
 1

A tabu search algorithm for the heterogeneous fixed fleet vehicle routing
problem

José Brandão
Departamento de Gestão, Escola de Economia e Gestão, Universidade do Minho, Largo do Paço, 4704 –

553, Braga, Portugal.

CEMAPRE, ISEG, Technical University of Lisbon, Portugal.

E-mail: sbrandao@eeg.uminho.pt

Abstract

In the heterogeneous fixed fleet vehicle routing problem there are different types
of vehicles and a given number of vehicles of each type. The resolution of this problem
consists of assigning the customers to the existing vehicles and, in relation to each
vehicle, defining the order of visiting each customer for the delivery or collection of
goods. The objective is to minimize the total costs, satisfying customers’ requirements
and visiting each customer exactly once. In this paper a tabu search algorithm is
proposed and tested on several benchmark problems. The computational experiments
show that the proposed algorithm produces high quality solutions within an acceptable
computation time. Four new best solutions are reported for a set of test problems used in
the literature.

Keywords: Heterogeneous fixed fleet; Vehicle routing; Tabu search; Heuristics; Logistics

1. Introduction

The heterogeneous fixed fleet vehicle routing problem (HFFVRP) is defined on
an undirected connected graph G = (V, E), where V = {0, 1, …, n} is a vertex set and E
= {(i, j): i, j ∈ V} is an edge set. Vertex 0 represents the depot and each other vertex i ∈
V \{0} is a customer with a demand qi. A distance dij (dii = 0, ∀i∈ V) is associated to
each edge (i, j) ∈ E. There is a fleet of T different types of vehicles located at the depot,
and the number of vehicles of each type is nk (k = 1, …, T). A capacity Qk and a variable
cost vk are associated to each type of vehicle k (k = 1, …, T). We assume that Q1 < Q2 …
< QT and v1 < v2 … < vT. The travelling cost of each edge (i, j) ∈ E by a vehicle of type
k is cij = vkdij. The HFFVRP consists of defining a set of routes and the vehicles
assigned to them so that the following constraints are taken into account: i) use no more
vehicles than those available; ii) satisfy customers’ demand; iii) visit each customer
exactly once; iv) a vehicle route starts and finishes at the depot; v) do not exceed the

The final version of this article has been published in:
Brandão, J. (2011). A tabu search algorithm for the heterogeneous fixed fleet
vehicle routing problem. Computers & Operations Research, 38 (1), 140-151. doi:
10.1016/j.cor.2010.04.008.

 2

capacity of the vehicle. We will refer indistinctly to route type or vehicle type because
each route is assigned to one vehicle. The objective of the HFFVRP is to minimize the
sum of the costs of all the routes subject to the previous constraints. Considering the
fact that the number of vehicles of each type is fixed, there is no guarantee that a
feasible solution can be found. This means that, if this happens in real-life problems,
other vehicles have to be hired in order to serve the customers.

The HFFVRP is an NP-hard combinatorial problem, since it reduces to the

capacitated vehicle routing problem (CVRP) if the number of types of vehicles is just

one, i.e., the vehicle fleet is homogeneous, and the number of vehicles is unlimited.

If we assume that the number of vehicles of each type is unlimited, we get

another type of problem known as the fleet size and mix vehicle routing problem

(FSMVRP). Although very similar, these two types of problems are applied in rather

different situations: the FSMVRP is more appropriate for strategic decisions when a

company wants to buy a vehicle fleet and needs to define its size and composition,

while the HFFVRP represents better the operational decisions of defining the vehicles

that should be used, among those available, in order to serve the customers. On the

other hand, the HFFVRP has been much less studied than the FSMVRP, and is rather

harder to solve, according to our experience. This additional difficulty might be the

reason why, as conjectured by Taillard [1], it has received less attention from

researchers. When the ratio between the total demand of the customers and the total

capacity of the vehicles is close to one even finding a feasible solution can be very

difficult. In the general case, to prove if a given homogeneous fleet is enough to satisfy

the demand requires to solve a bin packing problem, which is an NP-hard problem

(Garey and Johnson [2]). If the fleet is heterogeneous, we deal with an extension of the

bin packing problem with bins of different sizes and, therefore, it is also NP-hard, but

much less studied than the problem with only one type of bin (see, for example, Correia

et al. [3]) and much more difficult to solve.

In the literature there are many variants of the heterogeneous vehicle routing

problem, besides the two mentioned before. The interested reader can find a

comprehensive classification in Paraskevopoulos et al. [4], jointly with several

representative articles. In this article the authors present an algorithm to solve both the

FSMVRP and the HFFVRP with time windows. In the case of the FSMVRP, several

references and applications can also be found in Brandão [5].

In practice, the need for different types of vehicles is determined by the

characteristics of the customers. Usually, larger vehicles are more appropriate for

 3

serving customers who require large orders (because this avoids splitting the order and

reduces the total distance travelled by serving several customers in the same route) and

the smaller vehicles are more adequate to deliver small quantities or serve customers

that have access restrictions. For the daily planning the most important costs to be

considered in the objective function are the variable costs. Therefore, we omitted the

fixed costs as is the case with all researchers that have investigated the HFFVRP. In Li

et al. [6] can be found several examples of practical applications of the HFFVRP. Some

authors, as for example, Semet and Taillard [7], Rochat and Semet [8], Brandão and

Mercer [9] and Oppen and Lokketangen [10], have studied real-life problems that can

be classified as extensions of the HFFVRP, since they comprise several additional

constraints, like time windows at the customers for the deliveries, maximum driving

time, etc. Below, we will briefly review some of the literature on HFFVRP resolution

methods.

As far as we know, the only papers published about the HFFVRP are the

following: Taillard [1], Tarantilis et al. [11, 12] and Li et al. [6].

The method proposed by Taillard [1] takes advantage of the similarities between

the VRP and the HFFVRP. The author solves a VRP, for each type of vehicle, using the

adaptive memory procedure developed by Rochat and Taillard [13], generating a large

number of routes. Then, in order to find from these routes the best solution for the

HFFVRP, the author uses a linear programming algorithm called column generation.

Tarantilis et al. [11, 12] used a stochastic search method, belonging to the class

of threshold accepting based methods (Dueck and Scheuer [14]), where the threshold

parameter plays a major role in guiding the search process. In [11] the authors use a list

of threshold values in the search, while in [12] the main feature is that, during the

search, the threshold value can suffer an occasional increase instead of decreasing

monotonically as is typical of this kind of methods. These two algorithms are called,

respectively, list based threshold accepting (LBTA) and backtracking adaptive threshold

accepting (BATA). The kinds of moves used in both algorithms are 2-opt, 1-1 exchange

and 1-0 exchange. All these types of moves are applied inside each route and among all

the routes of the current solution. The type of move performed in each iteration and the

customers used in the move are chosen randomly.

Li et al. [6] adapted their record-to-record travel algorithm for the VRP [15] to

solve the HFFVRP, which was named HRTR. The methodology used by them is based

on Dueck’s [16] record-to-record travel, which is a deterministic variant of simulated

 4

annealing. In their algorithm are used the following types of moves: one point (node),

two point, 2-opt and or-opt, all of which can be performed within and between routes. If

after a given number of iterations no new better solution is found the best known

solution is perturbed, and the process restarts with this solution.

Since we have created an algorithm for the FSMVRP (Brandão [5]), our first

attempt was to adapt it, making a few changes, to solve the HFFVRP. However, the

experiments have demonstrated that these changes were not enough to find competitive

solutions comparing to the other algorithms published. Therefore, although several

characteristics of that algorithm were maintained some significant changes had to be

introduced.

The remainder of this paper is organized as follows. Section 2 describes the tabu

search algorithm (TSA) for solving the HFFVRP, presenting, firstly, its main features

and then a step by step description that shows how the different components work

together and, finally, the proposed parameters setting is discussed. In Section 3 are

given the results obtained on three sets of test problems, and the final conclusions are

presented in Section 4.

2. The tabu search algorithm

The tabu search (TS) is a metaheuristic due to Glover [18, 19, 20] that was

inspired by the principles of Artificial Intelligence, especially, the use of memory. The

tabu list is one of the ways of using memory, by storing in a list the solutions explored

throughout the search or, more commonly, some relevant attributes of these solutions.

This tabu list has two main purposes: to prevent the return to the most recent visited

solutions in order to avoid cycling; to drive the search towards regions of the solution

space not yet explored and with high potential of containing good solutions.

A successful application of TS requires a good balance between intensification

and diversification. The intensification is a detailed exploration of some region of the

solution space, usually in the vicinity of a good solution. The diversification consists in

driving the search towards promising regions of the solution space not yet explored and

apart from one another, in terms of structure.

In operational terms, the TS consists of moving successively, in each iteration,

from one solution S to the best of its neighbour solutions, N(S), not in the tabu list or, if

so, satisfying some aspiration criterion.

 5

Our TSA uses and explores most of the more important concepts in TS, namely,

the following: attributes, tabu list, tabu tenure, aspiration criteria, intensification,

diversification, frequency-based memory, strategic oscillation, neighbourhood and

neighbourhood size, moves and evaluation of the moves.

2.1. Method for generating the initial solution – giant tour

The execution of the TSA starts with an initial solution. Usually the methods

used to generate an initial solution are simple and fast to compute because it is assumed

that the task of producing a good solution is mainly committed to the TSA. As

explained in the previous section, finding a feasible solution for the HFFVRP can be

quite difficult. Therefore, one way of dealing with this could be to use methods

designed on purpose to find feasible solutions. This can be achieved, for example, by

giving priority to the customers with higher demand, during the construction of the

routes. However, we verified that such methods are not the most appropriate to reach

the ultimate purpose that is finding high quality solutions. Consequently, we decided to

use a method that is not so efficient in finding feasible solutions, but that yields

solutions with a structure that responds better when improved by the TSA. For some test

problems, the initial solutions are infeasible, but the TSA has no difficulty in find

feasible ones rather quickly.

 Initially, a travelling salesman problem (TSP) tour including all the customers is

constructed. The tour starts with the depot and each time a new customer is inserted,

following their order number, using the GENI algorithm created by Gendreau et al. [17].

The partition of the tour into feasible routes is performed as follows: the partition starts

with the customer adjacent to the depot (the tour is represented as a vector whose first

element is the depot and, therefore, the customer selected is its second element); then,

the free vehicle with the smallest capacity equal to or greater than the customer’s

demand is selected, and, therefore, the current route is started (each route is assigned to

one vehicle); in this route, the customers that are admissible in terms of capacity are

included, one by one, following the sequence defined by the tour. When no more

customers are admissible, the process is repeated with the shorter tour that results from

eliminating the customers already routed. This process ends when there are no more

customers in the tour or when there are no more available vehicles. In this last case,

each of the unrouted customers is inserted in one of the existing routes where its

insertion cost is lowest, without taking into account the capacity of the vehicle.

 6

2.2. Neighbourhood structure

The neighbourhood structure is a key feature in the performance of any tabu

search algorithm, because it determines the extent and the quality of the solution space

explored. The TSA comprises four types of neighbourhood moves: the first three are

insertions (single, double and triple) and the forth is a swap. As we will explain later

these moves are not performed in every iteration for two reasons: to diversify the search

and to keep the computing time at reasonable levels. In each iteration all the customers

are candidates to be moved.

In a single insertion move, a candidate customer xi is removed from its current

route (origin) and a trial insertion is made in any of the other routes (destination),

containing at least one of the δ-nearest neighbours of xi, between any two customers or

near the depot. The value of δ varies during the search and will only be defined later on.

This δ-neighbourhood restriction not only reduces the computing time but also

contributes to find better solutions. Gendreau et al. [21], in their VRP solving algorithm

also imposed this neighbourhood condition to allow a customer to be moved to another

route. This concept has also been used by several other researchers, but the main

difference in relation to them is that in our algorithm there is a variation of the value of

δ according to the evolution of the search.

In a double insertion move, the operation is similar to the single insertion one,

except for the following: the candidates are any pair of customers (xi, xj) belonging to

the same route, the destination route should have at least one of the δ-nearest neighbours

of xi or xj and the insertion place of xj takes into account also the previous (virtual)

insertion of xi.

In a triple insertion move, a chain or segment of three consecutive customers (xi,

xj, xk) belonging to the same route is considered. The destination route should have at

least one of the δ-nearest neighbours of xi or xj or xk and the chain is inserted between

any two customers or near depot, either in the current order of the chain or in the reverse

order, i.e., (xk, xj, xi).

Either the single, the double or the triple insertion can create a new route,

subject, however, to the following two conditions: i) the origin route should have at

least 2, 3 or 4 customers for the single, double and triple insertion, respectively; ii) the

type of vehicle of the destination route should be the lowest (free vehicle) capable of

containing the demand of the moving customers.

 7

A swap move consists of exchanging two customers belonging to two different

routes. A trial swap of a customer xi ∈ ri (route ri) with a customer xj ∈ rj exists if and

only if: i) at least one customer of rj belongs to the δ-neighbourhood of xi; ii) at least

one of the routes ri or rj contains more than one customer.

In this implementation, the frequencies of the different types of move may

change according to the cycle and phase of the algorithm. Parameters FI, FD, FT and FS

denote the frequencies of the single, double and triple insertion and swap moves,

respectively. For example, if FS = 10 and FT = ∞, this implies that the swap move is only

tested every 10 iterations and the triple insertion is never executed.

The trial move chosen depends on the effect of the move on the objective

function defined in the next section.

As we said before, in the designing of the TSA we took advantage of the

knowledge that we acquired from our previous tabu search algorithm for the FSMVRP

(Brandão [5]). Nevertheless, the experiments have shown that the resolution of the

HFFVRP is much more difficult, mainly because it is harder to escape from a local

optimum and reach other local optima of higher quality. This was particularly true for a

set of problems created by Li et al. [6] because of the symmetry of the data - the

customers are all located around the depot forming a set of groups that are placed along

the same radius (angle), and half of the customers have a given demand, while the other

set of customers have also the same demand, but different from the first set. These

difficulties were overcome mainly by the use of several different route improvement

procedures, by the use of long term memory and by shaking the solution obtained at the

end of each phase.

2.3. Objective function

For any candidate solution, S’, the objective function is denoted by f(S’). The

objective function to be minimized by the TSA is defined by the next equation:

f(S’)= ()∑
=

+
r

i
ii Plc

1

. (1)

Where, r is the total number of routes in S’, ci is the variable cost of route i, P is

a penalty term and li is the load excess in route i.

When long term memory is used, the objective function, f1(S’), is given by the

following equation:

 8





⇐
≤⇐

f(S) f(S') > ρ/K rnD') + β(S') = f(Sf
 f(S)f(S') ')(S') = f(Sf

1

1 (2)

Where S is the current solution, β is a scaling parameter, D is the largest absolute

difference in f(S) that has occurred between two consecutive iterations, ρ is the number

of times that a customer has been moved (if the move originating S’ involves more than

one customer, it is considered the one with the higher number of moves) and K is the

number of iterations executed so far.

Several authors, like Gendreau et al. [21], Gendreau et al. [22] and Hoff et al.

[23], have used a diversification strategy similar to this. In our case, β is allowed to vary

during the search, instead of using a constant value as these authors do. This

diversification strategy has proven to be quite useful with one set of problems, but not

with the other set.

The strategic oscillation created by allowing the search to cross the boundary

between the feasible and the infeasible space plays an important role in the quality of

the final solutions. We tried with the same algorithm, but without allowing infeasible

solutions to occur, and the results were rather worse.

We should note that for any S the value of li depends on the type of vehicle

assigned to route i. Therefore, in each trial move, the type of the vehicle can be changed

to one with more or less load capacity, and the vehicle type that implies the lowest value

of f(S) will be the one chosen. All this takes place in the insertion (single double or

triple), as follows. Let us suppose that ri is the origin route after removing the customer

(or customers), and rj is the destination route after inserting the customer (or customers).

If ri is infeasible nothing is done; otherwise, the vehicle type is reduced while ri is still

feasible. If rj is feasible nothing is done; otherwise, the vehicle type is increased by one

unit at a time until rj becomes feasible or the type of vehicle with the highest capacity is

reached. At the same time, for each vehicle type, including the initial one, the cost of the

route is calculated by (1) and, in the end, the vehicle type to which the lowest cost

corresponds is chosen. Regarding the trial swap move, after performing the move, the

same procedure is applied to both routes rk and rm: if rk (rm) is feasible or infeasible, it is

handled as ri or rj in the insertion, respectively. It is important to note that this change of

vehicle type only can happen if there is a free vehicle of that type. On the other hand,

the number of free vehicles is dynamic in each trial move, i.e., if ri is assigned to a

vehicle of a different type, the original vehicle type of ri will have one more vehicle free

and the destination vehicle type will have one less.

 9

2.4. Admissibility of moves

The tabu status of a move is defined in the following way: a customer that leaves

a route cannot return to it during the next θ iterations, where θ is the tabu tenure.

Furthermore, when a new route is created, the customers originating it cannot go to any

of the existing routes during θ iterations, in order to avoid the destruction of recently

formed routes. The tabu tenure changes systematically during the search according to

the evolution of the results. The tabu restriction may be overridden if the move produces

a solution that is better than the ones found in the past. This is referred to as the

aspiration criterion. In the TSA, a trial move to solution S’ is regarded as admissible if:

i) it is not currently on the tabu list;

ii) it is tabu and infeasible, but the value of f(S’) is lower than the value of the

best infeasible solution yet found;

iii) it is tabu and feasible, but the value of f(S’) is lower than the value of the best

feasible solution yet found.

2.5. Route improvement procedures

In the trial moves, the cost of moving a customer is calculated as a simple

insertion. However, the optimal cost of the two modified routes may be much lower, but

its determination is prohibitive due to the computing time required, since this will imply

to solve a TSP for each route, which is a well known NP-hard problem. Instead of this,

at the end of each iteration, we try to improve the two routes just modified by one of the

following three post-optimization procedures: i) the customers that had been moved are

introduced into their new routes by the GENI (note that in this case no real insertion is

made during the trial insertion, only the insertion cost is calculated); ii) US (another

algorithm developed by Gendreau et al. [17]); iii) 2-opt. After this, if a new best feasible

solution is found in this iteration, the US procedure is applied to each individual route,

in order to try to reduce its cost further.

Our experiments indicate that the influence of these procedures in the quality of

the final solution depends on the size of the problem and on the geographic distribution

of the customers: the GENI performs well for smaller problems with a non uniform

distribution (called set 1), while alternating the use of these procedures generates better

 10

solutions and faster for large problems (set 2), with customers symmetrically located in

the space.

2.6. Diversification and intensification

The main sources of diversification in the TSA are: the use of several different

phases; the strategic oscillation, as well as the change of the vehicle type driven by the

objective function; the long term memory expressed in the modified objective function

(2); the shaking of a good solution; the change of the tabu tenure, the neighbourhood

and the frequency of the types of moves, during the search. The intensification is mainly

achieved using the post-optimization procedures and the restart, after a given number of

iterations, with the best found solution. The fact that several parameter values, such as

the duration of each cycle, depend on the evolution of the search is also important, as

we explain in Section 2.9.

2.7. Shaking

Towards the end of the search, when the best known solution is good, shaking it

may be the only way of escaping from a local optimum and reaching better solutions.

This technique has been used for a long time in the variable neighbourhood search

(VNS) metaheuristic (Hansen and Mladenovic [24]) and it is applied when a local

optimum is reached within a given neighbourhood. Shaking a solution S consists of

generating another solution S’ in its neighbourhood. In the VNS this is done by

performing a random move according to the current neighbourhood structure. Our

implementation is rather different because the transformation of S is not determined by

the neighbourhood structure defined in Section 2.2, i.e., the moves are different from

those used in the tabu search, the transformation is deterministic, S’ is farther from S

than it would be using these moves, and the shaking is only applied a few times during

all the search process.

The same shaking concept, although known as perturbation, has been used by

Dueck [16] in his great deluge and record-to-record travel algorithms. However, as far

as we know, this the first time that the shaking was applied within a tabu search

algorithm.

 11

In the TSA the shaking is applied after a long process of search when the best

known solution is already good. This means that, in order to reach other promising

regions of the solution space, this solution should suffer a significant transformation;

otherwise, in the prosecution of the search, the new solution will be quickly attracted to

the original one. On the contrary, according to the proximate optimality principle – POP

– (Glover and Laguna [25], pp. 138-141), a too large transformation may put the new

solution in a poor region of the solution space from where it is difficult to find good

solutions. Therefore, the compromise between these two extremes can be a perturbation

large enough to escape from the current local optimum, but keeping most of the current

structure unchanged. Among the several types of perturbations tried, including one

similar to that used by Li et al. [6], we describe below the one used in the final

algorithm, which produced the best results.

The shaking used in the TSA consists of forcing each of the r/2 routes of S to

start with one of the r/2 nearest customers of the depot, and it is applied in the

beginning of the phases defined later. These customers are removed from their present

place and inserted one by one in the beginning (just after the depot) of each route,

starting with the highest route type and the nearest customer of the depot (the ties are

arbitrarily broken). This is done even if the resulting route is infeasible in terms of

capacity. If after shaking the best known solution, S, and subsequent tabu search process

there is no improvement in S, this implies that the result of the next shaking will be the

same. To avoid this occurrence, the next shaking is applied to the r routes of S, if there

has been no improvement after the previous shaking. However, we should note, that

starting from the same solution does not mean that the search path will be the same,

because the phase is different, but by using this different shaking we guarantee a higher

diversification.

The rationale behind this shaking procedure is that this way these customers are

served at a minimum cost and, therefore, we could expect that good solutions may have

this property.

2.8. Detailed description of the TSA

The parameters and counters of iterations not already mentioned, which are

required to understand the algorithm are the following:

● Iteration counter – K

 12

● Limit of the total number of iterations in a phase – KL

● Number of iterations since the beginning of the cycle without improving the best

solution (feasible or infeasible) – KB

● Number of iterations since the best feasible solution was found – KBF

● Limit of KB in the current cycle – KBL

● Best feasible solution – SBF

Step 1 – Generate the initial solution.

Step 2.1. – Set the initial parameters of the phase – KL, β, θ, δ.

Step 2.2. – Set the initial parameters of the cycle – P, KBL, FI, FD, FT and FS and

empty the tabu list.

Step 3 – Repeat while the stopping criterion (K > KL and KBF > 4KBL) is not met:

Step 3.1. Perform the trial moves and choose the best admissible.

Step 3.2. Introduce into their respective routes the customers that have been moved

using GENI or try to improve the two routes modified using 2-opt or US.

Step 3.3. If the solution found in Step 3.2 is feasible and better than the best known,

try to improve it applying US to all the routes and store the resulting solution

as the new best solution. Update tabu list, P, iteration counters and best feasible

and infeasible solutions.

Step 3.4. If the middle of the cycle has been reached, i.e., KB = KBL/ 2, change θ, δ,

FI, FD, FT and FS.

Step 3.5. If KB = KBL, or KBF = 3KBL (end of the cycle), change KBL, β, θ, δ, FI, FD, FT

and FS. Set KB = 0, empty the tabu list and restart with S = SBF.

Step 4 – If the established number of phases has been reached, stop; otherwise go to

Step 2.1.

This algorithm is represented by a flow chart in figure 1. This figure shows that

the basic structure of the TSA is the cycle, which corresponds to Step 3 in the previous

algorithm.

 13

Figure 1 – Flow chart of the TSA.

A cycle ends after a given number of iterations (KBL) without improving the best

feasible or infeasible solution (SB) or when the number of iterations without improving

the best feasible solution reaches 3KBL. Therefore, in spite of KBL being fixed in each

cycle, the duration of the cycle varies according to the search, because each time SB is

improved, the counter KB restarts from zero or the cycle is interrupted if KBF = 3KBL.

Besides, the value of KBL is increased from one cycle to the next. The middle of the

cycle is reached when KB = KBL/2 (note that in each cycle the middle can be reached

more than once). A phase is a set of cycles, whose number is not known in advance

because it depends on the evolution of the search and on the stopping criterion. Any

cycle and, therefore, the phase can be interrupted if the stopping criterion is reached.

The TSA contains six phases for the set of problems with fewer customers (set 1) and

three phases for the other set of problems with more customers (set 2). In this case, only

Set phase parameters: KL, β, θ, δ

Perform the trial moves
and choose the best admissible

Improve changed routes using
one of the improvement procedures

Update: tabu list, best feasible and
infeasible solutions, iteration counters

Is in the middle
of the cycle?

Generate the initial solution

Is in the end
of the cycle?

No

Change θ, δ, FI,
FD , FT and FS

Yes

No

Stop

Change KBL, β and
empty tabu list

Yes

Set cycle parameters: P, KBL, FI,
FD, FT, FS

K > KL and KBF > 4KBL?
Yes

No

 14

three phases were executed in order to keep a good balance between the quality of the

solutions and the computing time, in comparison to the algorithms of other authors.

Phase 1 starts with the solution given by the giant tour. The other phases start with the

best feasible solution found in the previous phase. However, this solution may suffer a

perturbation before the phase begins, as will be explained later on. When solving set 2,

phase 1 was executed twice, using two different initial values for the scaling factor

(0.013 in one execution and 0.015 in the other), and the best solution found was passed

on to the next phase. Phases 1 to 4, when applied to set 1, only differ in the initial

solution, in the initial values of θ and δ and in the limit for the total number of

iterations. Phases 5 and 6, have as additional difference in relation to the other four, the

frequencies of the types of moves: the insertion is less frequent, as we mentioned

before, the double insertion is not applied, the swap move is more frequent and the

triple insertion is more frequent (in fact it is not used in the previous phases). Due to the

higher frequency of the swap moves in these two phases, the average computing time

per iteration is higher than in the first four phases. The value of the initial parameters of

phases 5 and 6 is identical to those of phases 1 and 2, respectively. When solving the

problems of set 2, phases 1 to 3 present the following differences to when set 1 is

solved: the scaling parameter is different from zero and, therefore, the cost of a trial

move is evaluated by (2); in phase 1, the procedures 2-opt and US are applied

alternately, instead of GENI; in phase 2 and 3, these procedures are applied alternately

during the first half of the cycle, i.e., while KB ≤ KBL/2, and GENI in the second half.

The execution of the trial moves follows the following sequence: single

insertion, double insertion, swap and triple insertion, performing all the potential moves

of each type and then proceeding to the next. If in a given iteration a trial move

generates a solution better than the best already discovered no further trial move is

performed in that iteration.

2.9. Parameter tuning

 As we explained previously, the TSA has several characteristics in common with

an algorithm that we created for the FSMVRP (Brandão [5]). Therefore, in the

definition of the value of several TSA parameters we used that previous knowledge.

This is the case with θ, δ and the frequencies of the single and double insertion and

swap moves, for which similar values were used with the FSMVRP. For setting the

 15

other parameters, we used a set of experiments and principles which will be here

described. These experiments were performed with the problems of set 1. We should

note that there is no way of defining the most effective values of the parameters.

Consequently, they were established based on intuition and on those experiments and

principles, and the results show that the combinations of values used work well, but,

certainly, that better combinations could exist.

First, the most important feature that distinguishes different instances of the

HFFVRP is the number of customers, n. Therefore, the value of most of the parameters

is a function of n. This rule ensures to some extent a similar performance of the TSA

with problems of different sizes. Another important rule, applied to almost every

parameter, is the variation of its value during the search. This aims to induce

diversification and its relevance is increased by the fact that the TSA is deterministic.

The two most influential parameters of the TSA are the tabu tenure (θ) and the

neighbourhood restriction (δ).

The initial value of θ is given by n/c (by default, a number is always rounded up

to the nearest integer, if the parameter must be integer), where c is a constant. The

experiments reported in Brandão [5] indicated that c = 2 is the best value. Therefore, we

decided to use values around this without further experiments, because of the adaptive

nature of θ, which reduces the need of a precise preliminary calibration. During the

search θ changes dynamically in the following way: whenever the middle of the cycle is

reached, it is set as θ = max(θ /2, 7) and at the end of the cycle it is defined as θ =

min(2θ + 3, 0.6n). However, applying only these rules, it may happen that when the

change of θ is due, its value remains the same, if it is already in the extremes of those

intervals. So, if this happens, it is set θ = θ + 1, in the middle of the cycle, and θ = θ - 3,

at the end of the cycle. We should note that without any bounds, i.e., if θ is simply set as

θ = θ /2, in the middle of the cycle, and θ = 2θ + 3, at the end, the average solution cost

(for set 1) is only very slightly worse. The value of θ is reduced in the middle of the

cycle in order to allow intensification, i.e., to explore more thoroughly the current

region of the solution space. On the contrary, when the end of the cycle is reached, that

means no better solutions could be found in current region and, consequently, more

distant regions should be tried. So, θ is increased in order to drive the search towards

that regions.

 16

 In order to have influence in the search, δ must be small. Its maximum value, δL,

takes into account the number of customers and the number of vehicles required to serve

them. So it was defined as δL = min(n-1, 2cr), where cr is the number of customers of

the route of the initial solution with more customers. As it happens with the tabu tenure,

δ also changes dynamically during the search as follows: in the middle of the cycle, δ =

min(δ + 1, δL) and at the end of the cycle, δ = min(δ + 2, δL). A set of experiments

indicated that the initial values should be very low. In phase 1 the best average results

were obtained using δ = 1, with set 1, and δ = 2, with set 2. In the latter case, δ = 1 is not

a good choice because some routes have a very large number of customers and,

therefore, for many customers, all their δ-nearest neighbours are already in the same

route. Consequently, during many of the initial iterations only a few moves or no moves

at all are allowed, which represents a waste of computing time. The initial value of δ

increases slightly in the next phases in order to allow the exploration of different and

larger regions of the solution space. The reason for starting with a very low value of δ

and increasing it during the search is the following: a low value drives the search

towards a promising region of the solution space; once there, when no better solutions

could be found, the allowable search space should be enlarged. At the end of the cycle

there is a higher diversification in the search space than in the middle of the cycle and,

therefore, a higher increment of δ is desirable.

The GENIUS algorithm depends on a parameter, p, that defines the

neighbourhood around each customer, and we used p = 5 because according to the

authors (Gendreau et al. [17]) it gives a good compromise between solution quality and

computing time.

The value of P was defined simply according to our previous experience with

other types of tabu search algorithms. Initially P = 1. If for 10 consecutive iterations, all

the solutions are infeasible, P is multiplied by 2. Conversely, if all the solutions are

feasible for the last 10 consecutive iterations, P is divided by 2.

The restart associated with the cycle plays an important role in the performance

of the TSA because it promotes intensification around the best solution found and some

diversification is also guaranteed by changing parameters’ values. If the cycles are too

long there is not enough time for restarting and if they are too short the search is limited

to a narrow region of the solution space. According to our experiments, good results are

obtained when the cycle limit (KBL) is around 15n. This limit is increased by 2n at every

restart to allow some more time to find better solutions because this becomes harder as

 17

the search progresses. With the problems of set 2, better results could be found using a

higher value for this limit, so KBL = 30n was used instead. As stated in Section 2.8 (step

3.5), the restart is done with the solution SBF. The first move after the restart cannot be

the same as the move performed immediately after discovering SBF. This rule reinforces

the guarantee, already given by the change of parameters’ values, that the search path

followed after the restart is different from the path followed after SBF was found.

The execution of each phase of the TSA is stopped when the limits of the total

number of iterations, KL, and number of iterations without improving the best feasible

solution, KBFL, are both reached. In the definition of these limits we tried to obtain a

good compromise between solution quality and computing time. Furthermore, KBFL is

the quadruple of KBL in order to allow the search to continue during a reasonable

number of iterations after the restart. The value of KL is higher for phase 1 than for the

other phases because, usually, these phases contribute much less to improve the

solution. Therefore, in general, would be a waste of computing time if the value of KL

was identical to that of phase 1. The other component of the stopping criterion (KBFL) is

adapted to the evolution of the search, allowing this to go on whenever new best

feasible solutions are discovered, because the corresponding iteration counter, KBF,

restarts from zero when this happens. Consequently, KBFL also compensates, to some

extent, a less appropriate choice of KL.

In order to understand the frequencies defined for the different types of moves,

we should, firstly, observe their properties. On average, among the four types of moves,

the swap is one that causes the lowest absolute variation in the use of the capacity of the

two vehicles involved in each iteration. Among the four types of moves used, the trial

single insertion is the one that causes the lowest transformation in a solution and that

allows a more detailed exploration of the solution space. In relation to these two aspects

the other moves are ordered as follows: swap, double insertion and triple insertion.

Besides, any transformation produced by the other three types of moves can be reached

by the trial single insertion, although requiring several iterations. This is why the trial

single insertion moves are performed in every iteration, except in phases 5 and 6, where

they are applied only if none of the others is executed (in these two phases more

dramatic changes are required). For the same reasons, the swap move is the next with

higher frequency. As a rule, these two types of trial moves (double insertion and swap)

are not performed in the same iteration so that they do not compete with each other. The

 18

variation of the frequencies during the cycle induces a diversification in the search.

Besides, it should also be noted that the swap moves and the triple insertion are more

powerful in breaking the structure of a given solution, this is why they are so frequent

and so important in phases 5 and 6, when the initial solution is already good. We

observed that both the double insertion and the swap moves give an important

contribution for discovering good solutions. However, if their frequency is very high

(for example, every iteration) not only the computing time increases considerably but

also the final results are worse. This behaviour may be explained as follows: these

moves drive the search towards a region of the solution space which is rather distant

from the current one and, if this happens frequently, a high perturbation is created acting

against the POP. However, as we explained before, in phases 5 and 6, this higher

perturbation is really required. Conversely, the single insertion move allows the

exploration of the same “level”, according to the concept defined by the POP. We

should note that the perturbation created by those types of moves is boosted by the

existence of different types of vehicles.

The long term memory, as expressed by (2), played an important role in finding

good solutions for the problems of set 2. However, the results are slightly worse if it is

used with set 1 and, therefore, it was only applied to set 2. This can easily be explained

by the fact that too much diversification is not beneficial for the results and, due to the

different characteristics of the data of both sets, set 2 requires much more diversification

than set 1. We tried values of β ∈[0.01, 0.015] and the average results obtained were

similar, being a little better the average solutions found with β = 0.015. Nevertheless,

the individual solutions vary significantly with the value used. Due to this we

established the following: i) Start the phase with a given initial value β and then

increase it by 0.001 at each restart of the cycle, but never allowing it to be greater than

0.015; when this happens its value is set at 0.012 and increased again by the same

amount at the end of the cycle. So, the value of β oscillates between 0.012 and 0.015; ii)

Repeat phase 1 with the initial values of β = 0.013 and β = 0.015, as explained before.

In each cycle the succession of solutions is related to the solution starting the cycle and,

by definition, D results from these solutions. Consequently, we set D = 0 at the

beginning of each cycle.

The shaking, as defined in the TSA, produces a large perturbation (in general,

the resulting solution is infeasible) and, consequently, the following two conditions

have been established for applying it: i) the solution should be already good and,

 19

therefore, very difficult to improve by other means; ii) the algorithm should have

enough iterations to recover from this perturbation and find a path of good solutions.

Due to this, the shaking was only applied at the beginning of phases 4 and 6, with set 1,

and at the beginning of phases 2 and 3 with set 2.

The value used for the main parameters can now be summarized as follows:

● The initial value of θ is the following: n/2 in phases 1, 3 and 5; n/3 in phases 2 and 6

and n/2.5 in phase 4.

● The initial value of δ is the following: 1 (2 with set 2) in phases 1 and 5; 2 in phases 2

and 6; 5 in phase 3 and 10 in phase 4.

● KBL = 15n if n < 200 and KBL = 30n if n ≥ 200. KBL is increased by 2n at the end of the

cycle.

● KL = 3000 n in phases 1 and 6, and in the other phases KL = 2000 n .

● In the first four phases: FD = 10 and FS = 5, at the beginning of the cycle; FD = 5 and

FS = 10, in the middle of the cycle; FT = ∞. In phases 5 and 6: FS = 1, at the beginning of

the cycle; FS = 2, in the middle of the cycle; FD = ∞ and FT = 7.

● β oscillates between 0.012 and 0.015, starting with β = 0.012 and increasing 0.001 at

the end of each cycle. This is different in phase 1 because it is repeated and, in this case,

the initial value of β is the following: 0.013 in the first execution and 0.015 in the

second one.

3. Computational experiments

3.1. Benchmark problems from the literature

The TSA has been programmed in C language and executed on a Compaq

Presario X1000 Intel Pentium M at 1.4 GHz, 512 MB of RAM. The performance of our

algorithm was tested using two sets of benchmark problems from the literature, whose

specific data for the HFFVRP are in the Tables 1 and 2. The first set (set 1, Table 1) was

taken from Taillard [1] and contains eight problems, numbered from 13 to 20. The

second set (set 2) contains five problems created by Li et al. [6], identified as H1 to H5.

There are two important differences in the data between these two sets of problems: i)

the number of customers in set 1 is between 50 and 100 customers, while in set 2 it goes

from 200 to 360 customers; ii) the demand and the coordinates of set 1 were originally

taken from Christofides and Eilon [26] and have been randomly generated, while in set

 20

2 there are only two different values for the demand and all the customers are located at

symmetric positions around the depot in concentric circles, which means that their

distribution is much more uniform. These two differences have important implications

in the resolution.

In set 2 (p. 2738, Table 5 of Li et al.[6]) we found some typographical errors: i)

in problem H2, one vehicle of type E is missing, otherwise the available capacity is not

enough for the demand; in problem H3, % (100 × (total demand/total capacity)) = 93.33

and not 94.76; iii) In problem H5, we suspect, but we could not confirm it with the

authors, that the variable cost per unit of distance travelled for each type of vehicle, is

not the value written there, but the same as the corresponding one for H4. The reason

for this hypothesis is that we found better solutions than Li et al. [6] for H1 to H4, and a

substantially worse solution for H5. However, assuming identical unit variable costs to

those of H4, our best solution is a little better. In spite of this remark, we put in Table 2

the same unit variable costs that appear in Table 5 of Li et al. [6] and we solved the

problem with these costs.

[Insert Tables 1 and 2]

We compare the results produced by our algorithm with those given by the

algorithms of Taillard [1], Tarantilis et al. [12] (the other algorithm by these authors

[11], is not used because the results are slightly worse) and Li et al. [6]. The first

algorithm was executed on Sun Sparc workstation at 50 MHz, while the second was

executed on a Pentium II at 400 MHz, 128 MB of RAM, and Li et al. [6] used an

Athlon at 1 GHz, 256 MB of RAM. Although being aware of the difficulties and

limitations in comparing the speeds of the different computers, we use Dongarra [27]

tables to assume that the speed of these computers, measured in millions of floating-

point operations per second (Mflop/s), is the following: workstation - 10 Mflop/s,

Pentium II – 80 Mflop/s, Athlon – 450 Mflop/s and Pentium M – 250 Mflop/s.

The authors used different ways of presenting their results and solved different

problems: Taillard [1] executed the algorithm five times, giving the average solutions

and computing times; Tarantilis et al.’s [12] algorithm contains several random

parameters, but they only provide the results for one run; Li et al.’s [6] algorithm is

 21

deterministic as ours, and they have solved both sets of problems, while the other

authors only solved set 1.

The tables give the following information: the number of customers; the best

known solution costs from the literature, with the indication of the source in the case the

solution was found by only one algorithm; “our best” which is the best result obtained

by our algorithm during all experiments with different values of the parameters; the cost

of the solution produced by the different algorithms and respective computing time in

seconds (CPU) on the computers previously indicated; the average for each set of

problems; the percentage difference of the average in relation to the average of the best

known solution costs (Av. deviation); the number of solutions found by each algorithm

which are identical or better than the best published ones (NB).

[Insert Tables 3 and 4]

 The results in Table 3 show that the TSA was able to find all the best known

solutions except two. In comparison with Taillard’s [1] algorithm, the TSA produces

better solutions for all the problems, but his algorithm is about twice as fast. In relation

to Tarantilis et al. [12], we can see that the solutions given by the TSA are a little better

and the computing time is a bit lower. On average, Li et al.’s [6] algorithm produced

slightly better solutions than the TSA and one more solution identical to the best known,

but their computing time is about three times higher.

It is worth mentioning that at the end of phase 4 the average solution cost is

0.51% above the best known. This means that the improvement in the last two phases (5

and 6) has been only 0.4%, but the average computing time taken by these phases was

about 80 seconds, i.e., more than half of the average total computation time. This

behaviour, which is typical of this kind of algorithms, means that a high price, in terms

of computing time, has to be paid for a small improvement in the solution when it is

already good.

 The solution cost for the problem H5 in Table 4 contains two values: one

assuming that the unit variable costs in Table 2 are correct and another, between

brackets, assuming that these costs are identical to those of the problem H4. We should

note that this second cost could be better if the problem was solved assuming the unit

variable costs of H4. The results in Table 4, excluding the problem H5 because of the

doubts just mentioned, show that the TSA gives better solutions than Li et al.’s [6]

 22

algorithm for every problem and found new best solutions for all the problems.

However, the computing time taken by the TSA is almost the double.

Overall, the TSA found six solutions equal to the best known and four new best

solutions, while the algorithm of Li et al.[6] found only seven identical to the best

known. By using different combinations of parameters during our experiments, the TSA

was able to find all the best known solutions but one, and four new best ones for the 12

problems.

3.2. New test problems

 In order to increase the statistical significance of the computational experiments

we created five new test problems designated as N1 to N5, set 3. The data for the depot

and the customers (demand and coordinates) were taken from VRP examples, as

follows: from Christofides et al. [28], problems 4-5 and 11-12, for N1 to N4,

respectively; from Fisher [29], problem 12, for N5. In the first two problems (N1 and

N2), the coordinates were randomly generated in the plane, while in problems N3 and

N4, the customers appear in clusters. Problem N5 is a real problem. The characteristics

of the vehicle fleet are in Table 5. These characteristics have been established in a way

similar to that used by Taillard [1], p. 8, namely: i) the variable cost, vk, have been

chosen in such a way that good solutions for the FSMVRP are composed of vehicles of

each type; the number of vehicles of each type, nk, have been defined in such a way that

the fleet composition of good FSMVRP solutions is very different from that of good

HFFVRP solutions; iii) the total capacity is such that any HFFVRP solution must have

at least one vehicle of each type (not all Taillard [1] or Li et al. [6] problems satisfy this

condition). The average capacity ratio of our set of problems is slightly higher than that

of the other two sets.

 [Insert Table 5]

 The quality of the TSA solutions for sets 1 and 2 was evaluated by comparing

with the solutions produced by other algorithms. However, another way of measuring it

is comparing the solution cost with the cost of the lower bound. The exact FSMVRP

solution is a lower bound for the HFFVRP solution. We do not have the exact FSMVRP

solutions for the three sets of problems under consideration, but we can calculate very

good FSMVRP solutions, using the algorithm of Brandão [5]. So, using these “lower

 23

bounds”, we can say that, very likely, our best solutions for the sets 1 and 2 (Tables 3

and 4) are, on average, no more than 1.3% and 12.3% above optimum, respectively.

Certainly, this gap is shared by the “lower bound” and the upper bound.

 For the new problems the results are in Table 6, where the solution cost and the

respective vehicle fleet are presented.

[Insert Table 6]

These results show that the average gap between the “lower bound” and the

upper bound is 2.54%. As expected, due to the relative dimension of the three sets of

problems, the gap for this set is in the middle of the other two sets. However, we are

well aware that there are other relevant factors influencing this gap, like the cost

structure and the ratio total demand versus total capacity of the vehicles. The solutions

obtained for this new set of problems confirm the good performance of the TSA.

4. Conclusions

So far as we know, the TSA was the first tabu search algorithm applied to the

heterogeneous fixed fleet vehicle routing problem. The results have proven that this

metaheuristic is appropriate and the algorithm is able to find high quality solutions in a

reasonable computing time. Four new best solutions are provided for the test problems

that have been studied by other researchers.

The solutions presented demonstrate the good performance of the TSA when

compared to the algorithms of Taillard [1], Tarantilis et al. [12] and Li et al. [6]. The

algorithm of Li et al. [6] is also deterministic, but the performance of the TSA is slightly

better. In general, all these algorithms yield good results, but Taillard’s [1] algorithm, in

spite of its good performance, is not appropriate for problems of large dimensions, as

the author recognises, because it requires the exact resolution of a set partitioning

problem, which is an NP-hard problem.

The main conclusions that we could draw from the computational experiments

are the following: the problems of large dimension impose several additional

difficulties, especially, if the data structure is uniform; the δ-neighbourhood plays an

important role both in the quality of the solutions and in the computing time; the use of

long term memory in the algorithm can diversify significantly the search and enhance

the solution quality; a significant shaking can also have a rather positive influence in the

 24

final results; the resolution of the HFFVRP is substantially more difficult than the

FSMVRP. We believe that the TSA can easily be adapted to deal efficiently with the

HFFVRP containing other additional constraints usually found in real-life. This

conviction is reinforced by the fact that the TSA contains several features in common

with the algorithm applied to a different type of problem, the FSMVRP (Brandão [5]),

where it has proved to have a good performance.

 25

Table 1
Data for the problems of set 1
 Type of vehicle

Ratio
(%) A B C D E F

Problem n QA vA nA QB vB nB QC vC nC QD vD nD QE vE nE QF vF nF
13 50 20 1.0 4 30 1.1 2 40 1.2 4 70 1.7 4 120 2.5 2 200 3.2 1 95.39
14 50 120 1.0 4 160 1.1 2 300 1.4 1 88.45
15 50 50 1.0 4 100 1.6 3 160 2.0 2 94.76
16 50 40 1.0 2 80 1.6 4 140 2.1 3 94.76
17 75 50 1.0 4 120 1.2 4 200 1.5 2 350 1.8 1 95.38
18 75 20 1.0 4 50 1.3 4 100 1.9 2 150 2.4 2 250 2.9 1 400 3.2 1 95.38
19 100 100 1.0 4 200 1.4 3 300 1.7 3 76.74
20 100 60 1.0 6 140 1.7 4 200 2.0 3 95.92

Ratio = 100 × (total demand/total capacity).

Table 2
Data for the problems of set 2

 Type of vehicle
 A B C D E F Ratio

Problem n QA vA nA QB vB nB QC vC nC QD vD nD QE vE nE QF vF nF (%)
H1 200 50 1.0 8 100 1.1 6 200 1.2 4 500 1.7 3 1000 2.5 1 93.02
H2 240 50 1.0 10 100 1.1 5 200 1.2 5 500 1.7 4 1000 2.5 1 96.00
H3 280 50 1.0 10 100 1.1 5 200 1.2 5 500 1.7 4 1000 2.5 2 93.33
H4 320 50 1.0 10 100 1.1 8 200 1.2 5 500 1.7 2 1000 2.5 2 1500 3 1 94.12
H5 360 50 1.0 10 100 1.2 8 200 1.5 5 500 1.8 1 1500 2.5 2 2000 3 1 92.31

Ratio = 100 × (total demand/total capacity).

 26

Table 3
Comparison of the results for set 1

Problem

 Best
Known

Our
Best Taillard Tarantilis et al. Li et al. TSA

n Cost Cost Cost CPU Cost CPU Cost CPU Cost CPU
13 50 1517.84a 1517.84 1536.55 473 1519.96 843 1517.84 358 1517.84 56
14 50 607.53a 607.53 623.05 575 611.39 387 607.53 141 607.53 55
15 50 1015.29 1015.29 1022.05 335 1015.29 368 1015.29 166 1015.29 59
16 50 1144.94a 1144.94 1159.14 350 1145.52 341 1144.94 188 1144.94 94
17 75 1061.96a 1061.96 1095.01 2245 1071.01 363 1061.96 216 1061.96 206
18 75 1823.58a 1823.58 1894.73 2876 1846.35 971 1823.58 366 1831.36 198
19 100 1117.51b 1120.33 1156.93 5833 1123.83 428 1120.34 404 1120.34 243
20 100 1534.17a 1534.17 1592.16 3402 1556.35 1156 1534.17 447 1534.17 302

Average 1227.85 1228.21 1259.95 2011 1236.21 607 1228.21 286 1229.18 152
Av. deviation (%) 0.03 2.61 – 0.68 – 0.03 – 0.11 –

NB 7 0 – 1 – 7 – 6 –
a Solution cost taken from Li et al. [6]
b Solution cost taken from Taillard [1].
Values in boldface – identical to the best known.

 27

Table 4
Comparison of the results for set 2

Problem

 Best
Known

Our
Best Li et al. TSA

n Cost Cost Cost CPU Cost CPU
H1 200 12067.65 12050.08 12067.65 688 12050.08 1395
H2 240 10234.40 10208.32 10234.40 995 10226.17 3650
H3 280 16231.80 16223.39 16231.80 1438 16230.21 2822
H4 320 17576.10 17458.65 17576.10 2256 17458.65 8734

H5 360 21850.40 23166.56
(21757.26) 21850.40 3277 23220.72

(21852.36) 13321

Averagea 14027.49 13985.11 14027.49 1344 13991.28 4150
Av. deviation (%) -0.30 0.00 – -0.26 –

NB 4 0 – 4 –
a This average is only for the first four problems.
Values in boldface – identical to the best known or better (in this last case they are also in italic).

Table 5
Data for the problems of set 3

 Type of vehicle
 A B C D E F Ratio

Problem n QA vA nA QB vB nB QC vC nC QD vD nD QE vE nE QF vF nF (%)
N1 150 50 1 5 100 1.5 4 150 1.9 4 200 2.2 3 250 2.6 2 95.11
N2 199 50 1 8 100 1.5 6 150 1.9 5 200 2.2 4 250 2.6 2 350 3.2 1 93.71
N3 120 50 1 6 100 1.5 3 150 1.9 3 200 2.2 2 94.83
N4 100 50 1 4 120 1.6 4 180 2.1 4 240 2.6 2 96.28
N5 134 900 1 5 1500 1.5 3 2000 1.8 2 2500 2.2 1 94.32

Ratio = 100 × (total demand/total capacity).

 28

Table 6
The results for set 3

Problem n FSMVRP solution HFFVRP solution Gap
Cost Vehicle fleet Cost Vehicle fleet (%)

N1 150 2220.01 5A, 2B, 3C, 7D 2243.76 4A, 4B, 4C, 3D, 2E 1.07
N2 199 2827.76 2A, B, 4C, 12D 2874.13 5A, 6B, 5C, 4D, 2E, F 1.64
N3 120 2234.57 2A, 3B, 5D 2386.90 5A, 3B, 3C, 2D 6.82
N4 100 1822.78 3B, 3C, 4D 1839.22 3A, 4B, 4C, 2D 0.90
N5 134 2016.79 7A, B, C, 2D 2062.48 5A, 3B, 2C, D 2.27
Average – – – – 2.54

 29

Acknowledgements

This research was partially supported by Fundação para a Ciência e Tecnologia

under the project nº PTDC/EGE-GES/104092/2008. This support is gratefully

acknowledged. We also thank Filomena Louro from the University of Minho Editing

Program for revising the text. We also thank two unknown referees for their valuable

comments.

Appendix – New best solutions

Here are presented the best solutions found by the TSA for the problem sets 1

and 2. These solutions as well as the solutions for the set 3 and the data can also be

found at http://cemapre.iseg.utl.pt/~sbrandao/HFFVRP_solutions_and_data.pdf. All the

calculations have been performed with a precision of 64 bits and the total solution cost

is presented with four decimal places. In order to save some space, a line can contain

more than one route and the following format is used: <route number>: <route> <load>

<vehicle type>; .

Problem 13: Solution cost = 1517.8366
1: 0-17-0 20 A; 2: 0-26-0 18 A; 3: 0-16-0 19 A; 4: 0-6-0 19 A; 5: 0-2-0 26 B; 6: 0-4
-0 30 B; 7: 0-40-0 33 C; 8: 0-31-25-0 39 C; 9: 0-7-35-19-0 40 C; 10: 0-27-13-15-0 37
C; 11: 0-34-46-8-0 62 D; 12: 0-49-24-18-50-0 67 D; 13: 0-1-43-42-41-23-0 68 D; 14: 0
-28-22-33-0 68 D; 15: 0-14-11-38-10-0 118 E; 16: 0-12-39-9-32-44-3-0 117 E; 17: 0-30
-48-21-47-36-20-37-5-29-45-0 192 F

Problem 14: Solution cost = 607.5290
1: 0-12-25-50-18-24-44-3-0 120 A; 2: 0-4-34-46-35-7-26-0 119 A; 3: 0-33-1-43-42-41-23
-49-16-0 119 A; 4: 0-30-48-21-28-22-2-6-0 156 B; 5: 0-27-13-15-20-37-36-47-5-29-45-0
 159 B; 6: 0-17-40-32-9-39-31-10-38-11-14-19-8-0 300 C

Problem 15: Solution cost = 1015.2939
1: 0-5-38-46-0 41 A; 2: 0-26-7-43-24-0 47 A; 3: 0-37-42-40-19-4-0 47 A; 4: 0-48-23-6
-0 48 A; 5: 0-49-10-39-33-45-15-44-17-0 99 B; 6: 0-12-47-18-0 95 B; 7: 0-41-13-25-14
-0 99 B; 8: 0-11-16-50-9-30-34-21-29-2-32-0 156 C; 9: 0-27-8-31-28-3-36-35-20-22-1-0
 145 C

Problem 16: Solution cost = 1144.9360
1: 0-12-0 29 A; 2: 0-7-43-24-0 40 A; 3: 0-37-17-42-19-40-41-4-0 77 B; 4: 0-27-48-23-

 30

6-0 63 B; 5: 0-11-16-50-9-38-46-0 75 B; 6: 0-44-15-45-33-39-10-0 78 B; 7: 0-14-25-13
-18-47-0 138 C; 8: 0-1-22-20-35-36-3-28-31-26-8-0 137 C; 9: 0-32-2-29-21-34-30-49-5-
0 140 C

Problem 17: Solution cost = 1061.9570
1: 0-4-75-0 50 A; 2: 0-34-46-0 46 A; 3: 0-67-26-0 48 A; 4: 0-40-44-24-49-16-6-0 120
B; 5: 0-51-3-50-18-55-25-31-12-0 120 B; 6: 0-74-21-61-28-2-68-0 118 B; 7: 0-8-19-54-
13-57-15-27-52-0 117 B; 8: 0-73-1-62-22-64-42-43-41-56-23-63-33-0 196 C; 9: 0-45-29-
5-37-20-70-60-71-69-36-47-48-30-0 199 C; 10: 0-7-35-53-14-59-11-66-65-38-10-58-72-39
-9-32-17-0 350 D

Problem 18: Solution cost = 1823.5801
1: 0-6-0 19 A; 2: 0-75-0 20 A; 3: 0-25-55-31-0 46 B; 4: 0-34-67-0 49 B; 5: 0-73-56-23
-63-0 49 B; 6: 0-52-46-0 46 B; 7: 0-27-15-57-13-54-19-8-0 98 C; 8: 0-30-48-47-21-74-
0 99 C; 9: 0-62-22-64-42-41-43-1-33-0 147 D; 10: 0-17-3-44-50-18-24-49-16-51-0 146 D;
11: 0-4-45-29-5-37-20-70-60-71-36-69-61-28-2-68-0 248 E; 12: 0-26-7-35-53-14-59-11-66
-65-38-10-58-72-39-9-32-40-12-0 397 F

Problem 19: Solution cost = 1120.3438
1: 0-12-80-68-29-24-25-55-54-0 99 A; 2: 0-60-83-8-46-45-17-84-5-99-96-6-0 98 A; 3: 0
-87-42-14-38-43-15-57-2-0 96 A; 4: 0-76-77-3-79-78-34-35-65-71-9-51-81-33-50-0 199 B;
5: 0-31-88-62-10-63-90-32-66-20-30-70-1-69-27-0 199 B; 6: 0-52-7-19-11-64-49-36-47-48
-82-18-89-0 193 B; 7: 0-53-58-40-21-73-72-74-22-41-75-56-23-67-39-4-26-28-0 278 C; 8:
0-94-95-59-93-85-61-16-86-44-91-100-98-37-92-97-13-0 296 C

Problem 20: Solution cost = 1534.1666
1: 0-11-64-49-36-46-0 57 A; 2: 0-18-83-8-45-17-84-60-0 60 A; 3: 0-54-24-29-34-78-50-
0 60 A; 4: 0-97-92-91-38-43-15-57-2-0 60 A; 5: 0-53-0 14 A; 6: 0-73-74-22-41-58-0 58
A; 7: 0-33-81-9-35-71-65-66-20-51-0 140 B; 8: 0-88-62-19-47-48-82-7-52-0 138 B; 9: 0
-28-76-77-3-79-68-80-12-0 140 B; 10: 0-31-10-63-90-32-30-70-1-69-27-0 137 B; 11: 0-94
-95-59-98-37-100-85-93-99-96-6-0 196 C; 12: 0-89-5-61-16-86-44-14-42-87-13-0 200 C;
13: 0-26-4-55-25-39-67-23-56-75-72-21-40-0 198 C

Problem H1: Solution cost = 12050.0761
1: 0-2-1-20-0 50 A; 2: 0-5-4-3-0 50 A; 3: 0-11-10-9-7-0 100 B; 4: 0-19-18-17-15-0 100
B; 5: 0-105-125-145-165-185-184-164-144-124-104-0 100 B; 6: 0-23-24-44-64-84-85-65-25
-0 100 B; 7: 0-8-27-26-6-0 100 B; 8: 0-14-34-35-16-0 100 B; 9: 0-30-49-69-89-109-129
-149-169-189-188-168-148-128-108-88-68-48-28-0 200 C; 10: 0-32-53-73-93-113-133-153-
173-193-192-172-152-132-112-92-72-52-31-0 200 C; 11: 0-38-57-77-97-117-137-157-177-197
-196-176-156-136-116-96-76-56-36-0 200 C; 12: 0-39-60-80-100-120-140-160-180-200-181
-161-141-121-101-81-61-41-21-0 200 C; 13: 0-13-33-54-74-94-114-134-154-174-194-195-175
-155-135-115-95-75-55-0 500 D; 14: 0-29-50-70-90-110-130-150-170-190-191-171-151-131

 31

-111-91-71-51-12-0 500 D; 15: 0-40-59-79-99-119-139-159-179-199-198-178-158-138-118-
98-78-58-37-0 500 D; 16: 0-47-67-87-107-127-147-167-187-186-166-146-126-106-86-66-46
-45-43-63-83-103-123-143-163-183-182-162-142-122-102-82-62-42-22-0 1000 E

Problem H2: Solution cost = 10208.3088
1: 0-25-24-23-0 50 A; 2: 0-16-14-13-0 50 A; 3: 0-12-11-9-0 50 A; 4: 0-29-28-27-0 50
A; 5: 0-20-21-22-0 50 A; 6: 0-33-34-36-0 50 A; 7: 0-40-1-2-3-4-5-0 100 B; 8: 0-41-80
-79-78-77-76-0 100 B; 9: 0-19-18-17-15-0 100 B; 10: 0-39-38-37-35-0 100 B; 11: 0-10-
8-7-6-0 100 B; 12: 0-96-97-137-136-135-134-133-132-92-93-94-95-0 200 C; 13: 0-112-152
-192-193-233-232-231-230-229-228-188-189-149-148-108-68-0 200 C; 14: 0-111-151-191-190
-150-110-109-69-0 200 C; 15: 0-101-141-140-180-181-182-185-186-146-145-105-106-0 200
C; 16: 0-104-144-184-224-225-226-227-187-147-107-0 200 C; 17: 0-88-128-168-208-209-210
-211-212-213-214-215-216-217-218-219-220-221-222-223-183-143-142-102-103-0 500 D; 18:
0-85-125-126-166-165-164-163-162-161-200-199-198-197-196-195-155-156-157-158-159-160
-121-122-123-124-84-0 500 D; 19: 0-100-99-98-138-139-179-178-177-176-175-174-173-172
-171-170-169-129-130-131-91-90-89-0 500 D; 20: 0-113-153-154-194-234-235-236-237-238
-239-240-201-202-203-204-205-206-207-167-127-87-86-0 500 D; 21: 0-32-31-30-70-71-72-
73-74-75-114-115-116-117-118-119-120-81-82-83-42-43-44-45-46-47-48-49-50-51-52-53-54
-55-56-57-58-59-60-61-62-63-64-65-66-67-26-0 1000 E

Problem H3: Solution cost = 16223.3905

1: 0-23-24-25-0 50 A; 2: 0-4-3-1-0 50 A; 3: 0-6-37-38-39-0 100 B; 4: 0-168-196-224-252
-280-253-225-197-169-141-0 100 B; 5: 0-165-193-221-249-277-276-248-220-192-164-0 100
B; 6: 0-84-112-85-86-58-57-0 100 B; 7: 0-80-108-136-137-109-81-82-29-0 100 B; 8: 0-44
-72-100-128-156-184-212-240-268-269-241-213-185-157-129-101-73-46-0 200 C; 9: 0-96-124
-152-180-208-236-264-265-237-209-181-153-125-97-70-42-0 200 C; 10: 0-47-76-104-132-160
-188-216-244-272-273-245-217-189-161-133-105-77-49-0 200 C; 11: 0-32-60-88-116-144-172
-200-228-256-257-229-201-173-145-117-89-61-34-0 200 C; 12: 0-36-65-93-121-149-177-205
-233-261-260-232-204-176-148-120-92-64-35-0 200 C; 13: 0-40-68-67-95-123-151-179-207
-235-263-262-234-206-178-150-122-94-66-0 500 D; 14: 0-43-71-99-127-155-183-211-239-267
-266-238-210-182-154-126-98-69-41-0 500 D; 15: 0-48-75-103-131-159-187-215-243-271-270
-242-214-186-158-130-102-74-45-0 500 D; 16: 0-63-91-119-147-175-203-231-259-258-230-
202-174-146-118-90-62-33-5-0 500 D; 17: 0-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-
22-50-78-106-134-162-190-218-246-274-275-247-219-191-163-135-107-79-51-52-53-54-55-27
-26-0 1000 E; 18: 0-28-56-83-111-110-138-166-194-222-250-278-279-251-223-195-167-139
-140-113-114-142-170-198-226-254-255-227-199-171-143-115-87-59-31-30-2-0 1000 E

Problem H4: Solution cost = 17458.6474
1: 0-24-25-26-0 50 A; 2: 0-41-80-79-0 50 A; 3: 0-81-121-201-241-281-320-280-240-160-
120-0 100 B; 4: 0-137-177-217-257-256-216-176-136-96-56-0 100 B; 5: 0-8-9-10-11-12-13
-0 100 B; 6: 0-133-173-213-253-293-292-252-212-172-132-0 100 B; 7: 0-88-128-208-248-
288-289-249-209-129-89-0 100 B; 8: 0-125-165-205-245-285-284-244-204-164-124-0 100 B;
9: 0-44-83-84-85-86-45-0 100 B; 10: 0-74-75-77-78-0 100 B; 11: 0-76-157-197-237-277-
317-316-315-275-276-236-196-156-155-0 200 C; 12: 0-65-105-104-144-145-225-265-305-306
-307-308-268-228-188-148-108-0 200 C; 13: 0-140-180-220-260-300-299-259-219-179-139-
0 200 C; 14: 0-73-153-152-192-193-233-272-312-311-310-309-269-229-189-149-68-0 200 C;

 32

15: 0-224-264-304-303-263-262-302-301-261-221-181-141-0 200 C; 16: 0-69-109-150-151-
191-190-230-270-271-231-232-273-313-314-274-234-235-195-194-154-0 500 D; 17: 0-57-97
-138-178-218-258-298-297-296-295-294-254-255-215-214-174-175-135-134-53-0 500 D; 18:
0-54-55-95-94-93-92-91-90-130-131-171-211-251-291-290-250-210-170-169-168-167-207-247
-287-286-246-206-166-126-127-87-46-47-48-49-50-51-52-0 1000 E; 19: 0-43-42-82-122-123
-163-203-243-283-282-242-202-162-161-200-199-239-279-319-318-278-238-198-158-159-119
-118-117-116-115-114-113-112-111-110-70-71-72-0 1000 E; 20: 0-14-15-16-17-18-19-20-21
-22-23-64-63-62-61-60-59-58-98-99-100-101-102-103-143-142-182-222-223-183-184-185-186
-226-266-267-227-187-147-146-106-107-67-66-27-28-29-30-31-32-33-34-35-36-37-38-39-40
-1-2-3-4-5-6-7-0 1500 F

Problem H5: Solution cost = 23166.5628 (21757.2576)
1: 0-208-244-280-316-352-353-317-281-245-209-0 100 B; 2: 0-68-104-140-176-212-213-177
-141-105-69-0 100 B; 3: 0-189-225-261-297-333-332-296-260-224-188-0 100 B; 4: 0-103-
102-101-137-136-100-0 100 B; 5: 0-80-79-115-116-117-81-0 100 B; 6: 0-184-220-256-292
-328-329-293-257-221-185-0 100 B; 7: 0-76-112-113-114-78-77-0 100 B; 8: 0-45-44-43-42
-41-40-0 100 B; 9: 0-53-89-125-161-197-233-269-305-341-340-304-268-232-196-160-124-88
-51-0 200 C; 10: 0-72-108-144-179-180-216-252-288-324-360-325-289-253-217-181-145-109
-73-0 200 C; 11: 0-60-96-132-168-204-240-276-312-348-349-313-277-241-205-169-133-97-
98-0 200 C; 12: 0-50-85-121-157-193-229-265-301-337-336-300-264-228-192-156-120-84-48
-0 200 C; 13: 0-56-92-127-128-200-236-272-308-344-345-309-273-237-201-165-129-93-57-
0 200 C; 14: 0-49-86-122-158-194-230-266-302-338-339-303-267-231-195-159-123-87-52-0
 500 D; 15: 0-1-37-38-39-74-75-111-110-146-182-218-254-290-326-327-291-255-219-183-147
-148-149-150-186-222-258-294-330-331-295-259-223-187-151-152-153-154-190-226-262-298
-334-335-299-263-227-191-155-119-118-82-83-47-46-0 1500 E; 16: 0-29-28-99-135-134-170
-206-242-278-314-350-351-315-279-243-207-171-172-173-174-138-139-175-211-210-246-282
-318-354-355-319-283-247-248-284-320-356-357-321-285-249-250-286-322-358-359-323-287
-251-215-214-178-142-143-107-106-70-71-0 1500 E; 17: 0-27-26-25-24-23-22-21-20-19-18
-54-55-91-90-126-162-198-234-270-306-342-343-307-271-235-199-163-164-166-202-238-274
-310-346-347-311-275-239-203-167-131-130-94-95-58-59-61-62-63-64-65-66-67-30-31-32-33
-34-35-36-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-0 1900 F

References

[1] Taillard E. A heuristic column generation method for the heterogeneous fleet VRP.

RAIRO 1999; 33: 1–34.

 [2] Garey M, Johnson D. Computers and intractability: a guide to the theory of NP-

completeness. San Francisco: W.H. Freeman; 1979.

[3] Correia I, Gouveia L, Saldanha-da-Gama F. Solving the variable size bin packing

problem with discretized formulations. Computers and Operations Research 2008;

35: 2103–13.

[4] Paraskevopoulos D, Repoussis P, Tarantilis C, Ioannou G, Prastacos G. A reactive

variable neighborhood tabu search for the heterogeneous fleet vehicle routing

problem with time windows. Journal of Heuristics 2008; 14: 425–55.

 33

[5] Brandão J. A deterministic tabu search algorithm for the fleet size and mix vehicle

routing problem. European Journal of Operational Research 2009; 195: 716–28.

[6] Li F, Golden B, Wasil E. A record-to-record travel algorithm for solving the

heterogeneous fleet vehicle routing problem. Computers and Operations Research

2007; 34: 2734–42.

[7] Semet F, Taillard E. Solving real-life vehicle routing problems efficiently using

tabu search. Annals of Operations Research 1993; 41: 469–88.

[8] Rochat Y, Semet F. A tabu search approach for delivering pet food and flour in

Switzerland. Journal of the Operational Research Society 1994; 45: 1233–46.

[9] Brandão J, Mercer A. A tabu search algorithm for the multi-trip vehicle routing and

scheduling problem. European Journal of Operational Research 1997; 100: 180–

91.

[10] Oppen J, Lokketangen A. A tabu search approach for the livestock collection

problem. Computers and Operations Research 2008; 35: 3213–29.

[11] Tarantilis C, Kiranoudis C, Vassiliadis V. A list based threshold accepting

metaheuristic for the heterogeneous fixed fleet vehicle routing problem. Journal of

the Operational Research Society 2003; 54: 65–71.

[12] Tarantilis C, Kiranoudis C, Vassiliadis V. A threshold accepting metaheuristic for

the heterogeneous fixed fleet vehicle routing problem. European Journal of

Operational Research 2004; 152: 148–58.

[13] Rochat Y, Taillard E. Probabilistic diversification and intensification in local

search for vehicle routing. Journal of Heuristics 1995; 1: 147–76.

[14] Dueck G, Scheuer T. Threshold accepting. A general purpose optimization

algorithm appearing superior to simulated annealing. Journal of Computational

Physics 1990; 90(1): 161–75.

[15] Li F, Golden B, Wasil E. Very large-scale vehicle routing: new test problems,

algorithms, and results. Computers and Operations Research 2005; 32: 1165–79.

[16] Dueck G. New optimization heuristics: the great deluge algorithm and the record-

to-record travel. Journal of Computational Physics 1993; 104: 86–92.

[17] Gendreau M, Hertz A, Laporte G. New insertion and post-optimization procedures

for the traveling salesman problem. Operations Research 1992; 40 (6): 1086–94.

[18] Glover F. Future Paths for Integer Programming and Links to Artificial

Intelligence. Computers and Operations Research 1986; 13: 533–49.

[19] Glover F. Tabu search – part I. ORSA Journal on Computing 1989; 1: 190–206.

 34

[20] Glover F. Tabu search – part II. ORSA Journal on Computing 1990; 2: 4–31.

[21] Gendreau M, Hertz A, Laporte G. A tabu search heuristic for the vehicle routing.

Management Science 1994; 40: 1276–90.

[22] Gendreau M, Laporte G, Musaraganyi C, Taillard E. A tabu search heuristic for the

heterogeneous fleet vehicle routing problem. Computers and Operations Research

1999; 26: 1153–73.

[23] Hoff A, Gribkovskaia I, Laporte G, Løkketangen A. Lasso solution strategies for

the vehicle routing problem with pickups and deliveries. European Journal of

Operational Research 2009; 192:755–66.

[24] Hansen P, Mladenovic N. Variable neighborhood search: principles and

applications. European Journal of Operational Research, 2001; 130: 449–67.

[25] Glover F, Laguna, M. Tabu Search. Kluwer Academic Publishers; 1997.

[26] Christofides N, Eilon S. An algorithm for the vehicle-dispatching problem.

Operational Research Quarterly 1969; 20:309–18.

[27] Dongarra J. Performance of various computers using standard linear equations

software. Report CS-89-85, University of Tennessee; 2006.

[28] Christofides N, Mingozzi A, Toth P. The vehicle routing problem. In: Christofides

N, Mingozzi A, Toth P, Sandi C (Eds). Combinatorial Optimization, Willey,

Chichester; 1979: 313-338.

 [29] Fisher M. Optimal solution of vehicle routing problems using minimum k-trees.

Operations Research 1994; 42 (4): 626-642.

	José Brandão
	Abstract

