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Abstract. This papers aims at providing a combined strategy for solving systems of equalities and inequalities. 
The combined strategy uses two types of steps: a global search step and a local search step. The global step relies on a 
tabu search heuristic and the local step uses a deterministic search known as Hooke and Jeeves. The choice of step, at 
each iteration, is based on the level of reduction of the l2-norm of the error function observed in the equivalent system 
of equations, compared with the previous iteration.  
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INTRODUCTION 

Global optimization aims at finding the extreme value of a nonconvex function in a certain feasible region. A 
classical formulation is 
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problem is known as bound constrained global optimization problem. An example of a global optimization problem 
emerges when the global smallest l2-norm error function, related to solving the system of equations 
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where nnF : , is required. In this case,    
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xFx  is the objective function Here, the global minimum, 

and not just a local minimum of problem (1) is to be found. Classical local search methods have some 
disadvantages, when compared to global search methods since the final solution is heavily dependent on the starting 
point of the iterative process and they can be trapped in local minima. In this paper, we are particularly interested in 
solving the following system of equalities and inequalities: 
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where I={1,…,m} and E={m+1,…,n}. Throughout the paper we assume that the vector and its components 
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if : , for any i ϵ{1,…,n}, are continuously differentiable. 

This type of system appears frequently in box constrained variational inequalities and linear or nonlinear 
complementarity problems. Classical methods for solving problem  (2)  use Newton-type methods [2]. Mayne, Polak 
and Heunis proposed in [7] a method that combines the use of a modified Newton step and a conventional first-order 
step. Obtaining a solution of (2) by applying a Levenberg-Marquardt algorithm to solving smoothed problems 
successively, is proposed in [8]. The authors construct a smoothing function to approximate the objective function of 
the problem. First-order derivatives are then required. Other smoothing-type algorithms have been developed for a 
direct solving of systems of inequalities. A proposal relies on using a special two-parameter continuously 
differentiable function )s,( i  to approximate 0)( xfi

, for i=1,…,m, where μ>0, and solving a sequence of  

systems of the form 
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for a monotonically decreasing sequence of  μ↓0, see [6]. A Newton-type method is then used. A similar smoothing 
technique is presented in Zhang and Huang’s paper [9]. Global convergence is therein guaranteed by a nonmonotone 
line search technique.  

One of the simplest way to solve (2) reformulates the inequalities into equalities, making use of the definition  
x+ (max{0,x1},…,max{0,xn})T. Thus, system (2) is equivalent to the following system of equations:   
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Since some functions in the equivalent system (3) are nonsmooth, in particular, the corresponding objective 
function  x  of problem (1) is only once differentiable even if all  xfi

, i ϵ{1,…,n}, are twice continuously 

differentiable, Newton’s method cannot be directly applied to solve it. In this paper, we aim at providing a combined 
derivative-free metaheuristic strategy for solving systems of equalities and inequalities by solving the equivalent 
system of equations (3), using the function  x  as a measure of the progress of the algorithm towards the solution. 

According to the formulation (1), this means that the fitness of each solution x is assessed by evaluating the function 
  at  x. The combined strategy relies on derivative-free search techniques and uses two types of steps: a global 
search step and a local search step. The global step relies on a tabu search heuristic [1,4] and the local step performs 
exploratory and pattern moves as outlined in the Hooke and Jeeves (HJ) method [5]. The choice of step, at each 
iteration, is based on the sufficient reduction observed in the l2-norm error function  x , when compared with the 

previous iteration.  
 

COMBINED GLOBAL TABU SEARCH AND LOCAL SEARCH 
 
The Tabu Search (TS),  introduced by Cvijović and Klinowski [1] for continuous global optimization, is an 

iterative process which operates in the following way. The algorithm starts with a randomly generated initial 
solution, x, and by applying pre-defined moves in its neighborhood it generates a set Y of trial solutions. The 
objective function to be minimized,  x , is evaluated at all solutions in Y, and the best of all, y*, becomes the 

current solution,  x←y* (even if it is worse than x). When uphill moves are accepted, the algorithm avoids to get 
trapped in a local minimum. The previous procedure is repeated until a given stopping condition is reached.  To 
avoid cycling, since a point already visited may be generated again, a set of points already visited are stored in a list, 
called Tabu List (TL). The trial solutions in Y that belong to the TL are eliminated. Usually, the slow convergence of 
TS is overcame by incorporating a classical local search strategy into the main algorithm. In general, this type of 
hybridization occurs in the final stage of the iterative process when the solution is in the vicinity of the global 
solution. An example of such method is presented in [4]. The therein proposed method, called Directed Tabu Search 
(DTS), uses strategies, like the Adaptive Pattern Search, to direct a tabu search and generate the set Y of  trial 
solutions. When one of the best obtained trial solutions is sufficiently close to a global minimum, the DTS algorithm 
uses an intensification search procedure to refine the best solution.  

The herein proposed hybridization defines an algorithm that is able to combine two types of steps. The idea is 
borrowed from the algorithm presented in [3] where a classical Quasi-Newton nonmonotone strategy is used to solve 
nonlinear systems of equations. The choice of which step is implemented at each iteration depends on the sufficient 
reduction verified in  when compared with the previous iteration. ALGORITHM 1 summarizes the main steps of 
the proposed Combined Global Tabu Search and Local Search (CGTSLS) algorithm. The global search is carried out 
by a modified version of DTS method, where the HJ local search method is used as the intensification procedure.  
The local search uses the direct search method HJ [5].  
 
ALGORITHM  1 (CGTSLS algorithm) 
Given:  x0, set k=0, η0= 1, flag=1, 0 < γ < 1.    
Step 1: If   (xk) ≤  η*  or  k  ≥  kmax  then  stop 
Step 2: If  flag=1  then  
                 use local HJ search to compute an ηk-approximation  xk+1  
            else 
                 use global DTS search to compute an ηk-approximation  xk+1 
            endif 
Step 3: If   (xk+1) ≤  γ  (xk)  then   set  flag=1    else   set  flag=0   endif 
Step 4: Set k=k+1, set  ηk= max{ η*, 0.1 ηk-1} and  go to Step 1. 



In both global and local searches of the algorithm, it is sufficient to compute an ηk-approximation  xk+1 to the 
optimal solution, i.e., each search terminates when, at iteration k, the  value at the best solution found so far is less 
than  ηk .The tolerance defines a decreasing sequence of ηk values (see Step 4). Condition  (xk+1) ≤ γ  ( xk)  in the 
algorithm defines the sufficient reduction that we aim to observe in  . The closer  γ  is to one, the smaller is the 
required reduction. For the preliminary numerical experiments we define γ =0.5, η* =10-6 (accuracy of the solution) 
and  kmax =15n. The iterative process (local or global step) in Step 2 of the algorithm is called inner cycle in 
opposition to the process indexed by k, called outer cycle. We use the total number of function evaluations, balanced 
with the total number of inner and outer iterations to analyze the efficiency of the algorithm.   

 
NUMERICAL RESULTS AND DISCUSSION 

 
To assess the performance of the proposed CGTSLS algorithm, we selected five problems from the literature [9] 

and coded them in MATLAB®. We compare our results with those obtained by DTS method, HJ method and the 
results in [6,9]. When DTS and HJ methods are used separately, a solution within a 10-6  accuracy is also required. 
Both methods are allowed to run for a maximum of 15n iterations as well. The results of the numerical experiments 
were obtained in a personal computer with an AMD Turion 2.20 GHz processor and 3 GB of memory. Due to the 
stochastic nature of  algorithms based on tabu search, each problem was run 30 times and the best of the 30 solutions 
is registered. The tested problems are described below, with the initial approximation proposed in [9]. 
 

Example  1: Consider  (2)  where m=2, n=2 and f1(x)  x1
2+ x2

2-1 ≤ 0, f2(x)  -x1
2- x2

2+(0.999)2 ≤ 0;  x0=(0, 5)T. 
Then,  x =[(max{0, x1

2+ x2
2-1})2+ (max{0, -x1

2- x2
2+(0.999)2})2]1/2. FIGURE 1 (a) shows  x . 

Example  2: Consider  (2)  where m=2, n=2 and  f1(x)  sin(x1) ≤ 0, f2(x)  - cos(x2) ≤ 0;  x0=(0, 0)T. FIGURE 1 
(b) illustrates  x .  

Example  3: Consider (2) where m=3, n=5 and f1(x)  x1+x3-1.6 ≤ 0, f2(x)  1.333x2+x4-3 ≤ 0, f3(x)  -x3-x4+x5 
≤ 0, f4(x)  x1

2+x3
2-1.25= 0, f5(x)  x2

1.5+1.5x4-3= 0;  x0=(0.5, 2, 1, 0, 0)T. 
Example  4: Consider (2) where m=1, n=3 and f1(x)  x1+x2exp(0.8 x3)+exp(1.6) ≤ 0, f2(x)  x1

2+ x2
2+ x3

2-
5.2675 = 0, f3(x)  x1+x2+x3-0.2605= 0;  x0=(-1, -1, 1)T. 

Example  5: Consider (2) where m=0, n=2 and f1(x) x1-0.7sin(x1)-0.2cos(x2)=0, f2(x) x2-
0.7cos(x1)+0.2sin(x2)=0;  x0=(0, 1)T. 

 

                                           (a)                                                                                       (b) 
FIGURE 1. Plot of  x : (a) Example 1, with contour plot for [-1,1]2; (b) Example 2, with contour plot for [-2,3]X[-2,2]. 

 
TABLE 1 summarizes the results obtained during the numerical experiments: number of  (outer) iterations, “k”,  

total number of inner iterations, “kinner”, total number of function evaluations for a function nnF : , “Nfeval ”, 
the obtained solution,  x* , and  *x . Although DTS, HJ and CGTSLS require larger amounts of function 

evaluations when compared with the methods presented in [6,9], those are based on a function vector F of  n 
components, while the function vector H in [6,9], used to count the number of function evaluations, has 1+n+m 
components. The difference between the number of iterations and function evaluations is expected when methods 
that use derivatives and derivative-free methods are compared all together. Furthermore, Newton-type methods are 
computationally more expensive since a matrix is evaluated and a linear systems is solved at each iteration. We 
observe that HJ did not reach the required accuracy in Example 4 and Example 5 and DTS in Example 5, because 
they exceeded the pre-specified number of iterations. However, CGTSLS reached a solution with the required 



accuracy in all examples. An important issue to be addressed in the future is the reduction in the number of function 
evaluations. Following ideas in [3,9], a nonmonotone reduction in  will be implemented in Step 3 of the 
ALGORITHM 1. 

 
       TABLE 1.   Numerical results with an accuracy of 10-6. 

Example  k kinner Nfeval  *x x* 
1 in [9]  (monotone)     failed 
 in [6]   (†)      8 - - - (-0.6188, 0.7853) 
 results from DTS           30 21 (§) 341 0 (-0.6438, -0.7647) 
 results from HJ 26  119 0 (0.6172, 0.7867) 
 results from CGTSLS  4 27 271 0 (-0.6227, -0.7812) 
       

2 in [9]  (monotone) 4 - 4 (‡) - (-0.0152, 0.7206) 
 in [6]  (†)     7 - - - (-0.0004, 4.7125) 
 results from DTS           0 18 (§) 78 0 (0, 0) 
 results from HJ 18  74 0 (0, 0) 
 results from CGTSLS  1 1 6 0 (0, 0) 
       

3 in [9]  (monotone)      5 - 5 (‡) - (0.5563, 1.3259, 0.9698, 0.9822, 1.1545)
 results from DTS           75 36 (§) 1712 3.5e-7 (0.5, 2.1678,1.0, -0.1279, 0) 
 results from HJ 36  370 3.5e-7 (0.5, 2.1678,1.0, -0.1279, 0) 
 results from CGTSLS  7 117 1860 3.5e-7 (0.5, 2.1678, 1.0, 0.1279, 0) 
       

4 in [9]  (monotone)       6 - 6 (‡) - (-0.8299, -0.8663, 1.9566) 
 results from DTS           45 37 (§) 815 3.8e-7 (-0.8205, -0.8754, 1.9565) 
 results from HJ 45  263 1.2e-6 (-0.7161, -0.9742, 1.9508) 
 results from CGTSLS  7 106 889 5.3e-7 (-0.8106, -0.8851, 1.9536) 
       

5 in [9]  (monotone)      50 - 207 (‡) - (0.5265, 0.5079) 
 results from DTS           30 30 (§) 380 2.9e-5 (0.5265, 0.5079) 
 results from HJ 30  88 4.0e-4 (0.5258, 0.5078) 
 results from CGTSLS 7 79 356 1.9e-7 (0.5265, 0.5079) 

(†) – accuracy of 10-3, (‡) -  for a function mnmnH   11: , (§) –  in the intensification procedure;  “-”  -  not available 
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