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Abstract

An n×n matrix is called an N -matrix if all principal
minors are negative. In this paper, we are interested
in N -matrix completions problems, that is, when a
partial N -matrix has an N -matrix completion. In
general, a combinatorially or non-combinatorially
symmetric partial N -matrix does not have an N -
matrix completion. Here, we prove that a combi-
natorially symmetric partial N -matrix has an N -
matrix completion if the graph of its specified en-
tries is a 1-chordal graph. We also prove that
there exists an N -matrix completion for a partial
N -matrix whose associated graph is an undirected
cycle.
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1 Introduction

A partial matrix is a matrix in which some entries
are specified and others are not. In this work we
consider partial matrices where the diagonal entries
are known. A completion of a partial matrix is the
matrix resulting from a particular choice of values
for the unspecified entries. A completion problem
asks if we can obtain a completion of a partial ma-
trix with some prescribed properties. A partial ma-
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trix A = (aij) it said to be combinatorially symmet-
ric when aij is specified if and only if aji is.

A natural way to described an n× n partial ma-
trix A = (aij) is via a graph GA = (V,E), where the
set of vertices V is {1, 2, . . . , n}, and the edge or arc
{i, j}, (i 6= j) is in set E if and only if position (i, j)
is specified; as all main diagonal entries are spec-
ified, we omit loops. In general, a directed graph
is associated with a non-combinatorially symmetric
partial matrix and, when the partial matrix is com-
binatorially symmetric, an undirected graph can be
used.

A path is a sequence of edges (arcs) {i1, i2},
{i2, i3}, . . . , {ik−1, ik} in which the vertices are dis-
tinct. A cycle is a path with the first vertex equal
to the last vertex. An undirected graph is chordal
if it has no induced cycles of length 4 or more [2].

An n×n real matrix A = (aij) is called N -matrix
if all its principal minors are negative. The principal
submatrix of A lying in rows and columns α, α ⊆
N = {1, 2, . . . , n}, is denoted by A[α].

N -matrices arise in the theory of global univa-
lence of functions [3], in multivariate analysis [6],
and in linear complementary problems [5, 7]. In [8],
the class of N -matrices were studied in connection
with Lemke’s algorithm for solving linear and con-
vex quadratic programming problems.

In the following proposition we give some impor-
tant properties for N -matrices.

Proposition 1.1 Let A = (aij) be an N -matrix of
size n× n. Then

1



1. If P is a permutation matrix then PAP T is an
N -matrix.

2. If D is a positive diagonal matrix then DA and
AD are N -matrices.

3. If D is a digonal matrix then DAD−1 is an
N -matrix.

4. aij 6= 0 and sign(aij) = sign(aji), ∀i, j ∈
{1, 2, . . . , n}.

5. ∀α ⊂ {1, 2, . . . , n}, principal submatrix A[α] is
an N -matrix.

From before properties, we can suppose, without
lost of generality, that if A is an N -matrix of size
n× n, A is an element of set:

Sn = {A = (aij) : aij 6= 0 and
sign(aij) = (−1)i+j+1, ∀i, j}

On the other hand, the last property of the before
proposition allows us to give the following defini-
tion.

Definition 1.1 A partial matrix is said to be a par-
tial N -matrix if every completely specified principal
submatrix is an N -matrix.

The goal of this paper is the following N -matrix
completion problem:

Problem 1 Let A be a partial N -matrix.

(1.a) Is there an N -matrix completion Ac of A?

(1.b) What conditions allow us to assure the exis-
tence of an N -matrix completion Ac of A?

In section 2 we analyze the above problem (1.a)
for combinatorially and non-combinatorially sym-
metric partial N -matrices. In section 3 and 4 we
study some types of undirected graphs whose the
associated partial matrices have N -completions.

2 N-matrix completion problem

Let A = (aij) be a partial N -matrix of size n × n.
From property 4 of Proposition 1.1 the conditions

(i) Specified entries of A are nonzero,

(ii) sign(aij) = sign(aji), when aij and aji are
specified,

are necessary conditions in order to obtain an N -
matrix completion of A.

For matrices of size 2 × 2 conditions (i) and (ii)
are also sufficient.

Proposition 2.1 Let A be a partial N -matrix of
size 2× 2. There exists an N -matrix completion Ac

of A, if and only if A satisfies conditions (i) and
(ii).

Unluckily, the above proposition is false for par-
tial matrices of size n × n, n ≥ 3, both when the
partial matrix is combinatorially symmetric and it
is not, as the following examples show:

(a) The non-combinatorially symmetric partial N -
matrix

A =

 −1 2 x13

2 −1 2
3 2 −1


satisfies conditions (i) and (ii), but does not
have an N -matrix completion since

det A[{1, 3}] < 0 ⇔ 1−3x13 < 0 ⇔ x > 1/3,

and

det A < 0 ⇔ 7x13 + 19 < 0 ⇔ x < −19/7.

(b) The combinatorially symmetric partial N -
matrix

A =


−1 1 x13 −3

2 −1 1 x24

x31 2 −1 1
−4 x42 2 −1


satisfies conditions (i) and (ii), but does not
have an N -matrix completion since

det A[{2, 3, 4}] < 0 ⇔ 3 + x24x42 + 4x24 + x42 < 0
⇒ x24, x42 < 0,



but

det A[{1, 2, 4}] = 13+x24x42−4x24−6x42 > 0,

for x24, x42 < 0.

If we add another condition to before conditions
(i) and (ii) we can define the following set:

PSn = {A = (aij), n× n partial matrix :
for aij specified
aij 6= 0 and sign(aij) = (−1)i+j+1, ∀i, j}

Proposition 2.2 Let A be a partial N -matrix of
size 3× 3 such that A ∈ PS3. Then, there exists an
N -matrix completion Ac of A.

Corollary 2.1 Let A be a combinatorially symmet-
ric partial N -matrix of size 3×3. Then, there exists
an N -matrix completion Ac of A.

Proposition 2.2 is not true for matrices of size
n× n, n ≥ 4, as the following example shows.

Example 1

Consider the partial matrix

A =


−1 1 −11 x14

2 −1 1 −200
−0.1 10 −1 1

1 −10 1.01 −1

 .

It is not difficult to verify that A is a partial N -
matrix and A ∈ PS4. However, A has no N -matrix
completion because

det A[{1, 2, 4}] = 1801−19x14 < 0 ⇔ x14 > 94.79,

and

det A[{1, 3, 4}] = −9.89+0.899x14 < 0 ⇔ x14 < 11.

From this example, we can establish de following
result:

Proposition 2.3 For every n ≥ 4, there is an n×n
partial N -matrix, belong to PSn, that has no N -
matrix completion.

Proof: We denote by Ī the partial matrix, of size
(n− 4)× (n− 4), with all entries unspecified except
the entries of the main diagonal that are equal to
-1. The partial matrix

B =

[
A X
Y Ī

]
,

where X, Y are completely unspecified matrices and
A is the matrix of the before example, is a partial
N -matrix in PSn that does not have N -matrix com-
pletion. 2

3 Chordal graphs

In order to get started, we recall some very rich
clique structure of chordal graphs. See [2] for fur-
ther information. A clique in an undirected graph
G is simply a complete (all possible edges) induced
subgraph. We also use clique to refer to a complete
graph and use Kp to indicate a clique on p vertices.
A useful view of chordal graphs is that they have
a tree-like structure in which their maximal cliques
play the role of vertices.

If G1 is the clique Kq and G2 is any chordal graph
containing the clique Kp, p < q, then the clique sum
(see [2]) of G1 and G2 along Kp is also chordal. The
cliques that are used (to build chordal graphs) are
the maximal cliques (see [2]) of the resulting chordal
graph and the cliques along which the summing
takes place are the so-called minimal vertex separa-
tors of the resulting chordal graph. If the maximum
number of vertices in a minimal vertex separator is
p, then the chordal graph is called p-chordal. In this
section we are interested in 1-chordal graphs.

Proposition 3.1 Let A = (aij) be a partial N -
matrix of size n × n, the graph of whose specified
entries is 1-chordal with two maximal cliques, one
of them with two vertex. Then there exists an N -
matrix completion of A.

Proof: We may assume, without loss of generality,



that A has the following form:

A =


−1 1 · · · x1n

a21 −1 · · · (−1)n+1a2n

x31 a32 · · · (−1)n+2a3n
...

...
...

xn1 (−1)n+1an2 · · · −1

 ,

that can be partitioned as follows:

A =

 −1 1 X
a21 −1 āT

23

Y ā32 A33

 .

It is easy to see that we obtain an N -matrix com-
pletion of A by replacing the unspecified entries in
the following way:

x1j = −a2j , j ∈ {3, 4, . . . , n}
xi1 = −ai2, i ∈ {3, 4, . . . , n}
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Proposition 3.2 Let A be a partial N -matrix of
size n×n, the graph of whose specified entries is 1-
chordal with two maximal cliques. Then there exists
an N -matrix completion of A.

Proof: We may assume, without loss of generality,
that A has the following form:

A =

 A11 a12 X
aT

21 −1 aT
23

Y a32 A33

 .

Consider the completion,

Ac =

 A11 a12 −a12a
T
23

aT
21 −1 aT

23

−a32a
T
21 a32 A33

 .

We are going to see that Ac is an N -matrix. Let α
and β be the subsets of N = {1, 2, . . . , n} such that

Ac[α] =

[
A11 a12

aT
21 −1

]
, and Ac[β] =

[
−1 aT

23

a32 A33

]
,

and assume |α| = k (thus k is the index of the
overlapping entry). Let γ ⊆ N . Then there are two
cases to consider:

(a) k ∈ γ, then

det Ac[γ] = (−1) detAc[γ ∩ α] · det Ac[γ ∩ β] < 0

(b) k 6∈ γ. We consider

γ = {1, 2, . . . , k − 1, k + 1, . . . , n}.

For another γ we proceed in analogous way. By
applying Jacobi’s identity,

det Ac[γ] = det A−1
c [{k}] · det Ac.

By case (a), detAc < 0, and we prove that
det A−1

c [{k}] is positive. 2

We can extend this result in the following way:

Theorem 3.1 Let G be an undirected connected
1-chordal graph. Then any partial N -matrix, the
graph of whose specified entries is G, has an N -
matrix completion.

Proof:The proof is by induction on the number p,
of maximal cliques in G. The case of p-maximal
cliques is reduced to that of (p−1)-cliques by choos-
ing a clique (the pth-clique) to be one that has
only one vertex in common with any other maximal
clique ( the existence of such cliques follows from
the way chordal graphs are built, see [2]). Then
completing the subgraph induced by the remaining
(p − 1)-cliques reduces the problem to the case of
two maximal cliques. The case of a 1-chordal graph
with two maximal cliques is handled in the before
proposition. 2

4 Paths and cycles

In this section we are going to prove the existence of
an N -completion for a partial N -matrix, combina-
torially symmetric whose associated graph is a path
or a cycle.

Proposition 4.1 Let A = (aij) be an n × n com-
binatorially symmetric partial N -matrix, such that
its associated graph is a path. Then, there exists an
N -matrix completion.



Proof: We can suppose, without loss of generality,
that matrix A has the following form:

A =



−1 1 x13 · · · x1n−1 x1n

a21 −1 1 · · · x2n−1 x2n

x31 a32 −1 · · · x3n−1 x3n
...

...
...

...
...

xn−11 xn−12 xn−13 · · · −1 1
xn1 xn2 xn3 · · · ann−1 −1


,

with ai+1i > 0, i = 1, 2, . . . , n− 1.
It is easy to see that we obtain an N -matrix com-

pletion by replacing the unspecified entries in the
following way:

xij = (−1)i+j+1, i ∈ {1, 2, . . . , n},
j ≥ i + 1

xj+2j = −aj+1jaj+2j+1, j ∈ {1, 2, . . . , n− 2}
xij = −ci−1jaii−1, j ∈ {1, 2, . . . , n− 2},

i > j + 2
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Lemma 4.1 Let A be a combinatorially symmet-
ric, partial N -matrix of size 4 × 4, such that A ∈
PS4 and its associated graph is a cycle. Then, there
exists an N -matrix completion.

Proof: We may assume that A has the following
form:

A =


−1 1 x13 a14

a21 −1 1 x24

x31 a32 −1 1
a41 x42 a43 −1

 ,

where a21, a32, a43, a14, a41 are positive.
We consider the following partial N -matrix in

PS4

Ā =


−1 1 x13 a14

a21 −1 1 x24

−a32 a32 −1 1
a41 −a41 a43 −1

 ,

and we prove that there exist values for x13 and
x24 such that Āc is an N -matrix. Therefore, there
exists an N -matrix completion Ac of A. 2

We can extend this result for matrices of size n×
n, n ≥ 4.

Theorem 4.1 Let A be a combinatorially symmet-
ric, partial N -matrix of size n × n, such that A ∈
PSn and its associated graph is a cycle. Then, there
exists an N -matrix completion.

Proof: We may assume that A has the following
form:

A =


−1 1 · · · x1n−1 (−1)na1n

a21 −1 · · · x2n−1 x2n
...

...
...

...
xn−11 xn−12 · · · −1 1

(−1)nan1 xn2 · · · ann−1 −1

 ,

where a1n, an1 > 0 and aii−1 > 0, i = 2, 3, . . . , n.
The proof is by induction on n. For n = 4 see

Lemma 4.1. Now, let A be an n × n matrix. Con-
sider the following partial N -matrix in PSn:

Ā =


−1 1 · · · (−1)n−1a1n x1n

a21 −1 · · · x2n−1 x2n
...

...
...

...
(−1)n−1an1 xn−12 · · · −1 1

xn1 xn2 · · · ann−1 −1

 .

Ā[{1, 2, . . . , n− 1}] is a partial N -matrix in PSn−1

such that its associated graph is an (n−1)-cycle. By
induction hypothesis there exists an N -matrix com-
pletion Ā[{1, 2, . . . , n − 1}]c. Let Â be the partial
N -matrix obtained by replacing in Ā the comple-
tion Ā[{1, 2, . . . , n− 1}]c.

By applying Proposition 3.1 to matrix Â we ob-
tain an N -matrix completion Ac of A. 2

References

[1] A. Berman, R.J. Plemmons, Nonnegative ma-
trices in the Mathematical Sciences, SIAM,
1994.

[2] J.R.S. Blair, B. Peyton, An introduction to
chordal graphs an clique trees, The IMA vol-
umes in Mathematics and its Applications, vol.
56, Springer, New York, 1993, pp. 1-31.

[3] K. Inada, The production matrix and
Stolpmer-Samuelson condition, Econometrica,
39: 219-239 (1971).



[4] J.S. Maybee, Some aspects of the theory of PN-
matrices, SIAM J. Appl. Math., 312: 397-410,
(1976).

[5] S.R. Mohan, R. Sridhar, On characterizing N-
matrices using Linear Complementarity, Lin-
ear Algebra and its Applications, 160: 231-245,
(1992).

[6] S.R. Paranjape, Simple proofs for the infi-
nite divisibility of multivariate gamma distri-
butions, Sankhya Ser. A, 40: 393-398, (1978).

[7] T. Parthasarathy, G. Ravindran, N-matrices,
Linear Algebra and its Applications, 139: 89-
102, (1990).

[8] R. Saigal, On the class of complementary cones
and Lemke’s algorithm, SIAM J. Appl. Math.,
23: 46-60, (1972).


