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Abstract

A methodology to solve nonconvex constrained mixed-integer nonlinear pro-
gramming (MINLP) problems is presented. A MINLP problem is one where some
of the variables must have only integer values. Since in most applications of the
industrial processes, some problem variables are restricted to take discrete values
only, there are real practical problems that are modeled as nonconvex constrained
MINLP problems. An efficient deterministic method for solving nonconvex con-
strained MINLP may be obtained by using a clever extension of Branch-and-Bound
(B&B) method. When solving the relaxed nonconvex nonlinear programming sub-
problems that arise in the nodes of a tree in a B&B algorithm, using local search
methods, only convergence to local optimal solutions is guaranteed. Pruning cri-
teria cannot be used to avoid an exhaustive search in the search space. To address
this issue, we propose the use of a genetic algorithm to promote convergence to
a global optimum of the relaxed nonconvex NLP subproblem. We present some
numerical experiments with the proposed algorithm.
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1 Introduction

A wide range of applications in the industrial processes are modeled as nonconvex con-
strained mixed-integer nonlinear programming (MINLP) problems, due to the restric-
tions imposed on some problem variables to take only integer values. In particular, one
may find applications which include gas network problems, nuclear core reloaded prob-
lems, cyclic scheduling trim-loss optimization in the paper industry, synthesis problems,
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layout problems, thermal insulation systems. Other examples of this kind of problems
appears in engineering designs, in metabolic pathway engineering or in molecular design
(see for instance [1, 2, 4, 14, 19]).

In this paper we consider a mixed-integer nonlinear program in the following form:

min f(x, y)
subject to gj(x, y) ≥ 0, j ∈ J

x ∈ X, y ∈ Y

(1)

where X = {x ∈ R
n : lx ≤ x ≤ ux} with lx, ux ∈ R

n and Y = {y ∈ Z
p : l1y ≤ y ≤ u1y}

with l1y, u
1
y ∈ Z

p. f : Rn+p → R and g : Rn+p → R
m are continuously differentiable

functions, J is the index set of inequality constraints, and x and y are the continuous
and discrete/integer variables, respectively. If the objective function f is convex and
the constraint functions gj are concave, the problem is known as convex, otherwise the
problem is a non-convex MINLP [3].

It is known that nonconvex MINLP problems are the most difficult since they
combine all the difficulties arising from the mixed-integer linear programming and non-
convex constrained nonlinear programming (NLP). Taking into account that this kind
of problems appears very frequently in industrial processes, it is fundamental to de-
velop solution techniques to efficiently solve nonconvex constrained MINLP problems
[8, 18, 22].

Therefore, the goal of this study is to analyze and propose a method for nonconvex
constrained MINLP problems. The proposed hybrid method combines two strategies:
a Branch-and-Bound (B&B) method to find integer solutions and a genetic algorithm
(GA) type method to promote convergence to global solutions of the relaxed nonconvex
NLP subproblems.

The paper is organized as follows. In Section 2, the proposed hybrid method is
presented and B&B and GA methods are briefly described. Section 3 presents nu-
merical results for 21 MINLP benchmark problems from the open literature and some
conclusions are drawn. Finally, Section 4 presents the major conclusions and future
work. The set of test problems used in this work is listed in the appendix.

2 The proposed hybrid method

To solve nonconvex constrained MINLP problems, a B&B-type method is used. Initially
developed to solve combinatorial optimization problems, the B&B strategy has evolved
to a method for solving more general problems, like for example the MINLP (1). B&B
computes lower and upper bounds on the optimal value of f over successively refined
partitions of the search space. The generated partition elements are saved in a list.
Then they are selected for further processing and partition. The partition elements
are deleted when their lower bounds are no lower than the best known upper bound
for the problem. While branching on a binary variable creates two subproblems with
that variable fixed in both problems, branching on a continuous variable in nonlinear
programming may require an infinite number of subproblems. Furthermore, the relaxed
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NLP subproblem that appears at each node of the B&B tree search may be nonconvex
and it may be difficult to solve to global optimality. Classical gradient-based or even
derivative-free local search methods may fail in solving nonconvex NLP problems. Thus,
the herein proposed methodology for solving nonconvex MINLP uses a heuristic to solve
the relaxed nonconvex NLP subproblems of the B&B tree search.

Existing methods for global optimization can be classified into two categories [15]:
stochastic methods and deterministic methods. Stochastic methods sample the ob-
jective function for a number of points, with an outcome that is random. They are
particularly suited for problems that possess no known structure that can be exploited,
and in general do not require derivative information. In these methods, a probabilis-
tic convergence guarantee can be provided. The genetic algorithm is an example of a
population-based stochastic method. On the other hand, deterministic methods exploit
analytical properties of the problem to generate a sequence of points converging to a
global solution. They typically provide a mathematical guarantee for convergence to a
minimum in a finite number of steps. The B&B method is a deterministic method.

In this paper, a new methodology to solve problem (1), based on a deterministic
method and on a stochastic population-based method is presented. It relies on a B&B
scheme and uses a genetic algorithm to promote convergence with a high probability to
a global optimum of the relaxed nonconvex NLP subproblem (that arises in each node
of the tree in the B&B algorithm). A brief description of the two strategies combined
in the herein proposed hybrid method is presented below.

2.1 Branch-and-Bound method

B&B, originally devised for MILP (Mixed Integer Linear Program), can be applied
to mixed-integer nonlinear problems too. The reader is referred to one of the first
references to nonlinear Branch-and-Bound [9] and also to MINLP problems (see [16, 17]
and the references therein included).

The B&B methodology can be explained in terms of a tree search. Initially, all
integer variables are relaxed and the resulting relaxed NLP subproblem is solved. If
all integer variables take an integer value at the solution then this solution also solves
the MINLP. Usually, some integer variables take non-integer values. In that case, a
tree search is performed in the space of the integer variables. The B&B algorithm
selects one of those integer variables which take non-integer value and branches on it.
Branching generates new NLP problems by adding simple bounds respectively to the
new relaxed NLP subproblems. After that, one of these new subproblems is selected
and solved.

The solution of each subproblem provides a lower bound for the subproblems in
the descent nodes of the tree. This process continues until the lower bound exceeds the
best known upper bound, the NLP subproblem is infeasible, or the solution provides
integer values for the integer variables. The integer solutions (at the nodes of the tree)
give upper bounds on the optimal integer solution. This process stops when there are
no more nodes to explore.
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2.2 The Genetic Algorithm

To solve the nonconvex MINLP problem the herein proposed approach combines the
B&B method (described above) and the genetic algorithm, which is used to solve each
relaxed nonconvex NLP subproblem that appears in the nodes of the B&B tree. The
relaxed NLP subproblem assumes that all variables are continuous and has the form
(according to the MINLP model (1)):

min f(z)
subject to gj(z) ≥ 0, j ∈ J

l ≤ z ≤ u

(2)

where z = (x, y), z ∈ R
m and m = n + p. Further, the lower and upper bounds

of the problem satisfy: l =
(

lx, l
i
y

)

, u =
(

ux, u
i
y

)

with i ≥ 1 an integer index and
[liy, u

i
y] ⊂ [li−1

y , ui−1
y ]. The used notation means that the index i refers to a problem

that is in a descent node of the problem i− 1.
A variety of techniques have been proposed to handle inequality constraints in

NLP problems. The most widely used techniques rely on penalty functions. Here
we are interested in a particular case, known as Lagrangian barrier function. Using
the Lagrangian approach to solve the NLP problem in the form (2), a subproblem is
formulated by combining the objective function and the nonlinear constraint functions
in the barrier function Θ as follows:

Θ(z, λ, s) = f(z)−
∑

j∈J

λj sj log(gj(z) + sj). (3)

where λj ≥ 0 represents an estimate of the Lagrange multiplier associated with the
constraint gj(z) ≥ 0 (j ∈ J) and the components sj of s are positive and are known as
shifts. The general problem (2) is solved by a sequential minimization of the function
(3) within the region defined by the simple bounds [7]. The method based on this
Lagrangian barrier Θ(z, λ, s) proceeds by fixing λ to some estimate of the optimal
Lagrange multipliers and s to some positive estimate of the initial slack variables, and
then finding a value of z that approximately minimizes Θ. This new iterate z is then
used to update λ, and then s, and the process is repeated. The vector of shifts s depends
iteratively on the value of the multiplier vector and on a classical penalty parameter.
In order to solve the problem (2), the following general algorithmic framework, as
presented in Algorithm 1, is considered [7].

When the subproblem in Step 1 of Algorithm 1 is minimized to a required accuracy
(verified in Step 2 of the algorithm), the Lagrangian multipliers are updated. This leads
to a new function Θ(z, λ, s) and a new simple bound minimization problem. These steps
are repeated until convergence to the optimal solution of (2) is achieved. A detailed
description of the algorithm is shown in [6, 7, 13].

This paper is concerned with the use of the genetic algorithm to solve the subprob-
lem that appears in Step 1 of Algorithm 1. The GA may be viewed as an evolutionary
process wherein a population of solutions evolves over a sequence of iterations. Genetic
algorithm selects individuals at random from the current population to be parents and
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Algorithm 1 (Lagrangian barrier method)

Step 0. Given initial estimates for z and initial estimates for λ and for penalty
parameter. Set ko = 0.

Step 1. Compute shifts s.
Use GA to compute z by solving
minz Θ(z, λ, s) subject to l ≤ z ≤ u.

Step 2. Test for convergence: Stop, go to Step 3 or go to Step 4.
Step 3. Update Lagrange multiplier estimates. Maintain the penalty parameter.

Increase ko and go to Step 1.
Step 4. Reduce the penalty parameter. Maintain the multiplier estimates.

Increase ko and go to Step 1.

uses this individuals to produce the children for the next generation. Over successive
iterations and using the common operations of selection, crossover, mutation and scal-
ing, the population “evolves” toward an optimal solution [13]. The basic structure of
GA can be summarized as in Algorithm 2.

Algorithm 2 (GA algorithm)

Step 0. Create a random initial population. Set ki = 1.
Step 1. Evaluate population using fitness Θ.
Step 2. While stopping criteria are not satisfied:

Select solutions for next population based on their fitness.
Perform crossover and mutation.
Accept new generation.
Evaluate population using fitness Θ. Increase ki and go to Step 2.

As far as the termination criteria are concerned, GA stops if one of the following
conditions holds: the number of iterations exceeds a maximum threshold; the CPU time
exceeds a maximum threshold (in seconds); or the cumulative change in the fitness Θ
over stall iterations is less than or equal to a function tolerance.

3 Numerical Results

The proposed method (hereafter called BBGA) was implemented in Matlab and uses
a B&B method combined with the GA method – ga function from the Optimization
Tolbox of Matlab. The ga function is called inside the B&B algorithm (to solve the
relaxed NLP in each node of the tree)and was run using the default options.

A collection of MINLP problems with inequality constraints and simple bounds is
used to analyze the practical behaviour of BBGA. A comparison between this study,
a previous work and other results in the literature is presented. The set of tested
problems is displayed in the appendix. The problems are denoted by P1, P2, P2a, P3,
· · ·, P20. For each problem the solver was run 30 times. All experiments were run on a
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HP 2230s computer with an Intel(R) Core(TM)2 Duo CPU P7370 2.00GHz processor
and 3 GB of memory.

To analyze the behaviour of the BBGA method and to perform a comparison with
other results, Table 1 lists all the problems tested in this study “Prob.”, the optimal
solutions known in the literature,“Optimal f”, and the related references, “Ref”.

Table 1: Solutions obtained from the literature.

Prob. Ref Optimal f Prob. Ref Optimal f Prob. Ref Optimal f

P1 [10] 6.83325E-13 P7 [10] -227.766 P14 [21] -32217.4
P2 [10] 8.0839E-16 P8 [10] 0.0 P15 [12] -17
P2a [10] 6.66341E-11 P9 [21] 4.5796 P16 [11] -8.5
P3 [10] -0.35239 P10 [20] 2.00 P17 [20] -5.68
P4 [10] 1.07746E-12 P11 [21] 2.1247 P18 [20] 2.00
P5 [10] -0.407462 P12 [21] 1.076543 P19 [20] 3.4455
P6 [10] -18.0587 P13 [21] 3.557473 P20 [20] 2.20

Table 2: Numerical results obtained for MINLPs with simple bounds.

Average
Prob. m p % success time (s) f eval. Best f∗ Average f∗ σ

P1 2 1 100 0.8 5779 4.930E-15 2.986E-08 2.885E-08

P2 2 1 13 1.0 7291 4.497E-10 1.86656E-08 1.754E-08
87 1.0 7293 7.659E-11 1.7296E-08 1.751E-08

P2a 4 1 17 1.3 7965 3.984E-08 2.967E-05 3.158E-05
50 1.1 7765 1.574E-08 1.010E-05 3.159E-05

P3 2 1 67 0.6 4642 -0.35239 -3.524E-01 5.106E-05

P4 2 1 13 1.0 7802 6.692E-13 1.323E-09 9.551E-10
87 1.1 8403 2.700E-11 4.383E-07 2.136E-06

P5 2 1 33 1.2 4369 -0.40746 -4.075E-01 1.997E-06
53 1.3 4492 -0.40746 -4.075E-01 4.879E-08

P6 2 1 13 1.4 5271 -18.0587 -1.806E+01 1.582E-07
83 1.6 6289 -18.0587 -1.806E+01 9.678E-04

P7 2 1 17 2.1 8161 -227.766 -2.278E+02 8.874E-04
70 2.0 7680 -227.766 -2.278E+02 2.249E-03

P8 2 1 100 0.8 5829 3.659E-10 5.127E-08 1.536E-07

The obtained results with BBGA method are presented in two separate tables.
Table 2 contains the results with the problems with simple bounds; Table 4 contains
the results from the problems with inequality constraints. In Table 2 and Table 4,
the best objective function value “Best f∗” obtained over the 30 runs is reported for
each test problem. In order to show more details concerning the quality of the obtained
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solution, the average “Average f∗” and the standard deviation “σ” of the best obtained
function values are also reported in both tables. Moreover, success rates of obtaining
the global minimum “% success”, the average numbers of CPU time “time” (in seconds)
and function evaluations “f eval.”, are shown in columns 4–6. It is also reported, in
columns 1–3, the name of the problem, the total number of variables, “m”, and the
number of integer variables, “p”.

From Table 2 it is possible to observe that the set of tested problems covers different
situations: problems with small size, problems with or without the same number of
integer/continuous variables and problems with one or more than one global minimizer.

As it can be seen, BBGA method has a success rate superior to 85% for 7 problems,
out of 9 problems. It is noteworthy that the BBGA method has a success rate equal to
100% for 4 problems. The accuracy of the achieved solutions, in terms of “Best f∗” is
very high when compared to the solutions reported in Table 1; the standard deviations
of the f values are close to zero.

Table 3 summarizes the results obtained, for this set of problems using a strategy
based on a B&B scheme and a simulated annealing heuristic pattern search – BBSAHPS
method (see [10] and the references included).

Table 3: Numerical results obtained for Problems P1 – P8 from [10].

P1 P2 P2a P3 P4 P5 P6 P7 P8

% success 46 36 87 87 19, 18 49 49 52 42
26 3 6, 6 40 43 41

Av. time (s) 0.1 0.1 0.3 0.1 0.1 0.0 0.1 0.1 0.1
0.2

Av. f eval. 991 744 1626 966 918, 842 555 610 643 656
733 1615 859, 865 562 593 573

It is possible to observe, from Table 2 and Table 3, that the computational cost in
terms of CPU time required by the proposed BBGA method, as well as the required
number of function evaluations are greater than those of BBSAHPS method. For
problem P4, BBSAHPS is able to find four global minimizers, while BBGA finds only
two global minimizers. On the other hand the successful rate of BBGA is much better
than the successful rate of BBSAHPS: BBGA method has a success rate greater than
67% (problem P2a and P3) and equal to 100% for 4 problems while BBSAHPS has a
successful rate less than 50% for three problems.

To address the solution of constrained mixed-integer nonlinear programs, a list
of well-known problems, in particular, some taken from minlplib [5, 20] is used. The
obtained results, with BBGA method, for constrained MINLP are reported in Table 4.
The dimension of these problems range between 2 and 7 avriables. The number of
inequality constraints range between 1 and 9. This set of problems provides a variety
of small MINLP problems.

As it can be seen, BBGA method has a success rate superior to 87% for 8 problems,
out of 12 problems. It is noteworthy that the BBGA method has a success rate equal to
100% for 5 problems. Some runs did not converge to the global minimum. For instance,
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Table 4: Numerical results obtained for constrained MINLPs.

Average
Prob. m p % success time (s) f eval. Best f∗ Average f∗ σ

P9 7 4 53 13.7 46678 4.5797 4.5987 2.86E-02

P10 2 1 100 2.5 10481 2.00 2.00 6.84E-05

P11 2 1 100 2.4 11527 2.1245 2.1246 2.08E-04

P12 3 1 20 3.3 13635 1.076864 1.078992 2.40E-03

P13 7 4 23 13.5 47282 3.557742 3.564265 7.63E-03

P14 5 2 100 1.3 5220 -32217.4 -32217.4 1.48E-11

P15 2 1 100 3.4 14292 -17 -17 1.80E-04

P16 2 1 97 6.0 25752 -8.5 -8.5 1.55E-04

P17 3 2 87 65.0 247055 -5.6848 -5.684E+00 1.941E-03

P18 4 2 67 3.2 12808 2.000 2.000E+00 8.920E-07

P19 2 1 100 7.8 23489 3.4455 3.446E+00 1.981E-05

P20 4 3 87 4.5 15290 2.20 2.200E+00 5.840E-05

problem P16 has 3% of the runs that have converged to a strong local minimum [11].
Exceptions are problems P12 and P13, which have a successful rate less than 50%.
With all these problems the BBGA method could successfully find the global minimum,
taking into account the integrality of some variables. The problem P17 requires a larger
CPU time when compared with the other problems. This is related with the definition
of the problem and the space of the integer variables.

The accuracy of the achieved solutions, in terms of “Best f∗”, and for almost all
problems, is very good and the consistency of our proposed method is high, since the
standard deviations of the f values are close to zero. For problem P11, if a comparison
is made in terms of “Best f∗”, from Table 1, it is possible to observe that the solution
of BBGA method is slightly better than those reported in the literature.

For problem P12 the objective value reported in Table 1 is slightly better than
the one obtained with the BBGA. On the other hand, it is possible to observe that
BBGA method needs much less functions evaluations than the algorithms used in [21].
In a general way, BBGA method needs much more function evaluations. This is due to
the use of a GA method to solve the relaxed NLP problems in each node of the B&B
tree search. P17 is the problem with the highest average time and average function
evaluations.

Although the chosen problems are small-dimensional, it is important to emphasize
that almost all the problems represent real applications of MINLPs.
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4 Conclusions and future work

This paper presents a method, herein denoted by BBGA, which relies on a deterministic
method and on a stochastic population-based method to solve nonconvex constrained
MINLP problems. A Branch-and-Bound procedure is combined with a Lagrangian
barrier-function-based genetic algorithm to find the minimum of relaxed nonconvex
NLP problems.

The BBGA method was implemented using Matlab and some results are shown
for 21 test problems, from which 12 are constrained MINLP problems. This method
is able to find the global optimum of all problems with integer restrictions on some
variables. A comparison between the results from BBGA and the results from the
literature is presented. We may conclude that the performance of the BBGA method is
quite satisfactory, since the results obtained with BBGA method are competitive with
the results reported in the literature.

The reported CPU time is in general high. Thus, an improvement in the BBGA
method in order to reduce computational requirements will be carried out in the future.
Future developments will be focused, also, on solving sets of medium and large scale
problems.

Appendix: Details of test problems

The collection of 21 test problems used in this study is listed below [10, 11, 12, 20, 21].

Problem 1 (P1)

min (1.5 − x1(1 − x2))
2 + (2.25 − x1(1 − x2

2
))2+

(2.625 − x1(1 − x3

2
))2

x1 ∈ {−5, · · · , 5} , x2 ∈ [−4.5, 4.5]

Problem 2 (P2)

min (x1 − 1)
2
+

n
∑

i=2

i(2x
2

i
− xi−1)

2

x1 ∈ {−10, · · · , 10} , xi ∈ [−10, 10] , i = 2...n,

(P2) for n = 2;

(P2a) for n = 4

Problem 3 (P3)

min 0.25x4

1
− 0.5x2

1
+ 0.1x1 + 0.5x2

2

x1 ∈ [−10, 10] , x2 ∈ {−10, · · · , 10}

Problem 4 (P4)

min cos2 (x1) + sin2 (x2)
x1 ∈ [−5, 5] , x2 ∈ {−5, · · · , 5}

Problem 5, 6, 7

min 10mx2

1
+ x2

2
− (x2

1
+ x2

2
)2 + 10−m(x2

1
+ x2

2
)4

(P5): m = 1 and x2 ∈ [−2, 2] , x1 ∈ {−2, · · · , 2};

(P6): m = 2 and x2 ∈ [−4, 4] , x1 ∈ {−4, · · · , 4};

(P7): m = 3 and x2 ∈ [−8, 8] , x1 ∈ {−8, · · · , 8}

Problem 8 (P8)

min (x2

1
+ x2 − 11)2 + (x1 + x2

2
− 7)2

x2 ∈ [−2, 4] , x1 ∈ {−2, · · · , 4}

Problem 9 (P9)

min (y1 − 1)2 + (y2 − 2)2 + (y3 − 1)2−

ln(y4 + 1) + (x1 − 1)2 + (x2 − 2)2+

(x3 − 3)2

s. t. y1 + y2 + y3 + x1 + x2 + x3 ≤ 5

y2

3
+ x2

1
+ x2

2
+ x2

3
≤ 5.5

y1 + x1 ≤ 1.2
y2 + x2 ≤ 1.8
y3 + x3 ≤ 2.5
y4 + x1 ≤ 1.2

y2

2
+ x2

2
≤ 1.64

y2

3
+ x2

3
≤ 4.25

y2

2
+ x2

3
≤ 4.64

x1 ∈ [0, 1.2] , x2 ∈ [0, 1.281] ,
x3 ∈ [0, 2.062] ,
y1, y2, y3, y4 ∈ {0, 1}

Problem 10 (P10)

min 2x + y

s. t. 1.25 − x2 − y ≤ 0
x + y ≤ 1.6
x ∈ [0, 1.6] , y ∈ {0, 1}

Problem 11 (P11)

min −y + 2x − ln(x/2)
s. t. −x − ln(x/2) + y ≤ 0

x ∈ [0.5, 1.4] , y ∈ {0, 1}

Problem 12 (P12)

min −0.7y + 5(x1 − 0.5)2 + 0.8

s. t. −ex1−0.2 − x2 ≤ 0
x2 + 1.1y ≤ −1
x1 − 1.2y ≤ 0.2
x1 ∈ [0.2, 1] , x2 ∈ [−2.22554,−1] ,
y ∈ {0, 1}

Problem 13 (P13)
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min (y1 − 1)2 + (y2 − 1)2 + (y3 − 1)2 − ln(y4 + 1)+

(x1 − 1)2 + (x2 − 2)2 + (x3 − 3)2

s. t. y1 + y2 + y3 + x1 + x2 + x3 ≤ 5

y2

3
+ x2

1
+ x2

2
+ x2

3
≤ 5.5

y1 + x1 ≤ 1.2
y2 + x2 ≤ 1.8
y3 + x3 ≤ 2.5
y4 + x1 ≤ 1.2

y2

2
+ x2

2
≤ 1.64

y2

3
+ x2

3
≤ 4.25

y2

2
+ x2

3
≤ 4.64

x1 ∈ [0, 1.2] , x2 ∈ [0, 1.8] , x3 ∈ [0, 2.5] ,
y1, y2, y3, y4 ∈ {0, 1}

Problem 14 (P14)
min 5.357854x2

1
+ 0.835689y1x3 + 37.29329y1−

40792.141
s. t. 85.334407 + 0.0056858y2x3 + 0.0006262y1x2−

0.0022053x1x3 ≤ 92
80.51249 + 0.0071317y2x3 + 0.0029955y1y2+

0.0021813x2

1
− 90 ≤ 20

9.300961 + 0.0047026x1x3 + 0.0012547y1x1+
0.0019085x1x2 − 20 ≤ 5
x1, x2, x3 ∈ [27, 45] , y1 ∈ {78, · · · , 102} ,
y2 ∈ {33, · · · , 45}

Problem 15 (P15)
min 3y − 5x

s. t. 2y2 − 2y0.5 − 2x0.5y2 + 11y + 8x ≤ 39
−y + x ≤ 3
2y + 3x ≤ 24
x ∈ [1, 10] , y ∈ {1, · · · , 6}

Problem 16 (P16)

min −x − y
s. t. xy − 4 ≤ 0

x ∈ [0, 4] , y ∈ {0, · · · , 8}

Problem 17 (P17)
min −0.00201x4

1
x2x

2

3

s. t. −675 + x2

1
x2 ≤ 0

−0.419 + 0.1x2

1
x3 ≤ 0

x1, x2 ∈ {1, · · · , 200} , x3 ∈ [0.1, 0.2]

Problem 18 (P18)
min 2 + 4x2

3
+ 2x4 + 2x1 + 2x2

s. t. −x3 + 3x4 − 5 ≤ 0
2x3 − x4 − 5 ≤ 0
−2x3 + x4 ≤ 0
x3 − 3x4 ≤ 0
−6x1 + x3 ≤ 0
−5x2 + x4 ≤ 0
x1, x2 ∈ {0, 1} , x3 ∈ [0, 6] , x4 ∈ [0, 5]

Problem 19 (P19)

min 1.1
(

(2x1 − 10)2 + (x − 2 − 5)2
)

+

sin
(

(2x1 − 10)2 + (x − 2 − 5)2
)

s. t. 0.7x1 + x2 ≤ 7
2.5x1 + x2 ≤ 19
x1 ∈ [0, 10] , x2 ∈ {0, · · · , 10}

Problem 20 (P20)
min 5x2

1
+ x2 + x3 + x4

s. t. 3x1 − x2 − x3 ≤ 0
−x1 + 0.1x3 + 0.25x4 ≤ 0
2 − x2 − x3 − x4 ≤ 0
2 − x2 − x3 − 2x4 ≤ 0
x1 ∈ [0.2, 1] , x2, x3, x4 ∈ {0, 1}
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