ÍNDICE DE QUADROS

2. A ESTABILIZAÇÃO DE SOLOS	
QUADRO 2.1: PRINCIPAIS CARACTERÍSTICAS DA APLICAÇÃO DO CIMENTO NA ESTABILIZAÇÃO DE SOLOS	2.35
QUADRO 2.2: RESISTÊNCIAS TÍPICAS DE SOLOS E DE SOLOS ESTABILIZADOS COM 10% DE CIMENTO	2.38
3. MATERIAIS ENVOLVIDOS NA ESTABILIZAÇÃO DE SOLOS COM CAL	
QUADRO 3.1: SOLOS RESIDUAIS EM FUNÇÃO DO TIPO DE ROCHA	3.6
QUADRO 3.2: VALORES TÍPICOS DA SUPERFÍCIE ESPECÍFICA DE ALGUNS DOS PRINCIPAIS MINERAIS ARGILOSOS	3.18
QUADRO 3.3: CAPACIDADE DE TROCA CATIÓNICA DE ALGUNS DOS PRINCIPAIS MINERAIS ARGILOSOS	3.21
QUADRO 3.4: CLASSIFICAÇÃO DOS VÁRIOS TIPOS DE CAL	3.38
QUADRO 3.5: ALGUMAS PROPRIEDADES DAS CALES ACTUALMENTE COMERCIALIZADAS	3.39
QUADRO 3.6: MEDIDA DOS PRINCIPAIS MINERAIS DA CAL PURA (EM ANGSTRÖMS)	3.40
QUADRO 3.7: RESUMO DAS ESPECIFICAÇÕES CONSTANTES NA NORMA FRANCESA NFP 98-101 (JULHO 1991)	3.41
QUADRO 3.8: VALORES TÍPICOS DA SOLUBILIDADE DAS CALES AÉREAS EM FUNÇÃO DA TEMPERATURA	3.42
4. MECANISMOS DESENVOLVIDOS NA ESTABILIZAÇÃO DE UM SOLO COM CAL	
QUADRO 4.1: CLASSIFICAÇÃO, EM FUNÇÃO DOS OBJECTIVOS, DO TRATAMENTO DE UM SOLO ARGILOSO COM CAL	4.47
QUADRO 4.2: QUANTIDADE DE CAL NECESSÁRIA PARA MELHORAR E ESTABILIZAR VÁRIOS TIPOS DE SOLO	4.50
5. METODOLOGIA SEGUIDA, MATERIAIS E EQUIPAMENTO UTILIZADOS	
QUADRO 5.1: PROPORÇÃO DOS CONSTITUINTES DOS DOIS SOLOS ESTUDADOS	5.4
QUADRO 5.2: PARÂMETROS DE COMPACTAÇÃO DOS PROVETES ENSAIADOS À COMPRESSÃO SIMPLES	5.11
QUADRO 5.3: PRESSÕES DE CONFINAMENTO UTILIZADAS NOS ENSAIOS DE COMPRESSÃO TRIAXIAL	5.14
QUADRO 5.4: SÍNTESE DAS CARACTERÍSTICAS DE GRANULOMETRIA E PLASTICIDADE DOS SOLOS ORIGINAIS	5.15
QUADRO 5.5: CLASSIFICAÇÃO DOS SOLOS ORIGINAIS	5.16
QUADRO 5.6: PRINCIPAIS CARACTERÍSTICAS QUÍMICAS DOS SOLOS NATURAIS	5.19
QUADRO 5.7: PARÂMETROS ÓPTIMOS PAR A COMPACTAÇÃO DAS AMOSTRAS S1C0 E S2C0	5.20
QUADRO 5.8: ANÁLISE GRANULOMÉTRICA DA CAL HIDRATADA UTILIZADA	5.21
QUADRO 5.9: CARACTERÍSTICAS QUÍMICAS DA CAL HIDRATADA UTILIZADA	5.22
6. MELHORAMENTO DOS SOLOS COM A ADIÇÃO DE CAL - ANÁLISE DOS RESULTADOS OBTIDOS	
QUADRO 6.1: SÍNTESE DAS CARACTERÍSTICAS DE GRANULOMETRIA E PLASTICIDADE DAS MISTURAS S1C2 E S2C2	6.3
QUADRO 6.2: CLASSIFICAÇÃO DOS SOLOS ORIGINAIS E DAS MISTURAS SOLO-CAL	6.5
QUADRO 6.3: PARÂMETROS ÓPTIMOS PARA COMPACTAÇÃO DAS AMOSTRAS S1C2 E S2C2	6.8
OLIANDO 6 A: VALODES NA DESISTÊNCIA NÃO DEBNADA (C.) ORTIDOS A DADTID DOS ENSAIOS TDIAYIAIS EFECTIADOS	6.0