Analysis of DNA damage and repair in Saccharomyces cerevisiae using the comet assay in the characterization of antigenotoxicity of plant extracts and phytochemicals

2nd Workshop BioPlant UMinho, Braga, 2011

DNA damage and repair

© 2001 Nature Publishing Group Hoeijmakers, J. H. J. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001) doi:10.1038/35077232

Flavonoids and antigenotoxicity

Quercetin

Quercitrin

Isoquercitrin

Hyperoside

Rutin

It must be great to work with yeast! • The first eukaryotic organism with the

- The first eukaryotic organism with the genome sequenced
- The first microarray experiments were made with yeast
- Large scale analyses are "easy" with yeasts:
 - Euroscarf project
 - Protein interactions
 - Protein localization

Fundamental mechanisms are highly conserved

DNA damage checkpoint proteins

	Budding yeast	Fission yeast	Human	
PIKK	Mec1	Rad3	ATR	
PIKK	Tel1	Tel1	ATM	
Adaptor	Rad9	Crb2	53BP1, MDC1, BRCA1?	
Rfc1 homolog	Rad24	Rad17	Rad17	
9-1-1 clamp	Rad17	Rad9	Rad9	
	Mec3	Hus1	Hus1	
	Ddc1	Rad1	Rad1	
MRX complex	Mre11	Mre11	Mre11	
	Rad50	Rad50	Rad50	
	Xrs2	Nbs1	Nbs1	
BRCT domain adaptor?	Dpb11	Rad4/Cut5	TopBP1	
Signaling kinase	Rad53	Cds1	Chk2	
Signaling kinase	Chk1	Chk1	Chk1	
Polo kinase	Cde5	Plo1	Plk1	
Securin	Pds1	Cut2	Securin	
Separase	Esp1	Cut1	Separase	
APC-targeting subunit	Cdc20	Slp1	p55 ^{CDC} /CDC20	

Harrison and Haber. 2006. Annu Rev Genet 40:209-35

Human	S. pombe	S. cerevisiae	Drosophila
XPC	rhp41, rhp42	RAD4	mus210
RAD23B (HR23B), RAD23A (HR23A)	rhp23	RAD23	Rad23
XPA	rhp14 ⁺	RAD14	Xpac
RPA1	ssb1+	RFA1	RpA-70
RPA2	ssb2 ⁺	RFA2	RpA-30
RPA3	ssb3+	RFA3	RpA-8
XPG (ERCC5)	rad13 ⁺	RAD2	mus201
ERCC1	swi10 ⁺	RAD10	Erccl
XPF (ERCC4)	rad16 ⁺ (swi9 ⁺ ,		
	rad10+, rad20+)	RADI	mei9
LIGI	cdc17 ⁺	CDC9	DNA-ligI
CSA (CKN1)			_
CSB (ERCC6)		RAD26	
DDB1 (p127)	ddb1 *	_	Ddb1
DDB2 (XPE; p48)	_	_	_
MMS19L (MMS19)		MMS19	Mms19
_	_	RAD7	
_	rhp16 ⁺	RAD16	_
TFIIH subunits			
XPB (ERCC3)	ercc3sp ⁺	SSL2 (RAD25)	hay (haywire
XPD (ERCC2)	rad15 ⁺ (rad5 ⁺ , rhp3 ⁺)	RAD3	Xpd
GTF2H1 (p62)	tfb1+	TFB1	Tfb1
GTF2H2 (p44)	ssII*	SSL1	Ssl1
GTF2H3 (p34)	Tfb4 ⁺	TFB4	Tfb4
GTF2H4 (p52)	Tfb2 ⁺	TFB2	Tfb2
GTF2H5 (TTDA)		TFB5	
CDK7	_	KIN28	Cdk7
CCNH	_	CCL1	CycH
MNAT1 (Mat1)	_	TFB3	Matl

^{-,} no obvious ortholog is present in the genome. Some synonyms for gene names are shown in parentheses.

Friedberg et al. 2006. DNA Repair and Mutagenesis, 2nd ed ASM Press

DNA damage assessment in yeast by the comet assay

DNA damage correlates with toxicant concentration

DNA damage increases along with culture aging

DNA damage repair evaluation by the comet assay

After removal of the toxic compound, cells are allowed to recover damage for different time points

DNA damage repair is abolished at 4°C

Antigenotoxicity evaluation by the comet assay

Incubation with natural compounds (pre-incubation with phytochemicals)

Ginkgo biloba, the atomic bomb survivor

被爆樹木 イチョウ

-bombed tree

Ginkgo

爆心地から1,130m

Approx. 1,130m from hypocer

このイチョウは、1945(昭和20)年8月6日の原爆にも耐え、生き残りました。1994(平成6)年に新本堂が建立された際、階段をくり抜いて保存されました。

http://www.xs4all.nl/~kwanten/hiroshima.htm

Major Active Constituents of Ginkgo biloba

R1

H

H

R2

Н

CH3

CH3

CH3

СНЗ СНЗ СНЗ

R3

H

Н

H

CH3

(all are biflavenoid derivatives)

Ginkgolide

Ailobetin

Ginkgetin

Isoginlgetin

Sciadopirysin

Amentoflavone

R

GBE protects *S. cerevisiae* from oxidative DNA damage

GBE protects *S. cerevisiae* from oxidative DNA damage

Pre-incubation with GBE

Assay with the standard extract EGb 761 (Img/ml)

GBE also protects cells in co-incubation with H₂O₂

GBE increases DNA repair capability upon oxidative damage

Post-incubation with GBE

Marques et al., 2011.
Food and Chemical Toxicology, in press

Yeast DNA repair defective mutants are insensitive to GBE

Cdc9: DNA ligase of the last step of NER and BER

23°C 37°C

GBE decreases intracellular oxidation

Marques et al., 2011. Food and Chemical Toxicology, in press

Yeast cells have more fitness in the presence of GBE

Yeast cell cycle can be assessed by cell morphology

Effect of GBE on cell cycle arrest upon H₂O₂ treatment

With GBE

Effect of GBE on cell cycle arrest upon H₂O₂ treatment

Cell cycle analysis by flow cytometry with SYBR-Green

Conclusions

- Comet assay is suitable in yeast cells for assessment of DNA damage and DNA damage repair
- GBE improves cell viability under oxidative stress
- GBE protects yeast cells from oxidative DNA damage
- GBE improves DNA damage repair
- GBE decreases intracellular oxidation
- GBE abrogates cell cycle arrest in G2/M upon oxidative shock
- Yeast mutants allow to gain important insights on genotoxicity and antigenotoxicity mechanisms

Acknowledgements

- Flávio Azevedo
- Filipe Marques
- Hanna Fokt
- Alberta Domingues
- Alberto Dias
- Björn Johansson
- Rui Oliveira