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Multi-Objective Ant Colony Optimization for the Twin-

Screw Configuration Problem 
 

 
The Twin-Screw Configuration Problem (TSCP) consists in identifying the 

best location of a set of available screw elements along a screw shaft. Due to its 

combinatorial nature, it can be seen as a sequencing problem. In addition, 

different conflicting objectives may have to be considered when defining a 

screw configuration and, thus, it is usually tackled as a multi-objective 

optimization problem. In this research, a multi-objective ant colony 

optimization (MOACO) algorithm was adapted to deal with the TSCP. The 

influence of different parameters of the MOACO algorithm was studied and its 

performance was compared with that of a previously proposed multi-objective 

evolutionary algorithm and a two-phase local search algorithm. The 

experimental results showed that MOACO algorithms have a significant 

potential for solving the TSCP.  

 
Keywords: multiple objectives; ant colony optimization; evolutionary 

algorithms, polymer extrusion; twin-screw configuration 

 

1. Introduction 
 

In virtually all polymer processing and compounding technologies, the raw material 

(pellets or powder) is melted and subsequently given the desired shape. Feeding and 

solids conveying, melting, mixing and melt pumping are performed in a special 

section of the processing equipment known as plasticating unit, which usually consists 

of one or two (counter- or co-rotating) Archimede-type screws  rotating  inside a 

heated barrel. In turn, the plasticating unit is coupled to, e.g., a die or a mould, in the 

case of extrusion and injection moulding, respectively. This article deals with 

optimization problems that arise when setting the configuration of co-rotating twin-

screw extruders. These machines  are progressively finding more applications in 

polymer compounding (manufacture of masterbatches, compounds, polymer blends,  

composites and nanocomposites), powder coating, food processing (cereals, biscuits, 

cookies, crackers, pet food) and hot melt extrusion of pharmaceuticals (drug delivery, 

transmucosal and transdermal systems, etc.) (White et al. 2010, Sakai 1991). They 
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combine continuous production, easy operation, modular construction and good yield 

ranging from a few hundred grams per hour in laboratory machines up to 100 tonnes 

per hour in the biggest industrial machines.  

In co-rotating twin-screw extruders, two parallel screws that are mechanically 

intermeshed rotate in the same direction and at the same speed inside a hollow heated 

barrel. Frequently, each screw is assembled by sliding along a shaft a certain number 

of individual elements that were selected from a larger pool. Extruder manufacturers 

offer a wide variety of geometries, with distinct conveying and mixing characteristics 

(for an overview of available screw elements, see Sakai 1991 and Kohlgrüber 2007). 

Generally, in laboratory-scale extruders, the barrel can also be constructed by 

coupling individual segments. 

The modular construction provides the possibility of adapting the machine features to 

the specifications of different productions. This applies not only to the type and 

sequence of unit operations to be performed (such as solids conveying, melting, 

feeding of a solid additive, injection of a liquid, mixing, devolatilization, pumping and 

shaping), but also to the characteristics of some of these operations. For example, 

mixing can be made to range from purely distributive to mostly dispersive, i.e., from a 

mere spatial rearrangement of the material ingredients to the rupture of existing 

agglomerates into primary particles (Kohlgrüber 2007).  

The performance of a manufacturing process using twin-screw extruders is 

obviously determined by the thermo-physical and rheological characteristics of the 

raw materials (melt viscosity, melting temperature, thermal stability, density, 

composition, etc.), the set operating conditions (temperature profile, screw speed and 

feed rate of the various components) and the screw (and barrel) geometrical profile. 

Thus, assembling a screw from individual screw elements is an essential but 

Page 3 of 51

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

challenging task, which might dictate a priori the success of the entire process. The 

Twin-Screw Configuration Problem (TSCP) consists in defining the position of a set 

of available screw elements along a screw shaft such that it maximizes the 

performance of a specific application. Currently, this task is performed empirically on 

a trial-and-error basis, making use of available process knowledge. Commercial 

process modelling software is seldom used to decrease the number of experimental 

iterations (Vergnes et al. 1998, White et al. 2001). As an alternative, an automatic 

approach to twin-screw design formulating it as a combinatorial sequencing problem, 

which is solved using an optimization procedure coupled to a modelling routine, has 

been proposed (Gaspar-Cunha et al. 2002, 2005). The method employs a Multi-

Objective Evolutionary Algorithm (MOEA) (Deb 2001, Coello Coello et al. 2007), 

denoted as Reduced Pareto Set Genetic Algorithm (RPSGA), that uses a clustering 

technique to simultaneously ensure the progression of the population of solutions in 

the direction of the Pareto-optimal front and the dispersion of the solutions along this 

front (Gaspar-Cunha et al. 1997, 2004, Gaspar-Cunha 2000). The approach was 

successfully applied to the optimization of operating conditions (Gaspar-Cunha et al. 

2002), screw configuration (Gaspar-Cunha et al. 2005) and, more recently, material 

manufacture via reactive extrusion (starch cationization (Teixeira et al. 2010, Gaspar-

Cunha et al. 2011) and ε-caprolactame copolymerization (Gaspar-Cunha et al. 2005, 

Teixeira et al. 2010). The authors are unaware of other attempts to develop a scientific 

methodology to solve the TSCP. Still, Potente et al. (2006) addressed the problem of 

optimizing the geometry of individual screw elements (but not locating them spatially 

in the shaft) making use of an aggregation of quality functions. 

Modelling adequately the flow and heat transfer (and, eventually, the chemical 

conversion and morphological evolution) of a material along the axis of a twin-screw 
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extruder is rather complex, involving numerical solutions that are computationally 

demanding. Consequently, the evaluation of each screw configuration takes a 

significant computation time and any optimization run becomes slow due to the 

inherent intensive use of the modelling routine. Thus, it is of practical interest to 

develop and/or implement as efficient as possible optimization algorithms. A first step 

attempted by the authors consisted in applying multi-objective extensions of local 

search algorithms to the TSCP. In particular, the use of iterative improvement 

algorithms embedded into the two-phase local search (TPLS) framework provided 

good results in comparison with RPSGA (Teixeira et al. 2011).  

Ant Colony Optimization (ACO) is a relatively recent and powerful 

metaheuristic for tackling combinatorial problems. ACO takes inspiration from real 

ants’ foraging behaviour to define algorithmic solutions to computationally hard 

optimization problems. The first ACO algorithm (Ant System) was proposed by 

Dorigo et al. in the early nineties. Later, followed the definition of the ACO 

metaheuristic framework by Dorigo and Di Caro (1999), which provides a high-level 

model for ACO algorithms. In ACO algorithms, ants exchange information indirectly 

by depositing pheromone that influences the choice of other ants. For a recent 

overview on ACO algorithms and their applications refer to (Dorigo et al. 2010).  

Several approaches have been proposed to apply ACO algorithms to Multi-

Objective Optimization Problems (MOOP) such as multi-objective scheduling, 

vehicle routing and portfolio selection (Mariano et al. 1999, Iredi et al. 2001, Doerner 

et al. 2004, García-Martinez et al. 2007, Angus et al. 2009, López-Ibáñez et al. 2009, 

2010a). A detailed review and comparison of the available multi-objective ACO 

(MOACO) algorithms for solving the bi-objective traveling salesman problem can be 

found in (García-Martinez et al. 2007). A more recent review provides a detailed 

Page 5 of 51

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

classification of MOACO algorithms (Angus et al. 2009). Several design alternatives 

of how to extend ACO algorithms to multi-objective optimization problems have been 

studied (López-Ibáñez et al. 2009) and the algorithmic design choices in available 

MOACO algorithms have been analysed (López-Ibáñez et al. 2010a).  

This article investigates MOACO algorithms as an alternative solution method 

for the TSCP. In particular, different design choices for MOACO algorithms are 

considered and their impact on MOACO’s performance is analysed for various bi-

objective TSCP instances. Based on the insights gained from this study, the final 

MOACO algorithm for the TSCP is defined and its performance compared to that of 

RPSGA and a TPLS algorithm. The computational results show that the proposed 

algorithm results in approximations to the Pareto front that are better than those of 

RPSGA on several TSCP instances. This indicates that MOACO algorithms are very 

promising for tackling the TSCP.  

The paper is structured as follows. Section 2 presents the characteristics of the 

TSCP as well as the relevant aspects of the modelling routine. The multi-objective 

algorithms studied are described in Section 3 and the examples to be analysed are 

presented in Section 4. Section 5 contains a discussion of the MOACO parameters 

and a comparison between MOACO, MOEA and TPLS results. Finally, the main 

conclusions are given in Section 6. 

2. Twin-screw Configuration Problem 

2.1. The Extrusion Process 

 

Figure 1 illustrates the typical layout of a co-rotating twin-screw extruder. The 

machine contains two parallel identical screws that can rotate at constant (but 

tuneable) speed inside a heated barrel. The material enters upstream via a gravimetric 

or volumetric feeder set to work at a given rate assuring that the screws will work 
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partially filled along most of their length.  By action of the screw rotation, the 

material progresses axially with a complex flow pattern (it is repeatedly transferred 

between the channels of the two screws), while it is subjected to distinct 

thermomechanical environments (shear stresses, temperature, residence time), 

depending on the local screw geometrical features.  

As it progresses downstream, the material melts due to the combined effect of 

heat conduction from the barrel, heat generation due to friction and plastic 

deformation. Further downstream the melt may cross mixing zones that induce 

variable levels of distributive and/or dispersive mixing, flow along partially filled 

channels where new components - typically fillers or reinforcements - may be added, 

or devolatilization is attempted. A repetition of these operations along the screw is 

also possible. The sequence will depend on screw and barrel design, location and type 

of accessories and operating conditions. Towards the screw tips, the melt is 

pressurized and flows through the shaping die (White et al. 2001, 2010, Vergnes et al. 

1998, Gaspar-Cunha et al. 2002). Screw speed and output can be controlled 

independently, although they both affect flow and heat transfer inside the machine. 

As explained above, in most machines the screws are built by assembling a 

number of screw elements. These can vary in type (see Figure 1) and, for each, 

variations in pitch, helix or staggering angle, and length or number of kneading disks 

exist. Right handed elements have a positive helix angle, which gives them good 

conveying capacity (the higher the angle, the larger the output capacity) - thus here 

the screws will work partially filled (this saves energy, allows for temperature 

relaxation and is useful for secondary feeding or devolatilization). Conversely, the 

negative angle of left handed screw elements imposes a restriction to the flow, i.e., 

they generate pressure and may cause filling of a few screw channels upstream. 
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Kneading blocks comprise a variable number of kneading disks, which can be 

staggered at positive, neutral (i.e., 90º), or negative angles (in practice, the helix angle 

can also vary within the same kneading block). In the first case, they behave as 

conveying sections (but with a good distributive mixing capacity), while in the third 

case they become analogous to left handed elements. The restrictive character 

increases the local residence time and hydrodynamic stress levels, thus inducing 

polymer melting (if they correspond to the first restrictive section upstream) and/or 

distributive and dispersive mixing (tuneable via the staggering angle). Therefore, the 

screw profile of the extruder depicted in Figure 1 comprises one melting/mixing and 

two mixing zones, separated by four conveying sections. As the inlet material 

progresses along the screw, it quickly approaches the first restrictive zone, where the 

combination of pressure, temperature and local residence time will cause melting. If 

this zone is long enough, substantial dispersive and distributive mixing will develop 

(and, when chemical reactions are also involved, high chemical conversions may be 

reached). Melt flow during the second and third mixing zones will essentially 

contribute to better dispersive mixing.  In fact, this type of mixing requires exposure 

to sufficiently high stresses during sufficient time. However, it is preferable to design 

a screw with several mixing zones instead of having one of equivalent length, as 

pressure and viscous dissipation in the latter would reach prohibitive levels.  On the 

other hand, this design will generate complex pressure profiles, as flow develops 

along sequences of partially filled and fully filled channels. 

2.2. Modelling Routine 

 

Due to the complexity of the flow and heat transfer in twin screw extruders and the 

need to generate sufficiently accurate predictions of the process response upon 

changing its main parameters, the authors developed  a numerical modelling routine 
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(Teixeira et al. 2007, 2010). For the purposes of this work, this routine can assumed 

to be a “black box”. The inputs to this modelling routine are the material properties, 

the screw configuration (in the present case, the screw configuration is to be 

optimized) and the operating conditions (screw speed, barrel set temperature and mass 

output). The outputs are the parameters that characterize the process performance; 

these parameters are used as the objectives to be optimized.  

It is clear that different screw configurations will create inherently different 

thermo-mechanical environments. The linkage between operating conditions, screw 

geometry/configuration, materials properties and the extruder performance is made 

through the modelling routine. Thus, the modelling routine must (i) be capable of 

describing accurately the relevant flow and heat transfer phenomena, (ii) be sensitive 

to changes in geometrical or operational parameters and (iii) require moderate 

computational resources. A detailed description of the routine is given elsewhere 

(Teixeira et al. 2007, 2010). It encompasses all steps from material inlet to die exit, 

including solids conveying under or without pressure, melting, melt conveying under 

or without pressure and die flow. Figure 2 presents three different screw profiles that 

could be used in the extruder of Figure 1 and that are described in detail in Table 1. 

Each screw comprises 16 elements; right handed and left handed elements are 

identified by their length and pitch, while kneading blocks (KB) are defined by their 

length and staggering angle. In practice, the extrusion companies deal with at most 

25-30 elements. Figure 3 and Table 2 demonstrate how the performance of these 

screws is distinct when using identical operating conditions (barrel and die set to 

220ºC, screws rotating at 150 rpm and feed rate of 8 kg/hr). A polypropylene polymer 

(ISPLEN PP 030G1E from Repsol) is being processed, having physical, thermal and 
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rheological properties characterized by the manufacturer, or determined 

experimentally (see Domingues et al. (2010)).  

Figure 3 shows the evolution along the screw length of the average melt 

temperature, average degree of channel fill, cumulative mechanical power 

consumption, cumulative residence time, pressure and average shear rate. Table 2 

contains the values of global process responses. Average strain is a measure of the 

extent of distributive mixing; Specific Mechanical Energy (SME) represents the 

mechanical energy consumption per unit weight of processed material; Viscous 

Dissipation quantifies the increase in melt temperature relative to the local set value. 

Not only the values of these parameters change significantly with screw geometry, but 

they are also conflicting. For example, the best distributive mixing is obtained for 

screw B (Table 2) at the cost of having to cope with higher viscous dissipation 

(which, if excessive, will cause premature material degradation). The performance 

measures presented in Table 2 will be adopted as objectives for the optimization runs 

discussed in subsequent sections. 

2.3. The problem to solve 

 

The examples presented above demonstrate the practical importance and difficulty in 

optimizing the process. In general, this should be done by using as parameters to 

optimize (i.e., the decision variables) the operating conditions (Gaspar-Cunha et al. 

2002), the screw configuration (Gaspar-Cunha et al. 205), the individual geometry of 

the different screw elements, or a combination of these variables, depending on the 

practical situation to tackle. The operating conditions and individual geometry of the 

elements are continuous variables, whilst the screw configuration variables are 

discrete (since they define the location of the elements through the order in which the 

screw elements are put on the screw shaft). Simultaneously, the best screw 
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configuration can be determined for a fixed set of screw elements previously selected, 

or by using a pool of elements available for the machine under consideration (Gaspar-

Cunha et al. 205). In the present work, the Twin-Screw Configuration Problem 

(TSCP) is deal with using a fixed number of pre-determined screw elements. Again, 

the TSCP consists in the definition of the best location along the screw axis of a 

number of distinct screw elements that optimizes the process performance. There are 

no restrictions in terms of the possible location of any screw element, except that the 

initial (upstream) elements must be of the conveying type (to ensure smooth material 

inlet) and at least one restrictive element (left handed or kneading block) must be 

present in order to melt the material. Thus, the TSCP can be seen as a sequencing 

problem where the resources (screw elements) must be ordered sequentially along the 

screw shaft.  

For the purposes of this work, an instance of the problem consists of a pre-

determined set of screw elements and their respective location along the screw shaft 

needs to be determined. For each instance, three different variants are defined by the 

particular combination of objectives to be considered. The objective values are 

computed by the modelling routine, i.e., and as seen above, for each screw 

configuration that is defined by the optimization algorithm, the modelling routine 

must be run. Each run of the modelling routine needs two to three CPU minutes 

(depending mainly on the number of restrictive screw elements) on an AMD opteron 

TM 2116 dual-core processor running at 2.4 GHz with 2MB L2-Cache. Hence, the 

total computation time for one run of an optimization algorithm with a maximum of 

3000 evaluations of sequences by the modeling routine is more than 6000 CPU 

minutes, that is, more than 4 CPU days. Clearly, an exhaustive search for all possible 
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sequences is infeasible for already a small number of screw elements and therefore 

heuristic algorithms are required to determine good screw configurations. 

3. Multi-Objective Optimization: Concepts and Algorithms 

3.1. Basic Concepts 

 

An important aspect to take into consideration when applying an optimization 

algorithm to real-world problems is the representation of the solutions. This is 

particularly relevant in the present problem, since it constitutes an engineering 

problem where continuous and discrete variables can exist simultaneously. In the case 

of the TSCP, solutions are represented by discrete variables identifying the location of 

the screw elements. In particular, a solution can be represented as a permutation of the 

indices of the screw elements. This is also relevant for designing the different 

operators of the optimization algorithms, as will be illustrated below. 

Most real-world optimization problems, including the TSCP, involve the 

simultaneous optimization of various criteria. The complexity of the task is increased 

by the existence of conflicting objectives (Deb 2001, Coello Coello et al. 2007). In 

multi-objective optimization problems (MOOPs), solutions are evaluated with respect 

to an objective function vector ( ) ( ))(,,)(1 XfXfXF NK=  that assigns to every 

solution X ∈ S a value for each objective function. Here, N is the number of 

objectives. The task is to find solutions for which the objective function vectors are in 

some sense optimal. Let us assume, without loss of generality, that maximization 

problems are considered. The dominance criterion defines a partial order on the set of 

solutions. In particular, for two given vectors u = (u1, …, uN)  and v = (v1, …, vN), is 

possible say that u  dominates v  in the Pareto sense, if and only if 

  

∀i ∈ 1, K , N{ }: ui ≥ v i  and { }Ni ,,1 K∈∃ : ui > v i. A solution SX ∈  is then said to 
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be Pareto optimal with respect to S if and only if there exists no SX ∈′  for which 

( ))(,,)()( 1 XfXfXF N
′′=′= Kv  dominates ( ))X(f,,)X(f)X(F NK1==u . If a 

priori it was not possible to make any assumption on the preferences of a decision 

maker, the goal is to obtain a set of feasible solutions that minimize F in the sense of 

Pareto optimality. This set of optimal solutions in the decision space is known as the 

Pareto-optimal set and the resulting representation in the objective space is named 

Pareto front.  MOEAs are an efficient method to solve MOOPs: taking inspiration 

from the natural evolution process, they use a population of solutions that can 

approximate the Pareto front (Deb 2001, Coello Coello et al. 2007). Different 

approaches for tackling MOOPs have been proposed in the literature (Deb 2001, 

Coello Coello et al. 2007).  

3.2. Multi-Objective Evolutionary Algorithms 

 

The development of an Evolutionary Algorithm (EA) is strongly dependent on the 

characteristics of the problem to be solved (Goldberg 1989). The most important 

characteristics to be considered in the present work are the discrete nature of the 

decision variables and the presence of multiple conflicting objectives. Given the 

latter, the application of MOEAs seems to be straightforward. However, due to the 

first characteristic of the problem, none of the MOEA algorithms available in the 

literature can be used without considerable modifications concerning solution 

representation and the evolutionary operators. In fact, only the global concepts of 

these algorithms can be transferred to the TSCP.  

Therefore, a modified version of RPSGA, a MOEA that was developed for 

continuous problems by some of the authors of this article, was adopted here (Gaspar-

Cunha et al. 1997, 2004, Gaspar-Cunha 2000). In fact, in earlier research, RPSGA 

was found to be competitive with NSGA-II (Deb et al. 2000), a standard MOEA 
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proposed by Deb et al., which justifies this choice. RPSGA is based on the use of two 

populations (internal and external), that evolve simultaneously during the successive 

generations. RPSGA uses a clustering technique to rank the solutions present in the 

population. This technique replaces the crowding distance operator of NSGA-II and 

improves the quality of the solutions found when dealing with more than two 

objectives.  

Due to the solution representation used for the TSCP (discrete variables that 

define a permutation of the screw element indices), the crossover and mutation 

operators in RPSGA were replaced by the inver-over operator (Tao et al. 1998). The 

main steps of the RPSGA algorithm are illustrated below (Algorithm 1). 

Algorithm 1, RPSGA for the TSCP 

(1) Random initial population (internal); 

(2) Empty external population and archive; 

(3) while Stopping-Condition not satisfied do 

(a) Evaluate internal population; 

(b) Calculate the Fitness of the individuals using clustering; 

(c) Copy the best individuals to the external population; 

(d) if the external population becomes full then 

Apply clustering to this population; 

Copy the best individuals to the internal population; 

end if 

(e) Select the individuals for reproduction; 

(f) Inver-over operator; 

(g) Copy the non-dominated solutions to the archive; 

(h) Discharge the dominated solutions from the archive; 

end while 

 

The algorithm starts with the creation of a random internal population of size 

M (step 1) and of external and archive populations of a maximal size 2M, which are 
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initially empty (step 2). The following steps are carried out in each iteration, until a 

stopping condition is satisfied. The solutions of the internal population are evaluated 

by the modelling routine (step 3a). Then, the fitness of each solution is calculated 

making use of the clustering technique (step 3b) and a fixed number of the best 

solutions (as defined by the clustering technique) are copied to the external population 

(step 3c). If the latter is not full, the selection and inver-over operators are applied in 

order to produce a new population (steps 3e and 3f). The non-dominated solutions 

found are copied to the archive (step 3g) and those that become dominated due to the 

inclusion of new solutions are discharged from the archive (step 3h). If the external 

population becomes full, the clustering technique is applied to sort the individuals of 

the external population, and a pre-defined number of the best solutions (as defined by 

the clustering technique) are incorporated into the internal population by replacing the 

lowest fitness individuals (step 3d).  

As said above, RPSGA uses a clustering technique that reduces the number of 

solutions on the efficient frontier while maintaining its characteristics intact; this 

enables the selection of the best solutions for reproduction and, simultaneously, it 

maintains the distribution of the solutions along the Pareto front (Gaspar-Cunha 

2000). The clustering technique is applied by first dividing the set of solutions 

considered (either the internal or the external populations) by a pre-defined number of 

ranks (Nranks). For the first rank (r equal to one), a clustering algorithm is applied until 

the number of solutions that rest is equal to (M/Nranks), i.e., only this number of ranks 

exists. To these solutions, which represent the solutions that best represent the 

clusters, is attributed rank one (i.e., rank equal to r). For the second rank (r equal to 

two), the entire population is reduced to (r*M/Nranks). To these individuals that do not 

have yet a rank (attributed in the first iteration), is attributed the rank two. This 
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process is repeated until the last rank. To the non-dominated individuals is attributed 

the maximum rank value (i.e., Nranks). A rank function is used to calculate a global 

evaluation function value and the individuals in the population are selected by a 

roulette wheel technique using this evaluation function value. Additionally, an archive 

of non-dominated solutions is kept, in order to prevent that good solutions are lost 

(Gaspar-Cunha 2000). For a more detailed description of RPSGA refer to (Gaspar-

Cunha et al. 1997, 2004, Gaspar-Cunha 2000).  

3.3. Multi-Objective Ant Colony Optimization 

 

Ant Colony Optimization takes inspiration from the pheromone trail laying and 

following behaviour of real ants and transfers some core behaviours to an algorithmic 

approach for tackling complex combinatorial problems (Dorigo et al. 1999). To apply 

ACO, pheromone trails are associated to solution components of the problem to be 

tackled. Artificial ants then iteratively generate solutions to the problem under 

concern using a probabilistic solution construction mechanism and update the 

pheromone trails based on a positive feedback loop. From a high level perspective, 

the outline of an ACO algorithm is as follows (Algorithm 2).   

 

Algorithm 2, generic ACO algorithm 

(1) Initialize pheromone matrices to value τini; 

(2)  while termination conditions not met do 

(a) Construct solutions; 

(b) Evaluate solutions; 

(c) Update pheromones; 

(d) Update archive;      % if ACO is applied to MOOPs in Pareto sense 

end while 
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The ACO algorithm starts with the initialization of the pheromone matrix. 

While the termination conditions are not met (i.e, at each iteration) the following tasks 

are carried out. First, a solution is constructed for each ant, based on probabilistic 

values that are a function of the pheromone strengths associated to solution 

components and possibly available heuristic information (step 2a). Then, each 

solution is evaluated (step 2b). Next, the pheromones are updated (step 2c) by first 

reducing the pheromone trails by a fixed factor ρ  (simulating pheromone 

evaporation) and then depositing some amount of pheromone on selected solution 

components. The role of pheromone evaporation is to allow forgetting of “poor” 

previous decisions and to help bias the search around the best solutions found. The 

role of the pheromone deposit is to favour the components of the best solutions in the 

generation of subsequent solutions.  

If ACO is applied to MOOPs, non-dominated solutions are kept in an archive 

(step 2d) and all non-dominated solutions found during the search are returned. For 

this purpose, new non-dominated solutions are added to the archive and the solutions 

that become dominated are removed. 

3.4. Algorithmic Components of MOACO algorithm for TSCP 

 

When applying ACO algorithms to specific problems and to MOOPs, in particular, a 

number of implementation choices have to be taken (Dorigo et al. 1999, 2010, García-

Martinez et al. 2007, Angus et al. 2009, López-Ibáñez et al. 2009, 2010a). In the 

following, the details about the underlying ACO algorithm used, i.e., MAX-MIN Ant 

System, are presented, and then the algorithmic components considered to extend this 

underlying ACO algorithm to tackle the multi-objective version of the TSCP are 

discussed.  
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MAX-MIN Ant System for TSCP 

 

As the ACO algorithm, on which the MOACO algorithm for the TSCP is based, the 

MAX-MIN Ant System (MMAS) is used (Stützle et al. 1998, 2000). MMAS 

constructs solutions probabilistically by a standard construction mechanism that is 

common to most ACO algorithms. An ant starts with an empty solution and at each 

construction step it chooses probabilistically one solution component. In the classical 

action choice rule of ACO algorithms, which is also use in the present approach, an 

ant m chooses solution component (i,j) with a probability given by: 

 

pij

m =
τ

ij

τ
il[ ]

l ∈ℵi
l

∑
if j ∈ℵi

m  
(1) 

 

where m
iℵ is the feasible neighborhood of ant m (i.e., the screw elements that are still 

available in the TSCP case).  

Once all ants have constructed a solution, the pheromone trails are updated. 

The update of the pheromone trails consists of the pheromone trail evaporation, which 

decreases the amount of pheromone by a fixed factor ρ, and the pheromone deposit. 

From a high level perspective, this pheromone update process can be described by: 

 
τ ij → (1− ρ)τ ij + ∆ ij  (2) 

 

In the pheromone deposit, solution components occurring in one or several 

solutions generated by the ants increase their associated pheromone trail values. This 

in turn increases the probability that these solution components will be chosen 

subsequently by the ants in the following iterations. For the pheromone deposit, a first 

choice has to be made about which solutions are allowed to deposit pheromone on 

their solution components. One possibility is to consider only the best solution that is 

generated in the current iteration (iteration-best strategy). Another possibility is to 
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consider all the solutions generated since the start of the algorithm and to choose only 

the best of these (best-so-far strategy). Clearly, the latter option results in a more 

directed search. The amount of pheromone deposited can then be defined, for 

example, in dependence of the quality of the solution generated.   

A particularity of MMAS is that it restricts the level of the allowed pheromone 

trail values to a range τmin < τ ij < τmax. Using the pheromone trail limits reduces the 

possibility of search stagnation around the best solutions and favours the exploration 

of the search space (Stützle et al. 1998, 2000). Following the general rationale of 

setting these values as explained in (Stützle et al. 2000), the values of τ min  and τ max  

are set as follows.  

 

ρ
τ if=max  

(3) 

 

loc2

max
min

τ
τ =  

(4) 

 

2

minmax ττ
τ

+
=ini  

(5) 

 

where fi is the best value of the objective function i, loc is the number of screw 

elements whose location must be defined and τini is the initial pheromone value.  

Finally, for applying MMAS to the TSCP, it is also needed to define the exact 

meaning of solution component (i,j) and, hence, how the pheromone trail information 

τ ij is to be interpreted. In the case of the TSCP, a solution component may refer to an 

assignment of a screw element j to a specific position i on the screw axis (position 

assignment). In this case, ijτ  represents the desirability that screw element j is 

assigned to position i in the screw axis. Alternatively, a solution component (i,j) may 

refer to the successor relationship between screw elements on the screw axis (relation 
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assignment); in this case, each entry ijτ  of the pheromone matrix represents the 

desirability that element j follows immediately after element i on the screw axis.   

Considered Components for the MOACO algorithm 

 

When applying ACO algorithms to MOOPs, a number of generic algorithmic 

components specific to the multi-objective aspects of the problem need to be defined. 

In the following the algorithmic components considered here are discussed.  

Number of Pheromone Matrices and solution construction. When applying ACO 

to MOOPs, one may use either a single pheromone trail matrix to consider solutions 

for all objectives or multiple pheromone matrices (García-Martinez et al. 2007, 

López-Ibáñez et al. 2009). (In the latter case, typically one pheromone trail matrix per 

objective is used.) The first option implies that the construction of the solutions 

follows the usual steps of the ACO algorithm, using the same probabilistic 

construction rules as in ACO algorithms for single-objective problems, which were 

already presented in the previous subsection.  

When using several pheromone matrices, the information contained in the 

pheromone matrices needs to be aggregated for the probabilistic solution construction. 

Using a common generic form of this aggregation, an ant m then chooses a solution 

component (i,j) with a probability given by (Iredi et al. 2001, Doerner et al. 2004, 

López-Ibáñez et al. 2009, 2010a):  

 

[ ]
m
i

l

m
ij jifp

l
i

ilil

ijij ℵ∈
⊗

⊗
=

∑
ℵ∈

21

21

λλ

λλ

ττ

ττ
 

(6) 

 

where ⊗ is an aggregation operator, and λ1 and λ2 are the weights attributed 

to each objective, if two objectives are considered. The weights are normalized such 
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that 1=∑
i

iλ . (Equation (6) can easily be extended to more objectives.) Thus, the 

exploration of different regions of the Pareto front can be assured by the assignment 

of different weights to the ants. In the proposed algorithm is always assumed to have a 

maximally dispersed set of weight vectors. 

Concerning the aggregation operator, two different choices have been taken in 

previous multi-objective ACO (MOACO) algorithms. One possibility is to use a 

weighted product aggregation (product strategy), i.e., in Equation (6) the operator ⊗
 

is actually × . A second possibility is to use a weighted sum aggregation (linear 

strategy), i.e., in Equation (6) the operator ⊗
 
is replaced by +. Both choices were 

examined in the experimental analysis performed here.  

Pheromone update. The pheromone update generally follows the steps explained 

already above for MMAS. The main issue to be considered in the multi-objective case 

is the choice of which solutions are used for the pheromone deposit.  

Independently of whether one uses the iteration-best or the best-so-far 

strategy, the choice of the solutions for pheromone deposit depends on the number of 

pheromone matrices considered. If a single pheromone trail matrix for all objectives 

exists, the pheromone update is performed by using a maximum number of k non-

dominated solution (or ants). Each of the k ants deposits an amount 1/k of pheromone. 

The set of k non-dominated ants is selected through the use of a niching mechanism, 

in order that the solutions become evenly distributed along the Pareto front 

approximation (Deb et al. 1989). (To reflect the choice of the amount of pheromone 

to be deposited in this case, in the definition of τmax for the underlying MMAS 

algorithm, τmax is set equal to 2.0.) If multiple pheromone matrices are used, only a 

single pheromone matrix for each objective is used. In this case, the pheromone is 

deposited on the best solution (that is, on the iteration-best or the best-so-far solution, 
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depending on which strategy is chosen) for each objective. The amount of pheromone 

deposited is then chosen to be proportional to the quality of the solutions.  

Number of Colonies. Multiple colonies can be used in MOACO algorithms to better 

distribute the search effort along the Pareto front (Iredi et al. 2001). Each colony is 

then specialized to search in a specific area of the Pareto front. For this purpose, the m 

ants are divided into p colonies. Each colony has its own pheromone information and 

the ants of each colony construct the solutions based only on their colony’s 

pheromone information. The colonies then cooperate through the pheromone update 

mechanism. For example, the non-dominated solutions may be determined by 

considering the solutions generated by all colonies, imposing in this way a more 

selective determination of the non-dominated set of solutions. 

In the pheromone update, cooperation can be achieved by the pheromone 

update by region scheme (Iredi et al. 2001). In the bi-objective case considered here, 

the non-dominated solutions are first sorted along the front and then split into p 

subsets (p is the number of subsets, which is equivalent to the number of colonies). 

The best solutions of subset j are then used to update the pheromone information of 

colony j. In contrast, in the update by origin approach (Iredi et al. 2001), the ants of a 

specific colony are only able to update the pheromone trails of their own colony. 

Here, the update by region approach is adopted, since it is deemed to induce a more 

directed search. 

The use of several colonies can be combined with MOACO approaches that 

use a single pheromone trail matrix or those that use several pheromone trail matrices. 

In this article, the focus is given to the second possibility. (A posteriori this choice is 

also justified by the fact that in the experimental analysis presented in Section 5 it 

turned out that the use of one pheromone trail matrix per objective resulted in better 
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performance when compared to using only a single pheromone matrix.) When 

combining pheromone trail matrices by weights (λ), several possibilities of 

distributing the weights among colonies have been suggested (Iredi et al. 2001). Here, 

50% of the weights attributed to colony k are overlapped by the weights of colony k+1 

and k-1.  

4. Case studies 

 

The experiments are based on the characteristics of a Leistritz co-rotating twin-screw 

extruder, which is available at the University of Minho (Gaspar-Cunha et al. 2011). 

Table 3 shows the length and pitch of the screw elements used for each of the four 

instances considered. A polypropylene homopolymer (ISPLEN PP 030G1E from 

Repsol) is being processed using a barrel and die temperature set to 220ºC, the screws 

rotating at 150 rpm and a feed rate of 8 kg/hr. The goal is to define the best location of 

the 16 screw elements identified in Table 3 such that performance is optimized. The 

screw elements available are conveying screw elements with different lengths and 

pitches (20, 30, 45 and 60 mm), a single left handed element and kneading blocks 

with different staggering angles (-30º, -45º and  -60º). The number of restrictive screw 

elements increases progressively from one (instance TSCP1) to four (instance 

TSCP4). In order to guarantee enough initial conveying capability, the two first 

conveying screw elements in the screw axis are fixed; this means that the location of 

the 14 other elements needs to be defined by the optimization algorithms. For each of 

these four instances, three case studies defined by the combination of the pairs of 

objectives presented in Table 4 are examined. Thus, a total of 12 case studies (i.e., 

optimization sets) are studied.  

As stated before, the main goal of this work is to develop a high-performing 

MOACO algorithm for the multi-objective TSCP. For this purpose, first the several 
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design alternatives of MOACO algorithms are tested, which have been discussed in 

the previous section and are summarized in Table 5. Then, the performance of the 

final MOACO algorithm to the previously developed RPSGA and a TPLS algorithm 

are compared. Since the computation time of the modelling routine for evaluating a 

solution is relatively high (between two and three minutes, depending on screw 

complexity), each algorithm run was limited to 3000 solution evaluations.  

Given the stochastic nature of the optimizers, it is necessary to adopt statistical 

methods to compare the non-dominated solutions produced—the use of a single value 

would have severe limitations (Zitzler et al. 2003, Knowles et al. 2006). For this 

reason, the performance of the algorithms was made using the Empirical Attainment 

Function (EAF) methodology (Grunert da Fonseca et al. 2001). In simple terms, the 

EAF estimates the probability for a particular point in the objective vector to be 

attained by a single run of the algorithm (Fonseca et al. 1996). The EAFs are 

measured by running the multi-objective algorithms a number of times; here, ten 

independent runs are carried out with each algorithm. The performance of two 

algorithms can then be compared through plots of the differences of their EAFs 

(Lópes-Ibáñez et al. 2006, 2010b), that are indicated by points in the objective space. 

The points are only plotted in positions where the differences between the EAFs of 

the two algorithms change between different values. The values of the differences are 

encoded using a grey scale; the darker the points, the larger the observed differences. 

An example of such a plot is given in Figure 4. The two continuous border lines in the 

plot connect the best objective vectors that have been found in any of the runs of the 

two algorithms (grand best) and the points in the objective space that have been 

dominated by all runs of the two algorithms (grand worst); the discontinuous line in 

the middle gives the median of the EAF that was obtained by an algorithm (e.g., in 
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Figure 4, left plot is given the median obtained by the best-so-far pheromone update 

strategy), i.e., the boundary of the objective space that was obtained in 50% of the 

algorithm runs. Figure 4 clearly indicates a better performance of the MOACO 

algorithm with best-so-far pheromone update strategy compared to the iteration best 

pheromone update strategy. In fact, all the differences between the EAFs are in favour 

of the best-so-far pheromone update strategy, some being rather large (between 0.8 

and 1.0 as indicated by the black points). 

5. Results and Discussion 

 

First the influence of the MOACO design choices and parameter settings on 

performance, using the three case studies associated to instance TSCP4, is analysed. 

Then, the best MOACO results to RPSGA and TPLS on all twelve case studies (using 

all instances TSCP1 to TSCP4) are compared. In the experiments presented here, the 

colonies used a cross-total of 50 ants (except in the case were the influence of the 

number of colonies is studied) and 60 iterations were performed, resulting in 3000 

solution evaluations with the modelling routine. 

5.1. Influence of MOACO components 

 

In this section, a summary of the main results obtained when comparing different 

design choices and parameter settings of the MOACO algorithm is presented. Since 

the presentation of all EAF differences plots would be too extensive, only a few 

illustrative results using instance TSCP4 and case studies 1 and 2 (see also Table 3) 

are reported here; the complete set of results is available at 

http://www.dep.uminho.pt/agc/agc/Supplementary_Information_Page.html.  

Pheromone information 
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The comparison between the relation and the position-based pheromone information 

(Figure 5 of the supplementary file) using the plots of the EAF differences 

demonstrate that almost all differences are in favour of the relation-based definition of 

the pheromone information. These are expected results, since in the polymer extrusion 

process studied here there is a strong interaction between contiguous elements, mainly 

when restrictive elements are considered.  

The performance of the position-based pheromone information could also not be 

further improved by the application of additional techniques. For example, the 

application of the pheromone summation rule is considered (Merkle et al. 2000), but 

no performance improvement was obtained (plots shown in the supplementary 

material, Figure 10). As a further refinement, it is considered the choice of an 

assignment order, which gives preference to first assign screw elements (e.g., 

kneading disks and left handed elements), which are supposed to have a more 

important impact on the global process characteristics than others.  However, in the 

tests on the assignment order of the screw elements (sequential vs. importance-based), 

a consistent improvement by using this “importance-based” assignment order could 

not be obtained. Hence, neither the summation rule nor the importance-based 

assignment order was included into our final MOACO algorithm. For the following 

results, the use of the relation-based definition of the pheromone information is 

always used.  

Pheromone update strategy 

 

Figure 4 presents the results obtained for the two different pheromone update 

strategies tested. The best-so-far update strategy (best among the solutions existing in 

the archive) produces much better results than the use of the iteration-best update 

strategy and, hence, it will be adopted in other experiments. Additionally, the 
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influence of the pheromone trail evaporation factor ρ (shown in the supplementary 

pages) is examined. The best results were obtained for values of ρ = 0.2 and ρ = 0.3.   

Number of pheromone matrices 

 

As anticipated, the utilization of several pheromone matrices, using one matrix for 

each objective together with weighted aggregation of the pheromone trail values, 

produced significantly better results than the adoption of a single pheromone trail 

matrix (see Figure 9 in the supplementary information file).  

Number of colonies 

 

Two different conditions were analysed: the application of a single colony with 50 

ants during 60 iterations and the application of three colonies with 20 ants each during 

50 iterations. In both cases, each colony uses two pheromone matrices. (Note that for 

each of the three colonies 20 ants and 50 iterations are used to limit the computational 

effort to 3000 solution evaluations by the modelling routine.) Better results were 

attained in the second case, as depicted in Figure 5. 

Weight aggregation 

 

Finally, as seen in Figure 6, it can be concluded that the product strategy for the 

pheromone aggregation produces substantially better results than the weighted sum 

aggregation by the linear method. 

 

A summary of the above results is presented in Table 6. The second column 

represents the best values obtained when the parameters are studied individually. 

These best values are used for the final MOACO algorithm whose performance is 

compared with the RPSGA in the next section. 
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5.2. Comparison with RPSGA and TPLS 

 

Here, the performance of the MOACO algorithm (using the best combination of 

parameters, as presented in Table 6) is compared with RPSGA and TPLS. Each 

algorithm is run for a maximum of 3000 solution evaluations on each of the 12 case 

studies of the bi-objective TSCP.  

The differences among the empirical EAFs can be observed in Figure 7 for the 

case of the TSCP4 instance (the corresponding Figures for instances TSCP1 to TSCP3 

can be consulted in our Supplementary Information Page repository: 

http://www.dep.uminho.pt/agc/agc/Supplementary_Information_Page.html, 

respectively, Figures 23, 24 and 25), where each figure relates to the results 

comparing the three case studies for the same number of restrictive elements to be 

sequenced (see also Table 3). The differences between the algorithms are higher for 

the case studies on TSCP3 and TSCP4 with three and four restrictive elements, 

respectively. In fact, in this case the advantages are almost exclusively in favour of 

the MOACO algorithm. On the case studies related to TSCP1 and TSCP2, still most 

of the differences are in favour of our MOACO algorithm, although they are typically 

limited to smaller areas of the objective space. This outcome seems to indicate that 

the advantage of MOACO over RPSGA increases with a growing number of 

restrictive screw elements.  

As a further analysis, the hypervolume indicator was also computed (Zitzler et al. 

2003). For minimization problems, the hypervolume in two dimensions measures the 

surface that is dominated by the non-dominated solutions of a Pareto-front 

approximation and bounded by a point that is larger in every objective than any of the 

solutions in the Pareto-front approximation. The case of maximization problems can 

be described analogously. Given the very large differences of the ranges between the 
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three objectives, all results are first normalized into the interval [1,2]. This is done by 

first removing dominated points, then converting any maximization objective into a 

minimization one and finally considering for each objective and each instance the 

smallest and largest objective values found by any of the two algorithms among the 

non-dominated solutions. The smallest value is then mapped to 1.0 and the largest to 

2.0. The hypervolume is then computed taking the worst point, (2.0,2.0) as a 

reference. Using the resulting hypervolume values, a Wilcoxon signed rank test was 

further conducted to examine the statistical significance of the observed differences. 

The results are summarized in Table 7, where the average hypervolume values for 

each of RPSGA and MOACO measured across the 10 independent runs of each 

algorithm and the p-value of the statistical test are presented. The larger of the two 

hypervolume values is indicated in italics font; if the differences are significant at the 

usual 0.05 significance level, this is noted in boldface. As can be seen from these 

results, in all case studies, the MOACO algorithm obtains a higher average 

hypervolume value than RPSGA, indicating its superiority over RPSGA. In fact, a 

binomial test, which has as null hypothesis that RPSGA and MOACO have the same 

probability of reaching a smaller average hypervolume than the other, is rejected in 

favour of MOACO (p-value = 0.00024). Hence, it is possible to conclude that 

MOACO reaches for the case studies considered better performance than RPSGA. If 

given in turn attention for each individual comparison on each case study, it is 

possible to observe that on four of the twelve case studies, the difference in 

hypervolume is statistically significant in favour of MOACO (and none is in favour of 

RPSGA). This is noteworthy, since by having only 10 independent runs of each 

algorithm, the power of the test is not very high. 

Page 29 of 51

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Finally, the performance of the MOACO algorithm was compared with the 

earlier results obtained with the TPLS algorithm (Teixeira et al. 2011). (To limit the 

length of this paper, the detailed results with the plots of EAF differences can be 

found in the online available supplementary pages in Figures 27 to 30). The same 

conclusions can be drawn, i.e., MOACO is superior to its competitor in most case 

studies. (In fact, only for one case study-instance TSCP4, case study 1, involving 

average strain and SME objectives-TPLS has an advantage over the MOACO 

algorithm.). Hence, the proposed MOACO algorithm is the current method of choice 

to tackle the TSCP. 

6. Conclusion 

 

An effective MOACO algorithm for the bi-objective TSCP was presented. First, a 

number of different design choices and parameter settings of the MOACO algorithm 

were examined. Based on the knowledge gained with that study, a MOACO algorithm 

for the bi-objective TSCP is proposed and its performance is evaluated on a total of 

12 case studies. The analysis of the experimental results via the use of state-of-the-art 

methods for evaluating the performance of multi-objective optimizers demonstrated 

that the proposed MOACO algorithm is the method of choice for tackling the TSCP. 

Effective algorithmic tools to define appropriate screw configurations are indeed 

required by the industry.  

There are a number of possible directions where to extend this research. The 

first is to consider combinations of MOACO algorithms with TPLS, or other local 

search methods, to further improve the results. Given the high computation times 

required by the modelling routine to evaluate the screw configurations, another 

promising direction would be to reduce the number of calls to the modelling routine 

by using statistical modelling techniques for predicting the objective function values. 
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Finally, extending the work to embrace the situation where the user must choose the 

appropriate screw elements from a larger set of available elements would be very 

interesting from a practical standpoint. Actually, in this case two interrelated 

problems arise. The first is to select the screw elements from a larger set of available 

ones, while the second is to define the sequence of elements on the screw shaft. 
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Table 1- Geometrical identification of the screws illustrated in Figure 2. 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

A 

Length 97.5 
12

0 
45 60 30 30 30 60 30 120 30 

12

0 

37.

5 
60 60 30 

Pitch 45 30 
KB 

-45 
30 60 

- 

20 
30 20 

KB 

-60 
30 30 60 

KB 

-30 
45 30 20 

B 

Length 97.5 
12

0 
60 30 

12

0 
30 45 60 30 30 30 

12

0 
60 60 

37.

5 
30 

Pitch 45 30 20 
KB 

-60 
30 30 

KB 

-45 
30 -20 60 30 60 45 30 

KB 

-30 
20 

C 

Length 97.5 
12

0 
45 30 60 30 120 

37.

5 
60 60 30 30 30 30 60 120 

Pitch 45 30 
KB 

-45 
-20 30 30 60 

KB 

-30 
45 30 

KB 

-60 
20 60 30 20 30 
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Table 2- Global process responses when using the screw profiles of Figure 2 under 

identical operating conditions. 

 Average Strain SME Viscous 

Dissipation 

Screw A 7449.9 0.979 1.198 

Screw B 7682.6 0.889 1.217 

Screw C 6859.4 0.925 1.198 
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Table 3. Screw elements used in each of the four instances TSCP1 to TSCP4. 
Instances  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

TSCP1 

Length 97.5 120 45 60 30 30 30 60 30 120 30 120 37.5 60 60 30 

Pitch 45 30 45 30 20 60 30 20 
KB-

60 
30 30 60 20 45 30 20 

TSCP2 

Length 97.5 120 45 60 30 30 30 60 30 120 30 120 37.5 60 60 30 

Pitch 45 30 45 30 
-

20 
60 30 20 

KB-

60 
30 30 60 20 45 30 20 

TSCP3 

Length 97.5 120 45 60 30 30 30 60 30 120 30 120 37.5 60 60 30 

Pitch 45 30 
KB-

45 
30 

-

20 
60 30 20 

KB-

60 
30 30 60 20 45 30 20 

TSCP4 

Length 97.5 120 45 60 30 30 30 60 30 120 30 120 37.5 60 60 30 

Pitch 45 30 
KB-

45 
30 

-

20 
60 30 20 

KB-

60 
30 30 60 

KB-

30 
45 30 20 
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Table 4. Case studies for each of the four instances of Table 1. Given are the 

optimization criteria, the aim of optimization and the feasible ranges of the objectives. 

Case study Criteria Aim Xmin Xmax 

1 

Average Strain Maximization 1000 15000 

Specific Mean Energy (SME) Minimization 0.1 2 

2 

Average Strain Maximization 1000 15000 

Viscous Dissipation Minimization 0.9 1.5 

3 

Specific Mean Energy (SME) Minimization 0.1 2 

Viscous Dissipation Minimization 0.9 1.5 
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Table 5. Components of the MOACO algorithm that have been studied. 

MOACO Component Values tested 

pheromone evaporation 0.1, 0.2, 0.3, 0.4 and 0.5 

pheromone information position vs. relation 

pheromone update strategy best-so-far vs. iteration-best 

number of pheromone matrices one vs. several 

number of colonies one vs. three 

weight aggregation  linear vs. product 
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Table 6. Best parameters values suggested from experimental analysis for the 

MOACO algorithm.  

MOACO Component Best Value 

pheromone evaporation rate 0.2  

pheromone information Relation 

pheromone update strategy best-so-far 

number of pheromone matrices Several 

number of colonies Three 

weight aggregation  Product 
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Table 7. Comparison of normalized hypervolume values between RPSGA and 

MOACO. An entry marked in italic face indicates a higher hypervolume; an entry 

marked in bold face indicates a statistically significant difference according to the 

Wilcoxon signed rank test in favour of one algorithm. In the last column are indicated 

the observed p-values for the Wilcoxon test. 

Instance Objectives MOACO RPSGA p-value 

TSCP1 Avg. Strain, SME 0.9502 0.9421 0.1403 

 Avg. Strain, Vis. 

Dissipation 

0.9039 0.8777 0.9705 

 SME, Vis. Dissipation 0.6563 0.6413 1.083e-05 

TSCP2 Avg. Strain, SME 0.8432 0.8147 0.0311 

 Avg. Strain, Vis. 

Dissipation 

0.7570 0.7431 0.2526 

 SME, Vis. Dissipation 0.7522 0.7418 0.6772 

TSCP3 Avg. Strain, SME 0.8554 0.8070 0.0041 

 Avg. Strain, Vis. 

Dissipation 
0.8156 0.7368 0.0039 

 SME, Vis. Dissipation 0.6975 0.6805 0.1655 

TSCP4 Avg. Strain, SME 0.7618 0.7439 0.3073 

 Avg. Strain, Vis. 

Dissipation 

0.5361 0.5042 0.2475 

 SME, Vis. Dissipation 0.6563 0.6154 0.0630 
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Figure 1. Co-rotating twin-screw extruder. Top: example of machine layout; bottom: 

types of screw elements. 

Figure 2. Examples of screw profiles to be used in the extruder of Figure 1. 

Figure 3. Evolution of various process parameters along the barrel, when using the 

screw profiles of Figure 2 under identical operating conditions.  

Figure 4. Influence of the pheromone update strategy (best-so-far versus iteration-

best). 

Figure 5. Influence of the number of colonies (one colony versus three colonies). 

Figure 6. Influence of the weight aggregation method (linear versus product). 

Figure 7. Comparison between MOACO and RPSGA for TSCP4 instance. 

 

 

Page 42 of 51

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

  

 

 

Figure 1. Co-rotating twin screw extruder. Top: example of machine layout; bottom: types of screw 
elements.  

243x155mm (72 x 72 DPI)  
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Figure 2. Examples of screw profiles to be used in the extruder of Figure 1.  
180x62mm (72 x 72 DPI)  
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Figure 3. Evolution of various process parameters along the barrel, when using the screw profiles of Figure 2 
under identical operating conditions.  

352x300mm (72 x 72 DPI)  
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Figure 4. Influence of the pheromone update strategy (best-so-far versus iteration-best).  
287x137mm (72 x 72 DPI)  

 

 

Page 46 of 51

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

  

 

 

Figure 5. Influence of the number of colonies (one colony versus three colonies).  
289x137mm (72 x 72 DPI)  
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Figure 6. Influence of the weight aggregation method (linear versus product).  
286x137mm (72 x 72 DPI)  
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Figure 7. Comparison between MOACO and RPSGA for TSCP4 instance.  
286x137mm (72 x 72 DPI)  
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Figure 7. Comparison between MOACO and RPSGA for TSCP4 instance (continued).  
286x137mm (72 x 72 DPI)  
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Figure 7. Comparison between MOACO and RPSGA for TSCP4 instance (continued).  
286x137mm (72 x 72 DPI)  
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