
Session F3G

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 F3G-1

Identifying Cognitive Abilities to Improve CS1

Outcome

Ana Paula Ambrósio, Fábio Moreira Costa, Leandro Almeida, Amanda Franco, and Joaquim Macedo

apaula@inf.ufg.br, fmc@inf.ufg.br, leandro@ie.uminho.pt, amanda.franco@ie.uminho.pt, macedo@di.uminho.pt

Abstract – Introductory programming courses entail

students’ high failure and dropout rates. In an effort to

tackle this problem, we carried out a qualitative study

aiming to shed some light on the programming phase

that is most challenging for students, in order to elicit the

specific difficulties they experience while learning to

program. In doing so, distinctive cognitive abilities,

differentiating subjects in terms of the way they handle

programming tasks, were detected. Such aptitudes are

represented in three groups of students: those who learn

easily, those who never seem to fully grasp what

programming requires despite true effort, and those who

experience a sudden insight, making them leap from a

point were they had difficulties to another where they

overcome them. By interviewing teachers and students,

abstraction and sequencing elaboration were found to be

the two core skills for programming. These results

impelled us to consider the mental models’ approach,

concluding that there are very specific cognitive

functions that are more favorable to learn programming

and that are fostered by more adequate schemas of

representing reality. Some conclusions involving

Problem-based learning as a fit teaching methodology to

overcome students’ difficulties are also presented.

Index Terms – Computer Science 1, algorithmic reasoning,

programming learning difficulties, cognitive abilities.

INTRODUCTION

Generally speaking, introductory programming courses (CS1

courses) present challenges regarding student failure and

dropout rates. To diminish these effects, several strategies

have been adopted by different institutes in the organization

and teaching of these courses. In the specific case of the

Federal University of Goias (Brazil), we adopted the use of

mobile, pen-based, computing technology and Problem-

Based Learning in the redesign of our introductory computer

programming course. In comparison with previous years,

this approach achieved lower dropout rates and fewer grade

failures.

Even though we obtained a significant improvement, the

students that failed still represent a challenge that we must

investigate. Our observations showed us that there were

some students who, in spite of their many difficulties at the

beginning, were able to make a leap at a certain moment and

catch up with the rest of the class. Others, although

committed and investing much time and effort, were unable

to make that leap.

This study tries to identify the inherent causes of that

phenomenon, from the perception of the actors directly

involved. It differs from other approaches that try to relate

success to demographic or cognitive characteristics of

students obtained through the correlation of these

characteristics and the grades obtained in introductory

programming courses. Neither does it have the intention of

isolating students who possess “aptitude”. Its aim is to

identify the phase in the programming process where

students have the greatest difficulty, allowing us to focus on

this aspect. We then make assumptions regarding the skills

needed in that phase and imply them to be essential, acting

as an important discriminating variable.

The study’s starting point was the observation of

students’ behavior in the classroom. Based on these results,

interviews with teachers and students were conducted by

psychologists to refine which are exactly the difficulties in

the process of learning to program and which skills are

identified. Such perceptions were then used as guidelines to

the application of a questionnaire to evaluate students’

perceptions about the phase they considered the most

difficult in programming.

Our focus was the cognitive variables involved in the

task of learning to program. We must see that in cognitive

psychology, learning and problem solving imply the use of

cognitive abilities or functions; hence, we assume that

programming must also make demands in this aspect. In

fact, the compilation of our results allowed us to identify two

main cognitive abilities associated to the difficulties

presented by the students: the ability to carry out an

abstraction of the problem at hand, and the ability to define a

sequence of commands that allows the computer to solve the

problem.

A theoretical research of methodologies associated to

the identified cognitive abilities was used to propose

strategies and tools that help to identify students at risk, and

to suggest modifications to the existing teaching program as

to enhance the acquisition of these abilities providing the

students with mechanisms that may help them succeed.

OUR TEACHING METHODOLOGY

Problem-based learning (PBL) is “an instructional method

characterized by the use of ’real world’ problems as the

context within which students learn critical thinking and

Session F3G

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 F3G-2

problem solving skills, and acquire knowledge of the

essential concepts of the course. Using PBL, students

acquire lifelong learning skills which include the ability to

find and use appropriate learning resources” [1]. Even

though the use of PBL does not necessarily mean an increase

in grades, it has been verified that it fosters knowledge

retention and enhances intrinsic interest in the subject matter

[2]. Furthermore, it has led to recognized improvements in

student programming skills related to abstraction and

problem solving, and also in communication and

argumentation skills, as well as in responsibility and peer

support [3].

Mobile technology, in our case based on tablet PCs,

enables a much more flexible classroom environment, where

students and tutors are free to move around, carrying their

permanently connected devices if needed. This is similar to

previous initiatives involving the use of handheld devices in

education, such as in [4], and is key to facilitate classroom

rearrangement, interaction, experimentation, and access to

external resources. In addition, ink-based computing

presents students with a powerful tool for note taking and for

expressing their creativity when working in the abstract

reasoning associated with algorithmic thinking. Furthermore,

the simple use of tablets is a stimulating factor, attracting

attention to the course and contributing to engage students. It

gives them more possibilities to collaborate, exchanging,

evaluating and complementing each other’s solutions to

problems. Tablets also facilitate the implementation of the

PBL method by giving students access to on-line

information “at the tip of the pen”, instrumenting the search

for solutions and helping increase their proactivity and

content retention. Thus, teachers move from an information

providing position to a guiding position, focusing on

teaching students how to think for themselves, stimulating

logical reasoning and independence.

In our classroom experience, we use the PBL method

[5] to introduce the concepts in the course syllabus as a

series of open-ended problems, using a method adapted from

Nuutila et al.[3]. Groups of four or five students work

collaboratively to reach a solution to the proposed problems

[6].

In order to contribute to this process, a mix of

programming related tools have been used to help students

think the problems abstractly and collaboratively. In the

beginning of the course, we introduce a visual programming

environment, which enables students to focus on the

semantic aspects (logic) of the problem instead of worrying

about syntax. We are currently using the SICAS

environment [7] that allows the students to define executable

flowcharts. Later on, we introduce a more traditional

programming language, using the DevC++ environment. As

students usually have a tendency to jump directly from

problem definition to implementation, skipping the

abstraction/algorithmic problem-solving phase, they are

required to define a flowchart diagram describing the

proposed solution before proceeding to implementation.

Two traditional exams (at the middle and end of semester)

are used for assesment purposes.

A first evaluation of our methodology was undertaken

in 2009 [6], mainly by means of observations and surveys

answered by students at different moments during the course

of the semester. It was based on two classes of

undergraduate CS students, totaling about 80 subjects. These

students took the introductory computer programming

course in the first semester of 2008 and in the first semester

of 2009.

The evaluation concluded that the use of PBL promotes

students’ proactivity and that the necessary group interaction

helps to develop communication and collaboration skills.

Even though PBL was initially criticized by students due to

the workload it imposed, the great majority of them believed

it was a positive contribution to their learning process. They

also believed that tablet PCs represent a valuable tool, not

only for motivating students due to the innovative

technology, but also due to their flexibility for collaboration

and the sharing of ideas when compared to desktop and

laptop computers.

Thus, the proposed methodology attained its goal of

being motivating and stimulating from the start, engaging

students and achieving lower dropout rates. Even though

students did not obtain significantly higher grades in the

written exams, the average overall failure rate (including

drop outs and grade failures) was around 21%, as opposed to

nearly 45% in previous years. The new methodology had a

positive influence on students, not only from the

academic/learning perspective but also from a personal

perspective, making them feel more independent, proactive,

responsible and prepared to work with peers.

Despite the advantages of the PBL methodology and its

strategies and tools – previously presented –, the study

undertaken recognizes the “need for further improvements

on the methodology, targeting lower failure rates” [6]. This

might be achieved by doing specific modifications to the

used methodology, in order to detect beforehand those

students facing trouble and in need of a more attentive

assistance.

ANALYZING STUDENTS WITH DIFFICULTIES

Computer Programming is a highly complex activity, with

subtasks related to different knowledge domains and a

variety of cognitive processes [8], where a set of skills are

valued, including: reading comprehension; critical reasoning

and systemic thinking; cognitive metacomponents for

problem identification, planning and resolution; creativity

and intellectual curiosity; mathematical ability and

conditional reasoning; procedural thinking and temporal

reasoning; analytical and quantitative reasoning; as well as

analogic, syllogistic and combinatory reasoning.

Generally speaking, Jenkins [9] conceives programming

as a process aimed at the elaboration of a valid algorithm

that will allow to elicit coding, being formed of various

kinds of smaller and basic tasks:

Session F3G

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 F3G-3

“At the simplest level the specification must be

translated into an algorithm, which is then translated into

program code. In experienced programmers it is also

possible to identify an intermediate process whereby the

algorithm is mapped to something resembling a "recipe" for

the program, based on previous experience.”

Programming is a difficult undertaking, involving many

different types of knowledge and abilities. According to

Jenkins [9], transforming language into an algorithm is the

most challenging step of programming.

In this respect, students entering computer science

courses present very distinct behaviors. While some learn to

program easily, others encounter huge difficulties. However,

some are capable of surpassing these difficulties, as stated

by Leither and Lewis [10]:

“Those who are mystified for weeks, and eventually

make a quantum leap in understanding; and those who,

despite extraordinary diligence and time-consuming effort,

never succeed in making this transition.” (in [11] pg. 39).

This same reality was observed in our group, and this is

the reason why we undertook a qualitative analysis with

students and teachers to help identify the conditions and

moment in which the leap occurs, also intending that this

might help to improve our success rates. Interviews were

used to identify the factors they believe are decisive for

learning to program, and the phase in the programming

process where students encounter the major difficulties.

We have verified in the classroom that even when the

students understand the problem and are capable of solving

instances of this problem, they have great difficulty in

translating this solution into a series of commands

executable by a computer. These observations are

corroborated by Winslow [12]:

“(…) novice programmers know the syntax and

semantics of individual statements but they do not know

how to combine these features into valid programs. Even

when they know how to solve a problem by hand, they have

trouble translating the hand solution into an equivalent

computer program.”

The same author sets experts and novice students apart,

considering that:

“(…) experts think in terms of algorithms and not

programs. The actual translation of an algorithm into a

working program is a task, not a problem. Presumably the

algorithms allow them to concentrate on the important

features of the solution and ignore the details which can be

filled in later; in other words, it is a method for decomposing

the problem solution into more manageable terms.”

In our research we have tried to understand the reasons

underlying these difficulties by listening to teachers and

students. In this sense, we try to contrast the cognitive

functions that may explain the difference between a good

and a bad academic result in programming courses.

OUR STUDY

Students and teachers from the Federal University of Goiás

participated in the study. Two teachers were interviewed. In

order to obtain contrasted answers, we worked with two

groups of students: one who learned easily and another who

learned with difficulty despite evident effort. Both groups

were selected by the teachers based on their observations

and the student’s grades. Nine students were interviewed:

five with difficulty and four that learned easily. Of the nine,

only one was female. Most were doing the course for the

first time, only one was repeating. Two had previous contact

with programming before the course.

The semi-structured interviews were conducted by two

psychologists and a computer science teacher. Instead of

focusing on motivational or learning style aspects, we tried

to focus on the cognitive variables that teachers and students

believe to be responsible for the learning difficulties.

The interviews were undertaken in one of three groups:

the first with teachers, the second with students who face

difficulties and the third with students who learn easily.

During the interviews, we tried to focus the subjects’

reflections on the skills needed to program, in order to infer

which cognitive functions are involved in learning the

curricula. In situations where the subject’s idea was not

clear, examples were asked for or another student of the

group was called to help clarify what was being said by

his/her colleague.

According to the teachers, the distinction between a

group that learns easily and one showing difficulties that

often lead to dropping out or failing the course is clear. They

also identify a third group of students that have difficulty,

but at a given moment are able to surmount their problems

and advance in the course. They describe it as an insight that

allows them to move from a situation where they were

having difficulties to a position where they are capable of

programming.

When analyzing these subgroups of students, the

teachers believe there are two great factors, i.e., two

cognitive abilities that are responsible for the student’s

results. The first cognitive ability relates to the ability of

giving up a more holistic analysis of everyday problems in

favor of a more analytical reading of such problems, being

able to make a sequential planning. Almost in terms of a

cognitive style, the student will have to leave the global and

obvious, and pass to a more detailed analysis, where each

solution is planned step-by-step, even though this may not

be the usual manner of perceiving and solving problems in

every-day life. In other words, students need a global vision

of the problem and its solution, but it is equally important to

have a vision of the parts that will compose the solution and

that need to be organized and composed in a sequential

manner. In their opinion, it is this shift in perception that

allows them to see the whole based on the parts that will

Session F3G

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 F3G-4

allow the student to elaborate the algorithm. In the teachers

words, when thinking this way, the student “no longer thinks

as a person but starts thinking as a computer” taking into

account the machine’s limited comprehension. This is often

referred to as algorithmic reasoning.

A second cognitive ability mentioned by the teachers is

abstraction. It is expected that students will use it to pass

from the concrete world to a more semantic and symbolic

reality, formulating or representing a problem in a more

abstract manner, less attached to the details and singular

concrete elements. When a student faces difficulties while

attempting to do this abstraction, he/she is not capable of

moving from reality to a more generic language such as the

notation used in programming. The ability to abstract is

linked to the need of finding generic solutions that can be

applied to several situations. Thus, when trying to find a

solution to a given problem, the student is not constrained by

specific data. On the contrary, he/she tries to abstract the

“process” that can be applied to several situations from the

solution. Often this involves breaking down the problem into

subparts and identifying the relations between them.

In addition to the cognitive abilities discussed above,

there are others that were mentioned. For example, some

teachers believe that mathematical ability is important for

programming. However they believe that the positive

correlation between them is due to more basic cognitive

functions that would be common to both domains. Thus,

when developing a “mathematical logic” the student

acquires structures or cognitive abilities that facilitate or

promote learning to program.

We will now refer to the students’ perceptions regarding

the skills implied in programming. Starting with an analysis

of the students with difficulty, it is to note that this subgroup

seems to pass automatically from reading to implementation,

skipping the definition of an algorithm. If we assume that the

solution of a problem involves three phases – input,

processing and output –, these students are jumping from the

first to the third phase, without the necessary processing of

the coded information and the task’s purpose.

For them, reading is not a problem; any obstacle is due

to the ambiguity of natural language. On the contrary, the

language used to program is difficult. They mentioned

aspects such as passing parameters and functions. When

questioned about the intermediary phase and the need to

undertake some procedures between the reading and

implementation phase, they simply seem to disregard this

process as trivial. However they encounter great difficulty in

finding an abstract solution to the problems in hands.

On one hand, these students believe that the solution

must be mentally structured in their heads, and then

implemented. However they jump to the implementation

before having a complete solution defined. In fact, they go

for an initial idea and try to implement it, programming

through trial and error, without a prior global vision of the

solution. When questioned about the difficulties of finding

an abstract solution, they are not able to elaborate their

answers: they feel the difficulty but do not know why or

where it occurs. They simply disregard it and thus pass

directly to the implementation phase.

On the other hand, in the interview conducted with the

students who learn easily, the importance given to the

intermediary phase is clear: they believe that thinking about

the solution before implementing it is crucial. They globally

highlighted the importance of understanding the problem’s

logic, reason why they first look at the problem as a whole

and try to identify its focus. In the words of one of the

students: “First you have to understand the problem and

search for solutions. Think in different ways and choose the

solution that you think is best”. If they are not able to find a

solution, they break the problem down and then identify the

relations between the parts.

These students believe that the main difficulty of

programming is in the reasoning needed to find generic

solutions. According to them, many of their colleagues do

not even try to arrive at an abstract solution. One of the

students said he usually “attacks” the problem as a whole,

but when faced with difficulty he divides the problem in

parts. They all agreed that visual tools that help them think

about a problem are welcome. For this reason they like

working with flowcharts: “We need to put the problem on

paper. Doing it all in your head is not possible”. By

breaking down the problem they can work with smaller parts

and see how they relate.

It is important to stress that these students also believe

that mathematical dexterity is important as well as creativity,

even though they state that programming is basically

reasoning.

Summarizing the results, we believe that the students

that learn easily develop a theory of the problem and of the

solution, within the definition of Naur [13], which

contributes to better programs. In this sense, programming is

a task where the solution algorithm is mapped directly to a

programming language. This difference of strategies, which

may translate into the existence or lack of subjacent

cognitive skills, may be responsible for the different

perceptions regarding the difficulty of the programming

phases. While students with good results evaluate the initial

semantic phases as more difficult, students with weak results

attribute greater difficulty to the implementation phases. It is

interesting to observe that, in the literature, experts and

novices are said to structure their knowledge differently:

while experts focus on the commands’ semantics, novices

focus syntax [8][14], much as verified by the interviews.

Finally, as to try to capture the students’ perception of

the difficulties found in the different processes of

programming, as well as the phase they found to be the most

challenging, we asked students to answer a questionnaire

where programming was divided in 8 phases:

1. Reading and understanding the problem;

2. Solving an instance of the problem by hand;

3. Generalizing the solution;

4. Elaborating an algorithm that solves the problem;

5. Simulating the algorithm;

Session F3G

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 F3G-5

6. Translating the algorithm into a programming

language;

7. Compiling;

8. Testing.

The students were asked to mark the level of difficulty

they attributed to each phase using a six point Likert Scale,

corresponding 1 to a minimum level and 6 to a maximum

level, and to classify these phases according to an ascending

order of difficulty. They were also asked to evaluate

themselves, grading their performance in CS1.

Eighteen surveys were answered, not necessarily by the

same students that were interviewed. However, they were all

from the same classes.

Table I presents the level of difficulty attributed to each

phase by the students. The last row contains the grade the

student gave to his/her programming knowledge. The phases

considered more difficult are exactly those related to

abstraction and generalization: Solving an instance of the

problem by hand, Generalizing the solution and Elaborating

an algorithm that solves the problem. Reading and

understanding the problem (phase 1) presented some

difficulty, confirming the teachers’ perception regarding the

student’s ability to read and understand the problems’

specification. The phases related to syntax had lower median

values.

TABLE I

LEVEL OF DIFFICULTY ATTRIBUTED BY STUDENTS
TO THE DIFFERENT PROGRAMMING PHASES

Phase Student’s Answers Median

1 4 2 3 1 5 2 2 3 3 4 4 4 4 2 3 5 4 3 3

2 6 3 3 1 4 4 1 1 3 4 5 4 3 4 4 2 4 4 4

3 4 4 5 1 6 4 4 2 5 4 2 2 3 4 4 2 3 3 4

4 4 4 4 3 3 2 4 6 3 4 1 1 3 4 4 1 4 4 4

5 1 6 3 2 3 2 2 4 3 4 2 2 2 2 4 1 3 4 2,5

6 5 4 4 2 4 2 3 2 1 4 3 2 2 1 2 1 3 5 2,5

7 2 2 3 3 1 1 1 1 1 4 1 1 2 1 2 1 4 4 1,5

8 4 1 4 5 2 1 1 2 4 4 6 5 2 3 2 1 3 2 2,5

Grade 4 2 4 3 4 3 - 1 6 4 4 4 4 5 5 - 4 4

A heterogeneous view of the programming difficulties

was verified when the students were asked to classify the

programming phases in ascending order of difficulty. On one

hand, phase 7 was considered the easiest one, followed by

phase 8. No one considered phases 2 and 3 as the easiest

(Figure 1). On the other hand, while 25% of the students

considered phase 3 the most difficult, another 25%

considered phase 8 as the most difficult. No one considered

phases 6 and 7 as the most difficult (Figure 2). A special

comment should be made about phase 8 (Testing): 25% of

the students considered it very easy, while 25% considered it

very hard. This may be due to different understanding about

the tasks involved in this phase. Previous observation had

shown that students find it very hard to define test cases.

However, once they are defined, their use to verify if the

program yields correct answers is easy.

 FIGURE 1

PHASES CONSIDERED EASIER BY STUDENTS

FIGURE 2

PHASES CONSIDERED MORE DIFFICULT BY STUDENTS

In addition to the analysis of the difficulties associated

to the different programming phases, the questionnaire also

asked about the difficulties encountered in specific CS1

curricular contents. It also enquired about their study habits,

and the resources they find more helpful. Declaration and

manipulation of variables were considered the easiest

content. Recursion was the most difficult, followed by the

division of a problem into parts that can be reused and

interpretation of the error messages. Students find it easy to

research for helpful material in the Internet, but have

difficulty studying at home. The resources they believe to

contribute the most to their learning process is Moodle,

followed by examples of program codes. Chats with teachers

and TAs were considered the less helpful.

DISCUSSION AND CONCLUSION

We have verified in introductory computer programming

courses that a group of students has a lot of difficulty even

when demonstrating to have interest and effort to learn.

Some within this group are capable to surpass the problem

and succeed; others, nevertheless, are not.

Two cognitive abilities were identified as key to explain

the difficulties the students encounter when learning to

program: abstraction and command sequencing. These

Session F3G

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 F3G-6

cognitive abilities agree with those encountered by Lee et al.

[15] for Computational Thinking: abstraction, automation,

and analysis, where automation corresponds to command

sequencing.

We infer that underlying the abstraction difficulties are

the student’s problem solving abilities. Problem solving is

composed of Analysis and Synthesis. Analysis is the ability

to break a problem down into its subparts and look at them

individually so that the problem can be more easily

understood and treated. Synthesis is putting the subparts

together after they have been treated individually as to

obtain a solution to the original problem that was being

tackled.

Differences on problem solving abilities are due to

cognitive processes and mental organizations [16]. Some

characteristics shared by good problem solvers include [17]:

skill with analogies, reasoning, critical thinking, perception,

memory and creative thinking. They additionally have good

reading comprehension skills and possess knowledge of

different approaches that can be used to solve a problem.

Efficient problem solvers have knowledge that is organized

and rich in variety. They focus more on the structural

features of a problem and not just the surface features.

This is exactly what is done by the best achieving

students. They analyze the problem and when they are not

capable of finding a solution they break the problem down.

Contrarily, the low achieving students are not capable of

doing this: they focus on reading the problem superficially,

without reaching its core meaning.

The identified difference of approach used by proficient

students and students facing difficulties in programming

may be linked to their mental models. “Mental models”

define a concept in the field of Cognitive Psychology

referring to the cognitive format in which information

regarding reality external to the subject is apprehended and

organized [18]. Considering them to work as a data base

containing knowledge with which we interpret reality and

that is itself transformed through the apprehension of further

and deeper knowledge, mental models can be perfected [19].

There are different levels and quality in knowledge

apprehended according to the mental models detained [20],

reason why we believe there should be efforts to promote

and strengthen the best possible fit between the students’

mental models and the curricular contents they are expected

to learn and use.

Mental models have been studied from different

programming perspectives. According to Mayer [20],

students that do not have a mental model of how a computer

stores and manipulates data in memory, have greater

problems understanding programming language commands.

Other authors have focused on the differences between

novice and experts: while novices see programs as

sequences of commands, experts group commands in

schemas that represent functionalities. Cañas, Bajo and

Gonzalvo [14] verified that students have different mental

representations of computer programs that may be based on

syntactic or semantic aspects. Denhadi [21] proposes that

students that have a consistent mental model of variable

manipulation, have higher success rates.

Linking this concept to our study, it is viable to infer

that students who learn easily may have mental models,

acquired through other subjects such as Math, Science or

English, that might ease learning to program. This would

explain why good grades in these courses present a positive

correlation with programming. The students that have

difficulty might not have these mental models, or have less

adequate ones, in which they can anchor newly acquired

knowledge, reason why they would need to develop or

correct them. Those that are able to do that can succeed, but

those that don’t will fail. In this sense, we propose the

introduction of activities that foster the development of

mental models that are fit to the cognitive skills needed in

programming, thus helping the students succeed in the

course.

While problem based learning tries, by definition, to

promote problem solving abilities, we have verified that it is

not enough when dealing with the students that present

greater difficulties. Building on the mental model researches,

we propose activities to be included in our methodology that

will promote developing abstraction and command

sequencing abilities. These activities are made available to

those students that feel they need it and are willing to do

them.

Our proposal is that these activities could be undertaken

during tutoring sessions under TA supervision. In fact,

despite some constraints deriving from the nature of this

construct, it is possible to assess the characteristics of a

student’s mental model. This can be done by using strategies

of behavior observation and self-evaluation reports (Moreira,

1996). Such information could serve as a starting point for

intervention efforts.

Activities include acting out how data manipulation is

carried out by the computer, and reading programs

developed by others in order to alter them to include, modify

or remove certain functionalities. Another activity that is

being proposed is based on the construction of programs

using pre-defined schemas, much in the sense that experts

see schemas that represent functionalities. In this case,

students have a set of cards that represent these high level

functionalities and they have to select those that contain the

functionalities existing in the problem. These functionalities

are very general and can be seen as functions or procedures.

Examples of these functionalities include input data and

classification of an array. They then have to organize and

link these cards to form the global solution. In a second

moment, they must look into each of these functionalities

and redo the same process until they get to a complete

algorithm.

These proposals are being implemented and monitored

to verify their contribution to the learning process of

students with difficulty. In addition, we want to deepen our

understanding of the cognitive aspects that are most relevant

to the process of learning to program. In this sense,

psychological tests will be applied to the two groups of

Session F3G

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD

 41
st
 ASEE/IEEE Frontiers in Education Conference

 F3G-7

students, those that learn easily and those with difficulty, and

the results will be analyzed in order to refine the proposed

activities.

REFERENCES

[1] Duch, B. J., 1995, “What is problem-based learning?” About
Teaching, 1995(47).

[2] Norman G. R. and Schmidt H. G., 1992, “The psychological basis of

problem-based learning: A review of the evidence.” Academic
Medicine, 67(9), pp. 557–565.

[3] Nuutila E., Torma S. and Malmi L., 2005, “PBL and Computer

Programming – The Seven Steps Method with Adaptations.”
Computer Science Education, 15(2), pp.123–142.

[4] Norris C. and Soloway E., 2004, “Envisioning the handheld-centric

classroom.” Journal of Educational Computing Research, 30(4), pp.
281–294.

[5] Schmidt H. G., 1983, “Problem-based learning: Rational and

description.” Medical Education, 17, pp. 11–16.

[6] Ambrosio A.P. and Costa F.M. “Evaluating the impact of PBL and

tablet pcs in an algorithms and computer programming course.” In

SIGCSE ’10 Conference, March 2010, Proceedings of the 41st ACM
technical symposium on Computer Science Education, New York, pp.

495–4

[7] Antunes, R. Ambiente de apoio à aprendizgem de programação Web
utilizando PHP. Master Thesis, University of Coimbra, 2005.

[8] Pea, R. D. and Kurland, D. M. “On the cognitive prerequisites of

learning computer programming”, Technical Report No.18. 1984,
New York: Bank Street College of Education, Center for Children and

Technology.

[9] Jenkins, T., “On the difficulty of learning to program.” In Proceedings
of the 3rd Annual Conference of the LTSN Centre for Information and

Computer Sciences. 2002, Loughborough: University United

Kingdom, pp. 53-58.

[10] Leither, H. E. and Lewis, H. R., 1978, “Why Johnny can’t program: A

progress report.” SIGCSE Bulletin, 10 (1), pp. 266-276.

[11] Robins, A., 2010, “Learning edge momentum: A new account of
outcomes in CS1.” Computer Science Education, 20 (1), pp. 37-71.

[12] Winslow, L. E., 1996, “Programming pedagogy: A psychological

overview.” ACM SIGCSE Bulletin, 28 (3), pp. 17-25.

[13] Naur, P., 1985, “Programming as theory building.” Journal of Systems

Architecture: The Euromicro Journal, 15 (5), pp. 253-267.

[14] Cañas, J. J., Bajo, M. T. and Gonzalvo, P., 1994, “Mental models and
computer programming.” International Journal of Human-Computer

Studies, 40 (5), pp. 795-811.

[15] Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J.,
Malyn-Smith, J. and Werner, L., 2011, “Computational Thinking for

Youth in Practice”, ACM Inroads, 2(1), pp. 32-37.

[16] Chi, M. T. H. and Glaser, R., “Problem solving ability.” In R.
Sternberg (Ed.), 1985, Human Abilities: An Information-Processing

Approach, San Francisco: W. H. Freeman & Co., pp. 227-257.

[17] “Research-based Support for Mathematics Teachers”, 2000, Kansas
State Department of Education, http://www.ksde.org/, Accessed April

2nd, 2011.

[18] Gentner, D. “Mental models, Psychology of.” In N. J. Smelser, & P.
B. Bates (Eds.), 2002, International encyclopedia of the social and

behavioral sciences (pp. 9683-9687). Amsterdam: Elsevier Science.

[19] Johnson-Laird, P. N., 1995, Mental models (6th ed.). Cognitive
Science Series, 6. Cambridge, MA: Harvard University Press.

[20] “Représentation de la connaissance.” 1996,

http://tecfa.unige.ch/staf/staf9597/beltrame/STAF11/concepts.html,
Accessed April 2nd, 2011.

[21] Mayer, R.E., “The psychology of how novices learn computer

programming.” In E. Soloway, & J.C. Spohrer (Eds.), 1989, Studying
the novice programmer. Hillsdale, NJ: Lawrence Erlbaum Associates.

[22] Dehnadi, S., “Testing programming aptitude.” In P. Romero, J. Good,

E. A. Chaparro, & S. Bryant (Eds.), 2006, Proceedings of the 18th
Workshop of the Psychology of Programming Interest Group.

University of Sussex, pp. 22-37.

AUTHOR INFORMATION

Ana Paula Ambrósio, Computer Science Institute,

Universidade Federal de Goiás, Brazil, apaula@inf.ufg.br.

Fábio Moreira Costa, Computer Science Institute,

Universidade Federal de Goiás, Brazil, fmc@inf.ufg.br,

Leandro Almeida, Educational Psychology, Universidade

do Minho, leandro@ie.uminho.pt,,

Amanda Franco, Educational Psychology, Universidade do

Minho, amanda.franco@ie.uminho.pt

Joaquim Macedo, Department of Informatics Engineering,

Universidade do Minho, macedo@di.uminho.pt

