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Abstract- Novel fluorescent ionophores bearing imidazo-arylthienyl or imidazo-bithienyl -

conjugated bridges functionalized with one or two fused benzo-15-crown-5 ethers as receptor 

units are reported. The sensing ability of the compounds in the presence of metallic cations 

(Li
+
, Na

+
, K

+
, Ca

2+
, Zn

2+
, Cu

2+
, Ni

2+
, Pd

2+
 and Hg

2+
) and fluoride ion was studied in 

MeCN/DMSO solutions by absorption and emission spectroscopy. The experimental results 

indicate that all compounds could act as selective fluorimetric sensors for Cu
2+

 and Pd
2+

 and 

also for the fluoride ion, in the case of the bis-substituted crown ether derivatives.  

 

Keywords: Crown ethers, Arylthiophene, Bithiophene, Imidazole, Fluorescent chemosensors, 

CHEQ effect, Pd
2+

, Cu
2+

, F
-
. 

 

1. Introduction 

 

The development of artificial receptors for the sensing and recognition of environmentally 

and biologically important ionic species is currently of great interest. Highly selective anion
1
 

or cation
2
  sensing is imperative for many areas, including environmental, biological, clinical, 

and waste management applications. 
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The potential for progress in the development of fluorescent sensors can be explained by the 

distinct advantages offered by fluorescence detection in terms of sensitivity, selectivity, 

response time, local observation, etc. Typically, an auxochrome generating the fluorescence 

signal is combined with an analyte-responsive receptor via a saturated or unsaturated spacer. 

The sensing properties of such systems depend on the receptor-controlled (chemical) 

selectivity and the analyte-mediated (spectroscopic) signaling  selectivity as well as 

sensitivity. Suitable fluorescent reporters must efficiently transduce a binding event into a 

measurable fluorescence signal, thereby taking advantage of the intrinsic selectivity of 

communication of fluorescence via two experimental parameters, excitation and emission 

wavelength, and its high sensitivity.
1c-d,3

  

Crown ether derivatives occupy a special position among receptors and are widely used in the 

design of new chemosensors based on their unique ability to coordinate the cations of alkaline 

metals, their fairly high selectivity and accessibility. In addition to alkaline metals, crown 

ethers are also effective complexing reagents for the cations of alkaline-earth metal ions and 

transition metal ions.
4
  On the other hand, hydrogen-bond donors such as pyrrole/calixpyrrole, 

(thio)urea, dipyrrolylquinoxalines, indolocarbazoles, and (benzo)imidazole usually act as 

anion binding sites and the acidity of the NH proton of the imidazole can be tuned by 

changing the electronic properties of the imidazole substituents.
5
 Recently, 2,4,5-

triaryl(heteroaryl)-imidazole-based chromophores have received increasing attention due to 

their interesting optical properties. For example, one of the most interesting applications are 

as fluorescent chemosensors.
6a-c

 The development of chemosensors for the sensing of 

transition metal ions is one of the most active research fields with great potential for 

environmental and physiological applications, in particular Cu
2+

-sensitive systems.
7
 Even 

though great achievement in the field of colorimetric and/or fluorescent chemosensors for 

Cu
2+

 has been obtained,
8
 there is still a demand to develop new indicators with improved 

properties, especially fluorescent sensors with high efficiency in the visible spectra and with 

specific selectivity towards Cu
2+

 over other competitive metal ions. Also, due to the 

widespread application of Pd
2+

 as catalyst in organic synthesis is important the development 

of novel systems for its easy detection specially because a high level of residual palladium 

(typically 300-2000 ppm) is often found in the resultant products, which thus may be a health 

hazard.
9
   

We have demonstrated that oligothiophene and arylthiophene derivatives, electronically 

connected to recognition sites, are efficient –conjugated bridges for the fluorimetric 

and/colorimetric sensing of certain anions (e.g., F
-
, CN

-
) and cations (H

+
, Na

+
, Pd

2+
, Cu

2+
, 
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Zn
2+

, Hg
2+

, Ni
2+

).
5d,6c,10

 Following our current interests on colorimetric and fluorimetric 

chemosensors provided with heterocyclic moieties,
5d,6c,10,11

  three novel heterocyclic systems 

containing arylthiophene (3-4) or bithiophene (5) bridges and one or two imidazo-benzocrown 

ether binding moieties were designed and synthesized.  

 

2. Results and discussion 

2.1. Synthesis 

Recently the application of a mild and versatile method for 2-benzimidazole synthesis, was 

reported through a one step reaction involving Na2S2O4 reduction of o-nitroanilines in the 

presence of pyridyl and quinolyl aldehydes
12  

 in DMSO. To the best of our knowledge, this is 

the first time that this synthetic methodology is applied to arylthiophene and bithiophene 

aldehydes and an o-nitroaminobenzocrown ether derivative. Therefore, formyl-arylthiophenes 

1a-b, diformyl-bithiophene 2 and 4´-amino-5´-nitrobenzo-15-crown-5 ether were used in the 

synthesis of imidazo-benzocrown ethers 3-5, using the synthetic methodology described 

above in order to evaluate the influence of the different π-conjugated bridges on the optical 

and sensing properties of the new compounds (Scheme 1).
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Scheme 1. Synthesis of imidazo-benzocrown ether derivatives 3-5. 
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Compounds 3-5 were obtained in moderate to good yields (53-78%) and their structures were 

unambiguously confirmed by their analytical and spectral data (Table 1). Aldehyde  

precursors were commercially available (1a) or synthesised as reported previously by some of 

us (1b, 2).
6d,13

   

Table 1. Yields, IR, 
1
H NMR, UV-vis absorption and fluorescence data for imidazo-

benzocrown ethers 3-5.  

 

a
 For the NH stretching band (recorded in nujol). 

b
 For the NH stretching band (recorded in KBr). 

c
 For the NH proton of the imidazole ring (in DMSO-d6). 

d
 in MeCN/DMSO (99:1) solution. 

 

2.2. Photophysical study of imidazo-benzocrown ether derivatives 3-5. 

The electronic absorption and emission spectra of compounds 3-5 were obtained in 

MeCN/DMSO (99:1) solution (Table 1). The comparison of the absorption maxima of 

compounds 3 and 4 reveals the influence of the introduction of a second imidazo-benzocrown 

ether moiety as the longest wavelength transition was shifted from 360 to 395 nm, due to 

more extensive electron delocalization. When comparing compounds 4 and 5, which differ in 

the electronic nature of the -conjugated bridge, it can be seen that compound 5 shows a 

higher intramolecular charge transfer efficiency due to the substitution of a phenyl for a 

thiophene ring. The same trend was observed in the emission spectra for related compounds.
14

   

The study of the fluorescence properties of compounds 3-5 showed that they are strongly 

emissive, with relative fluorescence quantum yields ranging from 0.10 to 0.76 (Figure 1). 

 

Cpd. 

 
IR  

(cm
-1

) 

 

H 

(ppm)
c
 

  UV/Vis Fluorescence 

Yield 

(%) 

λmax 

(nm)
d
 

λem 

(nm)
d

 

Stokes’ 

shift
 
( nm) 

ΦF 

3 64 3443
a
 ---- 360 447 87 0.76 

4 78 3449
a
 13.45 395 500 105 0.50 

5 53 3451
b
 12.76 415 568 135 0.10 
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Figure 1. Absorption and emission spectra of compounds 3-5 in MeCN/DMSO (99:1), T= 

298 K, [3] = 5.010
-7

 M, [4] = 5.510
-7

 M, [5] = 4.3 10
-7

 M. (exc3 = 360 nm, exc4 = 395 

nm; exc5 = 415 nm). 

 

 

 

 

 

 

 

 

 

 

Our results revealed a decrease in the relative fluorescence quantum yield when a second 

imidazo-benzocrown was introduced (3 compared to 4), due to the azomethine nitrogens that 

contribute to the heavy atom effect concomitant with the increased degree of conjugation,
15

   

or when a thiophene replaced a phenyl ring (4 compared to 5), with the heavy atom induced 

spin-orbit coupling by the sulphur atoms giving rise to a very efficient intersystem crossing 

mechanism, that lowers the emission.
14,16

 In the latter case, the decrease was larger pointing 

to the better quenching process produced by the sulphur atom present in the thiophene when 

compared to the nitrogen present in the imidazole. 

 

2.3. Spectrophotometric and spectrofluorimetric titrations with proton,
 
metallic cations 

and fluoride anion  

Compounds 3-5 were also evaluated as chemosensors in the presence of H
+
 and several metal 

cations (Li
+
, Na

+
, K

+
,
 
Ca

2+
, Zn

2+
, Cu

2+
, Ni

2+
, Pd

2+
, and Hg

2+
) in MeCN/DMSO (99:1) 

solutions. Having in mind our recent results concerning the sensing properties of imidazo-

anthraquinone derivatives bearing thiophene moieties,
5d

  compounds 3-5 were also studied as 

chemosensors for the F
-
 anion. It is known the acidity of the NH proton of the imidazole ring 

can also be tuned by changing the electronic properties of the π–conjugated bridge and our 

results for the signal of NH appearing downfield in the 
1
H NMR spectra indicated high acidity 

and strong hydrogen bonding ability. 

0

0.0075

0.015

0.0225

0.03

0

0.2

0.4

0.6

0.8

1

300 400 500 600 700 800

Abs 3

Abs 4

Abs 5

Emis. 3

Emis. 4

Emis. 5

A

I 
norm.

 /a.u.

Wavelength/nm



                                                                                                                                                                                       7 

 

Due to the presence of protonable imidazo units, all reported compounds were studied in the 

presence of H
+
, by titration with a solution of methanesulphonic acid in MeCN/DMSO (99:1). 

In general, the absorption spectra of all compounds were slightly affected, showing a red-shift 

of 10 nm. Regarding the emission spectra, for 3 the intensity of the emission was practically 

unaffected upon addition of 50 equivalents of acid, whereas addition of the same amount of 

acid to 4 induced a 50% quenching, and 5 showed a remarkable 70% increase in fluorescence 

intensity and a 20 nm blue shift. This effect can be probably due to the different aromatic 

bridge present in 4 and 5, bearing spacers of different planarity between both imidazo-benzo 

units.
18

  At the same time, the protonation at the nitrogen of the imidazo group resulted in a 

partial quenching.
18b

  (Figure 2).  

 

Figure 2. Spectrofluorimetric titration of compounds 4 (A) and 5 (B) in MeCN/DMSO (99:1) 

solutions as a function of added CH4O3S. The insets show the normalized fluorescence 

intensity at 500 nm and 535 nm, respectively ([4] = 4.3010
-7

 M, exc = 395 nm; [5] = 

5.1010
-7

 M, exc = 415 nm). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For all compounds, the fluorescence intensity was quenched upon addition of fluoride ion. 

For compound 3,  4000 equivalents were necessary to reach a plateau, while compounds 4 and 

5 required the addition of 200 and 260 equivalents, respectively. Compound 4 appears to be 

the most acidic, a fact that is also confirmed by the 
1
H NMR NH signal appearing downfield 

(when compared to 5). A blue shift in the emission band was observed at the same time for all 
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the compounds. (Figure 3). This quenching effect can be understood as a PET effect from the 

lone par of electrons located at the deprotonated imidazole ring.  

The sensing ability of compounds 3 to 5 was evaluated through interaction with metal ions 

such as alkaline (Na
+
, Li

+
 and K

+
), alkaline-earth (Ca

2+
), and transition and post-transition 

metal cations (Zn
2+

, Cu
2+

, Ni
2+

, Pd
2+

 and Hg
2+

) in MeCN/DMSO (99:1) by 

spectrophotometric and spectrofluorimetric titrations.  

 

Figure 3. Absorption and fluorescence spectra of MeCN/DMSO (99:1) solutions of 3 (A), 4 

(B) and 5 (C) and fluorescence titration as a function of Bu4NF added. The insets show the 

normalized fluorescence intensity at 447 nm (3), 496 nm (4) and 568 nm (5) ([3] = 5.1310
-7

 

M, exc = 360 nm; [4] = 4.3010
-7

 M, exc = 395 nm). [5] = 5.1010
-7

 M, exc = 415 nm). 
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The addition of up to 2000 equivalents of Na
+
, Li

+
 and K

+
 metal ions practically does not 

induce spectral changes, producing only a 10% quenching of the fluorescence emission. 

However, in compound 5 the addition of the same amount of Na
+
 resulted in a blue-shift in 

the emission band and an intensity increase of 20% reaching a plateau (Figure 4). It is well 

known that the benzo-15-crown-5-ether quelating unit is used specifically for Na
+ 

sensing. 

However, our results suggest that the high delocalized charge presented in these conjugated 

systems could modulate the interaction with the crown ether resulting in small changes in the 

ground state, as well as in the excited state.  

 

Figure 4. Absorption and fluorescence spectra of MeCN/DMSO (99:1) solutions of 3 (A), 4 

(B) and 5 (C) after addition of 2000 equivalents of NaBF4; LiBF4; KBF4; Ca(CF3SO3)2 and 

Zn(CF3SO3)2 in CH3CN. ([3] = 5.1310
-7

 M, exc = 360 nm; [4] = 4.3010
-7

 M, exc = 395 

nm; [5] = 5.1010
-7

 M, exc = 415 nm). 
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In general, the interaction of compounds 3-5 with Zn
2+

, Ni
2+ 

and Hg
2+

 show a very small blue 

shift, between 10 and 15 nm, in the absorption band. In the case of Zn
2+

 that normally 

produces a CHEF (chelation enhancement of fluorescence) effect with polyamine systems, it 

was observed a 40 to 50% quenching of emission in all cases. Similar findings had been 

published for compounds bearing a coordinative aromatic nitrogen atom.
17

 Concerning Ni
2+

 

and Hg
2+

, it was observed the same quenching effect of about 50% with compound 4.   

The strongest interaction observed for the new compounds reported was found in the presence 

of Pd
2+

 and Cu
2+

. 

A CHEQ (chelation enhancement of the quenching) effect in the fluorescence emission for 

these both metals was observed  (Figure 5 and Figure 6). Moreover, a blue shift was observed 

when Cu
2+

 was added to ligand 5 (Figure 6). The stronger interaction was detected for 

compound 4 in the presence of Cu
2+

, where only 25 equivalents are enough to quench the 

emission. In the case of compounds 3 and 5, up to 40 and 60 equivalents were necessary, 

respectively. 

 

Figure 5. Absorption spectra of MeCN-DMSO (99:1) solutions of 3 (A), 4 (B) and 5 (C) and 

fluorescence titration as a function of added Pd(CH3CN)4BF4. The insets show the normalized 

fluorescence intensity at 447 nm (3), 500 nm (4) and 568 nm (5). (T= 298 K; [3] = 5.13.10
-7

 

M, λexc = 360 nm; [4] = 5.10
.
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-7
 M, λexc = 395 nm; [5] = 4.30

.
10
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Figure 6. Absorption and fluorescence spectra of MeCN/DMSO (99:1) solutions of 3 (A), 4 

(B) and 5 (C) as a function of added Cu(CF3SO3)2. The insets show the normalized 

fluorescence intensity at 447 nm (3), 500 nm (4) and 568 nm (5). ([3] = 5.1310
-7

 M, exc = 

360 nm; [4] = 4.3010
-7

 M, exc = 395 nm, [5] = 5.1010
-7

 M, exc = 415 nm). 
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Insets of Figure 5 show the metal ion titration followed at the maximum of the emission band. 

Inspection of these figures shows that compound 3 and 5 are totally quenched upon the 

addition of 15 equivalents of Pd
2+

, while in compound 4,  40 equivalents to obtain the same 

quenching effect were necessary. In summary, compounds 3 and 5 appear to be quenched 

more efficiently by Pd
2+

 while compound 4 by Cu
2+

. This result turns out from the 

involvement of the nitrogen atom from the imidazole ring and the sulphur atoms in 

compounds 4 and 5,both perfectly design to produce a chelate ring.   

The quenching effect observed could be attributed to an energy transfer quenching of the π* 

emissive state through low-lying metal-centered unfilled d-orbitals for Pd
2+

 and Cu
2+

, and to 

an intersystem crossing mechanism due to the heavy atom effect.
19

 

Taking into account the non coordinative counterions used for all metal complexes, (CF3SO3
-
 

or BF4
-
) the hypothesis of 2:1 M/L molar ratio could be perfectly predicted as the acetonitrile 

can acts as a secondary ligand. The stoichiometry of the complexes was obtained through 

Job´s plot. For example, follow the absorption band in the ligand 3 the stoichiometry 1:2 L:M 

was deduced in the presence of Pd
2+

 (Figure 7). 
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Figure 7. Job´s plot of compound 3 in the presence of Pd
2+

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The complexation constants of compounds 3-5, were obtained from the spectroscopic 

titrations using the Hypspec program.
20

   The highest constant for Pd
2+

 ions was obtained for 

compound 3 (log Kass =11.07± 0.01) and the value decreased for the other two host systems in 

the sequential order 3 > 4 > 5. In the case of Cu
2+

, similar values were obtained for all 

systems (from log Kass =10.32± 0.01 to log Kass =10.93±0.01). For both metal ions, the 

experimental values suggest the formation of a dinuclear complex. The study of the 

interaction with fluoride ion indicated a mononuclear species, exhibiting lower constant 

values in all cases (Table 2).   
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Table 2. Association constants for benzocrown ethers 3-5 in the presence of F
-
, Pd

2+
 and Cu

2+
 

in MeCN/DMSO (99:1). 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

3. Conclusions 

In conclusion, novel imidazo benzocrown ether-based ionophores bearing arylthienyl and 

bithienyl π-conjugated bridges 3-5 were synthesized in moderate to good yields and evaluated 

as fluorimetric sensors. Selectivity and sensitivity for Cu
2+

 and Pd
2+

 was observed for all 

systems. Moreover, systems 4 and 5 proved to be efficient proton and also basic anion 

sensors, due to changes in emission after deprotonation of the imidazole NH by the fluoride 

ion. 

 

4. Experimental 

4.1. Synthesis general  

Progress of the reaction was monitored by thin layer chromatography (0.25 mm thick 

precoated silica plates:  Merck Fertigplatten Kieselgel 60F254), while purification was 

effected by silica gel column chromatography (Merck Kieselgel 60; 230-400 mesh). NMR 

spectra were obtained on a Varian Unity Plus Spectrometer at an operating frequency of 300 

MHz for 
1
H and 75.4 MHz for 

13
C or a Bruker Avance III 400 at an operating frequency of 

400 MHz for 
1
H and 100.6 MHz for 

13
C, using the solvent peak as internal reference. The 

solvents are indicated in parenthesis before the chemical shift values (δ relative to TMS). Mps 

were determined on a Gallenkamp apparatus and are uncorrected. Infrared spectra were 

Cpd. Guest log Kass  (M:L) 

 F
-
 3.27 0.01 (1:1) 

3 Cu
2+

 10.32  0.01 (2:1) 

 Pd
2+

 11.07  0.01 (2:1) 

 F
-
 4.09  0.01 (1:1) 

4 Cu
2+

 10.78  0.01 (2:1) 

 Pd
2+

 9.72  0.03 (2:1) 

 F
-
 4.10  0.02 (1:1) 

5 Cu
2+

 10.93  0.01 (2:1) 

 Pd
2+

 10.60  0.01 (2:1) 
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recorded on a BOMEM MB 104 spectrophotometer. Mass spectrometry analyses were 

performed at the C.A.C.T.I. -Unidad de Espectrometria de Masas of the University of Vigo, 

Spain. Elemental analysis was carried out on a Leco CHNS-932.  

4-Amino-5-nitrobenzo-15-crown-5 was purchased from Aldrich and used as received. The 

synthesis of 2-(4’-formylphenyl)-thiophene, 2-formyl-5-(4’-formylphenyl)-thiophene and 

5,5’-diformyl-2,2'-bithiophene
 
has been described elsewhere.

6d,13
 

 

4.2. General procedure for the synthesis of compounds 3-5 

A solution of 4-amino-5-nitrobenzo-15-crown-5 and the formylated precursor (molar ratio 1:1 

for the synthesis of compound 3 and molar ratio 2:1 for the preparation of compounds 4-5 ) in 

DMSO (3 mL) was treated with Na2S2O4 (3 equiv), dissolved in a small volume of water, and 

heated at 80 ºC with stirring for 15 h. The mixture was then cooled to room temperature and 

the product precipitated during neutralization with NH4OH 5 M. The precipitate was filtered, 

washed with water and diethyl ether and dried to give the expected product. 

 

Crown ether 3. Yellow solid (64%). Mp: 291.5-293.0 ºC. IR (Nujol) ν 3443, 2923, 2855, 

1639, 1609, 1464, 1377, 1293, 1256, 1219, 1209, 1173, 1139, 1081, 1050, 1008, 983, 945, 

849, 826 cm
-1

. 
1
H NMR (DMSO-d6)  3.63 (s, 8H, 4xCH2), 3.82 (s, 4H, 2xCH2), 4.13 (s, 4H, 

2xCH2), 7.19-7.22 (m, 3H, 4''-H, 4-H and 5-H), 7.67 (dd, 1H, J=4.5 and 0.9 Hz, 5''-H), 7.71 

(dd, 1H, J=2.7 and 0.9 Hz, 3''-H), 7.93 (d, 2H, J=8.7 Hz, 2'-H and 6'-H), 8.13 (d, 2H, J=8.7 

Hz, 3'-H and 5'-H). 
13

C NMR (DMSO-d6) δ 68.71 (2xCH2), 68.99 (2xCH2), 69.71 (2xCH2), 

70.52 (2xCH2), 97.93 (C4 and C5), 124.12 (C4'), 125.42 (C3''), 126.04 (C2' and C6'), 127.39 

(C5''), 127.61 (C3' and C5'), 128.14 (C3a and C5a), 128.97 (C4''), 136.53 (C1'), 141.99 (C2''), 

147.06 (C2), 148.16 (C4a and C4b). MS (FAB) m/z (%): 467 (M+H
+
, 60), 466 (M

+
, 17), 308 

(13), 307 (40), 289 (17), 155 (32), 154 (100). HRMS: (FAB) m/z (%) for C25H27N2O5S; calcd 

467.1641; found 467.1654. 

 

Crown ether 4. Brown solid (78%). Mp: 246.5-248.9 ºC. IR (Nujol) ν 3449, 2930, 2842, 1633, 

1593, 1467, 1378, 1284, 1121, 1053, 938, 844, 811, 722 cm
-1

. 
1
H NMR (DMSO-d6) 3.65 (s, 

16H, 4xCH2), 3.82 (s, 8H, 2xCH2), 4.11 (s, 8H, 2xCH2), 7.14 (s, 2H, 4-H and 5-H), 7.18 (s, 

2H, 4-H and 5-H), 7.71 (d, 1H, J=4.0 Hz, 3''-H), 7.87 (d, 2H, J=8.8 Hz, 2'-H and 6'-H), 7.92 

(d, 1H, J=4.0 Hz, 4''-H), 8.27 (d, 2H, J=8.4 Hz, 3'-H and 5'-H), 13.45 (br s, 1H, NH). 
13

C 

NMR (DMSO-d6) δ 68.46 (4xCH2), 68.52 (4xCH2), 69.13 (4xCH2), 69.65 (2xCH2), 69.73 

(2xCH2), 125.40, 125.69, 126.89, 127.22, 128.62, 133.76, 134.20, 143.41, 145.38, 145.84, 
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146.22, 148.81. MS (FAB) m/z (%): 795 (M+Na
+
, 100), 773 (M+H

+
, 21), 636 (12), 517 

(10). HRMS: (FAB) m/z (%) for C40H45N4O10S; calcd 773.2856; found 773.2866. 

 

Crown ether 5. Brown solid (53%). Mp: 260.5-263.0 ºC. IR (KBr) ν 3451, 3078, 2922, 2855, 

1655, 1490, 1439, 1345, 1297, 1226, 1130, 1053, 943, 799 cm
-1

. 
1
H NMR (DMSO-d6) 3.63 

(s, 16H, 8xCH2), 3.82 (s, 8H, 4xCH2), 4.08 (s, 8H, 4xCH2), 6.99 (s, 2H, 2x4-H), 7.17 (s, 2H, 

2x5-H), 7.45 (d, 2H, J=4.0 Hz, 2x3'-H), 7.68 (d, 2H, J=4.0 Hz, 2x4'-H), 12.75 (s, 2H, 2xNH). 

13
C NMR (DMSO-d6) δ 68.88 (8xCH2), 69.79 (4xCH2), 70.37 (4xCH2), 95.88 (2xC4 and 

2xC5), 125.35 (2xC3'), 126.30 (2xC4'), 127.81 (2xC3a and 2xC5a), 133.27 (2xC2'), 136.86 

(2xC5'), 144.92 (2xC2), 146.04 (2xC4a and 2xC4b). MS (FAB) m/z (%): 779 (M+H
+
, 10), 

501 (34), 307 (34), 282 (22), 155 (32), 154 (100). HRMS: (FAB) m/z (%) for C38H43N4O10S2; 

calcd 779.2421; found 779.2394. 

 

4.3. Spectrophotometric and spectrofluorimetric titrations of compounds 3-5  

UV-vis absorption spectra (220 – 800 nm) were obtained using a Perkin Elmer lambda 35 

spectrophotometer and fluorescence emission on a Perkin Elmer LS45. The linearity of the 

fluorescendce emission vs. concentration was checked in the concentration range used (10
-4

-

10
-6

 M). A correction for the absorbed light was performed when necessary. All 

spectrofluorimetric titrations were performed as follows: stock solutions of compounds 3-5 

(ca. 10
-3

 M) were prepared in a 50 mL volumetric flask and diluting to the mark with 

MeCN/DMSO (99:1) UVA-sol. The titration solutions were prepared by appropriate dilution 

of stock solutions. Titrations of compounds 3-5 were carried out by addition of microliter 

amounts of standard solutions of the ions (cations or anions) in acetonitrile.  

The organic solvents were purified by standard methods.
21

 CH4SO3, Bu4NOH, NaBF4, KBF4, 

LiBF4, Ca(CF3SO3)2, Zn(BF4)2, Cu(BF4)2, Ni(BF4)2,Pd(BF4)2, Hg(CF3SO3)2, and Bu4NF were 

purchased from Strem Chemicals, Sigma Aldrich and Solchemar. All were used without 

previous purification. CH4SO3 was used to change the acidity conditions of the MeCN/DMSO 

solutions.  Luminescence quantum yields were measured using a solution of quinine sulfate in 

sulfuric acid (0.1M) as standard [F = 0.54].
22

  All measurements were conducted at 298 K. 
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Captions 

Table 1. Yields, IR, 
1
H NMR, UV-vis absorption and fluorescence data for imidazo-

benzocrown ethers 3-5.  

a
 For the NH stretching band (recorded in nujol). 

b
 For the NH stretching band (recorded in KBr). 

c
 For the NH proton of the imidazole ring (in DMSO-d6). 

d
 in MeCN/DMSO (99:1) solution. 

Table 2. Association constants for benzocrown ethers 3-5 in the presence of F
-
, Pd

2+
 and Cu

2+
 

in MeCN/DMSO (99:1). 

Figure 1. Absorption and emission spectra of compounds 3-5 in MeCN/DMSO (99:1), T= 

298 K, [3] = 5.010
-7

 M, [4] = 5.510
-7

 M, [5] = 4.3 10
-7

 M. (exc3 = 360 nm, exc4 = 395 

nm; exc5 = 415 nm). 
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Figure 2. Spectrofluorimetric titration of compounds 4 (A) and 5 (B) in MeCN/DMSO (99:1) 

solutions as a function of added CH4O3S. The insets show the normalized fluorescence 

intensity at 500 nm and 535 nm, respectively ([4] = 4.3010
-7

 M, exc = 395 nm; [5] = 

5.1010
-7

 M, exc = 415 nm). 

 

Figure 3. Absorption and fluorescence spectra of MeCN/DMSO (99:1) solutions of 3 (A), 4 

(B) and 5 (C) and fluorescence titration as a function of Bu4NF added. The insets show the 

normalized fluorescence intensity at 447 nm (3), 496 nm (4) and 568 nm (5) ([3] = 5.1310
-7

 

M, exc = 360 nm; [4] = 4.3010
-7

 M, exc = 395 nm). [5] = 5.1010
-7

 M, exc = 415 nm). 

 

Figure 4. Absorption and fluorescence spectra of MeCN/DMSO (99:1) solutions of 3 (A), 4 

(B) and 5 (C) after addition of 2000 equivalents of NaBF4; LiBF4; KBF4; Ca(CF3SO3)2 and 

Zn(CF3SO3)2 in CH3CN. ([3] = 5.1310
-7

 M, exc = 360 nm; [4] = 4.3010
-7

 M, exc = 395 

nm; [5] = 5.1010
-7

 M, exc = 415 nm). 

Figure 5. Absorption spectra of acetonitrile-DMSO (99:1) solutions of 3 (A), 4 (B) and 5 (C) 

and fluorescence titration as a function of added Pd(CH3CN)4BF4. The insets show the 

normalized fluorescence intensity at 447 nm (3), 500 nm (4) and 568 nm (5). (T= 298 K; [3] = 

5.13.10
-7

 M, λexc = 360 nm; [4] = 5.10
.
10

-7
 M, λexc = 395 nm; [5] = 4.30

.
10

-7
 M, λexc = 415 

nm). 

 

Figure 6. Absorption and fluorescence spectra of MeCN/DMSO (99:1) solutions of 3 (A), 4 

(B) and 5 (C) as a function of added Cu(CF3SO3)2. The insets show the normalized 

fluorescence intensity at 447 nm (3), 500 nm (4) and 568 nm (5). ([3] = 5.1310
-7

 M, exc = 

360 nm; [4] = 4.3010
-7

 M, exc = 395 nm, [5] = 5.1010
-7

 M, exc = 415 nm). 

 

Figure 7. Job´s plot of compound 3 in the presence of Pd
2+

. 

 

Scheme 1. Synthesis of imidazo-benzocrown ether derivatives 3-5. 
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Research Highlights 

 

 

1- Synthesis of novel imidazo-benzo-15-crown-5 ethers bearing arylthienyl and bithienyl -

bridges. 

 

2- Characterization of the absorption and emission properties of imidazo-benzo-15-crown-5 

ethers. 

 

3- Thienyl derivatives of benzo-15-crown-5 ethers as selective fluorescent chemosensors for 

Pd
2+

 and Cu
2+

. 

 

4- bis-Substituted imidazo-crown ethers as selective fluorimetric sensors for the fluoride ion. 

 


