
66	 September/October 2011	 Published by the IEEE Computer Society� 0272-1716/11/$26.00 © 2011 IEEE

Feature Article

Wait-Free Shared-Memory
Irradiance Caching
Kurt Debattista and Piotr Dubla ■ University of Warwick

Luís Paulo Peixoto dos Santos ■ Universidade do Minho

Alan Chalmers ■ University of Warwick

Desktop multicore computing calls for mod-
ifying traditional rendering algorithms
to parallelize the available resources and

maximize their use. For certain algorithms, such as
classic ray tracing, this conversion can be relatively
straightforward, but computing more complex
lighting conditions requires careful consideration
of thread synchronization to minimize overhead

and allow computation.1

We’ve developed a parallel so-
lution to one method used for
computing complex lighting con-
ditions—namely, the irradiance
cache (IC), an acceleration data
structure that caches sparsely
sampled values for indirect dif-
fuse irradiance in the framework
of a distributed ray-tracing al-
gorithm.2 However, because all
rendering threads can write to
and read from the IC, a multi-
threaded shared-memory system
must have a data-access-control
mechanism to ensure that the
data structure isn’t corrupted.

Such control mechanisms in-
cur their own overhead, so they

must be carefully designed to not compromise per-
formance. Traditionally, data-access-control mech-
anisms use lock-based mutual exclusion. However,
nonblocking data structures that take the form of
obstruction-free, lock-free, or wait-free data struc-
tures offer considerable performance advantages.
Wait-free structures are the most powerful (see

the “Nonblocking Synchronization” sidebar), but
system developers and researchers have considered
them difficult to construct, and they’re relatively
rare in practice.3

Here, we present an efficient wait-free algorithm
that lets all threads concurrently access an un-
bounded shared IC, without using locks or critical
sections. This is an extension of our previous re-
search,4 which presented an initial version of the
wait-free algorithm and tested it on an eight-core
machine. The earlier algorithm could handle only
fixed-size arrays in the IC. Furthermore, it dis-
carded some data when a conflict among threads
occurred. We’ve fixed these limitations to guarantee
the successful insertion of all new irradiance val-
ues. We’ve also assessed this algorithm’s efficiency
on two highly concurrent multicore systems with
up to 24 physical cores. The results demonstrate
its superior performance and scalability over two
other more traditional and straightforward mecha-
nisms for sharing the IC among a shared-memory
system’s threads. (An audiovisual presentation that
augments this article’s description of the algo-
rithm is available at http://doi.ieeecomputersociety.
org/10.1109/MCG.2010.80.)

Related Work in Parallel IC
Recent ray-tracing improvements have enabled in-
teractive computation of many global effects, such
as specular phenomena and correct shadows.5 How-
ever, the dense sampling at each shading point
required by indirect diffuse interreflections dra-
matically increases rendering times. Gregory Ward
and his colleagues exploited a continuous smooth

Parallelizing rendering
algorithms to exploit
multiprocessor and
multicore machines isn’t
straightforward. For example,
the irradiance cache (IC) is an
acceleration data structure
that caches indirect diffuse
irradiance values. In multicore
systems, threads must
share the IC to achieve high
efficiency. A novel wait-free
access mechanism significantly
reduces synchronization
overhead.

	 IEEE Computer Graphics and Applications� 67

function that generally characterizes the indirect
diffuse component over space, unaffected by the
high-frequency changes common with the spec-
ular component.2 They proposed the IC to allow
sparse evaluation of indirect diffuse irradiance,
storing the sparsely calculated values in the IC and

reusing them to extrapolate or interpolate values
at nearby locations. By caching indirect diffuse ir-
radiance samples in the framework of a distributed
ray-tracing algorithm,2 the IC allows irradiance
values to be interpolated for regions in a given
sample’s neighborhood. This reduces rendering

Using shared-memory multithreading to execute paral-
lel computations requires careful design of the access

to data structures that all threads can access concurrently.
A data-access-control mechanism must be able to ensure
that the data structure isn’t corrupted.

Traditionally, access control to shared-memory data
structures is maintained via mutual exclusion. When critical
sections are reasonably large, threads can use blocking
mechanisms to preempt the running thread. However,
when frequent access to a shared data structure is required,
blocking costs can be prohibitive. In such cases, a thread
would typically enter a busy-wait state, usually using a
spin lock, when another thread is in the critical section and
maintain that state until the other thread completes. Such
control mechanisms incur overheads, such as serialization
of accesses to the shared data structure. Blocking entails
expensive context switches, and busy-waiting of frequently
accessed resources leads to contention that can drastically
reduce performance as the number of threads increases.1

Alternatives that avoid mutual exclusion exist in the form
of nonblocking synchronization. By carefully ordering in-
structions, a system developer can remove all critical sections
and thereby reduce contention by allowing nonblocking al-
gorithms to guarantee that none of the code is serialized.2

The weakest form of nonblocking data structures is
obstruction-free methods, which guarantee that a thread
can complete in finite time if it operates in isolation. When
nonblocking data structures can guarantee that at least one
among a set of concurrent threads will complete in finite
time, they’re said to be lock free. All lock-free algorithms
are obstruction free. However, lock-free and obstruction-
free methods rely on retrials and can’t guarantee an upper
bound on the number of executed instructions.

When an algorithm can guarantee that all threads will
complete in finite time, the algorithm is said to be wait
free. Wait-free algorithms can guarantee an upper bound
on the number of instructions, thus avoiding starvation,
deadlock, livelock, and priority-inversion problems. Wait-
free algorithms are ideal for multiprogrammed multipro-
cessors—for example, when a thread holding a lock is pre-
empted and causes all other threads to busy-wait uselessly.
Clearly, all wait-free data structures are also lock free.

The construction of nonblocking algorithms requires
powerful atomic primitives, which execute without inter-
ruption as a single instruction on modern architectures.
We can view these algorithms as a limiting case that re-

duces the size of critical sections to the size of individual
machine instructions.

Figures A and B show pseudocode for two atomic in-
structions, fetch and add (XADD) and compare and swap
(CAS), that we use for our wait-free irradiance cache. Mau-
rice Herlihy provided a hierarchy of such primitives’ ef-
fectiveness.3 The most effective are those that can be used
to implement any wait-free data structure, which Herlihy
described as CAS (or load-link store-conditional instruc-
tion pairs, which are an alternative to the CAS in some
architectures).

References
	 1.	 T.E. Anderson, E.D. Lazowska, and H.M. Levy, “The Perfor-

mance Implications of Thread Management Alternatives for

Shared-Memory Multiprocessors,” IEEE Trans. Computers, vol.

38, no. 12, 1989, pp. 1631–1644.

	 2.	 M. Herlihy and N. Shavit, The Art of Multiprocessor Program-

ming, Morgan Kaufmann, 2008.

	 3.	 M. Herlihy, “Wait-Free Synchronization,” ACM Trans. Program-

ming Languages and Systems, vol. 13, no. 1, 1991, pp. 124–149.

Nonblocking Synchronization

1	 atomic XADD(address location)
2	 {
3		 int value = *location;
4		 *location = value + 1;
5		 return value
6	 }

Figure A. Pseudocode for the fetch and add (XADD) atomic

instruction. XADD atomically adds 1 to a value and returns the

previous value. This function would be implemented as a single

instruction on modern processor architectures.

1	 atomic CAS(address location, value 		
		 cmpVal, value newVal)

2	 {
3		 if(*location == cmpVal) {
4			 *location = newVal;
5			 return true;
6		 } else return false;
7	 }

Figure B. Pseudocode for the compare and swap (CAS) atomic

instruction. CAS compares the value at location with cmpVal and,

if they are the same, updates the value pointed to by location to

newVal. This function would be implemented as a single instruction

on modern processor architectures.

68	 September/October 2011

Feature Article

time by exploiting spatial coherence. (The “Irra-
diance Caching” sidebar describes the motivation
and mechanism behind this data structure.)

To accelerate range searches for locating valid
samples in the IC, the algorithm builds an octree
incrementally every time a new sample is added.
Writing to the cache requires both storing the new
indirect diffuse irradiance value and updating the
octree. In parallel systems, each rendering process,
or thread, might evaluate new indirect diffuse
irradiance values and add them to the IC. To
increase efficiency, all processes must share the IC,
thus avoiding replicated work in which one process
evaluates an irradiance value that other processes
have already calculated. Ideally, the IC becomes
a shared data structure, requiring some sharing

mechanism to ensure that all processes can access
the available data, that the data isn’t corrupted,
and that overheads don’t compromise efficiency.

In distributed-memory systems, such as work-
station clusters, each node has its own address
space, resulting in multiple copies of the shared
data structure that are regularly synchronized. The
standard radiance distribution6 supports a paral-
lel renderer over a distributed system using Sun’s
Network File System for concurrent IC access. This
approach has led to contention and can result in
poor performance when using inefficient file lock
managers. Roland Koholka and his colleagues
broadcast IC values among processors after every
50 samples calculated at each slave.7 David Robert-
son and his colleagues presented a centralized par-

Physically based computation of the radiance reflected
at a point p along a direction Q is dictated by the ren-

dering equation:1

L p f p L p N dr r i p→()= ↔() ←() ()∫Θ Θ Ψ Ψ Ψ
Ω

ΩΨ, cos ,
�

,

where f pr ,Θ Ψ↔() is the bidirectional reflectance distri-
bution function at p for directions Q and Y, L pi ←()Ψ is
the incident radiance at p along Y,

�
Np is the surface nor-

mal at p, and W, the integration domain, is the hemisphere
centered at p and oriented around

�
Np .

Ray tracing approximates L pr →()Θ by shooting rays
along a number of directions Y, thus sampling L pi ←()Ψ
for these directions. We can usually compute certain light
transport phenomena, such as specular scattering and
direct illumination, with a limited number of rays. Other
phenomena, because they lack directionality, require
hemisphere sampling—that is, stochastically selecting and
shooting many rays across W. This stochastic integration
method, called Monte Carlo integration, usually accounts
for much of the computation.

One such phenomenon is indirect diffuse reflection, the
diffusely reflected radiance at p along a given direction re-

sulting from the indirect irradiance E(p). E(p) is the indirect
incident radiant flux per unit area at p. Accurately com-
puting E(p) requires densely sampling W. In a ray-tracing
context, this requires shooting hundreds or thousands of
rays distributed across the hemisphere while, simultane-
ously, carefully avoiding directions corresponding to light
sources so that we include only indirect lighting—that is,
light that’s been reflected by at least one object.

Indirect diffuse reflections are crucial to convey a per-
ception of realism (see Figure C), but sampling the hemi-
sphere at all shading points results in very long rendering
times, deemed unacceptable even for most offline render-
ings. Gregory Ward and his colleagues realized in 1988
that indirect diffuse reflection is generally a continuous
smooth function over space, not affected by the high-
frequency changes common with specular reflections.2
They proposed accelerating the computation of indirect
diffuse reflections by densely sampling the hemisphere
at only a sparse set of shading points and interpolating
the remaining ones. They store the sparsely calculated,
indirect irradiance values in the irradiance cache (IC) data
structure and later reuse them to extrapolate or interpo-
late irradiance values at nearby locations.

Irradiance Caching

(1) (2) (3)

Figure C. The contribution of indirect lighting: (1) direct only, (2) indirect only, and (3) full. Without the computation of the indirect lighting,

the rendered images are largely inaccurate.

	 IEEE Computer Graphics and Applications� 69

allel radiance version that sends the calculated IC
values to a master process whenever a threshold is
met.8 Each slave then collects the values deposited
at the master by the other slaves. Another proposal
restricts diffuse irradiance evaluations to a subset
of the available processors, synchronizing the IC
among these at a higher frequency than with the
remaining processors.9

We’re unaware of any publication describing a
data-access-control mechanism for sharing the IC
among rendering threads in a shared-memory par-
allel system, other than our previous wait-free al-
gorithm. The algorithm we propose here supports
extendable memory for inserting an unbounded
number of IC samples and for successfully insert-
ing all new irradiance values.

Data-Access-Control Algorithms
We now present the algorithms for the three
data-access-control mechanisms we evaluated in
experiments.

We begin with a traditional single-threaded IC
that has no access control (see Figure 1). The Irra-
dianceCache data structure represents the IC; it
consists of an octree of recursive nodes. The individ-
ual node is called ICNode. Each ICNode contains
pointers to another eight nodes and an ICList
storing the list of IC samples. Figure 2 shows the
ICNode for the wait-free method. For the other
methods, the ICList is just a single dynamic array.

The Lock-Based Irradiance Cache
The lock-based access-control algorithm (LCK)

We can interpolate E(p) from a set S(p) of previously
evaluated irradiance values E(pi) at points pi, by using a
weighted average:

E p
w p E p

w p

i i
i S p

i
i S p

()=
() ()

()
∈ ()

∈ ()

∑
∑

,

where the weights

w p
p p

R
N Ni

i

i
p pi()=

−
+ − ⋅











−

1
1� �

depend on the distance between p and pi, on the harmonic
mean distance (Ri) to objects visible from pi, and on the rela-
tive orientation of the normals at p and pi. We can determine
S(p) by requiring wi(p) to be larger than the reciprocal of the
maximum acceptable error, a, which is a user-supplied pa-
rameter: S(p) = {i : wi(p) > 1/a}.

When the renderer requires indirect irradiance at any
point p, it first determines S(p) by querying the IC. If S(p)
is empty, E(p) is evaluated by the Monte Carlo integration;
otherwise, it’s interpolated from the E(pi) belonging to S(p).
Querying the IC to determine S(p) amounts to locating all
samples pi stored in the cache that meet the search crite-
rion. This range search task is computationally demanding,
but we can optimize it by resorting to 3D hierarchical data
structures, such as octrees or k-d trees, and spatially order-
ing the IC.

By exploiting spatial coherence, the IC offers an order-of-
magnitude improvement in rendering time over Monte Carlo
integration. We can further improve performance when
rendering animations of static scenes because the indirect
diffuse irradiance remains constant, which allows reuse of the
IC samples across frames.

Researchers have recently extended the IC as a stand-
alone algorithm in many guises—for example, as an accel-

eration data structure for rendering glossy surfaces by stor-
ing radiance,3 as a participating-media phenomenon,4 for
translucency,5 or in conjunction with photon mapping.6
Other extensions have exploited coherence in the tem-
poral domain.7–9 PDI/DreamWorks has also used similar
methods to accelerate rendering.10

References
	 1.	 J.T. Kajiya “The Rendering Equation,” Proc. Siggraph, ACM

Press, 1986, pp. 143–150.

	 2.	 G. Ward, “A Ray Tracing Solution for Diffuse Interreflection,”

Proc. Siggraph, ACM Press, 1988, pp. 85–92.

	 3.	 J. Krivanek et al., “Radiance Caching for Efficient Global

Illumination Computation,” IEEE Trans. Visualization and

Computer Graphics, vol. 11, no. 5, 2005, pp. 550–561.

	 4.	 D. Jarosz and J. Zwicker, “Radiance Caching for Participating

Media,” ACM Trans. Computer Graphics, vol. 27, no. 1, 2008,

article 56.

	 5.	 S.-L. Keng, W.-Y. Lee, and J.-H. Chuang, “An Efficient Caching-

Based Rendering of Translucent Materials,” The Visual Computer,

vol. 23, no. 1, 2006, pp. 59–69.

	 6.	 H.W. Jensen, Realistic Image Synthesis Using Photon Mapping,

A K Peters, 2001.

	 7.	 M. Smyk et al., “Temporally Coherent Irradiance Caching

for High Quality Animation Rendering,” Computer Graphics

Forum, vol. 24, no. 3, 2005, pp. 401–412.

	 8.	 P. Gautron, K. Bouatouch, and S. Pattanaik, “Temporal

Radiance Caching,” IEEE Trans. Visualization and Computer

Graphics, vol. 13, no. 5, 2007, pp. 891–901.

	 9.	 K. Debattista et al., “Instant Caching for Interactive Global

Illumination,” Computer Graphics Forum, vol. 28, no. 8, 2009,

pp. 2216–2228.

	10.	 E. Tabellion and A. Lamorlette, “An Approximate Global

Illumination System for Computer Generated Films,” ACM

Trans. Graphics, vol. 23, no. 3, 2004, pp. 469–476.

70	 September/October 2011

Feature Article

locks the IC whenever a read or write is made to
it (see Figure 3, lines 4–6 and 12–14). However,
the code responsible for hemisphere sampling,
ComputeIrradianceRT(), isn’t a critical re-

gion, so for this computation the method allows
concurrent irradiance evaluation. The LCK’s major
disadvantage is that it serializes all accesses—both
reads and writes—to the shared IC. As the number
of threads increases, contention will increase, pre-
venting performance from scaling with the degree
of parallelism.

The Local-Write Irradiance Cache
An alternative approach is to have a global IC
readable by all threads and an additional local
IC per thread (see Figure 4). Each thread writes
only to its local IC but reads from both. At certain
predefined execution points, such as the end of a
frame, the local ICs sequentially merge into the
global IC. This synchronization uses a frame end
as a barrier, effectively constituting a blocking
approach to synchronization.

This approach’s major drawback is that it disal-
lows any sharing in a single frame, thus result-
ing in work replication. The LW algorithm has
a much higher IC sample count than the other
two approaches we evaluated because each thread
must locally evaluate all irradiance values required
by its assigned image tiles. Additionally, memory
consumption is dictated by the number of threads
used and the octree’s complexity.

The Wait-Free Irradiance Cache
The wait-free (WF) algorithm doesn’t rely on any
critical sections to both read and write to the
shared IC. The algorithm changes three methods
from the traditional IC.

The first method is the ICList::Add func-
tion (see Figure 5). The insert onto the node it-
self takes the form of an insertion onto an array
or unbounded queue. For completeness, we dem-
onstrate how the method works for an unbounded
queue. Insertion onto a fixed-size array is just a
specialized case of this algorithm. The fixed-size
array version is the same as the enqueue function
of the Herlihy-Wing concurrent queue.10

The structure of ICList is an unbounded queue

 1	 IrradianceCache IC;
 2
 3	 ComputeIndirectDiffuse() {
 4		 //get irradiance from IC if there are valid records
 5		 inIC = IC.getIrradiance ();
 6		 if (!inIC) { // no valid records found
 7			 // compute it by sampling the hemisphere
 8			 ICsample = ComputeIrradianceRT ();
 9			 // insert new IC sample into the octree
10			 IC.insert (ICsample);
11		 }
12	 }
13
14	 IrradianceCache::getIrradiance(Irr) {
15		 Irr = {0,0,0};
16		 <Traverse the octree>
17		 <verify validity of sample>
18		 <extrapolate irradiance; add to Irr>
19		 if (found) return true;
20		 else return false;
21	 }
22
23	 IrradianceCache::insert (ICsample) {
24		 // recursively traverse the octree
25		 // starting at root
26		 IC.root.insert (ICsample);
27	 }
28
29	 ICNode::insert (ICSample) {
30		 if (correct insertion node) {
31				 IClist.Add (ICsample);
32		 } else {
33			 // go deeper in the octree
34			 xyz = EvaluateOctant();
35			 if (children[xyz] == NULL)
36				 children[xyz] = new ICNode ();
37			 children[xyz].insert (ICsample);
38		 }
39	 }
40
41	 ICList::Add (ICsample) {
42		 // insert new record in head of list
43		 IClist.records[head++] = ICsample;
44	 }

Figure 1. A traditional sequential irradiance cache (IC). This approach has
no access control. It consists of an octree of recursive notes.

0 1 2 3 481 ...
k k+1 k+2 k+3

k+3head

k+4...

ICListICNode pointers to children

ICNode

Figure 2. An ICNode structure for wait-free access control. For the other methods, ICList is just a single
dynamic array that’s extended whenever required.

	 IEEE Computer Graphics and Applications� 71

of arrays, used to maintain coherence and ensure
that queue extensions aren’t frequent (see Figure
2). In Figure 5, the array type is qNode, which
contains an array of qNodeSize elements and a
pointer to another qNode. Initially, the queue of
arrays contains only one qNode; when the inser-
tion requires a new qNode, the executing thread
creates it and attaches it to the previous one. An
array is always initialized with a list of NULL point-
ers (or some other symbol that the computation
doesn’t use) to denote that none of the threads has
yet added an ICsample. When adding samples to
an IC node, the algorithm uses the atomic fetch-
and-add operator (XADD; see Figure 5, line 3). This
returns a unique index into the list of records, en-
suring that samples are never overwritten. Simul-
taneously, the thread increments the index to the
next free position.

When the structure must be extended (see Figure
5, line 13), the algorithm creates a new qNode
and uses a compare-and-swap instruction (CAS)
to insert it onto the previous qNode (see Figure
5, line 19). If another thread hasn’t yet extended
the queue—that is, if the pointer is still NULL,
the CAS completes successfully and the executing
thread inserts the associated ICsample onto
the structure (see Figure 5, line 26). However, if
another thread extended the queue, the CAS will
fail and this thread will discard the created qNode
(see Figure 5, line 20). The thread will then insert
the associated sample onto the qNode that some
other thread created (otherwise, the CAS would
have succeeded).

Figure 6 demonstrates three concurrent threads—R,
G, and B—executing this method for a qNodeSize
of five. This will help illustrate how ICList:Add()
functions. In Figure 6a, the ICList is completely
empty. In Figure 6b, R has just incremented the
head but hasn’t yet inserted the sample. R inserts
the sample in Figure 6c. In Figure 6d, both B and G
have just incremented the head but not inserted the
samples. In Figure 6e, B hasn’t inserted its sample
and R has inserted another sample, but G has yet
to insert the sample and is still on the same line of
code as in Figure 6d.

Figure 6f demonstrates the scenario of the
list needing to be extended and the possible
conflicts that might occur. R has just filled in
the first qNode, and G and B are about to insert
another two samples. They have, in fact, already
incremented head. Because both G and B have
checked that the last qNode is full and has no
successor (see Figure 5, line 16), both created a
new qNode. However, the CAS at line 19 in Figure
5 means that only one will succeed in attaching it

to the previous qNode. In this case, at Figure 6g,
we can see that G has succeeded and B is deleting
the qNode it created. G has inserted the sample
onto the new qNode. At Figure 6h, B inserts the
sample onto the qNode that G had created.

The second method that’s changed from
the traditional IC is the insert onto the octree
structure (see Figure 7). When adding a new child
node to the octree, the executing thread builds the
new node using a temporary pointer. Once built,
the node is attached to the octree using the CAS
operator (see Figure 7, line 10). The reasoning
underlying this method is similar to that for
ICList::Add. Either this thread creates the
subtree or some other thread does; computation
proceeds notwithstanding.

The final modified method is Irradiance-
Cache::getIrradiance() (see Figure 8).
The modifications simply reflect the structure

 1	 ComputeIndirectDiffuse()
 2	 {
 3		 //get irradiance from IC if there are valid 	

		 records
 4		 IC.lock();
 5		 inIC = IC.getIrradiance (Irr);
 6		 IC.unlock();
 7
 8		 if (!inIC) { // no valid records found
 9			 // compute it by sampling the hemisphere
10			 ICsample = ComputeIrradianceRT ();
11			 // insert new IC sample into the octree
12			 IC.lock();
13			 IC.insert (ICsample);
14			 IC.unlock();
15		 }
16	 }

Figure 3. A lock-based IC (LCK). This method uses busy-waiting for
reading and extending the IC.

 1	 IrradianceCache IClocal[number threads], 		
		 ICglobal;

 2	
 3	 ComputeIndirectDiffuse()
 4	 {
 5		 //get irradiance from IC if there are valid 	

		 records
 6		 inIC = ICglobal.getIrradiance (Irr);
 7
 8		 if (!inIC)
 9			 inIC = IClocal[current thread].getIrradiance ();
10
11		 if (!inIC) { // no valid records found
12			 // compute it by sampling the hemisphere
13			 ICsample = ComputeIrradianceRT ();
14			 // insert new sample into the local cache
15			 IClocal[current thread].insert (ICsample);
16		 }
17	 }

Figure 4. A local-write IC (LW). This method maintains a separate IC per
thread and synchronizes them after a single frame is rendered.

72	 September/October 2011

Feature Article

 1	 ICList::Add (ICsample) {
 2		 // get index of new sample in node list
 3		 int index = XADD (&head);
 4		 int iteration = index / qNodeSize;
 5		 int pos = index % qNodeSize;
 6		 qNode * tail;
 7		 int count = 0;
 8
 9		 // identify node — can be optimized with a local tail
10		 for (tail = qHead; tail —>next != NULL && count <iteration;
11			 tail = tail —>next, count++);
12
13		 if (iteration > count){
14			 for (int n = 0; n < iteration — count; n++) {
15				 // this is where we add the new Array
16				 if (tail —>next == NULL) {
17					 // all entries are initialized as NULL
18					 qNode * newN = new qNode;
19					 if(!CAS(&tail —>next, NULL, newN))
20						 delete newN;
21				 }
22				 tail = tail —>next;
23		 }
24		 // if this thread did not update
25		 // some other thread must have updated
26		 tail —>records[pos] = ICsample;
27		 return index;
28	 }

Figure 5. The wait-free IC Add method. This wait-free method ensures that IC samples can be added
concurrently by different threads without blocking or busy-waiting.

(a) R = out, G = out, B = out

(d) R = out, G = 6, B = 7

(f) R = 27, G = 19, B = 18

(g) R = out, G = 27, B = 20 (h) R = out, G = out, B = 27

(e) R = 27, G = 6, B = out

(b) R = 4, G = out, B = out

(c) R = 27, G = out, B = out

0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4

5 6 7 8 9

5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

head 0

head 4 head 7

head 7head 7

head 1

head 1 head 3

Figure 6. How three threads (R, G, and B) would concurrently add samples to a node using our novel wait-free method. Numbers
refer to the thread’s location in Figure 5. out means that the thread isn’t executing this function. ^ represents the NULL pointer.

	 IEEE Computer Graphics and Applications� 73

changes to ICList. The method uses the fact of
qNode elements being initialized to NULL. This
function queries all elements that aren’t NULL
and uses them to calculate the irradiance, if the
valid neighborhood criterion is satisfied.

The wait-free approach ensures that all threads
can access the single shared IC concurrently. Our
experimental results show increased execution
time both when interpolating and creating IC
samples, without suffering the LW approach’s
larger memory requirements.

Experimental Results
We obtained all the results presented here on two
shared-memory systems.

One system was a dual-quad-core machine based
on the Intel Xeon E5520 (Nehalem architecture),
running at 2.26 GHz with 12 Gbytes of RAM.
These processors include the Intel QuickPath Inter-
connect (which replaces the legacy front-side bus).
They also support hyperthreading, enabling two
threads per core and thus reporting a total of 16

logical processors to the operating system. Hyper-
threading replicates certain processor resources but
not the main execution units. Intel claims up to 30
percent speed improvement, compared to otherwise
identical, nonhyperthreaded processors.11

The second system was a quad hexacore ma-
chine based on the Intel Xeon E7450 (Dunning-
ton architecture), running at 2.40 GHz with 64
Gbytes of RAM. With 24 physical cores, this sys-
tem let us evaluate the scalability of our wait-free
access-control mechanism.

Both systems ran CentOS 5.2 with the Intel
Compiler Suite Professional v. 11.0.

For all experiments, we used our own interactive
ray tracer, which doesn’t employ packetization or
explicit SIMD (single instruction, multiple data)
operations. The only exception is the ray-bounding
volume-intersection test used to traverse the
acceleration data structure, which is a bounding-
volume-hierarchy implementation based on Ingo
Wald and his colleagues’ research.12

Figure 9 shows the five scenes we used. We

 1	 ICNode::insert (ICSample) {
 2		 if (correct insertion node)
 3			 IClist.Add (ICsample);
 4		 else { // go deeper in the octree
 5
 6			 xyz = EvaluateOctant();
 7			 if (children[xyz]==NULL) {
 8				 temp = new ICNode();
 9				 // Update new branch into the octree
10				 if (!CAS (children[xyz], NULL, temp))
11					 free temp;
12			 }
13			 // irelevant to whether this thread created the subtree
14			 // someone must have created anyway
15			 // recurse the insertion of ICsample onto the subtree
16			 children[xyz].insert (ICsample);
17		 }
18	 }

Figure 7. The wait-free IC insert method. This method ensures that the octree grows dynamically without
the use of busy-waiting or blocking.

 1	 Irradiance Cache::getIrradiance(Irr) {
 2		 Irr = {0,0,0};
 3		 <Traverse the octree>
 4			 for (qNode * tNode = qHead; tNode != NULL; tNode = tNode —>next) {
 5				 for (i = 0; i < qNodeSize; i++)
 6					 if (tNode —>records[i] != NULL) {
 7						 <verify validity of sample>
 8						 <extrapoloate irradiance; add to Irr>
 9					 }
10		 }
11		 if (found) return true;
12		 else return false;
13	 }

Figure 8. The wait-free IC getIrradiance method. The method takes into account the dynamic nature of
the ICList construction in the wait-free IC.

74	 September/October 2011

Feature Article

picked them to provide a range of geometric com-
plexity, physical dimensions, and lighting condi-
tions. We rendered all scenes at 640 × 480 resolu-
tion. We use the following labels for the methods:
traditional sequential (TRA), lock based (LCK), local
write (LW), and wait free (WF). Tables detailing the
results for still images and animation are at http://
doi.ieeecomputersociety.org/10.1109/MCG.2010.80.

Still Images
We varied the number of threads, and thus the
number of used cores, up to 16 for the Nehalem
architecture and 24 for the Dunnington architec-
ture. We obtained the results for a single thread
using TRA, with no data-access-control, and com-
puted the speedup for the different techniques with
respect to the sequential timings. Each image was
calculated with an empty IC to show a worst-case
scenario with maximal irradiance calculations.

Figures 10 and 11 present the speedup, normal-
ized number of evaluated IC samples, and effi-
ciency for both architectures. Each metric is the
average over the five scenes. We normalized the
metrics with respect to the results obtained for the
same scene with one single thread and the tradi-
tional approach to the IC (no data-access-control).
Absolute values particular to each scene are there-
fore irrelevant, as long as the behavior was similar

across the different scenes for each access-control
mechanism. We measured worst-case standard de-
viations of 14.2 and 4.2 percent for, respectively,
absolute speedup and the normalized number of
generated IC samples. The low worst-case values
indicate that we can use these averages as reliable
statistics to analyze our results.

For absolute speedup, Figures 10a and 11a in-
clude a dashed line depicting the linear speedup
possible if the parallel solution incurred no algo-
rithmic or implementation penalties. For the Ne-
halem architecture with more than eight threads,
linear speedup increased only 30 percent with
each additional logical core, corresponding to
Intel’s claim about hyperthreading’s maximum
speed improvement.11

For all experiments with the Nehalem system
and up to 14 threads in the Dunnington case, LW
performed and scaled worse than the two other
algorithms. This is because only one frame was
rendered and the local caches merged only at the
end of the frame, so no sharing actually occurred.
Each thread had to evaluate all irradiance samples
that projected into its assigned tiles of the image
plane, leading to work replication. This is evident
by the number of evaluated irradiance samples (see
Figures 10a and 11a), which increased dramatically
with the level of concurrency.

(a) (b)

(c) (d) (e)

Figure 9. The five scenes used in the experiments: (a) conference room (190k polygons), (b) Sponza (66k polygons), (c) Cornell
(48k polygons), (d) desk (12k polygons), and (e) office (20k polygons). The scene provide a range of geometric complexity,
physical dimensions, and lighting conditions, all rendered at 640 × 480 resolution.

	 IEEE Computer Graphics and Applications� 75

The performance difference between LCK and
WF became evident as the number of threads in-
creased: time waiting for locks grew, causing a
major performance loss. The wait-free algorithm
scaled much better. With fewer threads, LCK per-
formed similarly to WF because the computation
spent most of the time evaluating new irradiance
samples, which isn’t a critical region of the code.
As the number of threads increased, the render-
ing performed more range searches. Because LCK
serialized these searches, it incurred a perfor-
mance penalty. Figures 10a and 11a clearly show
that LCK’s performance loss isn’t due to work rep-
lication. In fact, the total number of IC samples
evaluated by LCK and WF decreased above a cer-
tain number of threads. Success in finding valid
samples to interpolate from depended on the or-
der in which the threads requested and evaluated
samples. Concurrent rendering of multiple image
plane tiles quickly filled the IC with samples that

were better distributed over object space, result-
ing in more successful range searches than with
the sequential approach. Above a significant num-
ber of threads, LCK’s serialization penalty became
larger than the overhead associated with work
replication, and it performed even worse than LW
(see Figure 11).

Parallel algorithms seldom exhibit linear speedup
because of overheads, such as load imbalance, work
replication, and communication and synchroniza-
tion costs. Wait-free access control can minimize
the last two overheads; it exhibited almost linear
speedup and, consequently, a nearly constant effi-
ciency of 0.9 on systems up to 24 cores (see Fig-
ures 10b and 11b). With around 14 cores on the
Dunnington system, LCK speedup reached an in-
flection point and started decreasing, showing that
lock-based approaches don’t scale with increas-
ing levels of concurrency. On the other hand, WF
speedup grew linearly up to 24 cores, although at

No. of threads

No. of threads

12

10

8

8

6

4

2

1.1

1.0

0.9

0.8

0.7

(a)

(b)

1 2 4 6 8 10 12 14 16
0.85

0.90

0.95

1.00

1.05

1.10

1.15
A

bs
ol

ut
e

sp
ee

du
p

Ef
�c

ie
nc

y

N
or

m
al

iz
ed

 n
o.

 o
f I

C
 s

am
p

le
s

1 2 4 6 8 10 12 14 16

WF
LW
LCK

WF LCK
Wait free (WF)
Solution that incurs no algorithm or implementation penalties

Local write (LW) IC samples:Speedup: Lock based (LCK)
LW

Figure 10. Performance for still images on the Nehalem architecture: (a) speedup and the normalized number
of IC samples and (b) efficiency. (All values are averaged over the five scenes used in the experiments.) The
wait-free IC presents an efficiency above 94 percent up to 16 logical (hyperthreaded) cores.

76	 September/October 2011

Feature Article

a rate slightly lower than the increase in the num-
ber of cores. The WF curve’s shape suggests that
any eventual inflection point is still far from being
reached, which demonstrates its superior scalabil-
ity potential. The shared-memory parallel ray tracer
also incurs overheads such as workload distribution
and results gathering, which were partially respon-
sible for the small deviation from linear speedup
with WF.

Animations
Figure 12 shows, for the Sponza and conference
room scenes running on 24 cores on the Dun-
nington system, the frame rate and the number
of IC samples evaluated per frame when running
an animation of 36 frames while the camera per-
formed a 360-degree rotation around the scene
(10 degrees from frame to frame). Each frame
reused previously created cache samples while si-

multaneously calculating new ones. This provides
a performance overview of mixed evaluation and
interpolation, unlike the case of the still images.
For each scene, the first frame is the equivalent of
one of the still images, where the cache is totally
empty and all the samples must be generated.

Clearly, LCK performs worse than LW and WF.
Because the IC won’t be empty except for the first
frame, the computation can reuse many irradi-
ance samples. However, LCK serializes all range
searches to locate these samples, thus severely af-
fecting performance. LCK achieves the best ren-
dering time for the first frame, suggesting that
temporal reuse of previously calculated irradiance
samples is worse than recalculating these values,
which completely contradicts the rationale behind
the IC.6 We can thus conclude that synchroniza-
tion overheads make such lock-based access mech-
anisms prohibitive when rendering animations of

No. of threads

1 2 4 6 8 10 161412 18 2220 24

No. of threads

1 2 4 6 8 10 161412 18 2220 24

0.80

0.95

0.10

1.25

1.40

1.55

1.70

N
or

m
al

iz
ed

 n
o.

 o
f I

C
 s

am
p

le
s

24

20

16

12

8

4

0

(a)

(b)

A
bs

ol
ut

e
sp

ee
du

p

WF
LW
LCK

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Ef
�c

ie
nc

y

WF LCK
Wait free (WF)
Solution that incurs no algorithm or implementation penalties

Local write (LW) IC samples:Speedup: Lock based (LCK)
LW

Figure 11. Performance for still images on the Dunnington architecture: (a) speedup and the normalized
number of IC samples and (b) efficiency. (All values are averaged over the five scenes used in the experiments.)
The wait-free IC achieves close to ideal speedup and, at 24 cores, is twice as fast as its closest rival.

	 IEEE Computer Graphics and Applications� 77

static scenes on highly concurrent shared-memory
systems.

WF outperforms LW because the former shares
irradiance samples immediately without any extra
synchronization overhead associated with reading,
whereas the latter doesn’t share samples in a
frame and so incurs extensive, costly evaluations
of more indirect diffuse irradiance values. The
bars in Figure 12 clearly show that, for WF and
LW, performance variations from frame to frame
correlate highly with the number of IC samples
evaluated per frame. More important, these graphs
show that WF’s better results come from evaluating
fewer irradiance samples, which is a consequence
of efficient data sharing among threads.

In summary, LCK is penalized mostly by read-
ing serialization, and LW is penalized by work
replication. WF efficiently shares IC values while
minimizing writing overheads and eliminating
synchronization overheads associated with con-
current reads.

Multicore and multiprocessor systems now
represent the standard form of desktop

computing. Soon, such systems will likely have a
degree of parallelism larger than what’s available
on current machines. So, the relevance of efficient,
scalable, and reliable shared data structures for
maximizing performance is continually increas-
ing. Wait-free data structures offer an alternative
to traditional locking and blocking approaches and
enable traditional graphics algorithms to exploit
modern hardware. The shared-memory IC we’ve
demonstrated shows such techniques’ potential.
Our algorithm has let us achieve close to interac-
tive rates for ray tracing with global illumination.
We hope our solution will motivate similar paral-
lel methods in other computer graphics areas.�

Acknowledgments
Partial funding for this work came from the Portuguese
Foundation for Science and Technology’s Project IGIDE

N
o.

 o
f I

C
 s

am
p

le
s

Fr
am

es
 p

er
 s

ec
on

d

(a)

(b)

1 3 5 7 9 11 13 15 17 19

Frame number

21 23 25 27 29 31 33 35

3,000

2,250

1,500

750

08

6

4

2

0

N
o.

 o
f I

C
 s

am
p

le
s

Fr
am

es
 p

er
 s

ec
on

d

6,000

4,000

5,000

2,000

3,000

1,000

0

8

10

12

6

4

2

0
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

WFIC samples:Speedup: Wait free (WF) Local write (LW) Lock based (LCK) LW

Frame number

WFIC samples:Speedup: Wait free (WF) Local write (LW) Lock based (LCK) LW

Figure 12. Performance for animation on the Dunnington system with 24 cores, for the (a) Sponza and
(b) conference room scenes. The wait-free IC outperforms the other methods for both scenes.

78	 September/October 2011

Feature Article

(Interactive Global Illumination within Dynamic
Environments), grant PT-DC/EIA/65965/2006, and
from the United Kingdom’s Engineering and Physical
Sciences Research Council, grant EP/D069874/2.
Greg Ward provided the office and conference scenes
from the Radiance package, and Stanford’s Graphics
Group provided the bunny model from the Stanford
3D Repository. Alberto Proença granted us access to
the two multicore systems.

References
	 1.	 M. Herlihy, “Technical Perspective: Highly Concur

rent Data Structures,” Comm. ACM, vol. 52, no. 5,
2009, p. 99.

	 2.	 G. Ward, “A Ray Tracing Solution for Diffuse
Interreflection,” Proc. Siggraph, ACM Press, 1988,
pp. 85–92.

	 3.	 M. Herlihy, V. Luchangco, and M. Moir, “Obstruction-
Free Synchronization: Double-Ended Queues as
an Example,” Proc. 23rd Int’l Conf. Distributed
Computing Systems (ICDCS 03), IEEE CS Press, 2003,
pp. 522–529.

	 4.	 P. Dubla et al., “Wait-Free Shared-Memory Irradiance
Cache,” Proc. Eurographics Symp. Parallel Graphics
and Visualization (ESPGV 09), Eurographics Assoc.,
2009, pp. 57–64.

	 5.	 I. Wald et al., “State of the Art in Ray Tracing
Animated Scenes,” Eurographics 2007 State of the Art
Reports, Eurographics Assoc., 2007, pp. 89–116.

	 6.	 G. Ward, “The Radiance Lighting Simulation and
Rendering System,” Proc. Siggraph, ACM Press, 1994,
pp. 459–472.

	 7.	 R. Koholka, H. Mayer, and A. Goller, “MPI-Parallelized
Radiance on SGI CoW and SMP,” Proc. 4th Int’l ACPC
Conf. (ParNum 99), Springer, 1999, pp. 549–558.

	 8.	 D. Robertson et al., “Parallelization of Radiance for
Real Time Interactive Lighting Visualization Walk

throughs,” Proc. 1999 ACM/IEEE Conf. Super
computing, ACM Press, 1999, article 61.

	 9.	 K. Debattista, L.P. Santos, and A. Chalmers,
“Accelerating the Irradiance Cache through Parallel
Component-Based Rendering,” Proc. Eurographics
Symp. Parallel Graphics and Visualization, Eurographics
Assoc., 2006, pp. 27–34.

	10.	 M.P. Herlihy and J.M. Wing, “Linearizability: A
Correctness Condition for Concurrent Objects,”
ACM Trans. Programming Languages and Systems, vol.
12, no. 3, 1990, pp. 463–492.

	11.	 D. Marr et al., “Hyper-threading Technology
Architecture and Microarchitecture,” Intel Technology
J., vol. 6, no. 1, 2002, pp. 4–15.

	12.	 I. Wald, S. Boulos, and P. Shirley, “Ray Tracing
Deformable Scenes Using Dynamic Bounding
Volume Hierarchies,” ACM Trans. Graphics, vol. 26,
no. 1, 2007, article 6.

Kurt Debattista is an assistant professor at the University
of Warwick’s International Digital Laboratory, WMG. His
research focuses on high-fidelity rendering, parallel comput-
ing, high-dynamic-range imaging, and serious games. De-
battista has a PhD in computer science from the University
of Bristol. Contact him at k.debattista@warwick.ac.uk.

Piotr Dubla is a graphics programmer at Rockstar North,
a game studio, while completing his PhD at the University
of Warwick’s International Digital Laboratory, WMG. His
research interests include interactive ray tracing, global il-
lumination, offline physically based rendering, and realistic
simulations of light transport as well as parallel processing
and data structures for computer graphics and procedural
content generation. Dubla has a BSc Hons (with distinc-
tion) in computer science from the University of Cape Town.
Contact him at p.b.dubla@wariwck.ac.uk.

Luís Paulo Peixoto dos Santos is an auxiliary professor
in Universidade do Minho’s Department of Computer Sci-
ence. His research interests include high-fidelity interactive
rendering and parallel processing. Santos has a PhD in par-
allel processing from Universidade do Minho. Contact him
at psantos@di.uminho.pt.

Alan Chalmers is a professor at the University of Warwick’s
International Digital Laboratory, WMG. His research inter-
ests include high-fidelity graphics, multisensory perception,
virtual archaeology, and parallel rendering. Chalmers has
a PhD in computer science from the University of Bristol.
He is the honorary president of Afrigraph and a former vice
president of ACM Siggraph. Contact him at a.g.chalmers@
warwick.ac.uk.

Selected CS articles and columns are also available

for free at http://ComputingNow.computer.org.

NEW from

Y2K: BEWARE!
IT’S NOT OVER YET
by Robert L. Glass
In these new and updated essays told around
the proverbial IT camp� re, Robert Glass looks
back at the Y2K crisis to � nd lessons applicable
to future crises coming all too soon.

PDF edition • $12 list / $9 members • 15 pp.

Order Online:
COMPUTER.ORG/STORE

