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Abstract

A multicomponent reacting gas with reversible reactions is studied at a kinetic level
with the main objective of deriving the reactive Navier-Stokes equations in dependence
on the macroscopic variables, and characterizing the dissipative terms related to shear
viscosity, heat conduction and thermal diffusion. A step-by-step procedure, which can
be applied to a quite large variety of reactive flows, is proposed in order to identify
the transport coefficients, basically resorting to a first-order density approximation of
Chapman-Enskog type.

1 Introduction

Kinetic approaches to the study of gas mixtures with chemical reactions, have motivated
several research works since the last decades, essentially based on Boltzmann-like models,
as documented in paper [1] with reference to the full Boltzmann equation, and in paper
[2] with reference to the discrete one. In the latter the mathematical theory concerning
collision laws, chemical kinetics and thermodynamical equilibrium has been formulated for
a kinetic model of a multicomponent mixture with general reversible reaction and velocity
discretization. The study is exhaustive at microscopic scale, whereas the macroscopic
picture of the reactive flow is limited to the conservative processes described by the reactive
Euler equations. For this reason it seems interesting to extend the above treatment to fluid
dynamical processes with dissipative effects due to chemical reactions.
Based on the modeling of Ref. [2], the set of conservation and rate equations

∂

∂t
〈N,Υ(k)〉 + 〈AN, Υ(k)〉 = 0 k = 1, . . . , q − 1 , (1)

∂

∂t
〈N,Υ(q)〉 + 〈AN,Υ(q)〉 = 〈R (N),Υ(q)〉 , (2)

can be deduced starting from the matrix kinetic equation

∂N
∂t

+ AN = Q(N) + R(N) , (3)

for a gas formed by r + s M -species, M = A1, . . . , Ar, B1, . . . , Bs, whose particles move
in the space with p selected velocities and undergo multiple elastic collisions and inelastic
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interactions with reversible chemical reaction

A1 + · · · + Ar ⇀↽ B1 + · · · + Bs . (4)

The meaning of symbols involved in Eqs. (1-3) is briefly recalled.
• N,Q(N), R(N) ∈ IRp(r+s) denote the vector of the number densities NM

i (~x, t), ~x ∈ IR3,
t ∈ IR+, of particles with velocity ~v

M

i , i = 1, . . . , p, and the nonlinear vector functions
related to elastic collisions and chemical reactions.
• A is a diagonal matrix of order p(r + s) with elements AM

ii = ~v
M

i · ~∇ .
• Υ(k) ∈ IRp(r+s), k = 1, . . . , q, with q = dimF, are o.n. vectors of the basis

BM =
{
Υ(1), . . . ,Υ(q−1)

}
⊂ M , BF = BM ∪

{
Υ(q)

}
⊂ F , (5)

where M is the space of mechanical-reactive collision invariants and F the space of me-
chanical collision invariants [2].
In the extended version [3] of the present paper, it is proven that the closure of the govern-
ing equations (1-2) requires the choice of an appropriate orthonormal basis B of IRp(r+s),
represented by

B = BF ∪ BF⊥ , F ⊕ F⊥ = IRp(r+s) . (6)

Consequently, the vector N ∈ IRp(r+s) can be splitted in the basis B as

N =
q∑

k=1

ak(~x, t)Υ(k) +
p(r+s)∑

`=q+1

b`(~x, t)W (`) , (7)

where the coefficients ak, b` are macroscopic and microscopic variables, respectively, defined
for k = 1, . . . , q and ` = q + 1, . . . , p(r + s) by

ak = 〈N,Υ(k)〉 , b` = 〈N,W (`)〉 . (8)

It is evident that Eqs. (1-2), when N is given by expansion (7), form a non closed set of
q equations in the unknowns a1, . . . , aq , bq+1, . . . , bp(r+s) . The closure is achieved when
bq+1, . . . , bp(r+s) become known functions of the macroscopic variables a1, . . . , aq . The
next section deals with the mathematical strategy which leads to the closure of the above
said set.

2 Approximation procedure

A first order Chapman-Enskog method can be applied to Eqs. (1-2), introducing the
approximation for the number density vector given by

N = N(0) + εN(1), (9)

ε being the Knudsen number, and taking into account the classical hypothesis that the
macroscopic variables are exact at the zero-order approximation (i.e. unexpanded [4]),
namely

ak = 〈N(0),Υ(k)〉 , 0 = 〈N(1),Υ(k)〉 , k = 1, . . . , q . (10)
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These last equalities permit to represent the density vector N as

N =
q∑

k=1

akΥ(k) +
p(r+s)∑

`=q+1

(b(0)
` + εb

(1)
` )W (`) . (11)

The approximations N(0) and N(1) satisfy the compatibility equations

Q(N(0)) = 0 , (12)
2Q2(N(0), N(1)) + · · · + hQh(N(0), . . . ,N(0), N(1)) =

= IL(N(0) + εN(1)) =
q∑

k=1

∂ak

∂t
Υ(k) + AN(0) − R(N(0)) , (13)

where h = max {r, s}, Qj , j = 1, . . . , h, is the nonlinear term due to elastic j-encounters
and IL the linearized mechanical operator [3].
The approximation procedure is based on the contents of next items.
• Equation (12) characterizes the zero-order approximation N(0) as the Maxwellian number
density in dependence on the q macroscopic variables, N(0) = N(0)(a1, . . . , aq) . Thanks to
the one-to-one map between the ak variables and the Maxwellian parameters, the coeffi-
cients b

(0)
` of Eq. (11) become known functions of type

b
(0)
` = b

(0)
` (a1, . . . , aq) , ` = q + 1, . . . , p(r + s) , (14)

which are strictly related to the kinetic model assumed to describe the gas.
• Equation (13) determines the first approximation N(1) in terms of q parameters, as well,
provided that the time derivatives of the macroscopic variables are evaluated through the
reactive Euler equations in the form

∂ak

∂t
= 〈−AN(0) + R(N(0)),Υ(k)〉 , k = 1, . . . , q , (15)

which play the role of solubility conditions for N(1) in Eq. (13). Projecting Eq. (13) on the
space F and reminding the orthogonality property [3, 5] of IL, the microscopic variables
become functions of type

b
(1)
` = b

(1)
` (a1, . . . , aq) ` = q + 1, . . . , p(r + s) , (16)

whose explicit form depends on the specific kinetic model. Thus one has N(1) = N(1)(a1, . . . , aq)
and the system (1-2) can actually be closed.

3 Reactive Navier Stokes equations

After inserting expressions (11) of N and (14,16) of b
(0)
` , b

(1)
` into the governing equations

(1-2), one obtains the closed system of the reactive Navier--Stokes equations of the model.
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When the macroscopic variables a1, . . . , aq are specified in a convenient manner, such
equations reproduce the hydrodynamic formulation of the Navier-Stokes equations. In
particular, let

ak = n[k] = nAk1
+ nBk2

, k = 1, . . . , q − 5,

k1 ∈ {1, . . . , r}, k2 ∈ {1, . . . , s} ,

(aq−4, aq−3, aq−2) = ρ~U , (17)

aq−1 = ρe +
1
2
ρ|~U |2 + γ , aq = nB1 ,

where ρ, ~U , ρe and γ are the total mass density, mean velocity, internal energy and chemical
energy per unit volume. Accordingly, Eqs. (1-2) become

∂n[k]

∂t
+ ~∇ ·

(
~I [k]

)
= 0 , k = 1, . . . , q − 5 , (18)

∂

∂t

(
ρ~U

)
+ ~∇ ·

(
ρ~U ⊗ ~U + IP

)
+

ε ~∇ ·


 ∑

M

∑

i

p(r+s)∑

h=q+1

mM b
(1)
h [W (h)]

M

i ~v
M

i ⊗ ~v
M

i


 = 0 , (19)

∂

∂t

(
ρe +

1
2
ρ | ~U |2 +γ

)
+ ~∇ ·

[
ρ

(
e +

1
2

| ~U |2
)

~U + ~U · IP + ~q + ~Γ
]
+

ε ~∇ ·


 ∑

M

∑

i

p(r+s)∑

h=q+1

b
(1)
h [W (h)]

M

i (
1
2
mM | ~v

M

i |2 +εM )~v
M

i


 = 0 , (20)

∂nB1

∂t
+ ~∇ ·

(
~I B1

)
+ ε~∇ ·


∑

i

p(r+s)∑

h=q+1

b
(1)
h , [W (h)]

B1
i ~v

B1
i


 =

∑

i

RB1
i , (21)

where ~I [k] = ~I Ak1 + ~I Bk2 , ~I M being the current density of M−species, IP is the stress
tensor, ~q the heat flux and ~Γ the flux of chemical energy. Note that Eqs. (18-20) are
conservation laws, whereas Eq. (21) is a balance equation. Moreover, Eqs. (18) of partial
number densities n[k] do not contain terms in ε; formally they coincide with the partial mass
conservation laws in the Euler formulation. Equations (19-21) of momentum, energy and
progress variable include terms in ε; formally, they reproduce the corresponding equations
in the Euler formulation, when ε = 0 .

4 Transport coefficients

The transport coefficients of viscosity, heat conductivity and thermal difusivity will be
identified through a step-by-step procedure, on the basis of the Navier-Stokes representation
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of the model for IP , ~q and ~IM . Their first-order kinetic definitions, since in Maxwellian
equilibrium the stress tensor IP(0) is spherical and the heat flux ~q(0) vanishes, read

IP = p(0) II + ε


∑

M

mM

p∑

i=1




p(r+s)∑

`=q+1

b
(1)
` [W (`)]

M

i


~v

M

i ⊗ ~v
M

i


 ,

~q = ε


1

2

∑

M

mM

p∑

i=1




p(r+s)∑

`=q+1

b
(1)
` [W (`)]Mi


 |~v M

i |2~v M

i


 , (22)

~IM =
p∑

i=1

NM
i

(0)
~vM

i + ε




p∑

i=1

p(r+s)∑

`=q+1

b
(1)
` [W (`)]

M

i ~v
M

i


 .

The terms within the large square brackets involve b
(1)
` and represent the dissipative con-

tributions to IP , ~q and ~I M , due to transport effects.
The actual computation of the transport coefficients may be achieved as outlined

through the following steps.

1. Explicit coefficients b
(1)
` in terms of the macroscopic variables, according to Eq. (16),

once the model has been specified for an assigned gas.
2. Combine the expressions obtained in step 1. with Eqs. (22) in order to express the
dissipative contributions to IP, ~q, ~I in dependence on the gradients of mean velocity, energy
and concentrations of each species, obtaining a more tractable Navier-Stokes representation
for IP, ~q, ~I M , ready to be compared with the corresponding hydrodynamic representations.
3. Recall the hydrodynamic expressions [6] of the dissipative terms known for real gases,
say IP(1)

∗ , ~q
(1)
∗ and ~I

M(1)
∗ ,

IP(1)
∗ = µ

∑

h

∑

k

~eh ⊗ ~ek

(
∂Uh

∂xk
+

∂Uk

∂xh

)
−

2
3

µ
(
~∇ · ~U

)
II ,

~q
(1)
∗ = −κ~∇e , ~I

M(1)
∗ −

∑

M ′ =/ M

DMM ′ ~∇nM′ , (23)

where µ, κ and DMM ′ are the shear viscosity, conductivity and diffusivity, and ~eh,~ek the
unit vectors of the canonical basis in IR3.
4. Match the dissipative contributions of the model representation, as obtained in step 2,
with IP(1)

∗ , ~q
(1)
∗ and ~I

M(1)
∗ .

5. In the model expressions for the dissipative contributions of step 2. recognize the mul-
tiplicative coefficients of the gradients of mean velocity, energy and species concentrations,
and interpret them as µ, κ and DMM ′, respectively.
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