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Abstract. In the context of relativistic elasticity it is interesting to study axially symmetric
space-times due to their significance in modeling neutron stars and other astrophysical systems of
interest. To approach this problem, here, a particular class of these space-times is considered. A
cylindrically symmetric elastic space-time configuration is studied, where the material metric is
taken to be flat. The components of the energy-momentum tensor for elastic matter are written
in terms of the invariants of the strain tensor, here chosen to be the eigenvalues of the pulled-
back material metric. The Einstein field equations are presented and a condition confirming the
existence of a constitutive function is obtained. This condition leads to special cases, in one of
which a new system for the metric functions and an expression for the constitutive function are
deduced. The new system depends on a particular function, which builds up the constitutive
equation.

1. Introduction - Relativistic elasticity
General relativistic elasticity was formulated in the mid-twentieth century due to the necessity to
study astrophysical problems such as deformations of neutron star crusts, which can be modelled
by axially symmetric metrics. Relevant contributions to the theory of general relativistic
elasticity were given, for example, by Carter and Quintana [1], Magli and Kijowski [2], Beig
and Schmidt [3], Karlovini and Samuelsson [4]. The work here presented is based on Magli [5],
[6] and Brito, Carot and Vaz [7], [8].

Consider a spacetime (M, g) filled with an elastic material, where M is a four-dimensional
Hausdorff, simply connected manifold of class C2 at least and g is a Lorentz metric with signature
(−,+,+,+). Let xa, a = 0, 1, 2, 3, denote the coordinates in M . The material space X is a
three-dimensional manifold, whose points represent the particles of the material. The material
space is equipped with a Riemannian metric γ, which is called the material metric. This
metric measures the distance between particles, calculated in the locally relaxed state of the
material. The material coordinates will be represented by yA, A = 1, 2, 3. The configuration
of the material is described by the configuration mapping Ψ : M −→ X, which gives rise to

the rank three matrix yAa =
∂yA

∂xa
, the relativistic deformation gradient. The velocity field of the

matter ua, a future oriented, timelike unit vector field, which spans the one-dimensional Kernel
of the relativistic deformation gradient, is defined by the conditions: uayAa = 0, uaua = −1,



and u0 > 0. The pulled-back material metric kab = yAa y
B
b γAB is orthogonal to the velocity

field and can be used to measure the state of strain of the material. Thus, one can define
the strain operator as Ka

b = −uaub + kab, and the relativistic strain tensor is then defined
by sab = 1

2(kab − hab) = 1
2(gab − Kab), where hab = gab + uaub. The material is said to be in

an unstrained state if sab = 0. Assuming that the internal energy of an elastic deformation,
accumulated in an infinitesimal portion of the material, is invariant with respect to the space-
time orientation of the material, the energy depends only on the invariants of the strain
tensor. This energy is called the constitutive equation of the material and will be denoted
by v = v(I1, I2, I3), where I1, I2, I3 are scalar invariants constructed out of Kab. Here we will use
[6]

I1 =
1
2

(TrK − 4) , I2 =
1
4

[
TrK2 − (TrK)2

]
+ 3, I3 =

1
2

(detK − 1) . (1)

These invariants can be written in terms of the eigenvalues of Ka
b.

The energy density ρ is defined by
ρ = εv(I1, I2, I3), (2)

where ε represents the particle number density. The energy density can also be rewritten as
ρ = ε0

√
detKv(I1, I2, I3), where ε0 is the particle number density of the relaxed material.

The energy-momentum tensor for elastic matter can be derived from the Lagrangian Λ =√
−gρ, which depends on yA, yAa and xa. The corresponding Euler-Lagrange equations are

given by
∂Λ
∂yA

− ∂a
(
∂Λ
∂yAa

)
= 0. Using Noether’s theorem one constructs the canonical energy-

momentum tensor
T ab =

1√
−g

∂Λ
∂yAa

yAb − δabΛ, (3)

which satisfies the conservation law ∇aT ab = 0. The energy-momentum tensor can be rewritten
in terms of the invariants of Kab, see [6] for details, and the resulting expression can then be
used to construct the Einstein field equations for elastic matter Gab = 8πT ab.

2. Cylindrically symmetric elastic configuration
Consider a static cylindrically symmetric space-time (M, g), whose metric g is given by the
line-element

ds2 = −e2νdt2 + e2µdr2 + e2µdz2 + e2ψdφ2. (4)

The space-time coordinates are xa = (t, r, z, φ) and ν, µ and ψ depend only on r. The associated
material space X is assumed to be such that the configuration mapping ψ preserves the Killing
vectors (KVs), so that if ~ξA are KVs in M , where ~ξ1 = ∂t, ~ξ2 = ∂z, ~ξ3 = ∂φ, then ψ∗( ~ξA) = ~ηA
are also KVs in X. Therefore, the material metric γ is also cylindrically symmetric and it can
be shown that the coordinates yA = (R, ζ,Φ) in X are defined by R = R(r), ζ = z and Φ = φ.
The material metric γ can be represented by the line-element dΣ2 = dR2 + dz2 +R2dφ2, where
R = R(r). Here, we shall assume for simplicity that R(r) = r, so that γ takes the form

dΣ2 = dr2 + dz2 + r2dφ2. (5)

The velocity field of the matter turns out to be ua =
(
e−ν(r), 0, 0, 0

)
, and one can then construct

the relevant tensors mentioned above, thus:

kab = e−2µδa1δ
1
b + e−2µδa2δ

2
b + r2e−2ψδa3δ

3
b. (6)

and also

Ka
b =


1 0 0 0
0 e−2µ 0 0
0 0 e−2µ 0
0 0 0 r2e−2ψ

 . (7)



This operator has one eigenvalue equal to 1 and the other eigenvalues are

η = e−2µ, τ = r2e−2ψ, (8)

where η has algebraic multiplicity two. The invariants (1) can be expressed as

I1 =
1
2

(2η + τ − 3) , I2 = −1
2

(
η2 + 2ητ + 2η + τ

)
+ 3, I3 =

1
2

(
η2τ − 1

)
. (9)

The non-zero components of the energy-momentum tensor are then

T 0
0 = −ρ, T 1

1 = −ρ+
∂ρ

∂I3
η2τ − ∂ρ

∂I2
(1 + η + τ)η +

∂ρ

∂I1
η

T 2
2 = T 1

1, T 3
3 = −ρ+

∂ρ

∂I3
η2τ − ∂ρ

∂I2
(1 + 2η)τ +

∂ρ

∂I1
τ. (10)

Using the fact that

∂ρ

∂η
=

∂ρ

∂I1
− (1 + η + τ)

∂ρ

∂I2
+ ητ

∂ρ

∂I3
,

∂ρ

∂τ
=

1
2
∂ρ

∂I1
−
(
η +

1
2

)
∂ρ

∂I2
+

1
2
η2 ∂ρ

∂I3
,

the components of the energy-momentum tensor can be expressed simply as

T 0
0 = −εv, T 1

1 = T 2
2 = εη

∂v

∂η
, T 3

3 = 2ετ
∂v

∂τ
. (11)

3. Einstein field equations
The Einstein field equations Gab = 8πT ab for the cylindrically symmetric elastic configuration
presented in the previous section can be written as

µ′′ + ψ′′ + ψ′2

e2µ
= −εv 8π, (12)

µ′ν ′ + µ′ψ′ + ν ′ψ′

e2µ
= εη

∂v

∂η
8π, (13)

ν ′2 + ν ′′ + ψ′′ + ψ′2 + ν ′ψ′ − µ′ν ′ − µ′ψ′

e2µ
= εη

∂v

∂η
8π, (14)

ν ′2 + ν ′′ + µ′′

e2µ
= 2ετ

∂v

∂τ
8π, (15)

where primes denote derivatives with respect to r. Dividing (13) and (15) through by (12) leads
to

∂ ln v
∂E

= −µ
′ν ′ + µ′ψ′ + ν ′ψ′

µ′′ + ψ′′ + ψ′2
and

∂ ln v
∂T

= −1
2
ν ′2 + ν ′′ + µ′′

µ′′ + ψ′′ + ψ′2
, (16)

respectively, where E = ln η = −2µ and T = ln τ = 2 ln r − 2ψ. And since T 2
2 = T 1

1, it follows
that

2µ′ν ′ + 2µ′ψ′ − ν ′2 − ν ′′ − ψ′′ − ψ′2 = 0. (17)

The integrability condition
∂2 ln v
∂T∂E

=
∂2 ln v
∂E∂T

must be satisfied in order for a constitutive equation
to exist. Therefrom one obtains

∂

∂T

[
− 1
µ′

(
1
r
− ψ′

)]
∂ ln v
∂T

= 0. (18)



Here, we shall consider the particular case in which both factors vanish; i.e.:

∂

∂T

[
− 1
µ′

(
1
r
− ψ′

)]
= 0 and

∂ ln v
∂T

= 0, (19)

which implies
ψ = ln(r) + k0µ+ k1 and T 3

3 = 0, (20)

where k0 and k1 are constants. In order to avoid singularities at the axis of symmetry, one must
have e2ψ = r2L(r), where L(r) 6= 0 for r = 0, (see [9]). Then, taking into account (17) and (20)
and setting k0 = 1, allows to write the metric functions as follows

ψ(r) = ln(r) +
1
2

ln(L), µ(r) =
1
2

ln(L), ν(r) = −1
4

ln(L) + constant, (21)

where the function L = L(r) must satisfy the condition

6L′2Lr − 8L′′′L2r2 − 8L′′L2r + 16L′′L′Lr2 − 9L′3r2 + 8L′L2 = 0, (22)

as a consequence of the Einstein field equations (12)-(15). An example of a function L(r)
satisfying (22) is given by L(r) = exp

(
7−12r
8r−7

)
. It can be easily shown that the Dominant

Energy Condition is satisfied for r > 0.931855. Since in the present case, where T 3
3 = 0, one has

∂ ln v
∂r

= −2µ′
∂ ln v
∂E

, then, applying (16) one may also write the constitutive function v in terms
of L as

v(r) = c exp

(∫
L′2

−3L′2r + 4LL′ + 4L′′Lr
dr

)
, (23)

where c is a constant.
Currently, the generic cases in which only one factor in (18) vanishes are under study, as well

as the problem of the matching of these elastic spacetimes to vacuum or cosmological constant
ones.
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