσσ exp  , 






 ∆−= sII
s

s u
G

σστ exp  

The results of the proposed coupled damage-homogenisation model are 

shown in Fig. 13, where they are compared with the FEM analysis of 

Lourenco et al. (1999) in the case with zero dilatancy angle. The 

calculations have been performed with a convergence tolerance on the 

damage coefficients equal to 1%. The damage model reproduces with good 

agreement the FEM analysis of the cell degradation and the two peaks of the 

failure load. The head joint is the first to fail in tension and the bed joint 

takes its place in the load carrying mechanism of the cell. The load is 

transferred through bed joint shear from unit to the other, with the cell 

showing regained elastic behaviour for increasing loads, until final failure of 

the bed joint in shear. The residual load carrying capacity is zero because 

there is no vertical compression, and therefore no friction effect. 
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 The composite fracture energy of masonry, parallel to the bed joint, can 

be calculated in the homogenized cell as the appropriately weighted sum of 

the fracture energies of bed and head joints: 

   
( )

( ) 047.0
2

2 =
+

−+=
th

GtlhG
G

III

 N/mm2×mm 

This value can be compared with the area under the stress-crack opening 

plots in Fig. 13. The result shows that both the damage model 

( 045.0≅G N/mm2×mm) and the FEM analysis ( 046.0≅G N/mm2×mm) 

are very close to the expected value. The main difference is in the elastic 

stiffness of the cell with failed head joints, which in the damage model is 

about 15% higher than in the FEM analysis and reflects the same difference 

for the failure load of the bed joint.  

 

6. Conclusions 

Recently, a micro-mechanical homogenisation technique for masonry has 

been successfully developed, Zucchini and Lourenço (2002), by introducing 

new additional deformation modes in the model, resulting from the 

staggered alignment of the units in the composite. In this paper, an 

improved additional deformation mode is considered, the formulation is 

derived and the algorithm is applied to a non-linear problem. The problem 

considered is the simulation of the behaviour of a basic cell up to complete 

failure, under tensile loading parallel to the bed joint.  

 The simulation has been accomplished by coupling the elastic micro-

mechanical model with a scalar damage model for joints and units and by 

means of an iterative solution procedure to calculate the damage 
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coefficients. The numerical algorithm is described and tested in the fracture 

problem of a masonry wall under restrained shrinkage, already analysed by 

Lourenco et al. (1999) using a detailed FEM simulation. The comparison of 

the results shows the good agreement of the new homogenisation technique 

with the FEM solution and its capability to reproduce the main 

characteristics of masonry failure in tension. This is a first step in the road to 

produce a reliable and versatile tool for non-linear masonry simulations. 

 

 

 

 

 



 26 

References 

CUR, 1997. Structural masonry: An experimental/numerical basis for 

practical design rules. Rots JG (ed). Balkema : Rotterdam. 

Berto, L., Saetta, A., Scotta, R., Vitaliani, R., 2002, Orthotropic 

damage model for masonry structures. International Journal for Numerical 

Methods in Engineering, 55(2), 127–157. 

Dhanasekar, M., Page, A.W., Kleeman, P.W., 1985, The failure of 

brick masonry under biaxial stresses. Proc. Intsn. Civ. Engrs., Part 2., 79, 

295–313. 

Lopez, J., Oller, S., Oñate, E., Lubliner, J., 1999. A homogeneous 

constitutive model for masonry, International Journal for Numerical 

Methods in Engineering 46, 1651-1671. 

Lourenço, P.B., 1998. Experimental and numerical issues in the 

modeling of the mechanical behavior of masonry. In: Roca P & al. (ed) 

Structural analysis of historical constructions II CIMNE : Barcelona, 57–91. 

Lourenço, P.B., Rots, J.G., Blaauwendraad, J., 1998, Continuum 

model for masonry: Parameter estimation and validation. Journal of 

Structural Engineering, ASCE, 124(6), 642-652. 

Lourenço, P.B., Rots, J.G., van der Pluijm, 1999. Understanding the 

tensile behaviour of masonry parallel to the bed joints: a numerical 

approach, Masonry International, 12(3), 96-103. 

Maier, G., Papa, E., Nappi, A., 1991. On damage and failure of unit 

masonry. In: Experimental and numerical methods in earthquake 

engineering. Balkema, Brussels and Luxenbourg, pp. 223-245. 



 27 

Mazars, J., 1986. A model of a unilateral elastic damageable material 

and its application to concrete,  In: Fracture Toughness and Fracture Energy 

of Concrete, Elsevier, New York. 

 Mazars, J., Pijaudier-Cabot, G., 1989. Continuum damage theory - 

application to concrete,  Journal of Engineering Mechanics, ASCE 115, 

345-365. 

Oliver, J., Cervera, M., Oller, S., Lubliner, J., 1990. Isotropic damage 

models and smeared cracked analysis of concrete, Proc. 2nd ICCAADS, 

vol.2, Pineridge Press, 945-958. 

Pande, G.N., Liang, J.X., Middleton, J, 1989. Equivalent elastic 

moduli for unit masonry, Computers and Geotechnics 8, 243-265. 

van der Pluijm, R., 1999. Out of plane bending of masonry: Behaviour 

and strength. Ph.D. Dissertation, Eindhoven University of Technology, The 

Netherlands. 

Rots, J.G, 1991. Numerical simulation of cracking in structural 

masonry, Heron, 36(2), 49–63. 

Scotta, R., Vitaliani, R., Saetta, R., Oñate, E., Hanganu, A., 2001. A 

scalar damage model with a shear retention factor for the analysis of 

reinforced concrete structures: theory and validation, Computers and 

Structures, 79, 737-755. 

Zucchini, A., Lourenço, P.B., 2002. A micro-mechanical model for 

the homogenization of masonry, International Journal of Solids and 

Structures, 39, 3233-3255. 

 

 



 28 

List of Figures 

 

Figure 1. 

Modelling strategies for masonry structures: (a) detailed micro-modelling; 

(b) simplified micro-modelling; (c) macro-modelling. 

 

Figure 2. 

Basic cell for masonry and homogenisation process. 

 

Figure 3. 

Definition of masonry axes and masonry components considered in the 

proposed approach : unit, head joint, bed joint and cross joint. 

 

Figure 4. 

Adopted geometry symbols. 

 

Figure 5. 

Original model for a cell under tensile loading along the x-axis.  

 

Figure 6. 

Assumed improved additional deformation mode in the unit.  

 

Figure 7. 

Comparison of the shear deformation of the model (xyε at x=0) with FEM 

results in a single unit problem: relative error vs. increasing unit length. 

 



 29 

Figure 8. 

Improved model for a cell under tensile loading along the x-axis. 

 

Figure 9. 

Formulation of the homogenisation damage model with an iterative 

algorithm.  

 

Figure 10. 

Definition of the elastic component of axial strain in the head joint after 

failure.  

 

Figure 11. 

Definition of the crack opening width. 

 

Figure 12. 

Infinitely long  masonry wall under tensile loading parallel to the bed joints. 

 

Figure 13. 

Stress/crack opening diagram for masonry under tension parallel to the bed 

joint : comparison between FEM results of Lourenco et al.(1999) and the 

coupled homogenisation-damage model. 

 



 30 

List of Tables 

 

Table 1. 

Elastic and inelastic properties of the masonry cell. 

 

 

 

 

 

 

 

 



 31 

 

Table  I 

 

 

 

 E 
(N/mm2) νννν    σσσσt 

(N/mm2) 

IG  
(N/mm2×mm) 

σσσσs 
(N/mm2) 

IIG  
(N/mm2×mm) 

Mortar 1000 0.2 0.50 0.01 0.75 0.05 

Unit 5000 0.2 1.3 - - - 
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