
Approximating the Conformal Map ofElongated Quadrilaterals byDomain DecompositionM.I. Falc~ao, N. Papamichael and N.S. StylianopoulosApril 2, 2000AbstractLet Q := f
; z1; z2; z3; z4g be a quadrilateral consisting of a Jor-dan domain 
 and four points z1, z2, z3, z4, in counterclockwise orderon @
 and let m(Q) be the conformal module of Q. Then Q is con-formally equivalent to the rectangular quadrilateral fRm(Q); 0; 1; 1 +im(Q); im(Q)g; where Rm(Q) := f(�; �) : 0 < � < 1; 0 < � < m(Q)g;in the sense that there exists a unique conformal map f : 
! Rm(Q)that takes the four points z1; z2; z3; z4, respectively onto the four ver-tices 0, 1, 1 + im(Q), im(Q) of Rm(Q). In this paper we considerthe use of a domain decomposition method (DDM) for computingapproximations to the conformal map f , in cases where the quadrilat-eral Q is \long". The method has been studied already but, mainly,in connection with the computation of m(Q). Here we consider cer-tain recent results of Laugesen [12], for the DDM approximation ofthe conformal map f : 
 ! Rm(Q) associated with a special class ofquadrilaterals (viz. quadrilaterals whose two non-adjacent boundarysegments (z2; z3) and (z4; z1) are parallel straight lines) and seek toextend these results to more general quadrilaterals. By making use ofthe available DDM theory for conformal modules, we show that thecorresponding theory for f can, indeed, be extended to a much widerclass of quadrilaterals than those considered by Laugesen.AMS classi�cation: 30C30, 65E05.Key words Numerical conformal mapping, Quadrilaterals, Domain decom-position.



Conformal Mapping of Elongated Quadrilaterals 11 IntroductionLet Q := f
; z1; z2; z3; z4g be a quadrilateral consisting of a Jordan domain
 and four points z1, z2, z3, z4 in counterclockwise order on @
 and let m(Q)be the conformal module of Q. Also, let Rm(Q) denote a rectangle of base 1and height m(Q), i.e.Rm(Q) := f(�; �) : 0 < � < 1; 0 < � < m(Q)g:Then, Q is conformally equivalent to the rectangular quadrilateralfRm(Q); 0; 1; 1 + im(Q); im(Q)g;in the sense that there exists a unique conformal map f : 
 ! Rm(Q) thattakes the four points z1, z2, z3, z4, respectively onto the four vertices 0, 1,1 + im(Q), im(Q) of Rm(Q).This paper is concerned with the study of a domain decomposition method(DDM) for computing approximations to the conformal module m(Q) andthe associated conformal map f : 
 ! Rm(Q), in cases where the quadrilat-eral Q is long. The method is based on the following three steps:(i) Decomposing the original quadrilateralQ := f
; z1; z2; z3; z4g(by meansof appropriate crosscuts lj; j = 1; 2; : : :) into two or more componentquadrilaterals Qj; j = 1; 2; : : :; see e.g. Figure 1.1.(ii) Approximating the conformal module m(Q) of the original quadrilat-eral by the sum Pj m(Qj) of the conformal modules of the componentquadrilaterals. (Note thatm(Q) �Xj m(Qj) (1.1)and equality occurs only when the images of all the crosscuts lj underthe conformal map f : 
! Rm(Q) are straight lines parallel to the realaxis. This follows from the well-known composition law for modules ofcurve families; see e.g. [1, pp. 54{56] and [9, pp. 437{438].)



Conformal Mapping of Elongated Quadrilaterals 2(iii) Approximating the conformal map f : 
 ! Rm(Q) of the original do-main 
, by the conformal maps fj : 
j ! Rm(Qj) of the subdomains
j, where Rm(Q1) := f(�; �) : 0 < � < 1; 0 < � < m(Q1)gandRm(Qj) := f(�; �) : 0 < � < 1; j�1Xk=1m(Qk) < � < jXk=1m(Qk)g; j = 2; 3; : : : :
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Figure 1.1The speci�c objectives for using the above process are as follows:(a) To overcome the crowding di�culties associated with the problemof computing the conformal maps of long quadrilaterals, i.e. the di�cultiesassociated with the conventional approach of seeking to determine m(Q) andf : 
! Rm(Q) by going via the unit disc or the half plane (see e.g. [13, x3.1]and [17, x1]).(b) To take advantage of the fact that in many applications (for exampleVLSI applications), a complicated original quadrilateral Q can be decom-posed into very simple components Qj.The DDM was introduced by two of the present authors (N.P. and N.S.S.)in [14], [15], for the purpose of computing the conformal modules and asso-ciated conformal maps of a special class of quadrilaterals, viz. quadrilateralswhere: (a) the de�ning domain 
 is bounded by two parallel straight lines



Conformal Mapping of Elongated Quadrilaterals 3and two Jordan arcs; (b) the points z1; z2; z3; z4 are the four corners wherethe two boundary arcs meet the two parallel straight lines. For the samespecial class of quadrilaterals, the method was also studied by Gaier andHayman [5], [6], in connection with the computation of conformal modules,and more recently by Laugesen [12], in connection with the determination ofthe conformal maps. These three papers contain several important resultsthat enhance considerably the associated DDM theory. In particular, theresults of Gaier and Hayman provided the necessary tools for extending theapplication of the DDM to the computation of the conformal modules of amuch wider class of quadrilaterals than that considered initially in [14] and[15] (see [16], [17], [18], [19]). The main purpose of the present paper is toinvestigate the possibility of extending the DDM theory of Laugesen [12], forthe conformal map f : 
! Rm(Q), to more general quadrilaterals than thosehaving the special form mentioned above.The paper is organised as follows:In Section 2 we present a number of preliminary results that are neededfor our work in Section 3.Section 3 contains the main results of the paper. Here, by making useof the theory given in Section 2, we show that Laugesen's DDM theory forthe mapping function f can indeed be extended to a much wider class ofquadrilaterals than those considered in [12].Finally, in Section 4 we present several numerical examples illustratingthe application of the DDM results obtained in Section 3.In presenting our results we shall adopt throughout the notations used in[16], [17], [18]. That is:� 
 and Q := f
; z1; z2; z3; z4g will denote respectively the original do-main and corresponding quadrilateral.� 
1;
2; : : : and Q1; Q2; : : :, will denote respectively the \principal" sub-domains and corresponding quadrilaterals of the decomposition underconsideration.



Conformal Mapping of Elongated Quadrilaterals 4� The additional subdomains and associated quadrilaterals that arisewhen the decomposition of Q involves more than one crosscut will bedenoted by using (in an obvious manner) a multisubscript notation.For example, the �ve component quadrilaterals of the decomposition illus-trated in Figure 1.1 are:Q1 := f
1; z1; z2; a; dg; Q2 := f
2; d; a; b; cg; Q3 := f
3; c; b; z3; z4gand Q1;2 := f
1;2; z1; z2; b; cg; Q2;3 := f
2;3; d; a; z3; z4g;where 
1;2 := 
1 [ 
2; 
2;3 := 
2 [ 
3:2 Preliminary resultsIn this section we present a number of preliminary results that are needed forour work in Section 3. The �rst of these (Lemma 2.1) is a simple consequenceof results given in [12].Consider a quadrilateral of the form illustrated in Figure 2.1(a), where:(a) the de�ning domain 
 is bounded by the straight lines <z = 0, <z = 1and 1 := fz : 0 � <z � 1; =z = 0g and a Jordan arc 2; (b) the four pointsz1, z2, z3, z4 are the four corners where 1 and 2 meet the lines <z = 1 and<z = 0.Consider next the decomposition of Q illustrated in the �gure, where thecrosscut of subdivision is a Jordan arc  joining the straight lines <z = 0and <z = 1. Also let Rm(Q) and Rm(Q2) denote the rectanglesRm(Q) := f(�; �) : 0 < � < 1; 0 < � < m(Q)gand Rm(Q2) := f(�; �) : 0 < � < 1; m(Q)�m(Q2) < � < m(Q)gand let f and f2 be the associated conformal mapsf : 
! Rm(Q) and f2 : 
2 ! Rm(Q2): (2.1)
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z1 z2 Figure 2.1Lemma 2.1 With reference to Figure 2.1 and the notations introduced above,maxz22 jf(z)� f2(z)j � 1:28e��m(Q2); (2.2)maxz21 jf(z)� zj � 1:60e��m(Q); (2.3)and maxz2
1 jf(z)� zj = maxz2 jf(z)� zj � 6:40e��m(Q2); (2.4)provided that m(Q2) � 3. If, in addition, the crosscut  is a straight lineparallel to the real axis, thenmaxz22 jf(z)� f2(z)j � 2:57e�2�m(Q2); (2.5)maxz21 jf(z)� zj � 2:04e��m(Q); (2.6)and maxz2
1 jf(z)� zj = maxz2 jf(z)� zj � 2:04e��m(Q2); (2.7)provided that m(Q2) � 1.Proof. Of the above, Estimates (2.2) and (2.5) can be concluded triviallyfrom the analysis of Laugesen [12], by noting that in our case 2 and 



Conformal Mapping of Elongated Quadrilaterals 6are Jordan arcs and applying Estimate (6.6) of [12, p. 550] to each of theexponential mappings associated with the conformal maps f and f2. Theremaining estimates can be obtained as follows:The transformation z ! Z := exp(i�z);maps conformally 
 onto the upper half of a symmetric doubly-connecteddomain G which is bounded externally by the unit circle and internally bya Jordan curve � surrounding the origin. Let 1=r be the conformal modulusof G and let g be the function that maps conformally G onto the circularannulus A := fW : r < jW j < 1g. Then g is related to the mapping functionf : 
! Rm(Q) by means ofgfexp(i�z)g = expfi�f(z)g; (2.8)and r = expf��m(Q)g: (2.9)Next, apply the so-called 5r-theorem of Laugesen [12, p. 535] to the map-ping function g�1 : A! G. Then, by adapting the analysis of Laugesen [12,p. 550] to our case and noting that the inner boundary � of G is a Jordancurve, we �nd that for any �, e��h � � � 1, where h := maxf=z; z 2 g,maxjZj=� j log g(Z)� logZj � 5r�� 5r ; (2.10)provided r < �=5. From this it follows easily thatmaxz21 jf(z)� zj � 5r1� 5r ; (2.11)provided r � 1=5, andmaxz2
1 jf(z)� zj = maxz2 jf(z)� zj � 5e��fm(Q)�hg�(1� 5e��fm(Q)�hg) ; (2.12)provided m(Q) � h � (log 5)=� = 0:512 � � �. Estimates (2.3) and (2.6) thenfollow at once from (2.11), because m(Q) � m(Q2). Further, (2.12) withm(Q)� h � 1 gives maxz2
1 jf(z)� zj � 2:04e��fm(Q)�hg;



Conformal Mapping of Elongated Quadrilaterals 7and (2.7) follows from this, because when  is a straight line, thenm(Q) � m(Q2) + h:Finally, to obtain Estimate (2.4) we make use of the following:(i) The double inequality h2 � m(Q2) � h2 + 1; (2.13)where h2 is the distance of the crosscut  from the arc 2; see [8, pp. 35{37].(ii) The following two results of Gaier and Hayman (see [6, Thms 1, 4] and[16, Thm 2.1]):� jm(Q2)� h2 � 1� log r1 � 1� log r2j � 0:381e��h2; (2.14)provided h2 � 2, where r1 and r2 are the so-called exponential radii ofthe arcs  and 2, respectively. (Here 2 denotes the reection of thearc 2 in the real axis.)� Let bQ be the quadrilateralbQ := fb
; ih; 1 + ih; z3; z4g;where b
 = 
2 \ fz : =z > hg. Then,� 120:381e�2�h2 < m( bQ)� h2 � 1� log r2 � 0; (2.15)provided h2 � 1.(iii) The two inequalitiesm(Q) � m( bQ) + h and r1 � 4; (2.16)which result, respectively, from the composition law (1.1) and Koebe's 14 -theorem.Estimate (2.4) follows from (2.12), because (2.13){(2.16) imply thatm(Q)� h > m(Q2)� 0:441 983 4:



Conformal Mapping of Elongated Quadrilaterals 8Let Q be the quadrilateral Q := fRH ; 0; 1; 1 + iH; iHg, whereRH := f(�; �) : 0 < � < 1; 0 < � < Hg;and consider a decomposition of Q by means of two Jordan arcs l1 and l2as illustrated in Figure 2.2. With the usual notations, let Q1;2, Q2 and Q2;3be the three quadrilaterals that are de�ned respectively by the subdomains
1;2, 
2, and 
2;3 and let Rm(Q1;2), Rm(Q2) and Rm(Q2;3) be the correspondingconformally equivalent rectanglesRm(Q1;2) := f(�; �) : 0 < � < 1; 0 < � < m(Q1;2)g; (2.17)Rm(Q2) := f(�; �) : 0 < � < 1; m(Q1;2)�m(Q2) < � < m(Q1;2)g (2.18)and Rm(Q2;3) := f(�; �) : 0 < � < 1; H �m(Q2;3) < � < Hg: (2.19)
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Figure 2.2Finally, let f1;2, f2 and f2;3 denote the associated conformal maps (see Fi-gure 2.3),f1;2 : 
1;2 ! Rm(Q1;2); f2 : 
2 ! Rm(Q2); f2;3 : 
2;3 ! Rm(Q2;3);



Conformal Mapping of Elongated Quadrilaterals 9and consider the transformation T : RH ! RH de�ned byT (�) := 8>>><>>>: f2;3(�); for � 2 
3;f1;2(�) + f2;3(�)� f2(�); for � 2 
2;f1;2(�); for � 2 
1: (2.20)The lemma below says that if RH is \long", then T is close to the identitymap.
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Conformal Mapping of Elongated Quadrilaterals 10Lemma 2.2 With reference to Figures 2.2 and 2.3 and the notations intro-duced above, ET := max�2RH jT (�)� �j � 10:39e��m(Q2); (2.21)provided that m(Q2) � 3. If, in addition, the crosscut l1 is a straight lineparallel to the real axis (so that f2;3(�) = �), thenET � 4:08e��m(Q2); (2.22)provided that m(Q2) � 1.Proof. From (2.4),ET = maxfmax�2l1 jf1;2(�)� �j; max�2
2 jT (�)� �j; max�2l2 jf2;3(�)� �jg; (2.23)where max�2l1 jf1;2(�)� �j � 6:40e��m(Q2) (2.24)and max�2l2 jf2;3(�)� �j � 6:40e��m(Q2); (2.25)providedm(Q2) � 3. Further, the function T (�)�� is analytic in 
2, continu-ous on 
2 and can be extended (by means of the Schwarz reection principle)to a periodic function, with period 2, in the in�nite domain obtained by re-peatedly reecting 
2 across its straight line boundary segments (see e.g. [7,p. 273]). Therefore, from the maximum modulus principle,max�2
2 jT (�)� �j = maxfEl1 ; El2g; (2.26)where El1 := max�2l1 jf1;2(�) + f2;3(�)� f2(�)� �jand El2 := max�2l2 jf1;2(�) + f2;3(�)� f2(�)� �j:Next, if m(Q2) � 3, then from (2.2) and (2.4) we have thatEl2 � max�2l2 jf1;2(�)� f2(�)j+max�2l2 jf2;3(�)� �j� 1:28e��m(Q2) + 6:40e��m(Q2) = 7:68e��m(Q2); (2.27)



Conformal Mapping of Elongated Quadrilaterals 11and El1 � max�2l1 jf2;3(�)� f2(�)� i"mj+ j"mj+max�2l1 jf1;2(�)� �j� 1:28e��m(Q2) + j"mj+ 6:40e��m(Q2):(The quantity "m := H � fm(Q1;2) +m(Q2;3)�m(Q2)gwas introduced in the last estimate, because the function f2;3 maps thedomain 
2;3 onto the rectangle Rm(Q2;3) whose lower side is at a distanceH �m(Q2;3), rather than m(Q1;2)�m(Q2), from the real axis.) Thus, sincefrom Theorem 2.4 of [19] j"mj � 2:71e��m(Q2);we have that El1 � 10:39e��m(Q2): (2.28)The required result (2.21) follows from (2.23), by comparing the estimates(2.24), (2.25), (2.27) and (2.28).If l1 is a straight line parallel to the real axis and m(Q2) � 1, then from(2.7), max�2l1 jf1;2(�)� �j � 2:04e��m(Q2) (2.29)and max�2l2 jf2;3(�)� �j � 2:04e��m(Q2): (2.30)Also, since in this case f2;3(�) = �, (2.5) givesEl2 = max�2l2 jf1;2(�)� f2(�)j � 2:57e�2�m(Q2): (2.31)Finally, from (2.6), max�2l1 jf2(�)� �j � 2:04e�2�m(Q2);and henceEl1 � max�2l1 jf2(�)� �j+max�2l1 jf1;2(�)� �j � 4:08e��m(Q2): (2.32)



Conformal Mapping of Elongated Quadrilaterals 12The required result (2.22) follows from (2.23), by comparing the estimates(2.29), (2.30), (2.31) and (2.32).Consider now a general quadrilateral Q := f
; z1; z2; z3; z4g decomposedas shown in Figure 2.4(a). Let f be the conformal mapf : 
! Rm(Q) := f(�; �) : 0 < � < 1; 0 < � < m(Q)g;let Rm(Q1;2), Rm(Q2), Rm(Q2;3) denote the rectangles (2.17){(2.19), with H =m(Q) for Rm(Q2;3), and let f1;2, f2 and f2;3 denote the conformal maps,f1;2 : 
1;2 ! Rm(Q1;2); f2 : 
2 ! Rm(Q2) and f2;3 : 
2;3 ! Rm(Q2;3):Also, let ~f denote the following DDM approximation to f :~f(z) := 8>>><>>>: f2;3(z); for z 2 
3;f1;2(z) + f2;3(z)� f2(z); for z 2 
2;f1;2(z); for z 2 
1: (2.33)The theorem below may be regarded as the extension of the conformalmodule Theorem 2.5 of [19], to the case of the conformal map f .Theorem 2.1 With reference to Figure 2.4(a), let ~f be the DDM approxi-mation (2.33) to the conformal map f : 
! Rm(Q). ThenEf := maxz2
 jf(z)� ~f(z)j � 10:39e��m(Q2); (2.34)provided that m(Q2) � 3. If, in addition, the image of the crosscut l1 underthe conformal map f is a straight line parallel to the real axis, thenEf � 4:08e��m(Q2); (2.35)provided that m(Q2) � 1.
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Figure 2.4Proof. Let b
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3, l̂1, l̂2, ̂1 and ̂2 denote respectively the images underthe conformal map f of 
1, 
2, 
3, l1, l2, 1 := dz1; z2 and 2 := dz3; z4 (seeFigure 2.4), and denote by f̂1;2, f̂2 and f̂2;3 the conformal maps,f̂1;2 : b
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2;3:Next, let T (�) := 8>>><>>>: f̂2;3(�); for � 2 b
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1;and observe that for any z 2 
, ~f(z) = T (�), where � = f(z). Thus,Ef = max�2Rm(Q) jT (�)� �j;and the required results follow at once from Lemma 2.2.



Conformal Mapping of Elongated Quadrilaterals 14Remark 2.1 With reference to Theorem 2.1, the following estimates hold:maxz21 jf(z)� f1;2(z)j � 1:60e��m(Q1;2) (2.36)and maxz22 jf(z)� f2;3(z)j � 1:60e��m(Q2;3); (2.37)provided that m(Q2) � 3. This can be seen by observing thatmaxz21 jf(z)� f1;2(z)j = max�2̂1 jf̂1;2(�)� �j;maxz22 jf(z)� f2;3(z)j = max�2̂2 jf̂2;3(�)� �j(see Figure 2.4(b)) and applying Estimate (2.3) to the right hand side of thelast two equations.3 DDM for the conformal mapThe results of this section extend the DDM conformal module results ofTheorems 2.4 and 2.6 of [19] to the case of the full conformal map.
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Figure 3.1Consider a quadrilateral Q := f
; z1; z2; z3; z4g of the form illustrated inFigure 3.1(a), where the de�ning domain 
 can be decomposed by a straightline crosscut l into 
1 and 
2, so that 
2 is the reection in l of some



Conformal Mapping of Elongated Quadrilaterals 15subdomain of 
1, as shown in the �gure. Let Rm(Q), Rm(Q1) and Rm(Q2) bethe rectanglesRm(Q) := f(�; �) : 0 < � < 1; �m(Q1) < � < m(Q)�m(Q1)g;Rm(Q1) := f(�; �) : 0 < � < 1; �m(Q1) < � < 0gand Rm(Q2) := f(�; �) : 0 < � < 1; 0 < � < m(Q2)gand let f1 and f2, denote the conformal mapsf1 : 
1 ! Rm(Q1) and f2 : 
2 ! Rm(Q2):The theorem below extends the conformal module Theorem 2.4 of [19] tothe case of the conformal map f .Theorem 3.1 With reference to Figure 3.1 and the notations introducedabove, let Ef1gf and Ef2gf denote the DDM errorsEf1gf := maxz2
1 jf(z)� f1(z)j and Ef2gf := maxz2
2 jf(z)� f2(z)j: (3.1)Then, Ef1gf = maxz2l jf(z)� f1(z)j � 2:04e��m(Q2) (3.2)and Ef2gf � 4:08e��m(Q2); (3.3)provided that m(Q2) � 1.Proof. Reect 
1 in l and consider the decomposition of the resulting quadri-lateral Q� := f
�; z1; z2; z�3 ; z�4g illustrated in Figure 3.2(a). Then the sym-metry of Q� implies thatm(Q�) = 2m(Q1) and that the image of the crosscutl, under the conformal mapg : 
� ! Rm(Q�) := f(�; �) : 0 < � < 1; �m(Q1) < � < m(Q1)g;is the segment bl := f(�; 0) : 0 � � � 1g of the real axis.



Conformal Mapping of Elongated Quadrilaterals 16
0 1

g

(a)

(b)

Ω
2lΩ

1
Ω

3

Ω
1

^

Ω
2

^

Ω
3

^
i m(Q 1)

-i m(Q 1)

^
l..

..

z2

z1 z4*

z3*

..

..

. .
γ2

γ2̂

.

.γ1
z4

z3
o

o

Figure 3.2Let b
1, b
2, b
3, b1, b2 be the images, under g, of 
1, 
2, 
3, 1, 2, where1 := dz1; z2, 2 := dz3; z4 (see Figure 3.2), and consider the conformal mapsbg1 : b
1 ! Rm(Q1); bg2 : b
2 ! Rm(Q2) and bg1;2 : b
1;2 ! Rm(Q):Then, f1(z) = bg1(g(z)); z 2 
1; f2(z) = bg2(g(z)); z 2 
2;and f(z) = bg1;2(g(z)); z 2 
:That is, f1(z) = bg1(�) = �; f2(z) = bg2(�) and f(z) = bg1;2(�);where � = g(z). Therefore, from (2.7),Ef1gf = max�2b
1 jbg1;2(�)� �j = max�2bl jbg1;2(�)� �j (3.4)= maxz2l jf(z)� f1(z)j � 2:04e��m(Q2): (3.5)Also, by applying to bg1;2(�)�bg2(�) the argument used for the function T (�)��at the beginning of the proof of Lemma 2.2,Ef2gf = max�2b
2 jbg1;2(�)� bg2(�)j = maxfEbl; Eb2g; (3.6)



Conformal Mapping of Elongated Quadrilaterals 17where Ebl := max�2bl jbg1;2(�)� bg2(�)j and Eb2 := max�2b2 jbg1;2(�)� bg2(�)j:Next, by using (2.6) and (2.7),Ebl � max�2bl jbg2(�)� �j+max�2bl jbg1;2(�)� �j� 4:08e��m(Q2): (3.7)Also, from (2.5), Eb2 � max�2b2 jbg1;2(�)� bg2(�)� i"mj+ "m� 2:57e�2�m(Q2) + "m; (3.8)where the quantity "m := m(Q)� fm(Q1) +m(Q2)g (3.9)is introduced in (3.8), because the function bg1;2 maps the domain b
1;2 ontothe rectangle Rm(Q) whose upper side is at a distance m(Q)�m(Q1), ratherthan m(Q2), from the real axis. Thus, since from [18, Result 5]0 � "m � 4�e�2�m(Q2);we have that Eb2 � 3:85e�2�m(Q2): (3.10)Therefore, from (3.6), (3.7) and (3.10),Ef2gf � 4:08e�m(Q2):Remark 3.1 With reference to Theorem 2.1, the following estimates hold:maxz21 jf(z)� f1(z)j � 2:04e��m(Q) (3.11)and maxz22 jf(z)� f2(z)j � 3:85e�2�m(Q2); (3.12)



Conformal Mapping of Elongated Quadrilaterals 18provided that m(Q2) � 1. The above estimates follow at once from (2.6) and(3.10), because maxz21 jf(z)� f1(z)j = max�2b1 jbg1;2(�)� �jand maxz22 jf(z)� f2(z)j = max�2b2 jbg1;2(�)� bg2(�)j =: Eb2 :Consider now a quadrilateral Q := f
; z1; z2; z3; z4g of the form illus-trated in Figure 3.3(a), where the de�ning domain 
 can be decomposed bymeans of a straight line crosscut l and two other crosscuts l1 and l2 into foursubdomains 
1, 
2, 
3 and 
4, so that 
3 is the reection in l of 
2. LetRm(Q) := f(�; �) : 0 < � < 1; �m(Q1;2) < � < m(Q)�m(Q1;2)g;Rm(Q1;2) := f(�; �) : 0 < � < 1; �m(Q1;2) < � < 0g;Rm(Q3;4) := f(�; �) : 0 < � < 1; 0 < � < m(Q3;4)gand denote by f the conformal map f : 
 ! Rm(Q) and by ~f the followingDDM approximation to f :~f(z) := 8>>><>>>: f3;4(z) : 
3;4 ! Rm(Q3;4); for z 2 
3;4;f1;2(z) : 
1;2 ! Rm(Q1;2); for z 2 
1;2: (3.13)The theorem below extends the conformal module Theorem 2.6 of [19] tothe case of the full conformal map f .Theorem 3.2 With reference to Figure 3.3 and the notations introducedabove, Ef := maxz2
 jf(z)� ~f(z)j � 6:17e��m(Q2); (3.14)provided that m(Q2) � 1:5.
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Figure 3.3Proof. Recall thatf : 
! Rm(Q) := f(�; �) : 0 < � < 1; �m(Q1;2) < � < m(Q)�m(Q1;2)g;letRm(Q1;2;3) := f(�; �) : 0 < � < 1; �m(Q1;2) < � < m(Q1;2;3)�m(Q1;2)g;Rm(Q2;3) := f(�; �) :0 <� <1; m(Q1;2;3)�m(Q1;2)�m(Q2;3) <� <m(Q1;2;3)�m(Q1;2)g;Rm(Q2;3;4) := f(�; �) : 0 < � < 1; m(Q)�m(Q1;2)�m(Q2;3;4) < � < m(Q)�m(Q1;2)g;and consider the transformationg(z) := 8>>><>>>: f2;3;4(z); for z 2 
4;f1;2;3(z) + f2;3;4(z)� f2;3(z); for z 2 
2;3;f1;2;3(z); for z 2 
1;wheref1;2;3 : 
1;2;3 ! Rm(Q1;2;3); f2;3 : 
2;3 ! Rm(Q2;3); f2;3;4 : 
2;3;4 ! Rm(Q2;3;4)(see Figure 3.4). Then, from Theorem 2.1 (Estimate (2.34)) we have thatmaxz2
 jf(z)� g(z)j � 10:39e�2�m(Q2); (3.15)



Conformal Mapping of Elongated Quadrilaterals 20provided m(Q2) � 1:5. (Note that because of the symmetry m(Q2;3) =2m(Q2).)
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Conformal Mapping of Elongated Quadrilaterals 21Our next objective is to estimate maxz2
 jg(z) � ~f(z)j. We do this by esti-mating separately the errorsEfjgg := maxz2
j jg(z)� ~f(z)j; j = 1; 2; 3; 4;as follows:(i) Ef1gg = maxz2
1 jf1;2;3(z)� f1;2(z)j:Therefore, from (3.2), Ef1gg � 2:04e��m(Q2); (3.16)provided m(Q2) � 1.(ii) Ef2gg = maxz2
2 jf1;2;3(z) + f2;3;4(z)� f2;3(z)� f1;2(z)j� maxz2
2 jf1;2;3(z)� f1;2(z)j +maxz2
2 jf2;3;4(z)� f2;3(z)j; (3.17)where, from (3.2), maxz2
2 jf1;2;3(z)� f1;2(z)j � 2:04e��m(Q2); (3.18)provided m(Q2) � 1. Also, ifRm(Q2) := f(�; �) : 0 < � < 1; H1 < � < H2g;withH1 := m(Q1;2;3)�m(Q1;2)�m(Q2;3) and H2 := m(Q1;2;3)�m(Q1;2)�m(Q3);then, because of the symmetry of 
2;3,f2;3(z) = f2(z); z 2 
2;where f2 : 
2 ! Rm(Q2). Therefore, if� := m(Q)� fm(Q1;2;3) +m(Q2;3;4)�m(Q2;3)g;



Conformal Mapping of Elongated Quadrilaterals 22then by using (3.3),maxz2
2 jf2;3;4(z)� f2;3(z)j � maxz2
2 jf2;3;4(z)� f2(z)� i�j+ j�j� 4:08e��m(Q2) + j�j; (3.19)provided m(Q2) � 1. (The quantity � was introduced in the above estimatebecause the function f2;3;4 maps the domain 
2;3;4 onto the rectangle Rm(Q2;3;4)whose lower side is at a distance m(Q) � m(Q1;2) � m(Q2;3;4), rather thanm(Q1;2;3) � m(Q1;2) � m(Q2;3), from the real axis; see Figures 3.4(b), (c).)Hence, from (3.17){(3.19),Ef2gg � 6:12e��m(Q2) + j�j; (3.20)provided m(Q2) � 1.(iii)Ef3gg = maxz2
3 jf1;2;3(z) + f2;3;4(z)� f2;3(z)� f3;4(z)j� maxz2
3 jf1;2;3(z)� f2;3(z)j+maxz2
3 jf2;3;4(z)� f3;4(z)� i"mj+ "m;where the quantity "m := m(Q)� fm(Q1;2) +m(Q3;4)gis introduced because the function f2;3;4 maps the domain 
2;3;4 onto therectangle Rm(Q2;3;4) whose top side is at a distance m(Q) � m(Q1;2), ratherthan m(Q3;4), from the real axis; see Figure 3.4(c). Hence, by recognisingthat f2;3(z) = f3(z); z 2 
3;withf3 : 
3 ! Rm(Q3) := f(�; �) : 0 < � < 1; H2 < � < m(Q1;2;3)�m(Q1;2)g;we obtain from (3.2) and (3.3) thatEf3gg � 6:12e��m(Q2) + "m; (3.21)



Conformal Mapping of Elongated Quadrilaterals 23provided m(Q2) � 1.(iv) As in (iii) above, by using (3.2),Ef4gg = maxz2
4 jf2;3;4(z)� f3;4(z)j � maxz2
4 jf2;3;4(z)� f3;4(z)� i"mj+ "m� 2:04e��m(Q2) + "m; (3.22)provided m(Q2) � 1.Thus, from (3.15), (3.16) and (3.20){(3.22),Ef � maxz2
 jf(z)� g(z)j+maxz2
 jg(z)� ~f(z)j;� 10:39e�2�m(Q2) +maxz2
 jg(z)� ~f(z)j; (3.23)where jg(z)� ~f(z)j � 8>>>>>><>>>>>>: 2:04e��m(Q2); for z 2 
1;6:12e��m(Q2) + j�j; for z 2 
2;6:12e��m(Q2) + "m; for z 2 
3;2:04e��m(Q2) + "m; for z 2 
4: (3.24)Finally, if m(Q2) � 1:5, then Theorems 2.5 and 2.6 of [19] give,j�j � 2:71e�2�m(Q2) and 0 � "m � 5:26e�2�m(Q2): (3.25)These, in conjunction with (3.23) and (3.24), yield the required estimateEf � 6:17e��m(Q2):Remark 3.2 We note the following regarding the various DDM estimatesinvolved in the proof of Theorem 3.2:(i) Let 1, 2 denote respectively the sides dz1; z2 and dz3; z4 of the quadri-lateral Q (see Figure 3.3). Then, by applying the maximum modulusprinciple to the functions f(z) � f1;2(z) and f(z) � f3;4(z) (in a waysimilar to that used for deriving Estimate (3.3) in Theorem 3.1) we �ndthat maxz2
1;2 jf(z)� f1;2(z)j = maxfE1 ; Ef1gl g (3.26)



Conformal Mapping of Elongated Quadrilaterals 24and maxz2
3;4 jf(z)� f3;4(z)j = maxfE2 ; Ef2gl g; (3.27)where,E1 := maxz21 jf(z)� f1;2(z)j; Ef1gl := maxz2l jf(z)� f1;2(z)j (3.28)andE2 := maxz22 jf(z)� f3;4(z)j; Ef2gl := maxz2l jf(z)� f3;4(z)j: (3.29)Thus, in order to estimate the full DDM error Ef , it is su�cient toconsider the four partial errors E1 , Ef1gl , E2 and Ef2gl . This willbe used in Section 4 for the purpose of comparing: (a) the theoreti-cal error estimate (3.14) with the \actual"DDM error (Example 4.1);(b) the DDM approximation ef with approximations obtained by otherconformal mapping techniques (Example 4.2).(ii) For the two boundary errors E1 and E2 , the following estimates hold:E1 � 3:64e��m(Q1;2;3) and E2 � 3:64e��m(Q2;3;4) + 5:26e�2�m(Q2);(3.30)provided m(Q2) � 1:5. This emerges from (2.36), (2.37), (3.11), (3.25)and the triangle inequalitiesE1 � maxz21 jf(z)� f1;2;3(z)j +maxz21 jf1;2;3(z)� f1;2(z)j; (3.31)E2 � maxz22 jf(z)�f2;3;4(z)j+maxz22 jf2;3;4(z)�f3;4(z)�i"mj+"m; (3.32)because m(Q2;3) = 2m(Q2).(iii) Since m(Q1;2;3) � 2m(Q2) and m(Q2;3;4) � 2m(Q2), it follows from(3.30) that the DDM errors on the boundary segments 1, 2 satisfyEj = O(e�2�m(Q2)); j = 1; 2: (3.33)This should be compared with the order of the DDM errors on thecrosscut of decomposition l, i.e.Efjgl = O(e��m(Q2)); j = 1; 2; (3.34)



Conformal Mapping of Elongated Quadrilaterals 25and with the order of the error of the DDM approximation for theconformal module, i.e."m = m(Q)� fm(Q1;2) +m(Q3;4)g = O(e�2�m(Q2)) (3.35)(see (3.14) and (3.25)).(iv) In (3.33) and (3.34) the indicated orders are best possible. For (3.34),this follows from [12, x7], and for (3.33) from the sharpness of the orderof the estimate for "m (see [6, Thm. 5]), becauseE2 � jf(z4)� f3;4(z4)j = jifm(Q)�m(Q1;2)g � im(Q3;4)j = "m:4 Numerical examplesIn this section we present three numerical examples illustrating the applica-tion of the DDM results obtained in Section 3. Our objectives are as follows:1. To compare the theoretical estimates for the errors given by (3.14) and(3.30) with the actual DDM errors. We do this in Example 4.1, byconsidering a polygonal domain for which we can �nd reliable approxi-mations to the various conformal maps involved in the decomposition.2. To illustrate how the DDM can be used in conjunction with the nu-merical conformal mapping package SC Toolbox of Driscoll [3], for thee�cient computation of the conformal mapping of complicated polyg-onal quadrilaterals.3. To present an example where, due to the e�ects of crowding, the con-formal mapping software that we have available can approximate theconformal map only through the use of domain decompositions.Example 4.1 We consider the decomposition illustrated in Figure 4.1 andcompute approximations to the three conformal maps f : 
 ! Rm(Q), f1;2 :
1;2 ! Rm(Q1;2) and f3;4 : 
3;4 ! Rm(Q3;4) by means of the conventional



Conformal Mapping of Elongated Quadrilaterals 26method, i.e., by using the unit disc D as intermediate canonical domain.For this we use: (a) the double precision version of the integral equationconformal mapping package CONFPACK of Hough [10]y to compute theconformal map of the de�ning domain of each quadrilateral onto the unitdisc; (b) the subroutine WSC of the Schwarz-Christo�el package SCPACKof Trefethen [21], [20] to compute the inverse Jacobian elliptic sine that takesD onto the associated rectangle.
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Figure 4.1 The coordinates of the special points, starting from z1 and movingin counterclockwise order, are (-k-1.,2.), (-k-1.,0.), (k+2.,0.), (k+2.,3.)Regarding accuracy, we expect that the computed approximations to thefunctions f , f1;2 and f3;4, (and to the associated conformal modules m(Q),m(Q1;2) and m(Q3;4)) are correct to at least 8 decimal places. This is sobecause (see e.g. [4, p. 188]):� the CONFPACK error estimates for the conformal maps onto the unitdisc are less than 1:0� 10�12;� in the worst case, the measure of crowding is 6:4�10�4. (This occurs inthe computation of f : 
! Rm(Q) corresponding to the value k = 2.)In presenting the numerical results, we employ the following notations:yThe double precision version of CONFPACK has only become available recently; seehttp://www.mis.coventry.ac.uk/�dhough/



Conformal Mapping of Elongated Quadrilaterals 27� Efjgl and Ej , j = 1; 2: These denote the \actual" DDM errors (3.28){(3.29):E1 := maxz21 jf(z)� f1;2(z)j; Ef1gl := maxz2l jf(z)� f1;2(z)jand E2 := maxz22 jf(z)� f3;4(z)j; Ef2gl := maxz2l jf(z)� f3;4(z)j:The above errors are determined by using the computed (accurate)approximations to the mapping functions f , f1;2 and f3;4, and thensampling the error functions f(z) � f1;2(z) and f(z) � f3;4(z) at anappropriate number of test points.� T (Efjgl ) and T (Ej ), j = 1; 2: These denote respectively the theoret-ical estimates for the errors Efjgl and Ej given by Theorem 3.2 andRemark 3.2(ii), i.e.T (Efjgl ) := 6:17e��m(Q2); j = 1; 2 (4.1)andT (E1) := 3:64e��m(Q1;2;3); T (E2) := 3:64e��m(Q2;3;4)+2:56e�2�m(Q2):(4.2)� �(Efjgl ) and �(Ej ), j = 1; 2: These denote the values used for testingthe validity of the predicted orders of the errors (4.1) and (4.2). Theyare determined from the computed values of the errors Efjgl and Ej ,j = 1; 2, by: (a) assuming thatE(k) � Ce���m(k);where E(k) stands for any of the errors Efjgl , Ej corresponding tothe parameter k, � denotes the associated order �(Efjgl ) or �(Ej ), andm(k) is the conformal module m(Q2) corresponding to the parameterk; (b) computing the various values of � by means of the formula� = �flog[E(k1)=E(k2)]g=f�(m(k1)�m(k2))g;



Conformal Mapping of Elongated Quadrilaterals 28where k1 and k2 are taken to be successive values of the parameter kfor which numerical results are listed. (Therefore, from the theory weexpect to obtain values �(Efjgl ) � 1 and �(Ej ) � 2, j = 1; 2; see (3.34)and (3.33).)The numerical results corresponding to the values k = 1:00(0:25) 2:00 arelisted in Tables 4.1, 4.2 and 4.3k m(Q2) m(Q1;2;3) m(Q2;3;4)1.00 1.279 261 571 3.011 339 975 3.580 314 2051.25 1.529 343 036 3.511 418 501 4.080 380 6451.50 1.779 359 959 4.011 434 815 4.580 394 4491.75 2.029 363 476 4.511 438 206 5.080 397 3192.00 2.229 364 207 5.511 438 911 5.580 397 915Table 4.1: Auxiliary conformal modulesk Ef1gl T (Ef1gl ) �(Ef1gl ) E1 T (E1) �(E1)1.00 4.3e-4 * - 3.7e-6 * -1.25 1.9e-4 5.0e-2 1.01 7.6e-7 5.8e-5 2.001.50 8.8e-5 2.3e-2 1.00 1.6e-7 1.2e-5 2.001.75 4.0e-5 1.0e-2 1.00 3.3e-8 2.5e-6 2.002.00 1.8e-5 5.6e-3 1.00 6.9e-9 5.3e-7 2.00Table 4.2: Errors and orders in the approximation to f by f1;2More precisely, Table 4.1 contains the values of the auxiliary conformalmodules m(Q2), m(Q1;2;3) and m(Q2;3;4) that are needed in order to performthe DDM error analysis; see Theorem 3.2 and (4.1){(4.2). They were com-puted by means of the subroutine RESIST of SCPACK and are expected tobe correct to all the �gures quoted.Example 4.2 Consider the quadrilateralQ := f
; z1; z2; z3; z4g of Figure 4.2,where the width of each strip of the spiral 
 is 1, and the special points z1,



Conformal Mapping of Elongated Quadrilaterals 29k Ef2gl T (Ef2gl ) �(Ef2gl ) E2 T (E2) �(E2)1.00 4.3e-4 * - 8.3e-7 * -1.25 1.9e-4 5.0e-2 1.01 1.7e-7 1.8e-4 2.001.50 8.8e-5 2.3e-2 1.00 3.6e-8 3.8e-5 2.001.75 4.0e-5 1.0e-2 1.00 1.2e-8 7.8e-6 **2.00 1.8e-5 5.6e-3 1.00 1.2e-8 2.6e-6 **Table 4.3: Errors and orders in the approximation to f by f3;4z2, z3, z4, of Q are, respectively, the four (outermost and innermost) corners19+18i, 18+18i, 9+9i, 10+9i of 
. The above quadrilateral was �rst con-sidered in [11], for the purpose of illustrating the performance of a modi�edSchwarz-Christo�el technique for the mapping of elongated quadrilaterals,and in the sequel in [16] and [18], as a case of application of the DDM forconformal modules, where, in in particular the estimate132:704 5393 < m(Q) < 132:704 5393was obtained (see [18, pp. 276{277]). Here, we recall it in order to demon-strate the gain in computational time, when using domain decomposition.We do this by means of the MATLAB Schwarz-Christo�el (SC) Toolbox ofDriscoll [3] as follows: We call the subroutine rectmap of the SC Toolbox, toconstruct approximations to the associated conformal maps f : 
 ! Rm(Q)and fj : 
j ! Rm(Qj), j = 1; 2; : : : ; 10, and report, for each case the elapsedCPU time. We note, in passing, that the particular subroutine of the Toolboxcircumvents the crowding di�culties, by employing the cross ratio and De-lanay triangulation technique of Driscoll and Vavasis [2], and for this reasonintroduces a number of additional vertices on the on the sides of the de�ningpolygon.
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Figure 4.2 The decomposition of Q and the grid points on 
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Figure 4.3 The images of the grid points on the (partly shown) conformallyequivalent rectangleThe numerical results for the quadrilaterals Q and Qj, j = 1; 2; : : : ; 10are contained in Table 4.4, where we use the following notations:



Conformal Mapping of Elongated Quadrilaterals 31� Time I: this denotes the CPU time, in seconds, that are needed for thesetting up of the mapping function.� Time II: this denotes the CPU time, in seconds, required for the map-ping of a 0:25� 0:25 grid on the polygon onto the associated rectangle.� N : This denotes the total number of vertices introduced by the Tool-box.� fm: This denotes the estimate of the conformal module provided byToolbox. N time I time II emQ 136 12686 447 132.704 540Q1 20 69 29 17.279 364Q2 20 68 29 17.558 279Q3 20 70 26 16.558 279Q4 20 58 23 14.558 279Q5 20 55 21 13.558 279Q6 14 70 20 11.558 279Q7 8 49 26 10.558 279Q8 8 28 19 8.558 279Q9 8 23 15 7.558 279Q10 16 100 35 14.955 345Table 4.4:In all the computations the apparent accuracy estimate produced by theToolbox was less than 3:0� 10�7.All the computations were made using MATLAB 5.3, on an IBM RS6000/360 workstation.We end this section by presenting one example that involve quadrilat-erals for which the software that we have available can approximate thecorresponding conformal map only through the use of DDM.
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; z1; z2; z3; z4g of Figure 4.4,

Figure 4.4 The decomposition of Q and the grid points on 


Figure 4.5 The images of the grid points on the conformally equivalent rectangle
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