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Abstract 

In the heterogeneous fixed fleet vehicle routing problem there are different types 
of vehicles and a given number of vehicles of each type. The resolution of this problem 
consists of assigning the customers to the existing vehicles and, in relation to each 
vehicle, defining the order of visiting each customer for the delivery or collection of 
goods. The objective is to minimize the total costs, satisfying customers’ requirements 
and visiting each customer exactly once. In this paper a tabu search algorithm is 
proposed and tested on several benchmark problems. The computational experiments 
show that the proposed algorithm produces high quality solutions within an acceptable 
computation time. Four new best solutions are reported for a set of test problems used in 
the literature. 
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1. Introduction 
 

The heterogeneous fixed fleet vehicle routing problem (HFFVRP) is defined on 
an undirected connected graph G = (V, E), where V = {0, 1, …, n} is a vertex set and E 
= {(i, j): i, j ∈ V} is an edge set. Vertex 0 represents the depot and each other vertex i ∈ 
V \{0} is a customer with a demand qi. A distance dij (dii = 0, ∀i∈ V) is associated to 
each edge (i, j) ∈ E. There is a fleet of T different types of vehicles located at the depot, 
and the number of vehicles of each type is nk (k = 1, …, T). A capacity Qk and a variable 
cost vk are associated to each type of vehicle k (k = 1, …, T). We assume that Q1 < Q2 … 
< QT and v1 < v2 … < vT. The travelling cost of each edge (i, j) ∈ E by a vehicle of type 
k is cij = vkdij. The HFFVRP consists of defining a set of routes and the vehicles 
assigned to them so that the following constraints are taken into account: i) use no more 
vehicles than those available; ii) satisfy customers’ demand; iii) visit each customer 
exactly once; iv) a vehicle route starts and finishes at the depot; v) do not exceed the 
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capacity of the vehicle. We will refer indistinctly to route type or vehicle type because 
each route is assigned to one vehicle. The objective of the HFFVRP is to minimize the 
sum of the costs of all the routes subject to the previous constraints. Considering the 
fact that the number of vehicles of each type is fixed, there is no guarantee that a 
feasible solution can be found. This means that, if this happens in real-life problems, 
other vehicles have to be hired in order to serve the customers.  

The HFFVRP is an NP-hard combinatorial problem, since it reduces to the 

capacitated vehicle routing problem (CVRP) if the number of types of vehicles is just 

one, i.e., the vehicle fleet is homogeneous, and the number of vehicles is unlimited. 

If we assume that the number of vehicles of each type is unlimited, we get 

another type of problem known as the fleet size and mix vehicle routing problem 

(FSMVRP). Although very similar, these two types of problems are applied in rather 

different situations: the FSMVRP is more appropriate for strategic decisions when a 

company wants to buy a vehicle fleet and needs to define its size and composition, 

while the HFFVRP represents better the operational decisions of defining the vehicles 

that should be used, among those available, in order to serve the customers. On the 

other hand, the HFFVRP has been much less studied than the FSMVRP, and is rather 

harder to solve, according to our experience. This additional difficulty might be the 

reason why, as conjectured by Taillard [1], it has received less attention from 

researchers. When the ratio between the total demand of the customers and the total 

capacity of the vehicles is close to one even finding a feasible solution can be very 

difficult. In the general case, to prove if a given homogeneous fleet is enough to satisfy 

the demand requires to solve a bin packing problem, which is an NP-hard problem 

(Garey and Johnson [2]). If the fleet is heterogeneous, we deal with an extension of the 

bin packing problem with bins of different sizes and, therefore, it is also NP-hard, but 

much less studied than the problem with only one type of bin (see, for example, Correia 

et al. [3]) and much more difficult to solve. 

In the literature there are many variants of the heterogeneous vehicle routing 

problem, besides the two mentioned before. The interested reader can find a 

comprehensive classification in Paraskevopoulos et al. [4], jointly with several 

representative articles. In this article the authors present an algorithm to solve both the 

FSMVRP and the HFFVRP with time windows. In the case of the FSMVRP, several 

references and applications can also be found in Brandão [5]. 

In practice, the need for different types of vehicles is determined by the 

characteristics of the customers. Usually, larger vehicles are more appropriate for 



 3 

serving customers who require large orders (because this avoids splitting the order and 

reduces the total distance travelled by serving several customers in the same route) and 

the smaller vehicles are more adequate to deliver small quantities or serve customers 

that have access restrictions. For the daily planning the most important costs to be 

considered in the objective function are the variable costs. Therefore, we omitted the 

fixed costs as is the case with all researchers that have investigated the HFFVRP. In Li 

et al. [6] can be found several examples of practical applications of the HFFVRP. Some 

authors, as for example, Semet and Taillard [7], Rochat and Semet [8], Brandão and 

Mercer [9] and Oppen and Lokketangen [10], have studied real-life problems that can 

be classified as extensions of the HFFVRP, since they comprise several additional 

constraints, like time windows at the customers for the deliveries, maximum driving 

time, etc. Below, we will briefly review some of the literature on HFFVRP resolution 

methods. 

As far as we know, the only papers published about the HFFVRP are the 

following: Taillard [1], Tarantilis et al. [11, 12] and Li et al. [6].  

The method proposed by Taillard [1] takes advantage of the similarities between 

the VRP and the HFFVRP. The author solves a VRP, for each type of vehicle, using the 

adaptive memory procedure developed by Rochat and Taillard [13], generating a large 

number of routes. Then, in order to find from these routes the best solution for the 

HFFVRP, the author uses a linear programming algorithm called column generation. 

Tarantilis et al. [11, 12] used a stochastic search method, belonging to the class 

of threshold accepting based methods (Dueck and Scheuer [14]), where the threshold 

parameter plays a major role in guiding the search process. In [11] the authors use a list 

of threshold values in the search, while in [12] the main feature is that, during the 

search, the threshold value can suffer an occasional increase instead of decreasing 

monotonically as is typical of this kind of methods. These two algorithms are called, 

respectively, list based threshold accepting (LBTA) and backtracking adaptive threshold 

accepting (BATA). The kinds of moves used in both algorithms are 2-opt, 1-1 exchange 

and 1-0 exchange. All these types of moves are applied inside each route and among all 

the routes of the current solution. The type of move performed in each iteration and the 

customers used in the move are chosen randomly. 

Li et al. [6] adapted their record-to-record travel algorithm for the VRP [15] to 

solve the HFFVRP, which was named HRTR. The methodology used by them is based 

on Dueck’s [16] record-to-record travel, which is a deterministic variant of simulated 
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annealing. In their algorithm are used the following types of moves: one point (node), 

two point, 2-opt and or-opt, all of which can be performed within and between routes. If 

after a given number of iterations no new better solution is found the best known 

solution is perturbed, and the process restarts with this solution.  

Since we have created an algorithm for the FSMVRP (Brandão [5]), our first 

attempt was to adapt it, making a few changes, to solve the HFFVRP. However, the 

experiments have demonstrated that these changes were not enough to find competitive 

solutions comparing to the other algorithms published. Therefore, although several 

characteristics of that algorithm were maintained some significant changes had to be 

introduced. 

The remainder of this paper is organized as follows. Section 2 describes the tabu 

search algorithm (TSA) for solving the HFFVRP, presenting, firstly, its main features 

and then a step by step description that shows how the different components work 

together and, finally, the proposed parameters setting is discussed. In Section 3 are 

given the results obtained on three sets of test problems, and the final conclusions are 

presented in Section 4.  

 
2. The tabu search algorithm 

 

The tabu search (TS) is a metaheuristic due to Glover [18, 19, 20] that was 

inspired by the principles of Artificial Intelligence, especially, the use of memory. The 

tabu list is one of the ways of using memory, by storing in a list the solutions explored 

throughout the search or, more commonly, some relevant attributes of these solutions. 

This tabu list has two main purposes: to prevent the return to the most recent visited 

solutions in order to avoid cycling; to drive the search towards regions of the solution 

space not yet explored and with high potential of containing good solutions. 

A successful application of TS requires a good balance between intensification 

and diversification. The intensification is a detailed exploration of some region of the 

solution space, usually in the vicinity of a good solution. The diversification consists in 

driving the search towards promising regions of the solution space not yet explored and 

apart from one another, in terms of structure.  

In operational terms, the TS consists of moving successively, in each iteration, 

from one solution S to the best of its neighbour solutions, N(S), not in the tabu list or, if 

so, satisfying some aspiration criterion. 
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Our TSA uses and explores most of the more important concepts in TS, namely, 

the following: attributes, tabu list, tabu tenure, aspiration criteria, intensification, 

diversification, frequency-based memory, strategic oscillation, neighbourhood and 

neighbourhood size, moves and evaluation of the moves. 

 
2.1. Method for generating the initial solution – giant tour 
 

The execution of the TSA starts with an initial solution. Usually the methods 

used to generate an initial solution are simple and fast to compute because it is assumed 

that the task of producing a good solution is mainly committed to the TSA. As 

explained in the previous section, finding a feasible solution for the HFFVRP can be 

quite difficult. Therefore, one way of dealing with this could be to use methods 

designed on purpose to find feasible solutions. This can be achieved, for example, by 

giving priority to the customers with higher demand, during the construction of the 

routes. However, we verified that such methods are not the most appropriate to reach 

the ultimate purpose that is finding high quality solutions. Consequently, we decided to 

use a method that is not so efficient in finding feasible solutions, but that yields 

solutions with a structure that responds better when improved by the TSA. For some test 

problems, the initial solutions are infeasible, but the TSA has no difficulty in find 

feasible ones rather quickly. 

 Initially, a travelling salesman problem (TSP) tour including all the customers is 

constructed. The tour starts with the depot and each time a new customer is inserted, 

following their order number, using the GENI algorithm created by Gendreau et al. [17]. 

The partition of the tour into feasible routes is performed as follows: the partition starts 

with the customer adjacent to the depot (the tour is represented as a vector whose first 

element is the depot and, therefore, the customer selected is its second element); then, 

the free vehicle with the smallest capacity equal to or greater than the customer’s 

demand is selected, and, therefore, the current route is started (each route is assigned to 

one vehicle); in this route, the customers that are admissible in terms of capacity are 

included, one by one, following the sequence defined by the tour. When no more 

customers are admissible, the process is repeated with the shorter tour that results from 

eliminating the customers already routed. This process ends when there are no more 

customers in the tour or when there are no more available vehicles. In this last case, 

each of the unrouted customers is inserted in one of the existing routes where its 

insertion cost is lowest, without taking into account the capacity of the vehicle. 
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2.2. Neighbourhood structure 

 
The neighbourhood structure is a key feature in the performance of any tabu 

search algorithm, because it determines the extent and the quality of the solution space 

explored. The TSA comprises four types of neighbourhood moves: the first three are 

insertions (single, double and triple) and the forth is a swap. As we will explain later 

these moves are not performed in every iteration for two reasons: to diversify the search 

and to keep the computing time at reasonable levels. In each iteration all the customers 

are candidates to be moved. 

In a single insertion move, a candidate customer xi is removed from its current 

route (origin) and a trial insertion is made in any of the other routes (destination), 

containing at least one of the δ-nearest neighbours of xi, between any two customers or 

near the depot. The value of δ varies during the search and will only be defined later on. 

This δ-neighbourhood restriction not only reduces the computing time but also 

contributes to find better solutions. Gendreau et al. [21], in their VRP solving algorithm 

also imposed this neighbourhood condition to allow a customer to be moved to another 

route. This concept has also been used by several other researchers, but the main 

difference in relation to them is that in our algorithm there is a variation of the value of 

δ according to the evolution of the search. 

In a double insertion move, the operation is similar to the single insertion one, 

except for the following: the candidates are any pair of customers (xi, xj) belonging to 

the same route, the destination route should have at least one of the δ-nearest neighbours 

of xi or xj and the insertion place of xj takes into account also the previous (virtual) 

insertion of xi. 

In a triple insertion move, a chain or segment of three consecutive customers (xi, 

xj, xk) belonging to the same route is considered. The destination route should have at 

least one of the δ-nearest neighbours of xi or xj or xk and the chain is inserted between 

any two customers or near depot, either in the current order of the chain or in the reverse 

order, i.e., (xk, xj, xi). 

Either the single, the double or the triple insertion can create a new route, 

subject, however, to the following two conditions: i) the origin route should have at 

least 2, 3 or 4 customers for the single, double and triple insertion, respectively; ii) the 

type of vehicle of the destination route should be the lowest (free vehicle) capable of 

containing the demand of the moving customers.  
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A swap move consists of exchanging two customers belonging to two different 

routes. A trial swap of a customer xi ∈ ri (route ri) with a customer xj ∈ rj exists if and 

only if: i) at least one customer of rj belongs to the δ-neighbourhood of xi; ii) at least 

one of the routes ri or rj contains more than one customer. 

In this implementation, the frequencies of the different types of move may 

change according to the cycle and phase of the algorithm. Parameters FI, FD, FT and FS 

denote the frequencies of the single, double and triple insertion and swap moves, 

respectively. For example, if FS = 10 and FT = ∞, this implies that the swap move is only 

tested every 10 iterations and the triple insertion is never executed. 

The trial move chosen depends on the effect of the move on the objective 

function defined in the next section. 

As we said before, in the designing of the TSA we took advantage of the 

knowledge that we acquired from our previous tabu search algorithm for the FSMVRP 

(Brandão [5]). Nevertheless, the experiments have shown that the resolution of the 

HFFVRP is much more difficult, mainly because it is harder to escape from a local 

optimum and reach other local optima of higher quality. This was particularly true for a 

set of problems created by Li et al. [6] because of the symmetry of the data - the 

customers are all located around the depot forming a set of groups that are placed along 

the same radius (angle), and half of the customers have a given demand, while the other 

set of customers have also the same demand, but different from the first set. These 

difficulties were overcome mainly by the use of several different route improvement 

procedures, by the use of long term memory and by shaking the solution obtained at the 

end of each phase. 

 

2.3. Objective function 

 

For any candidate solution, S’, the objective function is denoted by f(S’). The 

objective function to be minimized by the TSA is defined by the next equation: 

f(S’)= ( )∑
=

+
r

i
ii Plc

1

. (1) 

Where, r is the total number of routes in S’, ci is the variable cost of route i, P is 

a penalty term and li is the load excess in route i.  

When long term memory is used, the objective function, f1(S’), is given by the 

following equation: 
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1

1    (2) 

Where S is the current solution, β is a scaling parameter, D is the largest absolute 

difference in f(S) that has occurred between two consecutive iterations, ρ is the number 

of times that a customer has been moved (if the move originating S’ involves more than 

one customer, it is considered the one with the higher number of moves) and K is the 

number of iterations executed so far.  

Several authors, like Gendreau et al. [21], Gendreau et al. [22] and Hoff et al. 

[23], have used a diversification strategy similar to this. In our case, β is allowed to vary 

during the search, instead of using a constant value as these authors do. This 

diversification strategy has proven to be quite useful with one set of problems, but not 

with the other set. 

The strategic oscillation created by allowing the search to cross the boundary 

between the feasible and the infeasible space plays an important role in the quality of 

the final solutions. We tried with the same algorithm, but without allowing infeasible 

solutions to occur, and the results were rather worse. 

We should note that for any S the value of li depends on the type of vehicle 

assigned to route i. Therefore, in each trial move, the type of the vehicle can be changed 

to one with more or less load capacity, and the vehicle type that implies the lowest value 

of f(S) will be the one chosen. All this takes place in the insertion (single double or 

triple), as follows. Let us suppose that ri is the origin route after removing the customer 

(or customers), and rj is the destination route after inserting the customer (or customers). 

If ri is infeasible nothing is done; otherwise, the vehicle type is reduced while ri is still 

feasible. If rj is feasible nothing is done; otherwise, the vehicle type is increased by one 

unit at a time until rj becomes feasible or the type of vehicle with the highest capacity is 

reached. At the same time, for each vehicle type, including the initial one, the cost of the 

route is calculated by (1) and, in the end, the vehicle type to which the lowest cost 

corresponds is chosen. Regarding the trial swap move, after performing the move, the 

same procedure is applied to both routes rk and rm: if rk (rm) is feasible or infeasible, it is 

handled as ri or rj in the insertion, respectively. It is important to note that this change of 

vehicle type only can happen if there is a free vehicle of that type. On the other hand, 

the number of free vehicles is dynamic in each trial move, i.e., if ri is assigned to a 

vehicle of a different type, the original vehicle type of ri will have one more vehicle free 

and the destination vehicle type will have one less. 
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2.4. Admissibility of moves 

 

The tabu status of a move is defined in the following way: a customer that leaves 

a route cannot return to it during the next θ iterations, where θ is the tabu tenure. 

Furthermore, when a new route is created, the customers originating it cannot go to any 

of the existing routes during θ iterations, in order to avoid the destruction of recently 

formed routes. The tabu tenure changes systematically during the search according to 

the evolution of the results. The tabu restriction may be overridden if the move produces 

a solution that is better than the ones found in the past. This is referred to as the 

aspiration criterion. In the TSA, a trial move to solution S’ is regarded as admissible if: 

i) it is not currently on the tabu list; 

ii) it is tabu and infeasible, but the value of f(S’) is lower than the value of the 

best infeasible solution yet found; 

iii) it is tabu and feasible, but the value of f(S’) is lower than the value of the best 

feasible solution yet found. 

 

2.5. Route improvement procedures 

 

In the trial moves, the cost of moving a customer is calculated as a simple 

insertion. However, the optimal cost of the two modified routes may be much lower, but 

its determination is prohibitive due to the computing time required, since this will imply 

to solve a TSP for each route, which is a well known NP-hard problem. Instead of this, 

at the end of each iteration, we try to improve the two routes just modified by one of the 

following three post-optimization procedures: i) the customers that had been moved are 

introduced into their new routes by the GENI (note that in this case no real insertion is 

made during the trial insertion, only the insertion cost is calculated); ii) US (another 

algorithm developed by Gendreau et al. [17]); iii) 2-opt. After this, if a new best feasible 

solution is found in this iteration, the US procedure is applied to each individual route, 

in order to try to reduce its cost further. 

Our experiments indicate that the influence of these procedures in the quality of 

the final solution depends on the size of the problem and on the geographic distribution 

of the customers: the GENI performs well for smaller problems with a non uniform 

distribution (called set 1), while alternating the use of these procedures generates better 
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solutions and faster for large problems (set 2), with customers symmetrically located in 

the space.  

 

2.6. Diversification and intensification 

 

The main sources of diversification in the TSA are: the use of several different 

phases; the strategic oscillation, as well as the change of the vehicle type driven by the 

objective function; the long term memory expressed in the modified objective function 

(2); the shaking of a good solution; the change of the tabu tenure, the neighbourhood 

and the frequency of the types of moves, during the search. The intensification is mainly 

achieved using the post-optimization procedures and the restart, after a given number of 

iterations, with the best found solution. The fact that several parameter values, such as 

the duration of each cycle, depend on the evolution of the search is also important, as 

we explain in Section 2.9. 

 

2.7. Shaking 

 

Towards the end of the search, when the best known solution is good, shaking it 

may be the only way of escaping from a local optimum and reaching better solutions. 

This technique has been used for a long time in the variable neighbourhood search 

(VNS) metaheuristic (Hansen and Mladenovic [24]) and it is applied when a local 

optimum is reached within a given neighbourhood. Shaking a solution S consists of 

generating another solution S’ in its neighbourhood. In the VNS this is done by 

performing a random move according to the current neighbourhood structure. Our 

implementation is rather different because the transformation of S is not determined by 

the neighbourhood structure defined in Section 2.2, i.e., the moves are different from 

those used in the tabu search, the transformation is deterministic, S’ is farther from S 

than it would be using these moves, and the shaking is only applied a few times during 

all the search process.  

The same shaking concept, although known as perturbation, has been used by 

Dueck [16] in his great deluge and record-to-record travel algorithms. However, as far 

as we know, this the first time that the shaking was applied within a tabu search 

algorithm. 



 11 

In the TSA the shaking is applied after a long process of search when the best 

known solution is already good. This means that, in order to reach other promising 

regions of the solution space, this solution should suffer a significant transformation; 

otherwise, in the prosecution of the search, the new solution will be quickly attracted to 

the original one. On the contrary, according to the proximate optimality principle – POP 

– (Glover and Laguna [25], pp. 138-141), a too large transformation may put the new 

solution in a poor region of the solution space from where it is difficult to find good 

solutions. Therefore, the compromise between these two extremes can be a perturbation 

large enough to escape from the current local optimum, but keeping most of the current 

structure unchanged. Among the several types of perturbations tried, including one 

similar to that used by Li et al. [6], we describe below the one used in the final 

algorithm, which produced the best results. 

The shaking used in the TSA consists of forcing each of the r/2 routes of S to 

start with one of the r/2 nearest customers of the depot, and it is applied in the 

beginning of the phases defined later. These customers are removed from their present 

place and inserted one by one in the beginning (just after the depot) of each route, 

starting with the highest route type and the nearest customer of the depot (the ties are 

arbitrarily broken). This is done even if the resulting route is infeasible in terms of 

capacity. If after shaking the best known solution, S, and subsequent tabu search process 

there is no improvement in S, this implies that the result of the next shaking will be the 

same. To avoid this occurrence, the next shaking is applied to the r routes of S, if there 

has been no improvement after the previous shaking. However, we should note, that 

starting from the same solution does not mean that the search path will be the same, 

because the phase is different, but by using this different shaking we guarantee a higher 

diversification. 

The rationale behind this shaking procedure is that this way these customers are 

served at a minimum cost and, therefore, we could expect that good solutions may have 

this property. 

 

2.8. Detailed description of the TSA 

 

The parameters and counters of iterations not already mentioned, which are 

required to understand the algorithm are the following: 

● Iteration counter – K 
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● Limit of the total number of iterations in a phase – KL 

● Number of iterations since the beginning of the cycle without improving the best 

solution (feasible or infeasible) – KB  

● Number of iterations since the best feasible solution was found – KBF 

● Limit of KB in the current cycle – KBL 

● Best feasible solution – SBF 

 

Step 1 – Generate the initial solution. 

Step 2.1. – Set the initial parameters of the phase – KL, β, θ, δ. 

Step 2.2. – Set the initial parameters of the cycle – P, KBL, FI, FD, FT and FS and 

empty the tabu list. 

Step 3 – Repeat while the stopping criterion (K > KL and KBF > 4KBL) is not met: 

Step 3.1. Perform the trial moves and choose the best admissible. 

Step 3.2. Introduce into their respective routes the customers that have been moved 

using GENI or try to improve the two routes modified using 2-opt or US.  

Step 3.3. If the solution found in Step 3.2 is feasible and better than the best known, 

try to improve it applying US to all the routes and store the resulting solution 

as the new best solution. Update tabu list, P, iteration counters and best feasible 

and infeasible solutions. 

Step 3.4. If the middle of the cycle has been reached, i.e., KB = KBL/ 2, change θ, δ, 

FI, FD, FT and FS. 

Step 3.5. If KB = KBL, or KBF = 3KBL (end of the cycle), change KBL, β, θ, δ, FI, FD, FT 

and FS. Set KB = 0, empty the tabu list and restart with S = SBF. 

Step 4 – If the established number of phases has been reached, stop; otherwise go to 

Step 2.1. 

 

This algorithm is represented by a flow chart in figure 1. This figure shows that 

the basic structure of the TSA is the cycle, which corresponds to Step 3 in the previous 

algorithm.  
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Figure 1 – Flow chart of the TSA. 

A cycle ends after a given number of iterations (KBL) without improving the best 

feasible or infeasible solution (SB) or when the number of iterations without improving 

the best feasible solution reaches 3KBL. Therefore, in spite of KBL being fixed in each 

cycle, the duration of the cycle varies according to the search, because each time SB is 

improved, the counter KB restarts from zero or the cycle is interrupted if KBF = 3KBL. 

Besides, the value of KBL is increased from one cycle to the next. The middle of the 

cycle is reached when KB = KBL/2 (note that in each cycle the middle can be reached 

more than once). A phase is a set of cycles, whose number is not known in advance 

because it depends on the evolution of the search and on the stopping criterion. Any 

cycle and, therefore, the phase can be interrupted if the stopping criterion is reached. 

The TSA contains six phases for the set of problems with fewer customers (set 1) and 

three phases for the other set of problems with more customers (set 2). In this case, only 
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three phases were executed in order to keep a good balance between the quality of the 

solutions and the computing time, in comparison to the algorithms of other authors. 

Phase 1 starts with the solution given by the giant tour. The other phases start with the 

best feasible solution found in the previous phase. However, this solution may suffer a 

perturbation before the phase begins, as will be explained later on. When solving set 2, 

phase 1 was executed twice, using two different initial values for the scaling factor 

(0.013 in one execution and 0.015 in the other), and the best solution found was passed 

on to the next phase. Phases 1 to 4, when applied to set 1, only differ in the initial 

solution, in the initial values of θ and δ and in the limit for the total number of 

iterations. Phases 5 and 6, have as additional difference in relation to the other four, the 

frequencies of the types of moves: the insertion is less frequent, as we mentioned 

before, the double insertion is not applied, the swap move is more frequent and the 

triple insertion is more frequent (in fact it is not used in the previous phases). Due to the 

higher frequency of the swap moves in these two phases, the average computing time 

per iteration is higher than in the first four phases. The value of the initial parameters of 

phases 5 and 6 is identical to those of phases 1 and 2, respectively. When solving the 

problems of set 2, phases 1 to 3 present the following differences to when set 1 is 

solved: the scaling parameter is different from zero and, therefore, the cost of a trial 

move is evaluated by (2); in phase 1, the procedures 2-opt and US are applied 

alternately, instead of GENI; in phase 2 and 3, these procedures are applied alternately 

during the first half of the cycle, i.e., while KB ≤ KBL/2, and GENI in the second half. 

The execution of the trial moves follows the following sequence: single 

insertion, double insertion, swap and triple insertion, performing all the potential moves 

of each type and then proceeding to the next. If in a given iteration a trial move 

generates a solution better than the best already discovered no further trial move is 

performed in that iteration.  

 

2.9. Parameter tuning 

 

 As we explained previously, the TSA has several characteristics in common with 

an algorithm that we created for the FSMVRP (Brandão [5]). Therefore, in the 

definition of the value of several TSA parameters we used that previous knowledge. 

This is the case with θ, δ and the frequencies of the single and double insertion and 

swap moves, for which similar values were used with the FSMVRP. For setting the 
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other parameters, we used a set of experiments and principles which will be here 

described. These experiments were performed with the problems of set 1. We should 

note that there is no way of defining the most effective values of the parameters. 

Consequently, they were established based on intuition and on those experiments and 

principles, and the results show that the combinations of values used work well, but, 

certainly, that better combinations could exist. 

First, the most important feature that distinguishes different instances of the 

HFFVRP is the number of customers, n. Therefore, the value of most of the parameters 

is a function of n. This rule ensures to some extent a similar performance of the TSA 

with problems of different sizes. Another important rule, applied to almost every 

parameter, is the variation of its value during the search. This aims to induce 

diversification and its relevance is increased by the fact that the TSA is deterministic. 

The two most influential parameters of the TSA are the tabu tenure (θ) and the 

neighbourhood restriction (δ). 

The initial value of θ is given by n/c (by default, a number is always rounded up 

to the nearest integer, if the parameter must be integer), where c is a constant. The 

experiments reported in Brandão [5] indicated that c = 2 is the best value. Therefore, we 

decided to use values around this without further experiments, because of the adaptive 

nature of θ, which reduces the need of a precise preliminary calibration. During the 

search θ changes dynamically in the following way: whenever the middle of the cycle is 

reached, it is set as θ = max(θ /2, 7) and at the end of the cycle it is defined as θ = 

min(2θ + 3, 0.6n). However, applying only these rules, it may happen that when the 

change of θ is due, its value remains the same, if it is already in the extremes of those 

intervals. So, if this happens, it is set θ = θ + 1, in the middle of the cycle, and θ = θ - 3, 

at the end of the cycle. We should note that without any bounds, i.e., if θ is simply set as 

θ = θ /2, in the middle of the cycle, and θ = 2θ + 3, at the end, the average solution cost 

(for set 1) is only very slightly worse. The value of θ is reduced in the middle of the 

cycle in order to allow intensification, i.e., to explore more thoroughly the current 

region of the solution space. On the contrary, when the end of the cycle is reached, that 

means no better solutions could be found in current region and, consequently, more 

distant regions should be tried. So, θ is increased in order to drive the search towards 

that regions. 
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 In order to have influence in the search, δ must be small. Its maximum value, δL, 

takes into account the number of customers and the number of vehicles required to serve 

them. So it was defined as δL = min(n-1, 2cr), where cr is the number of customers of 

the route of the initial solution with more customers. As it happens with the tabu tenure, 

δ also changes dynamically during the search as follows: in the middle of the cycle, δ = 

min(δ + 1, δL) and at the end of the cycle, δ = min(δ + 2, δL). A set of experiments 

indicated that the initial values should be very low. In phase 1 the best average results 

were obtained using δ = 1, with set 1, and δ = 2, with set 2. In the latter case, δ = 1 is not 

a good choice because some routes have a very large number of customers and, 

therefore, for many customers, all their δ-nearest neighbours are already in the same 

route. Consequently, during many of the initial iterations only a few moves or no moves 

at all are allowed, which represents a waste of computing time. The initial value of δ 

increases slightly in the next phases in order to allow the exploration of different and 

larger regions of the solution space. The reason for starting with a very low value of δ 

and increasing it during the search is the following: a low value drives the search 

towards a promising region of the solution space; once there, when no better solutions 

could be found, the allowable search space should be enlarged. At the end of the cycle 

there is a higher diversification in the search space than in the middle of the cycle and, 

therefore, a higher increment of δ is desirable.  

The GENIUS algorithm depends on a parameter, p, that defines the 

neighbourhood around each customer, and we used p = 5 because according to the 

authors (Gendreau et al. [17]) it gives a good compromise between solution quality and 

computing time.  

The value of P was defined simply according to our previous experience with 

other types of tabu search algorithms. Initially P = 1. If for 10 consecutive iterations, all 

the solutions are infeasible, P is multiplied by 2. Conversely, if all the solutions are 

feasible for the last 10 consecutive iterations, P is divided by 2. 

The restart associated with the cycle plays an important role in the performance 

of the TSA because it promotes intensification around the best solution found and some 

diversification is also guaranteed by changing parameters’ values. If the cycles are too 

long there is not enough time for restarting and if they are too short the search is limited 

to a narrow region of the solution space. According to our experiments, good results are 

obtained when the cycle limit (KBL) is around 15n. This limit is increased by 2n at every 

restart to allow some more time to find better solutions because this becomes harder as 
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the search progresses. With the problems of set 2, better results could be found using a 

higher value for this limit, so KBL = 30n was used instead. As stated in Section 2.8 (step 

3.5), the restart is done with the solution SBF. The first move after the restart cannot be 

the same as the move performed immediately after discovering SBF. This rule reinforces 

the guarantee, already given by the change of parameters’ values, that the search path 

followed after the restart is different from the path followed after SBF was found.  

 

The execution of each phase of the TSA is stopped when the limits of the total 

number of iterations, KL, and number of iterations without improving the best feasible 

solution, KBFL, are both reached. In the definition of these limits we tried to obtain a 

good compromise between solution quality and computing time. Furthermore, KBFL is 

the quadruple of KBL in order to allow the search to continue during a reasonable 

number of iterations after the restart. The value of KL is higher for phase 1 than for the 

other phases because, usually, these phases contribute much less to improve the 

solution. Therefore, in general, would be a waste of computing time if the value of KL 

was identical to that of phase 1. The other component of the stopping criterion (KBFL) is 

adapted to the evolution of the search, allowing this to go on whenever new best 

feasible solutions are discovered, because the corresponding iteration counter, KBF, 

restarts from zero when this happens. Consequently, KBFL also compensates, to some 

extent, a less appropriate choice of KL. 

In order to understand the frequencies defined for the different types of moves, 

we should, firstly, observe their properties. On average, among the four types of moves, 

the swap is one that causes the lowest absolute variation in the use of the capacity of the 

two vehicles involved in each iteration. Among the four types of moves used, the trial 

single insertion is the one that causes the lowest transformation in a solution and that 

allows a more detailed exploration of the solution space. In relation to these two aspects 

the other moves are ordered as follows: swap, double insertion and triple insertion. 

Besides, any transformation produced by the other three types of moves can be reached 

by the trial single insertion, although requiring several iterations. This is why the trial 

single insertion moves are performed in every iteration, except in phases 5 and 6, where 

they are applied only if none of the others is executed (in these two phases more 

dramatic changes are required). For the same reasons, the swap move is the next with 

higher frequency. As a rule, these two types of trial moves (double insertion and swap) 

are not performed in the same iteration so that they do not compete with each other. The 
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variation of the frequencies during the cycle induces a diversification in the search. 

Besides, it should also be noted that the swap moves and the triple insertion are more 

powerful in breaking the structure of a given solution, this is why they are so frequent 

and so important in phases 5 and 6, when the initial solution is already good. We 

observed that both the double insertion and the swap moves give an important 

contribution for discovering good solutions. However, if their frequency is very high 

(for example, every iteration) not only the computing time increases considerably but 

also the final results are worse. This behaviour may be explained as follows: these 

moves drive the search towards a region of the solution space which is rather distant 

from the current one and, if this happens frequently, a high perturbation is created acting 

against the POP. However, as we explained before, in phases 5 and 6, this higher 

perturbation is really required. Conversely, the single insertion move allows the 

exploration of the same “level”, according to the concept defined by the POP. We 

should note that the perturbation created by those types of moves is boosted by the 

existence of different types of vehicles. 

The long term memory, as expressed by (2), played an important role in finding 

good solutions for the problems of set 2. However, the results are slightly worse if it is 

used with set 1 and, therefore, it was only applied to set 2. This can easily be explained 

by the fact that too much diversification is not beneficial for the results and, due to the 

different characteristics of the data of both sets, set 2 requires much more diversification 

than set 1. We tried values of β ∈[0.01, 0.015] and the average results obtained were 

similar, being a little better the average solutions found with β = 0.015. Nevertheless, 

the individual solutions vary significantly with the value used. Due to this we 

established the following: i) Start the phase with a given initial value β and then 

increase it by 0.001 at each restart of the cycle, but never allowing it to be greater than 

0.015; when this happens its value is set at 0.012 and increased again by the same 

amount at the end of the cycle. So, the value of β oscillates between 0.012 and 0.015; ii) 

Repeat phase 1 with the initial values of β = 0.013 and β = 0.015, as explained before. 

In each cycle the succession of solutions is related to the solution starting the cycle and, 

by definition, D results from these solutions. Consequently, we set D = 0 at the 

beginning of each cycle. 

The shaking, as defined in the TSA, produces a large perturbation (in general, 

the resulting solution is infeasible) and, consequently, the following two conditions 

have been established for applying it: i) the solution should be already good and, 
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therefore, very difficult to improve by other means; ii) the algorithm should have 

enough iterations to recover from this perturbation and find a path of good solutions. 

Due to this, the shaking was only applied at the beginning of phases 4 and 6, with set 1, 

and at the beginning of phases 2 and 3 with set 2. 

The value used for the main parameters can now be summarized as follows: 

● The initial value of θ is the following: n/2 in phases 1, 3 and 5; n/3 in phases 2 and 6 

and n/2.5 in phase 4. 

● The initial value of δ is the following: 1 (2 with set 2) in phases 1 and 5; 2 in phases 2 

and 6; 5 in phase 3 and 10 in phase 4. 

● KBL = 15n if n < 200 and KBL = 30n if n ≥ 200. KBL is increased by 2n at the end of the 

cycle. 

● KL = 3000 n  in phases 1 and 6, and in the other phases KL = 2000 n . 

● In the first four phases: FD = 10 and FS = 5, at the beginning of the cycle; FD = 5 and 

FS = 10, in the middle of the cycle; FT = ∞. In phases 5 and 6: FS = 1, at the beginning of 

the cycle; FS = 2, in the middle of the cycle; FD = ∞ and FT = 7.  

● β oscillates between 0.012 and 0.015, starting with β = 0.012 and increasing 0.001 at 

the end of each cycle. This is different in phase 1 because it is repeated and, in this case, 

the initial value of β is the following: 0.013 in the first execution and 0.015 in the 

second one. 

 

3. Computational experiments 

 

3.1. Benchmark problems from the literature 

The TSA has been programmed in C language and executed on a Compaq 

Presario X1000 Intel Pentium M at 1.4 GHz, 512 MB of RAM. The performance of our 

algorithm was tested using two sets of benchmark problems from the literature, whose 

specific data for the HFFVRP are in the Tables 1 and 2. The first set (set 1, Table 1) was 

taken from Taillard [1] and contains eight problems, numbered from 13 to 20. The 

second set (set 2) contains five problems created by Li et al. [6], identified as H1 to H5. 

There are two important differences in the data between these two sets of problems: i) 

the number of customers in set 1 is between 50 and 100 customers, while in set 2 it goes 

from 200 to 360 customers; ii) the demand and the coordinates of set 1 were originally 

taken from Christofides and Eilon [26] and have been randomly generated, while in set 
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2 there are only two different values for the demand and all the customers are located at 

symmetric positions around the depot in concentric circles, which means that their 

distribution is much more uniform. These two differences have important implications 

in the resolution.  

In set 2 (p. 2738, Table 5 of Li et al.[6]) we found some typographical errors: i) 

in problem H2, one vehicle of type E is missing, otherwise the available capacity is not 

enough for the demand; in problem H3, % (100 × (total demand/total capacity)) = 93.33 

and not 94.76; iii) In problem H5, we suspect, but we could not confirm it with the 

authors, that the variable cost per unit of distance travelled for each type of vehicle, is 

not the value written there, but the same as the corresponding one for H4. The reason 

for this hypothesis is that we found better solutions than Li et al. [6] for H1 to H4, and a 

substantially worse solution for H5. However, assuming identical unit variable costs to 

those of H4, our best solution is a little better. In spite of this remark, we put in Table 2 

the same unit variable costs that appear in Table 5 of Li et al. [6] and we solved the 

problem with these costs. 

 

[Insert Tables 1 and 2] 

 

  

We compare the results produced by our algorithm with those given by the 

algorithms of Taillard [1], Tarantilis et al. [12] (the other algorithm by these authors 

[11], is not used because the results are slightly worse) and Li et al. [6]. The first 

algorithm was executed on Sun Sparc workstation at 50 MHz, while the second was 

executed on a Pentium II at 400 MHz, 128 MB of RAM, and Li et al. [6] used an 

Athlon at 1 GHz, 256 MB of RAM. Although being aware of the difficulties and 

limitations in comparing the speeds of the different computers, we use Dongarra [27] 

tables to assume that the speed of these computers, measured in millions of floating-

point operations per second (Mflop/s), is the following: workstation - 10 Mflop/s, 

Pentium II – 80 Mflop/s, Athlon – 450 Mflop/s and Pentium M – 250 Mflop/s.  

The authors used different ways of presenting their results and solved different 

problems: Taillard [1] executed the algorithm five times, giving the average solutions 

and computing times; Tarantilis et al.’s [12] algorithm contains several random 

parameters, but they only provide the results for one run; Li et al.’s [6] algorithm is 
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deterministic as ours, and they have solved both sets of problems, while the other 

authors only solved set 1. 

The tables give the following information: the number of customers; the best 

known solution costs from the literature, with the indication of the source in the case the 

solution was found by only one algorithm; “our best” which is the best result obtained 

by our algorithm during all experiments with different values of the parameters; the cost 

of the solution produced by the different algorithms and respective computing time in 

seconds (CPU) on the computers previously indicated; the average for each set of 

problems; the percentage difference of the average in relation to the average of the best 

known solution costs (Av. deviation); the number of solutions found by each algorithm 

which are identical or better than the best published ones (NB). 

 

[Insert Tables 3 and 4] 

 

 The results in Table 3 show that the TSA was able to find all the best known 

solutions except two. In comparison with Taillard’s [1] algorithm, the TSA produces 

better solutions for all the problems, but his algorithm is about twice as fast. In relation 

to Tarantilis et al. [12], we can see that the solutions given by the TSA are a little better 

and the computing time is a bit lower. On average, Li et al.’s [6] algorithm produced 

slightly better solutions than the TSA and one more solution identical to the best known, 

but their computing time is about three times higher.  

It is worth mentioning that at the end of phase 4 the average solution cost is 

0.51% above the best known. This means that the improvement in the last two phases (5 

and 6) has been only 0.4%, but the average computing time taken by these phases was 

about 80 seconds, i.e., more than half of the average total computation time. This 

behaviour, which is typical of this kind of algorithms, means that a high price, in terms 

of computing time, has to be paid for a small improvement in the solution when it is 

already good. 

 The solution cost for the problem H5 in Table 4 contains two values: one 

assuming that the unit variable costs in Table 2 are correct and another, between 

brackets, assuming that these costs are identical to those of the problem H4. We should 

note that this second cost could be better if the problem was solved assuming the unit 

variable costs of H4. The results in Table 4, excluding the problem H5 because of the 

doubts just mentioned, show that the TSA gives better solutions than Li et al.’s [6] 
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algorithm for every problem and found new best solutions for all the problems. 

However, the computing time taken by the TSA is almost the double.  

Overall, the TSA found six solutions equal to the best known and four new best 

solutions, while the algorithm of Li et al.[6] found only seven identical to the best 

known. By using different combinations of parameters during our experiments, the TSA 

was able to find all the best known solutions but one, and four new best ones for the 12 

problems. 

 

3.2. New test problems 

 

 In order to increase the statistical significance of the computational experiments 

we created five new test problems designated as N1 to N5, set 3. The data for the depot 

and the customers (demand and coordinates) were taken from VRP examples, as 

follows: from Christofides et al. [28], problems 4-5 and 11-12, for N1 to N4, 

respectively; from Fisher [29], problem 12, for N5. In the first two problems (N1 and 

N2), the coordinates were randomly generated in the plane, while in problems N3 and 

N4, the customers appear in clusters. Problem N5 is a real problem. The characteristics 

of the vehicle fleet are in Table 5. These characteristics have been established in a way 

similar to that used by Taillard [1], p. 8, namely: i) the variable cost, vk, have been 

chosen in such a way that good solutions for the FSMVRP are composed of vehicles of 

each type; the number of vehicles of each type, nk, have been defined in such a way that 

the fleet composition of good FSMVRP solutions is very different from that of good 

HFFVRP solutions; iii) the total capacity is such that any HFFVRP solution must have 

at least one vehicle of each type (not all Taillard [1] or Li et al. [6] problems satisfy this 

condition). The average capacity ratio of our set of problems is slightly higher than that 

of the other two sets. 

 [Insert Table 5] 

 

 The quality of the TSA solutions for sets 1 and 2 was evaluated by comparing 

with the solutions produced by other algorithms. However, another way of measuring it 

is comparing the solution cost with the cost of the lower bound. The exact FSMVRP 

solution is a lower bound for the HFFVRP solution. We do not have the exact FSMVRP 

solutions for the three sets of problems under consideration, but we can calculate very 

good FSMVRP solutions, using the algorithm of Brandão [5]. So, using these “lower 
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bounds”, we can say that, very likely, our best solutions for the sets 1 and 2 (Tables 3 

and 4) are, on average, no more than 1.3% and 12.3% above optimum, respectively. 

Certainly, this gap is shared by the “lower bound” and the upper bound. 

 For the new problems the results are in Table 6, where the solution cost and the 

respective vehicle fleet are presented. 

[Insert Table 6] 

 

These results show that the average gap between the “lower bound” and the 

upper bound is 2.54%. As expected, due to the relative dimension of the three sets of 

problems, the gap for this set is in the middle of the other two sets. However, we are 

well aware that there are other relevant factors influencing this gap, like the cost 

structure and the ratio total demand versus total capacity of the vehicles. The solutions 

obtained for this new set of problems confirm the good performance of the TSA. 

 

4. Conclusions 

 

So far as we know, the TSA was the first tabu search algorithm applied to the 

heterogeneous fixed fleet vehicle routing problem. The results have proven that this 

metaheuristic is appropriate and the algorithm is able to find high quality solutions in a 

reasonable computing time. Four new best solutions are provided for the test problems 

that have been studied by other researchers.  

The solutions presented demonstrate the good performance of the TSA when 

compared to the algorithms of Taillard [1], Tarantilis et al. [12] and Li et al. [6]. The 

algorithm of Li et al. [6] is also deterministic, but the performance of the TSA is slightly 

better. In general, all these algorithms yield good results, but Taillard’s [1] algorithm, in 

spite of its good performance, is not appropriate for problems of large dimensions, as 

the author recognises, because it requires the exact resolution of a set partitioning 

problem, which is an NP-hard problem.  

The main conclusions that we could draw from the computational experiments 

are the following: the problems of large dimension impose several additional 

difficulties, especially, if the data structure is uniform; the δ-neighbourhood plays an 

important role both in the quality of the solutions and in the computing time; the use of 

long term memory in the algorithm can diversify significantly the search and enhance 

the solution quality; a significant shaking can also have a rather positive influence in the 
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final results; the resolution of the HFFVRP is substantially more difficult than the 

FSMVRP. We believe that the TSA can easily be adapted to deal efficiently with the 

HFFVRP containing other additional constraints usually found in real-life. This 

conviction is reinforced by the fact that the TSA contains several features in common 

with the algorithm applied to a different type of problem, the FSMVRP (Brandão [5]), 

where it has proved to have a good performance. 
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Table 1 
Data for the problems of set 1 
  Type of vehicle 

Ratio 
(%)   A B C D E F 

Problem n QA vA nA QB vB nB QC vC nC QD vD nD QE vE nE QF vF nF 
13 50 20 1.0 4 30 1.1 2 40 1.2 4 70 1.7 4 120 2.5 2 200 3.2 1 95.39 
14 50 120 1.0 4 160 1.1 2 300 1.4 1          88.45 
15 50 50 1.0 4 100 1.6 3 160 2.0 2          94.76 
16 50 40 1.0 2 80 1.6 4 140 2.1 3          94.76 
17 75 50 1.0 4 120 1.2 4 200 1.5 2 350 1.8 1       95.38 
18 75 20 1.0 4 50 1.3 4 100 1.9 2 150 2.4 2 250 2.9 1 400 3.2 1 95.38 
19 100 100 1.0 4 200 1.4 3 300 1.7 3          76.74 
20 100 60 1.0 6 140 1.7 4 200 2.0 3          95.92 

Ratio = 100 × (total demand/total capacity). 
 
 
 
Table 2 
Data for the problems of set 2 

  Type of vehicle  
  A B C D E F Ratio 

Problem n QA vA nA QB vB nB QC vC nC QD vD nD QE vE nE QF vF nF (%) 
H1 200 50 1.0 8 100 1.1 6 200 1.2 4 500 1.7 3 1000 2.5 1    93.02 
H2 240 50 1.0 10 100 1.1 5 200 1.2 5 500 1.7 4 1000 2.5 1    96.00 
H3 280 50 1.0 10 100 1.1 5 200 1.2 5 500 1.7 4 1000 2.5 2    93.33 
H4 320 50 1.0 10 100 1.1 8 200 1.2 5 500 1.7 2 1000 2.5 2 1500 3 1 94.12 
H5 360 50 1.0 10 100 1.2 8 200 1.5 5 500 1.8 1 1500 2.5 2 2000 3 1 92.31 

Ratio = 100 × (total demand/total capacity). 
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Table 3 
Comparison of the results for set 1 

Problem 

 Best 
Known 

Our 
Best Taillard Tarantilis et al. Li et al. TSA 

n Cost Cost Cost CPU Cost CPU Cost CPU Cost CPU 
13 50 1517.84a 1517.84 1536.55 473 1519.96 843 1517.84 358 1517.84 56 
14 50 607.53a 607.53 623.05 575 611.39 387 607.53 141 607.53 55 
15 50 1015.29 1015.29 1022.05 335 1015.29 368 1015.29 166 1015.29 59 
16 50 1144.94a 1144.94 1159.14 350 1145.52 341 1144.94 188 1144.94 94 
17 75 1061.96a 1061.96 1095.01 2245 1071.01 363 1061.96 216 1061.96 206 
18 75 1823.58a 1823.58 1894.73 2876 1846.35 971 1823.58 366 1831.36 198 
19 100 1117.51b 1120.33 1156.93 5833 1123.83 428 1120.34 404 1120.34 243 
20 100 1534.17a 1534.17 1592.16 3402 1556.35 1156 1534.17 447 1534.17 302 

Average  1227.85 1228.21 1259.95 2011 1236.21 607 1228.21 286 1229.18 152 
Av. deviation (%) 0.03 2.61 – 0.68 – 0.03 – 0.11 – 

NB 7 0 – 1 – 7 – 6 – 
a Solution cost taken from Li et al. [6] 
b Solution cost taken from Taillard [1]. 
Values in boldface – identical to the best known. 
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Table 4 
Comparison of the results for set 2 

Problem 

 Best 
Known 

Our 
Best Li et al. TSA 

n Cost Cost Cost CPU Cost CPU 
H1 200 12067.65 12050.08 12067.65 688 12050.08 1395 
H2 240 10234.40 10208.32 10234.40 995 10226.17 3650 
H3 280 16231.80 16223.39 16231.80 1438 16230.21 2822 
H4 320 17576.10 17458.65 17576.10 2256 17458.65 8734 

H5 360 21850.40 23166.56 
(21757.26) 21850.40 3277 23220.72 

(21852.36) 13321 

Averagea 14027.49 13985.11 14027.49 1344 13991.28 4150 
Av. deviation (%) -0.30 0.00 – -0.26 – 

NB 4 0 – 4 – 
a This average is only for the first four problems. 
Values in boldface – identical to the best known or better (in this last case they are also in italic). 
 
Table 5 
Data for the problems of set 3 

  Type of vehicle  
  A B C D E F Ratio 

Problem n QA vA nA QB vB nB QC vC nC QD vD nD QE vE nE QF vF nF (%) 
N1 150 50 1 5 100 1.5 4 150 1.9 4 200 2.2 3 250 2.6 2    95.11 
N2 199 50 1 8 100 1.5 6 150 1.9 5 200 2.2 4 250 2.6 2 350 3.2 1 93.71 
N3 120 50 1 6 100 1.5 3 150 1.9 3 200 2.2 2       94.83 
N4 100 50 1 4 120 1.6 4 180 2.1 4 240 2.6 2       96.28 
N5 134 900 1 5 1500 1.5 3 2000 1.8 2 2500 2.2 1       94.32 

Ratio = 100 × (total demand/total capacity). 
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Table 6 
The results for set 3 

Problem n FSMVRP solution  HFFVRP solution Gap 
Cost Vehicle fleet Cost Vehicle fleet (%) 

N1 150 2220.01 5A, 2B, 3C, 7D 2243.76 4A, 4B, 4C, 3D, 2E 1.07 
N2 199 2827.76 2A, B, 4C, 12D 2874.13 5A, 6B, 5C, 4D, 2E, F 1.64 
N3 120 2234.57 2A, 3B, 5D 2386.90 5A, 3B, 3C, 2D 6.82 
N4 100 1822.78 3B, 3C, 4D 1839.22 3A, 4B, 4C, 2D 0.90 
N5 134 2016.79 7A, B, C, 2D 2062.48 5A, 3B, 2C, D 2.27 
Average – – – – 2.54 
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Appendix – New best solutions 

Here are presented the best solutions found by the TSA for the problem sets 1 

and 2. These solutions as well as the solutions for the set 3 and the data can also be 

found at http://cemapre.iseg.utl.pt/~sbrandao/HFFVRP_solutions_and_data.pdf. All the 

calculations have been performed with a precision of 64 bits and the total solution cost 

is presented with four decimal places. In order to save some space, a line can contain 

more than one route and the following format is used: <route number>: <route> <load> 

<vehicle type>; . 

 
Problem 13:   Solution cost = 1517.8366 
1: 0-17-0 20 A; 2: 0-26-0 18 A; 3: 0-16-0 19 A; 4: 0-6-0 19 A; 5: 0-2-0 26 B; 6: 0-4 
-0 30 B; 7: 0-40-0 33 C; 8: 0-31-25-0 39 C; 9: 0-7-35-19-0 40 C; 10: 0-27-13-15-0 37  
C; 11: 0-34-46-8-0 62 D; 12: 0-49-24-18-50-0 67 D; 13: 0-1-43-42-41-23-0 68 D; 14: 0 
-28-22-33-0 68 D; 15: 0-14-11-38-10-0 118 E; 16: 0-12-39-9-32-44-3-0 117 E; 17: 0-30 
-48-21-47-36-20-37-5-29-45-0 192 F 
 

Problem 14:   Solution cost = 607.5290 
1: 0-12-25-50-18-24-44-3-0 120 A; 2: 0-4-34-46-35-7-26-0 119 A; 3: 0-33-1-43-42-41-23 
-49-16-0 119 A; 4: 0-30-48-21-28-22-2-6-0 156 B; 5: 0-27-13-15-20-37-36-47-5-29-45-0 
 159 B; 6: 0-17-40-32-9-39-31-10-38-11-14-19-8-0 300 C 
 

Problem 15:   Solution cost = 1015.2939 
1: 0-5-38-46-0 41 A; 2: 0-26-7-43-24-0 47 A; 3: 0-37-42-40-19-4-0 47 A; 4: 0-48-23-6 
-0 48 A; 5: 0-49-10-39-33-45-15-44-17-0 99 B; 6: 0-12-47-18-0 95 B; 7: 0-41-13-25-14 
-0 99 B; 8: 0-11-16-50-9-30-34-21-29-2-32-0 156 C; 9: 0-27-8-31-28-3-36-35-20-22-1-0 
 145 C 
 

Problem 16:   Solution cost = 1144.9360 
1: 0-12-0 29 A; 2: 0-7-43-24-0 40 A; 3: 0-37-17-42-19-40-41-4-0 77 B; 4: 0-27-48-23- 
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6-0 63 B; 5: 0-11-16-50-9-38-46-0 75 B; 6: 0-44-15-45-33-39-10-0 78 B; 7: 0-14-25-13 
-18-47-0 138 C; 8: 0-1-22-20-35-36-3-28-31-26-8-0 137 C; 9: 0-32-2-29-21-34-30-49-5- 
0 140 C 
 

 

Problem 17:   Solution cost = 1061.9570 
1: 0-4-75-0 50 A; 2: 0-34-46-0 46 A; 3: 0-67-26-0 48 A; 4: 0-40-44-24-49-16-6-0 120  
B; 5: 0-51-3-50-18-55-25-31-12-0 120 B; 6: 0-74-21-61-28-2-68-0 118 B; 7: 0-8-19-54- 
13-57-15-27-52-0 117 B; 8: 0-73-1-62-22-64-42-43-41-56-23-63-33-0 196 C; 9: 0-45-29- 
5-37-20-70-60-71-69-36-47-48-30-0 199 C; 10: 0-7-35-53-14-59-11-66-65-38-10-58-72-39 
-9-32-17-0 350 D 
 

Problem 18:   Solution cost = 1823.5801 
1: 0-6-0 19 A; 2: 0-75-0 20 A; 3: 0-25-55-31-0 46 B; 4: 0-34-67-0 49 B; 5: 0-73-56-23 
-63-0 49 B; 6: 0-52-46-0 46 B; 7: 0-27-15-57-13-54-19-8-0 98 C; 8: 0-30-48-47-21-74- 
0 99 C; 9: 0-62-22-64-42-41-43-1-33-0 147 D; 10: 0-17-3-44-50-18-24-49-16-51-0 146 D;  
11: 0-4-45-29-5-37-20-70-60-71-36-69-61-28-2-68-0 248 E; 12: 0-26-7-35-53-14-59-11-66 
-65-38-10-58-72-39-9-32-40-12-0 397 F 
 

Problem 19:   Solution cost = 1120.3438 
1: 0-12-80-68-29-24-25-55-54-0 99 A; 2: 0-60-83-8-46-45-17-84-5-99-96-6-0 98 A; 3: 0 
-87-42-14-38-43-15-57-2-0 96 A; 4: 0-76-77-3-79-78-34-35-65-71-9-51-81-33-50-0 199 B;  
5: 0-31-88-62-10-63-90-32-66-20-30-70-1-69-27-0 199 B; 6: 0-52-7-19-11-64-49-36-47-48 
-82-18-89-0 193 B; 7: 0-53-58-40-21-73-72-74-22-41-75-56-23-67-39-4-26-28-0 278 C; 8:  
0-94-95-59-93-85-61-16-86-44-91-100-98-37-92-97-13-0 296 C 
 

Problem 20:   Solution cost = 1534.1666 
1: 0-11-64-49-36-46-0 57 A; 2: 0-18-83-8-45-17-84-60-0 60 A; 3: 0-54-24-29-34-78-50- 
0 60 A; 4: 0-97-92-91-38-43-15-57-2-0 60 A; 5: 0-53-0 14 A; 6: 0-73-74-22-41-58-0 58  
A; 7: 0-33-81-9-35-71-65-66-20-51-0 140 B; 8: 0-88-62-19-47-48-82-7-52-0 138 B; 9: 0 
-28-76-77-3-79-68-80-12-0 140 B; 10: 0-31-10-63-90-32-30-70-1-69-27-0 137 B; 11: 0-94 
-95-59-98-37-100-85-93-99-96-6-0 196 C; 12: 0-89-5-61-16-86-44-14-42-87-13-0 200 C;  
13: 0-26-4-55-25-39-67-23-56-75-72-21-40-0 198 C 
 

Problem H1:   Solution cost = 12050.0761 
1: 0-2-1-20-0 50 A; 2: 0-5-4-3-0 50 A; 3: 0-11-10-9-7-0 100 B; 4: 0-19-18-17-15-0 100  
B; 5: 0-105-125-145-165-185-184-164-144-124-104-0 100 B; 6: 0-23-24-44-64-84-85-65-25 
-0 100 B; 7: 0-8-27-26-6-0 100 B; 8: 0-14-34-35-16-0 100 B; 9: 0-30-49-69-89-109-129 
-149-169-189-188-168-148-128-108-88-68-48-28-0 200 C; 10: 0-32-53-73-93-113-133-153- 
173-193-192-172-152-132-112-92-72-52-31-0 200 C; 11: 0-38-57-77-97-117-137-157-177-197 
-196-176-156-136-116-96-76-56-36-0 200 C; 12: 0-39-60-80-100-120-140-160-180-200-181 
-161-141-121-101-81-61-41-21-0 200 C; 13: 0-13-33-54-74-94-114-134-154-174-194-195-175 
-155-135-115-95-75-55-0 500 D; 14: 0-29-50-70-90-110-130-150-170-190-191-171-151-131 
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-111-91-71-51-12-0 500 D; 15: 0-40-59-79-99-119-139-159-179-199-198-178-158-138-118- 
98-78-58-37-0 500 D; 16: 0-47-67-87-107-127-147-167-187-186-166-146-126-106-86-66-46 
-45-43-63-83-103-123-143-163-183-182-162-142-122-102-82-62-42-22-0 1000 E 
 

 

Problem H2:   Solution cost = 10208.3088 
1: 0-25-24-23-0 50 A; 2: 0-16-14-13-0 50 A; 3: 0-12-11-9-0 50 A; 4: 0-29-28-27-0 50  
A; 5: 0-20-21-22-0 50 A; 6: 0-33-34-36-0 50 A; 7: 0-40-1-2-3-4-5-0 100 B; 8: 0-41-80 
-79-78-77-76-0 100 B; 9: 0-19-18-17-15-0 100 B; 10: 0-39-38-37-35-0 100 B; 11: 0-10- 
8-7-6-0 100 B; 12: 0-96-97-137-136-135-134-133-132-92-93-94-95-0 200 C; 13: 0-112-152 
-192-193-233-232-231-230-229-228-188-189-149-148-108-68-0 200 C; 14: 0-111-151-191-190 
-150-110-109-69-0 200 C; 15: 0-101-141-140-180-181-182-185-186-146-145-105-106-0 200  
C; 16: 0-104-144-184-224-225-226-227-187-147-107-0 200 C; 17: 0-88-128-168-208-209-210 
-211-212-213-214-215-216-217-218-219-220-221-222-223-183-143-142-102-103-0 500 D; 18:  
0-85-125-126-166-165-164-163-162-161-200-199-198-197-196-195-155-156-157-158-159-160 
-121-122-123-124-84-0 500 D; 19: 0-100-99-98-138-139-179-178-177-176-175-174-173-172 
-171-170-169-129-130-131-91-90-89-0 500 D; 20: 0-113-153-154-194-234-235-236-237-238 
-239-240-201-202-203-204-205-206-207-167-127-87-86-0 500 D; 21: 0-32-31-30-70-71-72- 
73-74-75-114-115-116-117-118-119-120-81-82-83-42-43-44-45-46-47-48-49-50-51-52-53-54 
-55-56-57-58-59-60-61-62-63-64-65-66-67-26-0 1000 E 
 
Problem H3:   Solution cost = 16223.3905 
 
1: 0-23-24-25-0 50 A; 2: 0-4-3-1-0 50 A; 3: 0-6-37-38-39-0 100 B; 4: 0-168-196-224-252 
-280-253-225-197-169-141-0 100 B; 5: 0-165-193-221-249-277-276-248-220-192-164-0 100  
B; 6: 0-84-112-85-86-58-57-0 100 B; 7: 0-80-108-136-137-109-81-82-29-0 100 B; 8: 0-44 
-72-100-128-156-184-212-240-268-269-241-213-185-157-129-101-73-46-0 200 C; 9: 0-96-124 
-152-180-208-236-264-265-237-209-181-153-125-97-70-42-0 200 C; 10: 0-47-76-104-132-160 
-188-216-244-272-273-245-217-189-161-133-105-77-49-0 200 C; 11: 0-32-60-88-116-144-172 
-200-228-256-257-229-201-173-145-117-89-61-34-0 200 C; 12: 0-36-65-93-121-149-177-205 
-233-261-260-232-204-176-148-120-92-64-35-0 200 C; 13: 0-40-68-67-95-123-151-179-207 
-235-263-262-234-206-178-150-122-94-66-0 500 D; 14: 0-43-71-99-127-155-183-211-239-267 
-266-238-210-182-154-126-98-69-41-0 500 D; 15: 0-48-75-103-131-159-187-215-243-271-270 
-242-214-186-158-130-102-74-45-0 500 D; 16: 0-63-91-119-147-175-203-231-259-258-230- 
202-174-146-118-90-62-33-5-0 500 D; 17: 0-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21- 
22-50-78-106-134-162-190-218-246-274-275-247-219-191-163-135-107-79-51-52-53-54-55-27 
-26-0 1000 E; 18: 0-28-56-83-111-110-138-166-194-222-250-278-279-251-223-195-167-139 
-140-113-114-142-170-198-226-254-255-227-199-171-143-115-87-59-31-30-2-0 1000 E 
 
Problem H4:   Solution cost = 17458.6474 
1: 0-24-25-26-0 50 A; 2: 0-41-80-79-0 50 A; 3: 0-81-121-201-241-281-320-280-240-160- 
120-0 100 B; 4: 0-137-177-217-257-256-216-176-136-96-56-0 100 B; 5: 0-8-9-10-11-12-13 
-0 100 B; 6: 0-133-173-213-253-293-292-252-212-172-132-0 100 B; 7: 0-88-128-208-248- 
288-289-249-209-129-89-0 100 B; 8: 0-125-165-205-245-285-284-244-204-164-124-0 100 B;  
9: 0-44-83-84-85-86-45-0 100 B; 10: 0-74-75-77-78-0 100 B; 11: 0-76-157-197-237-277- 
317-316-315-275-276-236-196-156-155-0 200 C; 12: 0-65-105-104-144-145-225-265-305-306 
-307-308-268-228-188-148-108-0 200 C; 13: 0-140-180-220-260-300-299-259-219-179-139- 
0 200 C; 14: 0-73-153-152-192-193-233-272-312-311-310-309-269-229-189-149-68-0 200 C;  
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15: 0-224-264-304-303-263-262-302-301-261-221-181-141-0 200 C; 16: 0-69-109-150-151- 
191-190-230-270-271-231-232-273-313-314-274-234-235-195-194-154-0 500 D; 17: 0-57-97 
-138-178-218-258-298-297-296-295-294-254-255-215-214-174-175-135-134-53-0 500 D; 18:  
0-54-55-95-94-93-92-91-90-130-131-171-211-251-291-290-250-210-170-169-168-167-207-247 
-287-286-246-206-166-126-127-87-46-47-48-49-50-51-52-0 1000 E; 19: 0-43-42-82-122-123 
-163-203-243-283-282-242-202-162-161-200-199-239-279-319-318-278-238-198-158-159-119 
-118-117-116-115-114-113-112-111-110-70-71-72-0 1000 E; 20: 0-14-15-16-17-18-19-20-21 
-22-23-64-63-62-61-60-59-58-98-99-100-101-102-103-143-142-182-222-223-183-184-185-186 
-226-266-267-227-187-147-146-106-107-67-66-27-28-29-30-31-32-33-34-35-36-37-38-39-40 
-1-2-3-4-5-6-7-0 1500 F 
 
Problem H5:   Solution cost = 23166.5628     (21757.2576) 
1: 0-208-244-280-316-352-353-317-281-245-209-0 100 B; 2: 0-68-104-140-176-212-213-177 
-141-105-69-0 100 B; 3: 0-189-225-261-297-333-332-296-260-224-188-0 100 B; 4: 0-103- 
102-101-137-136-100-0 100 B; 5: 0-80-79-115-116-117-81-0 100 B; 6: 0-184-220-256-292 
-328-329-293-257-221-185-0 100 B; 7: 0-76-112-113-114-78-77-0 100 B; 8: 0-45-44-43-42 
-41-40-0 100 B; 9: 0-53-89-125-161-197-233-269-305-341-340-304-268-232-196-160-124-88 
-51-0 200 C; 10: 0-72-108-144-179-180-216-252-288-324-360-325-289-253-217-181-145-109 
-73-0 200 C; 11: 0-60-96-132-168-204-240-276-312-348-349-313-277-241-205-169-133-97- 
98-0 200 C; 12: 0-50-85-121-157-193-229-265-301-337-336-300-264-228-192-156-120-84-48 
-0 200 C; 13: 0-56-92-127-128-200-236-272-308-344-345-309-273-237-201-165-129-93-57- 
0 200 C; 14: 0-49-86-122-158-194-230-266-302-338-339-303-267-231-195-159-123-87-52-0 
 500 D; 15: 0-1-37-38-39-74-75-111-110-146-182-218-254-290-326-327-291-255-219-183-147 
-148-149-150-186-222-258-294-330-331-295-259-223-187-151-152-153-154-190-226-262-298 
-334-335-299-263-227-191-155-119-118-82-83-47-46-0 1500 E; 16: 0-29-28-99-135-134-170 
-206-242-278-314-350-351-315-279-243-207-171-172-173-174-138-139-175-211-210-246-282 
-318-354-355-319-283-247-248-284-320-356-357-321-285-249-250-286-322-358-359-323-287 
-251-215-214-178-142-143-107-106-70-71-0 1500 E; 17: 0-27-26-25-24-23-22-21-20-19-18 
-54-55-91-90-126-162-198-234-270-306-342-343-307-271-235-199-163-164-166-202-238-274 
-310-346-347-311-275-239-203-167-131-130-94-95-58-59-61-62-63-64-65-66-67-30-31-32-33 
-34-35-36-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-0 1900 F 
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