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Abstract When modeling an activated sludge system of a wastewater treatment
plant (WWTP), several conflicting objectives may arise. The proposed formula-
tion is a highly constrained bi-objective problem where the minimization of the
investment and operation costs and the maximization of the quality of the effluent
are simultaneously optimized. These two conflicting objectives give rise to a set of
Pareto optimal solutions, reflecting different compromises between the objectives.
Population based algorithms are particularly suitable to tackle multi-objective prob-
lems since they can, in principle, find multiple widely different approximations to
the Pareto-optimal solutions in a single run. In this work, the formulated problem
is solved through an elitist multi-objective genetic algorithm coupled with a con-
strained tournament technique. Several trade-offs between objectives are obtained
through the optimization process. The direct visualization of the trade-offs through
a Pareto curve assists the decision maker in the selection of crucial design and oper-
ation variables. The experimental results are promising, with physical meaning and
highlight the advantages of using a multi-objective approach.

1 Multi-objective Optimization

We apply the Multi-objective Elitist Genetic Algorithm (MEGA), described in [3]
to the WWTP multi-objective optimization problem. This approach, in contrast to
other algorithms, does not require any differentiability or convexity conditions of
the search space. Moreover, since it works with a population of points, it can find,
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in a single run, multiple approximations to the solutions of the Pareto optimal set
without the need of fixing any weights and a well distributed representation of the
Pareto optimal frontier induced by the use of diversity-preservation mechanisms. We
now shortly describe some technical features and the parameters of this algorithm
1.

Algorithm 1 Multi-objective Elitist Genetic Algorithm
Require: e > 1, s > 1, 0 < pc < 1, ηc > 0, 0 < pm < 1, kmax > 1, ηm > 0, sSP > s, σshare > 0
1: k← 0
2: for l = 1, . . . ,s do
3: Randomly generate the main population P with z(l),k ∈Ω

4: end for{(Initialization of the population)}
5: while stopping criterion is not met do
6: Fitness assignment FA(P,σshare) for all points in main population P
7: Update the secondary population SP with the non-dominated points in P
8: Introduce in P the elite with e points selected at random from SP
9: Select by tournaments s points from P

10: Apply SBX crossover to the s points, with probability pc
11: Apply mutation to the s points with probability pm
12: k← k+1
13: end while
14: Update the secondary population SP with the non-dominated points in P
15: return Non-dominated points from SP

MEGA starts from a population of points P of size s. In our implementation, a
real representation is used since we are leading with a continuous problem. Addi-
tionally, a secondary population SP that archives potential Pareto optimal solutions
found so far during the search process is maintained. The elitist technique imple-
mented is based on the secondary population with a fixed parameter e (e ≥ 1) that
controls the elitism level, i.e., e is the maximum number of non-dominated solutions
of the secondary population that will be introduced in the main population. These
non-dominated solutions will effectively participate in the search process that is
performed using the points of the main population.

In order to handle constraints, we implemented the constrained tournament
method in which a new dominance relation is defined [4]. A solution x ∈ Rn

constrain-dominates y ∈ Rn, i.e., x ≺c y if and only if: x is feasible and y is not;
x and y are unfeasible, but x has a smaller constraint violation; x and y are feasible,
x dominates y, i.e., x≺ y.

Solutions are evaluated according to a fitness assignment function FA(P,σshare)
that is based on the constraint-dominance relation between points. All solutions are
ranked in terms of dominance defining several fronts. Therefore, all non-dominated
solutions in the main population P will constitute the first front to which is assigned
a rank equal to 1. Successively, the same procedure is applied to the remaining points
defining several fronts with increasing ranks. In order to maintain diversity, a sharing
scheme depending on an initial parameter σshare is applied to the solutions belonging
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to the same front. For this purpose, an adaptive sharing scheme on objective space
was adopted for diversity preservation as described in [2].

Non-dominated points in main are archived in SP. The SP update implies the
determination of Pareto optimality of all solutions stored so far, in order to eliminate
those that became dominated. As the size of SP grows, the time to complete this
operation may become significant. So, in order to prevent the growing computation
times, in general, a maximum sSP > s size is imposed.

A tournament selection that guarantees that better points are more likely to be
selected was used to select points from the main population. New points in the
search space are generated by the application, with probability pc, of a Simulated
Binary Crossover (SBX) [3, 2] that simulates the working principle of single-point
crossover operator for binary strings. A Polynomial Mutation is applied, with a
probability pm, to the points produced by the crossover operator. Mutation intro-
duces diversity in the population since crossover, exclusively, could not assure the
exploration of new regions of the search space.

The search ends when a given stopping criterion is satisfied. The best approxi-
mations to the Pareto-optimal set are archived in SP.

2 The case study: WWTP optimal design

The system under study consists of an aeration tank, where the biological reactions
take place, and a secondary settler for the sedimentation of the sludge and clarifi-
cation of the effluent. To describe the aeration tank we chose the activated sludge
model n.1, described by Henze et al. [8]. The tank is considered to operate in steady
state and as a completely stirred tank reactor and the generic equation for a mass
balance in these conditions is

Q
Va

(ξin−ξ )+ rξ = 0,

where Q is the flow that enters the tank, Va is the aeration tank volume, ξ and ξin
are the concentrations of the components, particulates or solubles, around witch the
mass balances are being made inside the reactor and on entry, respectively. rξ is
obtained by the Peterson Matrix [8] and is the process reaction rate.

Another set of constraints is concerned with the secondary settler. When the
wastewater leaves the aeration tank, the treated water should be separated from the
biological sludge, otherwise, the chemical oxygen demand would be higher than it is
at the entry of the system. The ATV design procedure [5] contemplates the peak wet
weather flow events, during which there is a reduction in the sludge concentration
and is based on very simple empirical relations.

Besides the ATV procedure, the double exponential model [9] is also used to de-
scribe the sedimentation process [7]. This model assumes a one dimensional settler,
in which the tank is divided into 10 layers of equal thickness. It assumes that no
biological reactions take place, meaning that the dissolved matter concentration is
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maintained across all the layers. Only vertical flux is considered and the solids are
uniformly distributed across the entire cross-sectional area of the feed layer. This
model is based on a traditional solids flux analysis but the flux in a particular layer
is limited by what can be handled by the adjacent layer. The settling function is
given by

νs, j = max
(

0,min
(

ν
′
0,ν0

(
e−rh(T SS j− fnsT SSa)− e−rp(T SS j− fnsT SSa)

)))
where νs, j is the settling velocity in layer j, T SS j is the total suspended solids con-
centration in each of the ten considered layers and ν0, ν ′0, rh, rp and fns are settling
parameters. This model introduces discontinuities in the problem.

The other important group of constraints are a set of linear equalities and defines
composite variables. In a real system, some state variables are, most of the time,
not available for evaluation. Thus, readily measured composite variables are used
instead. This includes the chemical oxygen demand (COD), total suspend solids
(T SS) and total nitrogen (N), to name the more important.

The system behavior, in terms of concentration and flows, may be predicted
by balances. In order to achieve a consistent system, these balances must be done
around the entire system and not only around each unitary process. They were done
to the suspended matter, dissolved matter and flows. For example, to the soluble
compounds, represented by S? we have

(1+ r)QinfS?ent = QinfS?inf + rQinfS?

where r is the recycle rate and Q? the volumetric flows. As to the subscripts, inf
concerns the influent wastewater and ent the entry of the aeration tank.

It is also necessary to add some system variables definitions, in order to define
the system correctly. All the variables are considered non-negative, although more
restricted bounds are imposed to some of them due to operational consistencies. As
an example, the amount of soluble oxygen in the aeration tank must be at least 2
g/ML. These conditions define a set of simple bounds on the variables.

Finally, the quality of the effluent has to be imposed. The quality constraints are
usually derived from law restrictions. The most used are related with limits in the
Chemical Oxygen Demand (COD), Nitrogen (N) and Total Suspended Solids (T SS)
at the effluent. In mathematical terms, these constraints are defined by portuguese
laws as CODef ≤ 125, Nef ≤ 15 and T SSef ≤ 35. We refer to [6] for more details.

The first objective function of the problem represents the total cost and includes
both investment and operation costs. The operation cost is usually on annual basis,
so it has to be updated to a present value using the adequate economic factors of
conversion. Each term in the objective function is based on the basic model C = aZb

[10], where a and b are the parameters to be estimated, C is the cost and Z is the
characteristic of the unitary process that most influences the cost. The parameters a
and b are estimated by the least squares technique, using real data collected from a
WWTP building company. Summing up the terms from all the costs in all considered
units, we get the following Total Cost (TC) objective function that depends on the
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aeration tank volume (Va), the air flow (GS), the sedimentation area (As) and depth
(h).

TC(Va,GS,As,h)= 174.2V 1.07
a +12487G0.62

S +114.8GS+955.5A0.97
s +41.3(Ash)

1.07 .

The second objective function is the Quality Index (QI) defined by the BSM1
model [1] and gives a measure of the amount of daily pollution. It depends on the
quality of the effluent in terms of T SS, COD, biochemical oxygen demand (BOD),
total Kjeldahl nitrogen (T KN), nitrate and nitrite nitrogen (SNO) and the effluent
flow (Qef). The obtained function is

QI(T SS,COD,BOD,T KN,NO,Qef)= (2T SS+COD+2BOD+20T KN+2SNO)
Qef

1000
.

3 Numerical results and Conclusions

The mathematical model has 2 objective functions, 71 parameters, 113 variables,
103 equality constraints and one inequality constraint. All the variables are bounded
below and above. The stoichiometric, kinetic and operational parameters are the
default values presented in the GPS-X simulator [11], and they are usually found
in real activated sludge based plants. The MatLab implementation of the problem
is available from the webpage http://www.norg.uminho.pt/iapinho/proj.htm under
“Bi-objective WWTP Project”.
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Fig. 1 Pareto curve for the Total Cost and Quality Index, and optimal values for the most important
variables

The MEGA algorithm was coded in MatLab programming language and the nu-
merical results were obtained with a Intel Core2 Duo CPU 1.8GHz with 2GB of
memory. The MEGA parameters are: s = 40, e = 4, pc = 0.9, ηc = 20, pm = 1/113,
ηm = 20, sSP = ∞ and σshare = 0.1. The maximum number of objective function
evaluations is 50000. An initial value, x0, provided by the GPS-X simulator [11]
with the real influent data was introduced in the initial population. Several exper-
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iments were conducted without introducing this initial point in the population and
the algorithm failed to achieve a feasible point within the maximum number of ob-
jective function evaluations.

Figure 3 shows the Pareto optimal front defined by the approximations to the
Pareto optimal solutions. In this figure, the compromise solutions between QI and
TC are plotted. It is also presented the results for the most important decision vari-
ables of the limit solutions from the Pareto front (TCmin and QImin), namely, the
aeration tank volume, the air flow, the area and depth of the secondary settler, as
well as COD, T SS and N at the effluent. The total computational time is about 190
seconds. We can observe that the non-dominated solutions obtained are viable and
have physical meaning, highlighting the superiority of the bi-objective approach in
terms of computational demands. The obtained WWTP designs represent compro-
mises that are economically attractive with convenient quality indexes and satisfy
the law limits. Moreover, these limits in terms of COD and T SS are below the law
limits, showing the robustness of the solution. Although the obtained WWTP de-
signs are attractive, in the future we intend to propose a multi-objective approach
with more than two objectives. For example, air flow requirements and chemicals
addition will be considered.
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